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Abstract - -  Zusammenfassung 

Stability of Numerical Methods for Volterra Integro-Differential Equations. A theory of weak stability 
for linear multistep methods for the numerical solution of Volterra integro-differential equations is 
developed, and a connection between this theory and the corresponding theory for ordinary differential 
equations is established. In addition, the order of such methods is discussed, and a new starting proce- 
dure is proposed and analyzed. 

Stabilit/it numerischer Verfahren zur Li/sung Volterraseher Integrodifferentialgleichungen. Die 
Theorie der schwaehen Stabilit~it linearer Mehrschrittverfahren zur numerischen L6sung yon 
Volterraschen Integrodifferentialgleichungen wird besehrieben, wobei ein enger Zusammenhang 
mit der entsprechenden Theorie fiir gew6hnliche Differentialgleichungen aufgezeigt wird. Ferner 
wird die Ordnung solcher Verfahren untersucht, und eine neue Methode zur Erzeugung der not- 
wendigen Startwerte wird hergeleitet. 

1, I n t r o d u c t i o n  

W e  cons ider  a Vo l t e r r a  integro-different ia l  equa t ion  of  the  form 

y' (x) = F (x, y (x), z (x)), 0_< x _< a ,  

y (0) = yo,  

where  
x 

z (x): = ~ K (x, t, y (t)) d t. 
0 

Let  
S={(x,t,u):O<_t<_x<_a, [ u ] < o o } ,  

T={(x,y,z):O<_x<_a, l y [ < o o ,  I z l < o o  }. 

W e  shall  assume tha t  F and  K in (1.1) satisfy the fol lowing cond i t ions :  

(i) F(x,y,z)eC(T), K(x,t,u)eC(S). 
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(ii) ] F (x, y, z ) -  F (x, ~, z) ] __< L 1 ] y -  ~ i, all (x, y, z), (x, ~, z) 6 T, 
jF(x ,y , z ) - f  (x,y, ~)I<L2 Iz-?l, all (x,y,z),(x,y, ?)e T. 

(iii) ] K (x, t, u ) -  K (x, t, fi) l < L3 [ u -  fi 1, all (x, t, u), (x, t, fi) ~ S. 

It is well-known that, under these conditions, (1.1) possesses a unique sotution 
y (x) e C ~ [0, a]. 

Equation (1.1) may be regarded as a generalization of the initial value problem for 
an ordinary differential equation, 

y' (x)= f (x, y (x)), y (0)=y o . (1.2) 

Linz [4] has proposed algorithms for the numerical solution of (1ol) which 
consist of linear multistep methods, of the type commonly used for the numerical 
solution of (1.2), combined with a class of quadrature formulae. The convergence 
of such algorithms has been studied in [4] and by Mocarsky [5]. 

It is the purpose of this paper to examine the order of such algorithms and to develop 
a theory of weak stability, analogous to that which exists for linear muttistep 
methods applied to equations of the form (1.2) (see, for example, Lambert [31, p. 64). 
Such a theory will enable the user to make a sensible choice for the steplength of the 
algorithm. In addition, a new starting procedure is proposed. 

Let x,=nh, n=0,  1, ..., N (h>0, xN=a ). Let y,, z, denote approximations to the 
exact values y (x,), z (x,), respectively. We indicate by (Q, ~r; ~) the application to 
(1.1) of a linear multistep method (p, o) and a class of appropriate quadrature 
formulae ~ in the following manner: 

(Q, ~r): 
k k 

c~yn+~=h ~ fl~F(x,+~,y~+~,z~+d, (1.3) 
v = O  v = 0  

where 
k k 

Q(r):= ~ ~,r~,ff(r):= ~ / L r ~ , ~ = l , l % l + l f l o l 4 = 0 ;  
V = 0  v = O  

z,,=h ~ ?,,.~K(x,,,xj, yj) (withzo=0).  (1.4) 
j = 0  

In practice, the quadrature stage is nearly always accomplished by one of  the 
following two methods: 

Method I: ~ consists of repeated applications of a k-step quadrature formula 
of the form 

xg 

S ~ (~) d t ~ h  ~ L ~ (t~). (t.5) 
0 v=O 

Method II: ~ consists of a single application of a Gregory quadrature formuta of 
the form 
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x~ 

4)(t)d tgh  [�89 q~o + q51 +... +qSm- 1 +�89 q~"] 
0 

- h  [ c l  (V (pm-A~)o)-~-c2 (V 2 ~ m " ~ A  2 (#o)Ar . . .  (1.6) 

+ c~ (v. e r a + ( -  1)~ zv q%)], 
where m >= q. Here, the first three values for Cq are given by 

c 1 = 1/12, c z = 1/24, c3 = 19/720 (I.7) 

(see, for example, Steinberg [6]). 

These quadrature formulae are implemented as follows. In addition to the 
starting values {Yo, Y~, ..., Yk-~} required for the application of (1.3), it will be 
necessary to obtain a sufficient number of starting values {Yu} (IX not necessarily 
an integer) in order that 

xu 
K (Xm, t, y(t))dt,~J (v,m), re=l, . . . ,N ;  

o (1.s) 
1, ..., ~ -  1 (Method I) 

V ( 1, , q - 1  (MethodII) 

can be computed to adequate accuracy. (A starting procedure having these 
properties will be given in section 5.) 

Method I: For r n < ~ - l ,  set z,.= J (m, m). For m_>/~, let m-~s(m) rood k, 
and set 

M--1 /~ 
z,.=J(s(m),m)+h E Y, fl~K(x,,,x,(,.),y,m)), (1.9) 

i=0 v = O  

where i (m) = s (m) + i ~ + v, M = (m-  s (m))/~. 

