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Abstract - -  Zusammenfassung 

On Simulation Methods for Solving the Boltzmann Equation. We will give an overview of the problem and 
then show how to modify an already present algorithm, so that it is also useful from a practical point of 
view. Further we will show that this algorithm is suitable for parallel computing and prove by means of 
an example that it can compete with the Bird algorithm, which is almost always applied by engineers but 
has only a heuristic base. 
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~ber Simulationsmethoden zur Liisung der Boltzmanngleiehnng. Wir geben einen fJberblick fiber die 
Problemstetlung und zeigen dann, wie man einen bereits vorhandenen Algorithmus modifizieren kanu, 
so dab er auch praktisch verwendbar wird. Wir zeigen weiter, dab dieser Algorithmus ffir Parallelrechner 
geeignet ist und weisen anhand eines Beispiels seine Konkurrenzf'fihigkeit gegentiber dem von den 
Ingenieuren fast ausschliel31ich verwendeten Bird-Algorithmus nach. 

1. Introduction 

A molecular approach to the study of a gas flow is necessary if the Knudsen number 
Kn defined by 

2 mean free path of a molecule 
K n = - - =  

D characteristic dimension of the flow 

is of order unity or higher. A high Knudsen number may result from either a large 
mean free path or a very small characteristic dimension. The former is usually the 
case. It is a consequence of very low density (rarefied gas). Re-entry flight through 
the upper atmosphere has focused attention on the importance of this subject. The 
alternative requirement of a very small characteristic dimension can be met at any 
density, and for example the molecular approach is required for the study of the 
internal structure of shock waves. 
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A molecular description is provided by the kinetic theory of gases. Basic to the 
kinetic theory is the real valued velocity distribution function f(t ,  x, v) where r s R is 
the time, x ~ Na is the position and v 6 R 3 is the velocity. If A c N3 and B c R 3 then 

S f ( t , x , v ) d x d v  
B A 

can be interpreted as the expected number of molecules in A with velocities in B at 
time t. The time evolution off( t ,  x, v) in the absence of external forces is described by 

of 
- - +  @, grad~f )  = J f  (1) 
Ot 

where 
J f ( t ,  x, v) = 

I t +o = S ~ [ f ( t , x , v ) f ( t , x , w ) - j  ( t , x , v ) f ( t , x ,w) j .  cr(rl, O)O dco(rl)dw, 
R3 S 2 

S 2 the unit sphere, U ~ $2, g = I[ v -  w Jl, 

1 1 
v'==-[(v+w)+g~J, w'=--[(~+w)-g~]. 

2 2 

The mapping t / ~  a (t/, g) is called the differential cross section for g. Since Ludwig 
Boltzmann established the non-linear integro-differential-equation (1) in 1872 
generations of mathematicans and physicists have worked on it. (Even David 
Hilbert was concerned with this equation.) 

The enormous mathematical difficulties associated with the Boltzmann equation (1) 
generally preclude direct approaches that would lead to exact analytical solutions. 
This has meant that a large number of indirect approaches have been proposed (see 
e.g. [1]). The disadvantages of many of the resulting methods such as uncontrollable 
approximations and/or enormous computational efforts are so serious that there 
was a great need for a search of new methods. By means of ever more powerful 
computers it has become possible to develop simulation procedures which imitate 
the behavior of a gas flow. The general idea of any simulation method is to construct 
a stochastic process for a NM-particle system in such a way that the NM-particle 
distribution at time t is "near" the solution f ( t , . ,  .) of the Boltzmann equation. 

I I 
stochastic process ~ _ ~  reality Boltzmann equation 

N M  ~ 105 I [ N M  ~ 1023 N M  = o3 

L J compare 

Such a procedure was first realized in the 1960s by G. A. Bird [2J and he called it 
"direct Monte Carlo simulation method". This Bird scheme is still the main one 
being used in engineering problems, although Belotserkovskiy-Yanitzkiy [31 in 
1975, Deshpande [31 in 1978 and Nanbu [4] in 1980 presented alternatives with a 
better theoretical basis. The reason for that is that the Bird scheme provided good 
results in comparison with experiments and had no rival in computing times. The 
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computational effort is of crucial importance in the simulation and a little more 
complicated problems could only be calculated with the Bird scheme. We present 
here a modification of the Nanbu procedure which in use for parallel processors is 
comparable in computational efforts to the Bird simulation but still retains the level 
of rigour. 

