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Abstract - -  Zusammenfassung 

Guaranteed Inclusions for the Complex Generalized Eigenproblem. A method is described which produces 
guaranteed bounds for a solution of the generalized complex eigenproblem. The method extends a 
similar approach for general systems of noulinear equations to the special case of complex pencils, where 
under weaker assumptions stronger assertions can be proved. 

AMS Subject Classifications." 65 G 10, 65 G 05, 65 H 15. 
Key words: Generalized eigenproblem, inclusion of solution, guaranteed results, error bounds. 

Einschliellung der LiJsung fur das allgemeine, komplexe Eigenproblem. Es wird eine Methode zur 
Berechnung garantierter Schranken ffir die L6sung des komplexen allgemeinen Eigenproblems 
beschrieben. Die Methode erweitert einen ~ihnlichen Ansatz f~r allgemeine nichtlineare Gleichungs- 
systeme in der Art, dab f/Jr den vorliegenden speziellen Fall weitgehende Folgerungen aus schwficheren 
Voraussetzungen gezogen werden k6nnen. 

0. Introduction 

Let T be one of the sets C (complex numbers) ,  C" (complex vectors with n 
components )  or  C nx" (complex square  matr ices  with n rows and  columns).  In the 
power  set P T opera t ions  are  defined by 

A , B ~ P T :  A * B : = { a * b l a ~ A , b ~ B }  f o r * z { + , - , . , / }  

wi th  obvious  res t r ic t ions  for /. The  order  re la t ion in N is ex tended to a par t ia l  
o rder ing  in C and  ex tended  componen twise  in C n and  C "x" 

/1 denotes  the in ter ior  of  a set A, I m the m x m ident i ty  matr ix ,  e; the k-th unit  
(row-)vector.  

Sets occurr ing  in an expression several  t imes are  t rea ted  independently, which means  
for example  for A, B E P T  

A + B.  A = { a  l +b .  a2 l a l ,a2~A and b~B} .  

This is fundamenta l  for the following. In  prac t ica l  implementa t ions  this will a lways 
be satisfied au tomat ica l ly .  
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The sets H T_~ P T  of intervals over T are defined by 

[ A , B ] ~ I T : < ~ { x ~ T I A < x < B }  for A, B ~ T .  

Power set operations in D T are induced by those in P T whereas interval operations 
are defined by 

AeI]T1,BeOT2: A @ B : = ~ { C ~ U T 3 I A * B ~ C } ,  

where T 1, T e, T 3 are either one of the sets C, C" or C ~ x ~ such that for X ~ T1, Ye T2, 
X * Y is well-defined and X ,  Y~ T 3. 

These interval operations are welldefined (see [11], [ t2] ,  [2]). Intervals the bounds 
of which are floating-point numbers are defined in a similar way as well as operations 
between those. For more details see [2], [4] or [15]. [4] gives a very nice 
introduction to inclusion algorithms. For the following discussion it suffices to know 
that operations between intervals with floating-point bounds are welldefined, are 
quickly executable on digital computers and give sharp bounds (in terms of 
intervals) of the solution set. 

One purpose of the following discussions will be to formulate theorems allowing to 
calculate sharp inclusions of the solution by diminishing overestimations introduced 
by interval calculations. Thereby, mathematically equivalent formulations may 
differ vastly in the corresponding practical results. 

1. First Results 

For A,B~C "• the problem will be discussed finding inclusions of an 
eigenvector/eigenvalue pair of the pencil A - 2 B .  First we derive a theorem which 
follows from a general theorem for the inclusion of the solution of systems of 
nonlinear equations (see [15]). 

We use a normalization 

e~. x = ~  (1.1) 

for the eigenvector x with some 0 :/: ~ ~ C. Other normalizations are possible as well. 
The problem is rewritten to find a zero of a nonlinear system f : {2 "+ 1__+C,+ 1 with 

f 
)~ : = \  e i x _  ~ J' 

where x e C", ~ ~ C. The Jacobian J of f computes directly as 

J :  = (1 .3 )  
\ ek 

A nonlinear system similar to (1.2) has been discussed by Krawczyk [7]. We use 
these ideas and the principles of inclusion algorithms [15] extended to the 
generalized eigenproblem. 
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The following ideas and corresponding algorithms can be regarded as the extension 
of a traditional numerical algorithm to an interval-type algorithm providing results 
which are based on a (good) floating-point approximation and which are guaranteed 
to be correct. 