2. Description of the Simulation Method 

Starting ideas are the following: Time is advancect by discrete steps of magnitude A t 
in order to treat the flowterm @, g radx f )  and the collision term Jfseparately.  The 
position space A is divided into cells. The dimensions of the cells are chosen so that 
spatial homogeneity can be assumed in each cell. 

By using equation (1) we can write 

At At d 

! (f +(v, grad~f))(t,x+vt, v) dt=! ~f(,,x+vt, v)d,= 
At  

= ~ Jf( t ,x+vt ,  v) d t~At ,  af(O,x,v). 
0 

Then follows 

f(At, x,v)~ f (O,x- At. v,v)+ At. J f (O,x -  At. v,v). 

And by defining 

we obtain 

We define 

Tf ( . , x , v ) :=f ( . , x -A t .  v,v) 

f(At, x,v)~ T(I + At. J) f(O,x,v). 

f~(O,x,v):={f(Oo, V ) x sC  x r C for each cell C. 

We assume spatial homogeneity in each cell: 

x[-,f~(O,x,v) is constant; 

f~ (0, v): =f~ (0, x, v) for each cell C. 

Thus f(A t, x, v) is calculated in two steps: 

(a) 

(b) 

Calculate 
f~ (4 t, v) = (1 + A t .  J ) s  (0, v) (2) 

for each cell C. This is a time step approximation for the spatially homogeneous 
Boltzmann equation. It describes the effect of collisions on the velocities. 

f(At, x,v):= ~, ( l + A t .  J)f~(O,v) 
Cells 

Substitute x ~ x -  A t .  v: 

f(At, x,v)~ T~(At, x,v)=y(At, x - A t .  v,v) 

It describes the collisionless motion of the particles over the time interval A t. 

Computing 38/2 
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This leads to the following simulation procedure by means of a NM-particle system. 

(i) Divide the position space A in a suitable way into cells. Sample the positions xl 
and the velocities v i for the NM-testpartMes according to f(0, x, v). Choose a 
time step A t, small compared to the mean free time per molecule. 

(ii) Consider the cell C. There are, say, N particles in C. During the collision 
process we "ignore" the positions and consider only the velocities (vl, ..., vN) of 
the N particles. I.e. we approximate f~ (0, v) by 

N g/ 
- -  

N j=l 
N 

where n = - -  is the particle density in the cell, Vthe volume of the cell and 6 the 
V 

Dirac delta function. 

Find a stochastic game transforming (vl, ..., VN) into (vl (A t), ..., vN (A 0) so that 
N 

n 
- 2 
N j=l 

is an approximation for ~ (A t, v). 

Do this for all cells C. 

(iii) There is no question of how to simulate step (b): 

x i ~ - ~ x i + A t . v i  (v i=vi(dt ) ;  I <_i<_NM). 

Compute interactions with boundaries as required. 

(iv) Replace the flow time t by t + A t and if the flow time is smaller than a required 
time T, go to (ii). 

Otherwise sample the flow properties. 

The treatment of the collision process (ii) is of crucial importance for the whole 
simulation method and here the various procedures mentioned above differ. 

3. The Collision Algorithm of Bird and Nanbu 

We consider a cell C with N testparticles with velocities vl,...,vN. We use the 
following notations: 

o-~(9):= S cr(t/,g) de)(r/) (total cross section), 
s 2 

gij: = I1 gl--gj H, 

(a~ (g). g)max: = max {o-~ (glj) gi~; 1 _ i <j_< N}, 

1 N 
a~(g), g : = N2 2 o.~(alj) glj. 

i,j=l 
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Using (1) and (l, m) we denote the particle with velocity (vz) and the particle pair with 
velocities (vl, v~) respectively. 

3.1 The  B i r d - A l g o r i t h m  

Bird devised his algorithm through reference to the physics of molecular collisions 
and he made a thorough study on the reduction of computing time. We note that 
from a practical point of view it is the most successful method, used in many 
applications ([2], [5]). But from a rigorous point of view it is only heuristic. For a 
more detailed discussion we refer to [3] and our report [6]. 

(i) To sample a collision pair ( l ,m) Bird employed the acceptance-rejection 
method: Generate a random fraction R z and accept a randomly chosen pair 
(1, m) as a collision pair if 

g ,  >- R f  

where g* -> (ere (g)g)max' 

Otherwise repeat the selection. 