With these preliminary remarks we can prove the following theorem. 

Theorem l:  Let A, BeC "• R e C  r215 2~C", ~ (eC with (~0. Let 
X~FC", AsDC be nonempty, compact and convex sets with "2~X and ~EA and 
define 

 1.4, Z:=  ,~ - R . \  ek2--r ) 
and 

/f 
Z + A c_ interior (X )  (1.6) 

then there exist some 2eX,  2eA with A2=2B2 and e'k2=(. 

Proof: In every e-neighborhood of R there exists a nonsingular matrix. Therefore, 
by (1.6) some nonsingular/~ exists satisfying 

Z+A_c interior ( X ) (1.7) 

where Z and zt are defined similar to Z and A by replacing R by/~. Regarding ~'e A 
and using the definition (1.2) o f f  and (1.7) yields for every x ~ C", 2 e C with x e X, 
it e A after short computation 

\ e~x- (  ) 

'L e'~2-r )+ " e'k 
(1.8) 

"~ e'k2-( )+ . - B X ) } . ( X - ~ ) _ _  

in te r io r (X) .  

Brouwer's Fixed Point Theorem yields the existence of some 2 e X, ~ A with 

and the nonsingularity of/~ and the definition o f f  finishes the proof. [] 
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The theorem for nonlinear equations in [15] yields, moreover, the uniqueness of the 
pair 2, 2. It should be mentioned that Theorem 1 can be proved without assuming X 
and A to be convex using finer arguments. The aim of the next chapter is to prove the 
uniqueness of the eigenvalue/eigenvector pair as well as the individual uniqueness of 
the eigenvector and eigenvalue within X and A, respectively. 

2. Main Results 

For the succeeding discussions we use the following abbreviations. 

Let A,B~Cn• R~C('~+I)x('~+I~; s  
~, ~ e C, G : P C" + 1 __+ p C" + 1 defined by 

Y - 2  

with Y~PC ~, M 6 P C  and 

\ e k 2 - ~  / 
and 

S ( y ) : = ( A - ,  7~B - B  Y) ~ pC(~,+ ~, • 
\ ek 

k is a fixed integer between 1 and n, all operations 
in use are the power set operations. 

(2.1) 

The problem is to find inclusions of an eigenvalue/eigenvector pair of the pencil 
A - 2 B .  In (2.1) there are no assumptions on any of the used entities A, B, R, 2, 7. 
and (~. 

We will use the fact that for x ~ C", )~  C and f defined by (1.2), 

G 2 - R .  2 '  

as short computation yields. We first state the main result and give the proof in 
several steps. 

Theorem2: With the abbreviations (2.1) let ~ ~ 0, X E P C "  and A ~ P C  both be 
nonempty, compact and connected and suppose 

Then 

a) there exists one and only one eigenvector 2 of the pencil Ax  = 2Bx  normalized to 
e' k �9 2 = ~ satisfying 2 ~ X,  

b) there exists one and only one eigenvalue 2 of the pencil Ax  = ZBx satisfying ~ A, 

c) 2 and ~ satisfy A 2 = Z B 2 .  
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First we proof the existence and uniqueness of an eigenvector/eigenvalue pair within 
(X, A). Note that the assumptions in Theorem 2 are weaker than in Theorem 1 
because according to (2.1), S(Y) contains only A-7~B instead of A - A .  B in the 
upper left corner and 2, ~ are not supposed to be elements of X, A, respectively. 
Furthermore, X and A are not supposed to be convex but only connected. For this 
purpose we need the following important technical lemma. 

Lemma 3" With the assumptions of Theorem2 the matrix R and every matrix 
Q ~ S (X) are nonsingular. 

Proof: Follows by Theorem5 in [16] and (2.1). [] 

Lemma4:  With the assumptions of Theorem2 there exists one and only one 
eigenvector/eigenvalue pair of A x - 2 B x  subject to the normalization e'k X = ~ within 
(X,A), i.e. 

3 2 ~ X 3 Z ~ A : 2 ~ O  and A2=~B2  and 

y~X,  #cA,  e'kY=( and A y = # B y  implies y=2, #=2.  