(ii) Let (l, m) be an accepted pair. Advance the time by 

2 

N n . ~ (gl,,,) gzm " 

[R 1 2 emark: _ _  is the mean collision time per molecule and 
n . a~(g)g N n  . a~(g)g  

7 

be interpreted as the mean free time between two collisions. I can 

(iii) Replace the two molecular velocities of the pair (l, m) by the post collision 
velocities: 

1 
/)l }--~ Vii = 2 "  [(Vl -}- l)m) - -  1~. g ,m]  

1 
~" H ~;"=S [(v,+ vm)+~- g,m] 

where ~/e S 2 is chosen randomly in correspondence with the collision law (e. g. 
from a uniform sphere distribution in the case of a hard sphere gas). The 
velocities of other molecules are unchanged and hence all molecular velocities 
at time t + z l  are known. 

(iv) Repeat steps (i) to (iii) until the condition 

"el +'C2 + ...  + r N  ~> A t (3) 

is satisfied. Condition (3) determines the number of collisions N s in It, t + A t]. 

8* 
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3.2 The Nanbu-Algorithm 

Nanbu obtained his algorithm by inserting 

N t/ 

j = l  

in equation (2) and a formal calculation [4]. He ended up with the following 
procedure. 

(i) For the i-th particle with velocity v i compute 

N 
n 

- -  ~ a~(gij)gij" P i : = A t  N j=l 

Generate a random fraction Rr e [0, 1] and 

~ R f  > Pi (rejected): v'i = vi (no collision), 

if ( R f  < Pi (accepted) go to, in turn, steps (ii) and (iii). 

(ii) Sample a collision partner (j) from the conditional probability distribution 

{P*; k = l , 2 , . . . , i - l , i + l  . . . . .  N} 
where 

P * : =  , P~k=At~a~(gik)g lk  . 

The following condition determines (j): 

j - 1  j 

E PI*<R'r <- E P*k 
k = l  k = l  

where R~ is another random fraction. 

(iii) After the collision partner (j) of Particle (i) is known compute 

1 
v'i = ~ [(vl + vi) + tl gii] 

where ,? ~ S z is chosen in correspondence with the collision law. 

Repeat this procedure for all N particles in the cell. The realization of the Nanbu 
collision process is essentially different from that of Bird. The collision probability of 
a molecule is determined without specifying its collision partner. A particle that does 
not collide can appear as a "dummy collision partner". The consequence is that in 
Nanbu's scheme energy and momentum are only conserved in the mean, but the 
correlations of the velocities are reduced. And whereas in Bird's scheme the 
postcollision velocities immediately go to work, in Nanbu's scheme they are stored 
until the whole collision process in the cell is completed. However the expectation 
number of collisions is the same in both strategies [3]. 
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3.3 Babovsky's Interpretation 

In [7] Babovsky investigates the Nanbu algorithm and presents rigorous results 
concerning questions of justification. We bring here a short outline. 

To approximate the solution of the spatial homogeneous Boltzmann-equation 

0 
~ f ( t ,  v) = ~ S a (rl, g) g [f(t,  v') f ( t ,  w') - f ( t ,  v) f ( t ,  w)] de) (q) dw 

~3 S 2) 

given f(O, v) =fo (v) at time t = A t we consider the following iteration process. We 
divide A t in L intervals of magnitude A z: A t = L .  A z and solve the equation 

f ( t , v )=  [. S a 'g  [ f ( t , v ) f (O,w) - f ( t , v ) f (O,w)J  dco(rl)dw 
~ s~ (4) 

y(O, v) =f(O, v)=fo (v) 

in [0, A "cJ. Then we replace f(0, w) byf(A z, w) and solve (4) in [A z, 2 A z] ; and so on. 

Hence in connection with the simulation we keep the following diagram in mind. 

(4) 
f(0,  v) 

l te[O, Az] 

- Z (v- (o)) 
Vj=I  

___ Az~O 
(4) +...--,f(A t, v) -~f(A t, v) 

tE[Az,  2Az] L---, O9 

| N ~ o e  
1 N 

- -  Z 6 t)) (5) 
V j=l 

" ' ' ~ / ) N i t  = 0  " '1 )NJ t=Az  . . . . . .  