Proof: Using (2.2) and (2.3) yields 

{ (x2) -R ' f (~)]x~X, )o~A}~-G(XA)~- in ter ior (XA)  

implying the existence of a fixed point 2 ~ X, ) ~  A with 

Using Lemma 3 yields A2 = ~B2 and e~ 2 = ( and therefore 2 r 0. For the proof of 
the uniqueness of the eigenvector/eigenvalue pair (2,)T) we assume the existence of 
x , y ~ X  and 2 , # 6 A  with e'kx=e'ky=( and 

A x = 2 B x  and A y = # B y  and x@y. (2.5) 

In the following we need the nonsingularity of every matrix Q (z), z ~ X defined by 

which follows by Lemma 3. Assume, ~is an eigenvalue, i.e. there exists some v e C" 
with Av=2Bv,  vr If e~,. v = 0  then using (2.6) we have 

(;)=0 
which is a contradiction because v r 0 and Q (x) is not singular. If e~,. v =/; 0, then we 
may assume w.l.o.g, e~,. v = ~ and therefore 

Q(x). ,~_2 =0  and Q(y). =0 .  
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Now v ~ x or v =/= y because of x r y showing the existence of a nonzero vector in the 
kernel of Q (x) or Q (y), which is a contradiction. Therefore, 2 is no eigenvalue and 
especially, 

X:/=2 and 7~:/=r (2.7) 

If 2 = # then short computation yields 

f(x+~57-x))=O for e v e r y 6 ~ C .  

Then (2.2) shows that (x+g(y-x),2)' would be a fixed point of G for every c~eC 
contradicting (2.3), because by y 4 x  we have x+ 6" (y-x)~ ~?X for some 6*e N. 
Therefore,we may assume 24=# for the following. 

N(6): = ( 1 - 6 t - ( U -  h + a (;~- ;7). (2.8t 
Then 

N (6) = 0 ~,* 6 (2 - #) = ~ -  #. (2.9) 

We assume for the moment (2- /*)6~)T-kt  and define 

a(;~-70 
w(~$):=x~ - - .  ( y - x ) e C  n N(6) 

and 

a(6) :=7,+ # - 2 .  ( 2 - s  C. (2.10) 
N(6) 

Moreover, let fz : C'+1 ~ C " + t  be defined by 

fz(w~:=(W~-R.((A-7~B) w - O r - 7 ~ , B z ' ] -  - - - - for zeC"  (2.11, 
\ a /  k~J \ ekw--~ ] 

and we C", a~C.  

Next we show that (w(6), or(5))' is a fixed point ofs 

04 - ,~B). w (a) - (~ (6)-  ~ B. w (a) = 

(A-7~B){~ a(,~-hN(6) .(y-x)}-~(;~-h.B.(x+a(y-x))= 
a(;~-,Z) ~ ~ - 

( 2 - 2 ) B x +  N ( 6 ) ( ( l ~ - 2 ) B y - ( 2 - , g B x ) - ~ - [ T f ] ( 2 - ~ ) . B . ( ( 1 - ~ ; ) x + a y ) =  
s~to) 

(2.12) 
- '~  (5(2-)7)2N(6) /~--TL (2 - '~ ) (1 -a )}  ' B x + N ( 6 )  

(2-,~). (1 - N ( 6 ) - ' .  (6 (2-,~) + ( # -  ~) (1-6))} .  Bx=O. 
Moreover, e~. w(6)=~ implies with (2.11) 

Let 6 ~ C and define 
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+a(v~)~,a(3)) \ ,x(6))  for all 6 e C  with (2 - #) 6 =p %- /~. (2.13) 

(x, 2)' and (y, #)' are fixed points of G by (2.2). With (2.3) and x, y e X this shows 
x, y e X \ O X  and the existence of some 31,62 e R with 31 < 0 < 1 < 6 z and the property 
that 3@R and 31<6<_32 implies x + 6 ( y - x ) e X  where x + 3 1 ( y - x ) e O X  and 
x + 6 2 ( y - x ) E O X .  