Equation (4) is a linear transport equation and describes the time evolution of a 
distribution function for testparticles which are distributed at time t = 0 according to 
f(0, v) and hit "hosparticles", which are distributed during A t according to f(0, v). 
Babovsky used the fact that such a transport equation is associated with a Markov 
process. He showed that under certain assumptions the use of Nanbu's algorithm for 

is a realization of that Markov process. But we note that at time there is no rigorous 
proof for the convergence of diagram (5). 

3.4 The Problem of the N2-Effort 

A very serious disadvantage of the Nanbu algorithm is of practical nature. We have 
to compute 

N 
n 

- -  ~ ~r~(gii) gij for i=  1 , . . . ,N Pi=At  N i=1 

i.e. all relative velocities g~j. 
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This O (N 2) effort renders the procedure inefficient from a practical point of view. In 
fact, in a recent paper 1-8] Nanbu himself used the Bird algorithm. We show in 4. that 
by the use of a simple but effective trick we can reduce the effort to order O (N). 

The O (N 2) effort seems to appear implicitly in the Bird algorithm as well. For we 
have to calculate (~) terms at (g~:) g~j to determine (at (g) g ) m a x  a n d  (~r~ (g) g ) m a x  c a n  even 
undergo a change with each collision. Bird avoids the O (N a) effort by estimating g* 
and if a t (g) g > g* should appear, while the program is being run, it replaces g* and 
so on. This is of course a source of error with respect to the selection of a collision 
pair. However the practicans argue [5] that in any simulation problem a suitable g* 
can readily be found during a period of adjustment. 

4. The Modified Nanbu-Algorithm 

As mentioned above the Nanbu algorithm in the way shown in 3.2 is inefficient from 
a practical point of view. We modify the algorithm in two points. The decisive 
improvement is in the second point and was suggested by Babovsky. 

(a) As in 3.3 we divide the decoupling interval A t in L intervals of magnitude A z 
and run the collision algorithm L times before going over to the collisionless 
motion. (Therefore in the following P~j = A ~. }- .a~ (g~j)g~.) This leads to a 
greater flexibility in the choice of A t and can reduce the computation time. Then 
during the collision process a particle can collide several times as in the Bird 
scheme. 

(b) Obviously we can combine steps (i) and (ii) of the Nanbu-algorithm: We 
generate a random fraction R: ~ [0, 1]. If R I ~ [Pg, 1] the i-th particle does not 
collide. If R I ~ P~j the i-th particle collides and the collision partner is the j-th 
particle (see Fig. 1). 

Pil Pi2 . . . Pij . . . PiN 

0 Pi I 

F i g .  1 

It is of course irrelevant how we distribute the probabilities P~j over the unit interval. 
We distribute them according to Fig. 2. 

Pil Pi2 Pij Pi N 

l i [ l l 1 1 l 1 1 1 
0 I 2 j-1 j N-1 I 

N N N N N 

F i g .  2 

I.e. we distribute [Pi, 1] ( ~ probability that the i-th particle does not collide) in such 
a way on the Pij that N identical intervals are obtained. In this case we can 
immediately decide in which of the N intervals our random fraction R: is located. 
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If RZE , - we compute only P~j and 

if f R x ~  --P~ ~ the i-th particle does not collide, 

[ I - - -  -I 

R f > l J - P i j ]  ]-+ the i-th particle does collide and its collision partner 
L lV  A is the j-th particle. 

109 

The Numerical EfJort is Now Only of Order 0 (N) 

One point must be considered. The above procedure works if we have 

n 1 
Pij = A "c . N "  at (gij) gij ~ ~ 

(6) 
or Az.n.G~(gu) gu -<1 for l_<i<j_<N. 

We have to satisfy this condition by means of a suitable choice of A z (i.e. of the 
decoupling interval d t and of the parameter L), naturally without computing all 
a~ (gu) g~2 but by means of estimations of linear effort. For example we have for the 
molecule models which are used in the case of a monoatomic gas (see [51) 

a,(gu)g~j=c g~jP with 0 < f i < l  and c as a constant. 

And we can estimate g J  e.g. by 

g J =  II v i - v j  II p =  If(v~-m)-(vj-m)ll p 

-<(ll vi-rn I[ + II vj-mHY<_([I v~-m II + max II vj -m llY 
I <_j<_N 

with 
1 N 

N j = I  

In doing so we might obtain an unnecessarily small A z Therefore we suggest for 
practical purposes the following alternative. During a testphase A ~ is determined in 
such a way that 

1 
Pij-< k ~ with k < 1 chosen 

is true for all actually computed Pij. An error estimation has not yet been made in 
this connection. 