By (2.3) we have 

(u) (:) +~(~-~ ~7 I u e X ,  qe _~interior for all 6 1 N 3 ~ 3  2 . (2.14) 

w (0)= x and w(1)=y because 2 4; % and therefore, together with (2.14), 

w(6)~X\c~X for all 61_<6_<6z and (2 - p) 6 53 %- /~ (2.15) 

because w(6) forms for 6~ _< 6_< 3z a connected curve which, by (2.3) and (2.13), cannot 
intersect the boundary of X. Suppose ( 2 -  #)/(2 - #) e [61,62]. Then x ~ y, (2.9) and 
(2.10) show that w(6) tends to infinity for 6~(%-#) / (2 -#) .  This implies the 
existence of some w (6*) e (? X for 61 _< 6" _< 62 and 6* :p (%-/~)/(2 - #) contradicting 
(2.15). 

Therefore, 

- #  r and w(6) is well-defined for 61 ~ ' ~ 6 2 ,  
2--# 

(2.16) 

Together with (2.15) and (2.8) this implies 

61 < (1-3)( /~-%)+6 (2-%) <fi2 for all 61 _<3<@ (2.17) 

N (6) defined by (2.8) has constant sign for all 61 _< 6 _< 62. Suppose N (6) > 0. Then the 
left inequality in (2.17) yields for 6=31 using 6i <0  

3~. {(I -30(#-%)+ 3~ (~- %)} <~i (;~-,r) ~ 

#- f+ 6~ (;~- #) > 2- %~ 61 (2- ~) > 2- #~2 <~. 

The right inequality in (2.17) yields for 6=62 using 62> 1 

)~- 7<  # - % +  62 ( , ~ - ~ ) ~ ? - #  < 6~ ( , { - # ) ~  ># .  

For N (c5)< 0 the left inequality in (2.17) for 6 = 61 and the right inequality in (2.17) 
for 6--62 yield the same contradiction whictl therefore demonstrates the incorrect- 
ness of assumption (2.5) and proves Lemma 4. [] 

Next we prove the individual uniqueness of the eigenvalue in A. 

Lemma 5: With the assumptions of Theorem2 let # be an eigenvalue of A x - 2 B x  
with p e A. Then every eigenvector y corresponding to p can be normalized to e'k y = f 
and lies in X.  
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Proof: Let y ~ C" be an eigenvector corresponding to #. Define g : C" + t ~  C" +1 by 

for w ~ C', a 6 C. Then short computation yields 

g ( a W ) = G ( ~ )  for a l lw~C ' , (~EC 

and therefore by (2.3) 

{g(~)lx~X, 2EA}c-interior(X) �9 

Applying Theorem 5 in [16] yields the nonsingularity of every matrix 

/A-CrBe,k -0  2 ) P (a): = ~ for all a ~ C with o- c A. 

Then P(#).  (y, 0)' must be nonzero and therefore G" y=/;0. W.l.o.g. we assume 
e'k y={. 
Define 9. : C "~  (2" by 

/..( \ [t\~g,;,t))=G~# ) for t ~ C " , v c ( 2 .  (2.18) 

Then by(2.3), gu maps X into itself, is continuous and affine. By Theorem 11 in [16] 
there exists some 

z~X with gu(z)=z. (2.19) 
Let 

G = for some ~* ~ C. (2.20) 
# ,  

Suppose # ,~/~*. Then we define h " C--+ (2" by 

h ( v ) : = ~ . z + ( 1 - ~ ) . y  with 

and z from (2.19). By (2.20), (2.2) and (1.2), 

#--V 
~ : -  - -  ( 2 . 2 1 )  

#- /~*  

Furthermore, by (2.21) and (2.22) 

(A'h(v)-,uBh(v))=R.( , (A-7, I~B)~z ~= 
R. e'kh(v)--~ \G~z+ek(1 --~_)y--~] 

\ ekz-  = ( o , )  

(2.22) 

(2.23) 
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This implies 

G(h;v))=(h~v)) ( 0  ~ (h(v)) 
- \ # _  # , )  = \ #* ) 

h is continuous in v and for e ~ 

for all v E C. (2.24) 

h(v+e)-h(v) z + - - .  y. #--#* # - # *  

We still suppose # =/- #* implying z • y by (2.20) and therefore ] h (v)l ~ oo for v ~ oo. 
By (2.24) h (v) is a fixed point of gu for every v ~ C. This implies the existence of some 
v* e C with h (v*) E ~X contradicting (2.3). This contradiction shows # = #* and with 
(2.20) 

Then short computation yields 

(z+cS~y-z)) (z+cS(y-z)~ for e v e r y 6 ~ C  G = 
# / 

implying y = z because otherwise some c5" ~ • with z + c$* ( y -  z) c OX would 
contradict (2.3). From (2.19) we know y = z ~ X  which finishes the proof. [] 

The existence of two eigenvalues within A implies the existence of two pairs of 
eigenvectors/eigenvalues contradicting Lemma 4. Next we prove the individual 
uniqueness (subject to normalization) of the eigenvector within X. 

Lemma 6: With the assumptions of Theorem 2 let y be an eigenvector of A x - 2 B x  
with y ~ X. Then the corresponding eigenvalue # ~ C satisfies # ~ A. 

Proof: Define gy : C--+ C by 

g, (v) 

Then by (2.3), gy maps A into itself, is continuous and affine. By Theorem 11 in [163 
there exists some 

a E C  with g y ( a ) = a a n d a ~ A .  (2.26) 
Let 

Suppose # 5a a. Then define 
12--0" 

v(v):=y*+tl(y-y* ) with r/:= (2:28) 
# - - o -  

using a from (2.26). By (2.27), (2.2) and (1.2) 

\ e k y -  ( J \or~ \ e k y -  ( J" 

16 Computing 42/2-- 3 
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Furthermore, by (2.28) and for every v ~ C we have 

\ v /  \ v /  \ eky-~ ) \ v /  # - a  \ eky-  ~ / =  
(2.30) 

Therefore, every v ~ C is fixed point of gy contradicting 9y (A)_~ interior (A) which 
follows by (2.3). This implies/~= cr and (2.26) finishes the proof. [] 

The existence of two eigenvectors within X implies the existence of two pairs of 
eigenvectors/eigenvalues contradicting Lemma 5. 

This finally finishes the proof of Theorem 2. 

3. Practical Applications 

For the practical application on computers sets may be represented by intervals. All 
theorems mentioned in the previous chapters can be implemented and be used on 
digital computers by using intervals (over complex numbers, vectors, matrices) as 
sets and by substituting each power set operation by its corresponding interval 
operation for * ~ { + ,  - , - , / } .  A necessary condition for the implementation of an 
interval arithmetic is a precisely defined floating-point arithmetic or operations with 
directed roundings [-5]. 

Data afflicted with tolerances may be treated as well. In this case the input data are 
sets of matrices, in practical computations, for example, interval matrices, and all 
assertions of Theorem 2 are true for each individual matrix within the tolerances. 

In the following we give some numerical examples. The computer in use is an 
IBM 3090 using the programming package ACRITH [-1] for interval operations. 
The programming environment ABACUS is used (see below). Matrices A and B are 
chosen to be random Hilbert and Pascal matrices (defined below). The approxi- 
mations 2 and ~ are computed as an eigenvector/eigenvalue pair of B-1A;  all 
floating-point computations (including B-1) are performed using LINPACK and 
EISPACK routines. 

Theorem 2 is used as an a posteriori check on the accuracy of 2 and ~by defining X, 
A, the starting intervals to check on an inclusion, to be 2.  (1 _+ e) and ,~. (1 i ~), where 

is 10 -14. The precision in use is 14hex or approximately 16 decimal digits on an 
IBM 3090. 

The inclusion algorithm is implemented using ABACUS. This is an interactive 
programming environment allowing to program in mathematical notation as the 
following original ABACUS subroutine for an inclusion of the solution of the 
generalized eigenproblem demonstrates. 
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module (A, B, x, l, X, L) 
n size (x); (zeta, k) = max (abs (x)); 
C - ( A - I .  B, - B .  x; nulls(1, n + l ) ) ;  C(n+ l , k )= l ;  
R - 1 / C ;  Z=iva l  (x; l ) -  R . ( A . x - l .  B . x; x ( k ) - z e t a ) ;  
C - i v a l  ( A - I .  B, - B .  x; nul l s (1 ,n+l ) ) ;  C(n+ l , k )= t ;  
C = I d - R * C ;  X = Z ;  e = 1 + / - 1 e - 1 4 ;  kk=0;  
loop 
{ Y = X * e ;  X = Z  + C * ( Y - ( x ; l ) ) ;  kk=kk  + l; 
if X in0 Y or kk = = 15 then exit;} 

if X in0 Y then {display 'inclusion'; L = X ( n +  1); X = X ( 1  : n);} 
else {display 'no inclusion'; X = ( ) ;  L = ( )  ;} 

Fig: 1. ABACUS subroutine for the generalized eigenprobtem 

Id denotes the identity matrix (automatically adjusting its size), 1 + / -  1 e -  14 is the 
interval with left bound 1 - 1 e - 14 and right bound 1 + 1 e -  14. The keyword ival 
prior to an expression forces the expression to be evaluated using interval 
operations: If in an expression at least one interval variable occurs (regardless 
where) the whole expression is evaluated using interval operations, in O denotes 
inclusion of the left hand side in the interior of the right hand side. 