In general we should choose 

1 
A t < ( ~  mean collision time per mulecule). (7) 

n. ~ ( g ) g  
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With L ~  10 we have 

Az< 
n. r 

or A ~ . n . a ~ ( g ) g < l  

and our condition (6) is a specification of the general condition (7). 

We designate the simulation scheme with the above described modification as 
N*-scheme. 

5. On the Vectorizing of the Algorithm 

By "vectorizing" we mean in this context the adaption of computerprograms to the 
special architecture of the computer. The vector processor CYBER 205 is con- 
structed according to the pipeline principle. In this concept high performance is 
achieved if the algorithms are parallel in such a way that a lot of the same operations 
can be performed with independent data stored in sequence. 

The most time consuming part  of the simulation program is the continually 
repeating collision process. The Bird algorithm is here recursive in the sense that 
after a collision the computation goes on using the postcollision velocities. We could 
not find a reasonable vectorizing on the CYBER 205. Remark:  According to [91 
the vectorizing of the Bird algorithm on the CRAY-1S is of little advantage. 
Additionally the conditions (e. g. favorable vector lengths) from which we can expect 
an effective vectorizing on the CYBER 205 vary from those on the CRAY-1S. 

On the contrary the N*-algori thm is parallel in its structure. The set of the velocities 
at time t = 0 determines the set of the velocities at time t = A v. 

{D1 . . . . .  1)NM}t =0 ~'~ {/)1 . . . . .  UNM}t-A~ 

We will now show how we vectorized an essential part of the collision process_ 

To determine the collision probability of the particle (/) - we call i the number of the 
particle (i) - we need the possible collision partner (j) and have to compute 
gij-- [I v~-  vj II. We want to do this "simultaneously" for all N M  particles which are 
in the computing field. In doing so we must keep in mind that only a particle (j) from 
the same cell comes in question as a possible collision partner for particle (i). Let 
NCELLS be the number of cells which are numbered in sequence and L c be the cell- 
number in which the particle numbered L is found. 

The x, y, z-velocity-components of the particles are stored in the arrays 
VX, VY, VZ. Our goal is to create arrays VXG, VYG, VZG which correspondingly 
contain the velocity-components of the possible collision partners. After that we can 
immediately vectorize 

SQ R r(( VX (I) - VX G (1))*'2 + ( VY (1) - VYG (I))*'2 + 

+ ( V Z ( I ) -  I/ZG(I))**2) (1 <I  <_NM). 
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As preparation the arrays R, NN, NB, L IST  were created. NM random fractions 
are stored in R. 

NN (I) =number of particles in cell I (1 < I <_ NCELLS) 

N B (l) = 0, NB (J) = NN (1) + . . .  + NN ( J -  1) (2 <_ J <_ N CELLS) 

The number of the particles are arranged in LIS Taccording to the cells in which the 
particles are located and within each cell according to size: No L is stored in front of 
No K if 

L c < K c and in case L c = Kc if L < K. 

If LIST(J)=M - the particle number M is located at J in LIST  - we call J the 
index of the particle numbered M. 

N I (NB(I)+ J)= NN (I) (1 <_I <_NCELLS (1 <J <_ NN (I))) 
(the inner loop is vectorizable) 

N2(J)=R(J)*NI(J)+I  ( I<_J<NM) 
(immediately vectorizable) 

N 3 (NB (I) + J) = N2 (NB (I) + J) + NB (I) (1 <_ I < NCELLS (1 <_ J <_ NN (I))) 
(the inner loop is vectorizable) 

N3 (J) is the index of the possible collision partner of the particle indexed J. 

N4(J)=LIST(N3(J)) (1 <_J <_NM) 
(vectorizable by the vector intrinsic function GA THR) 

N4 (J) is the number of the possible collision partner of the particle indexed J. 

N5(LIST(J))=N4(J) (1 <_J <_NM) 
(vectorizable by the vector intrinsic function SCA TR) 

The number of the possible collision partner is stored according to the number of the 
particle. And finally 

VXG(J)= VX(N5(J)) ] (1 <_J<_ NM) 
VYG (J)= VY(N 5 (J)) ~ (vectorizable by the vector 
VZG (J) = VZ (N 5 (J)) intrinsic function GA THR) 

Through the vectorization the whole simulation program for the shock wave 
problem (see 6.) - using the N*-algorithm - became faster by factor 7 than a scalar 
version of the program on the CYBER 205. 

6. Comparison Data 

1. In testcalculations in which only the collision process was considered we obtained 
(with nearly the same results [6]) the following computation efforts: 
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On the universal computer at Kaiserslautern 
Fortran 77, 24 bit mantissa)' 

Table 1 

University (Siemens 

Particles Nanbu N* Bird 

I 100 56.7 3.1 2.3 

1000 5422 17.5 8.9 CPUsec 

10000 ? 180 79 

$7551, 

On the vector processor CYBER 205 at Karlsruhe University (Vector Fortran 48 bit 
mantissa): 

Table 2 

Particles N* Bird 

100 0.035 0.031 

1000 0.145 0.120 

2000 0.263 0.214 

cPu sec 

Remark:  At the time the calculations were done we had only little experience with 
the CYBER 205 and we are sure that it is possible to improve the "N*-times". 

II. As a serious testexample we used the Bird and N*-simulation scheme to compute 
a stationary plane shock wave for various Mach numbers in the case of a 
monoatomic gas. Also Nanbu calculated the shock wave problem [10]. But due to 
the computational effort he had to restrict himself to Maxwell-molecules. In this 
special case a~ (9ij) glj is independent of (i,j) and the computational effort is of order 
O (N) even when using the original Nanbu algorithm. But from a physical point of 
view Maxwell-molecules are unrealistic and it is senseless to compare Nanbu's 
results with experiments. The Bird simulation and the N*-simulation are of order 
O (N) for any molecule model. For our calculations we used the VHS model (yariable 
diameter hard sphere). Here the collision probabilities were calculated by means of a 
cut-off r -~ potential, but the actual collision behavior was taken from the hard 
sphere model. For a discussion of the VHS model we refer to [5]. Our results are 
Compared with measurements made by H. Alsmeyer in 1975 [1 II. 

For a plane shock wave we have gradients only in one direction and so the problem 
is (spatial) "l-dimensional". In a frame of reference in which the shock wave is 
stationary we have the following picture. 
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P2 

Pl 
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v 1 

T1 

"1 
upstream 

& 

Fig. 3 

f 

downstream 

> 
v 2 

T2 
P2 

) x 

The characteristic dimension of the problem is the shock width A defined by 

A ' -  P 2 - P l  

The upstream and downstream velocities, temperatures and densities vl, T,, p~, and 
v2, T2, P2 respectively are related by the Rankine Hugoniot conditions (see e.g. [1]). 
A shock Mach number M s is defined by 

/)1 
M s : = - -  

r 

where cl is the speed of sound in the upstream gas. 

For a description of the simulation procedure, a discussion of the simulation 
parameters and more results we refer to our report [6]. But the following choice of 
parameters, the result shown in Fig. 4 and the computational effort shown in Table 3 
are typical. 

40000 particles were used in the simulation; in dimensionless variables calculations 
were done for - 10 _< x < 10, with a cell size A x C = 0.2. The time step was chosen as 
A t = 0.1 and the parameter L for the N* simulation as L = 10. The calculations were 
done up to time t = 24. Time averages were taken after 60 runs. 

Computations were done on the CYBER205 vector processor at Karlsruhe 
University. The system of billing used there is SBU (_System Billing _Unit). 
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Table 3 

M~= 3.8 CPUsec SBU 

Bird 12900 50000 

N* 11700 54000 

As seen in Table 3 the relation of CPU sec to SBU is more favorable in the 
predominatly scalar calculated Bird scheme than in the mainly vectorized N*- 
scheme. The reason is that a high degree of vectorizing often requires more storage 
space. 

Ms=3.8 
VHS-model,~=11 

§ 

e 

§ 

+e 

e 
% 

% 

x P 

sity profile, N*-AIg. 
X density profile, Bird-Alg. 
- density profile, Exp.Alsmeyer 
+ temperature profile, N*-Alg. 

temperature profile, Bird-Alg. 

~:= O-Pl ~:= T-TI 

~-Oi TrTi 

X 
o i 

Fig. 4 

7. Conclusion 

Up to the present a comparison of the different simulation schemes of the Boltzmann 
equation could not be made in almost all cases due to the excessive computational 
effort. The Bird-algorithm, which is only heuristic based, had no rival in application. 
We hope to have shown that the N*-algorithm is a process which is useful from a 
practical point of view and additionally has a good chance of becoming theoretically 
based. 
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