The algorithm works similarly to other inclusion algorithms introduced in [15]. 
Especially, e-inflation is used. 

In the following tables we display the 

1. "number of interval iterations" which is kk in the algorithm above, 

2. "minimum number of digits guaranteed", which means the minimum number of 
digits coinciding in each left and right bound of the inclusion of eigenvector and 
eigenvalue, and the 

3. "accuracy of the approximation", which is the number and the minimum number 
of correct digits of the approximation 7. and 2, respectively. 

The random matrices R, S have uniformly distributed components between 0 and 1 
and one eigenvector/eigenvalue pair has been chosen randomly. Hilbert matrices 
and Pascal matrices of dimension n are defined by 

(Hn)ij: = Icm (1,2, ..., 2 n - 1)/(i + j -  1), 

(p,)i~: =(i +Ji-1). 

For Hilbert and Pascal matrices all eigenvector/eigenvalue pairs were treated: The 
following results were achieved. 

The computation for H s - 2. Ps was real because the approximations Y and 2were 
real: This may be a reason for the better results than for Ps - 2.  H a. The number of 
digits guaranteed is larger than the number of correct digits of the approximations 
because of the Newton step within the interval iteration. Such a Newton step 
performed in floating-point arithmetic would, in general, improve an approxi- 
mation. However, it should be stressed that a floating-point iteration may very well 
pretend convergence. 

16" 
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Table 1. Computational results 

problem 

R1o-2-$Io 
R2o- 2- $2o 

H s - 2 .  Ps 

Ps - 2. H 8 

eigenpair interval minimum number 
of digits 

guaran teed 

accuracy of the 
approximation 

12 14 
12 13 

9 9 
9 10 

10 10 
11 10 
10 9 
8 7 
7 6 
6 5 

8 7 
8 7 
9 8 
7 7 
6 6 
6 5 
5 4 
3 3 

iterations 

16 
16 

11 
11 
10 
11 
12 
14 
14 
14 

8 
8 
9 

11 
12 
14 
14 
14 

Final ly it should be ment ioned  that  even in "degenerated" cases (singular matrix B), 
when there are fewer solutions than the  dimension of the matrix, the method works. 
The following example also illustrates the interval i teration. 

Let 

~=(124) , 0=(, 24) . 

Then  det ( A -  2B) = 2 ) , -  2 and  the only solution of the generalized eigenproblem 
A - 2 B  is x = ( 0 ,  1)' and  2 = 1 .  We take 2 = x  and  ,~=2. Then 

( i 2 , i ) 0 ,  : 0~ 
We take k = 2 ,  X: =2+_a and  A:=,~-•  and  according to (2.1) we obta in  

(!){ (Z ~ (!i) G _- + x ~ - R .  0 4 •  -- 

1 0 / J  _ (!) (0 0 
= + 0 0  - + ~ = t  1 j  

0 0 + +_~/ \ 1 + ~ 2 /  
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Therefore, G (X, A) is included in the interior of (X, A) if and  only if 8 e2< e or 
0 < e < 1/8. This shows that  e cannot  be 0 because inclusion in the interior is assumed 
and  it should not  be too large to allow (2.3) to be satisfied. 

4. Conclusion 

A method has been presented allowing the guaranteed inclusion of a solution of the 
generalized eigenproblem A - 2 B. The corresponding algori thm can be used as an a 
posteriori criterion to check on the accuracy of computed approximations.  Due to a 
Newton-k ind  i terat ion the calculated inclusions are very sharp. The method allows 
only simple eigenvalues to be treated, in fact the algori thm proves that the enclosed 
eigenvalue is simple. The problem can easily be t ransformed into an n x n nonl inear  

problem. 

The inclusion of multiple eigenvalues is an open problem. All results calculated by 
the inclusion algori thm are guaranteed to be correct, no false results are possible. 
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