Method II: For m <__ q - 1, set zm = J (m, m). 

For re>q, set z m equal to the right-hand side of (1.6), with ~bi replaced by 
K (x~, xi, Yi), i = 0  . . . .  , m. (1.10) 

2. The Order of the Multistep Method 

Let ~ = {Q j: j = 1 . . . . .  N}, 1 > 1, denote a class of quadrature formulae corresponding 
to method I or II of Section 1 : 

Method I: M-1 
Qms~: z(x,~)--,Z(x"):=J{s(m),m)+h ~ E fi; K(x,,,xi(,,), y(Xir 

i = 0  v=0 

i(m)=s (m)+i ~+v, m>rr Here, J (s  (m), m)is as in (1.8), but with the approxi- 
mate values {yu} replaced by {y (x,)}. 

Method II: 

Q"e~.: z(x")-,Z(x,.):=h ~ y,, . ,K(x",xi,  y(xi)), 
i=0 

m > q = 1. Here, the {7,.. i} denote the weights of the Gregory formula (1.6). 
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Definition: The class ~ is said to be of order q* if q* is the largest integer 
such that 

]Eml:]E~(K)  I : = I z ( x m ) - Z ( X m ) [ < C h  q* (C< oo), 

for all Qm ~ ~ and for all sufficiently smooth K. 

We note for later reference that, for method I, ~ is of order q* = ~ + 2 if(l.5) is inter- 
polatory (see, for example, [I],  p. 307), and if 

xl) 

J ~ K ( x , , , t , y ( t ) ) d t - ] ( s ( m ) , m ) [ < C ~  h q* (C~<m),  (2.1) 
0 

v= 1,..., ~ - 1  for all sufficiently smooth K. In section 5 we shall discuss how 
to generate the starting values J (v, m) required in (1.7) for which (2.1) holds. 

For method II the order of N is q* = q + 2 (see [6]). 

The order of the linear k-step method (Q, a; 2) will obviously depend on the 
order of(~, a) as well as on the order 0f~. To be precise, we state the following 

Definition: 

(i) The difference operators A ~ and ~ l  associated with (Q, a; 2) are given by 
k 

A ~ [y (x,,); h]: = ~ (~  y (x,, + ~)- h ]~ y' (x~ + 0) (m = 0 . . . . .  N - k), 
v = 0  

and 
k 

J / [ y  (xm); h ] =  2 (~. Y (Xm + ~)- h fl~ F ( x  m +v, Y (Xm + v), Z (x m + v)))" 
v = 0  

(ii) The order of A ~ is defined as the order of (~, a) for (1.2) (see [3], p. 23). 

It is easily verified that, for all sufficiently smooth functions F, the operators S 
and J/l are related by 

" 0 F (x,. + .  y (xm + ~3, z* +,,) ~ +,~ 
Jr' Ix (xm); h] = A6 [y (xm); h] + h ~ ]~ 8 z 

v = 0  

(m=l . . . .  , N - k ) ,  

where z,,+~* lies between z (xm+d and Z (x,,+~). 

The following definition is now suggestive. 

Definition: Let L,r be of order p*, and let Y have order q*. Then we define the 
order r* of the linear k-step method (6, o-; ~) (or, the order of the operator ~() 
by r* =rain (p*, q*). 

Definition: The linear k-step method (6, o; 2) is said to be convergent if, for all 
equations (1.1) subject to the conditions stated in section 1, we have that 
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lim ym=y (x) holds for all x e [0, a], and for all solutions {ym} of (1.3) satisfying 
h ~ O  

t n h = x  

starting conditions yj = yj (h) for which lim y~ (h) = Yo, J = 0, k -  1, and d (v, v) 
h ~ O  " " " " ~ 

for which lira d (v, v) = O, v = 1 . . . . .  I -  1. 
h ~ O  

Here, the last condition essentially requires that the weights in the quadrature 
formulae used to compute the starting values {d (v, v)} remain bounded as h~O. 

Theorem 1 : Assume: 

( i) F and K in (1.i) satisfy the conditions ( i), ( ii), and ( iii) of" section 1. 

(ii) The k-step method (0, a) is zero-stable (see [3], p. 33). 

(iii) The k-step method (0, a; ~) is of  at least order one. 

Then the method (0, a; ~) is convergent. 

The above result was proved in [4] (using a different terminology) for methods 
essentially of Class II (see also [5]). A simple modification of this proof shows that 
Theorem 1 is valid also for methods of Class I. We shall omit these details. 

3. A Weak Stability Theory 

A standard argument in weak stability theory for the linear multistep method 
(0, a) applied to the ordinary differential equation (1.2) (see, for example, [3], 
p. 64) shows that, under the simplifying conditions that 

(i) Of/O y =2 = constant, and 

(ii) the local truncation error of Co, a) is constant, 
the global error e,: = y (x,)-Yn satisfies the linearized equation 

k 

(c~- h 2 fi0 G+~ = constant. 
v = O  

By a straightforward extension of this argument, it is easily shown that if the 
k-step method (0, o-;.~), defined by (1.3) and (1.4), is applied to the equation 
(1.1), and it is assumed that 

OF 
(i) 0 y constant, 0-z-'--0 y =r/=constant ,  (3.1) 

and 

(ii) the local truncation errors of (0, r and of Q, ~ .~ are constant, 

then the global error en satisfies the linearized difference equation 

(c~ v -  h ~ fl,.) e,, + v -  hZ t/ 7, +~. j e~ = constant. (3.2) 
v = 0  j = O  
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Since the behaviour of solutions of (3.2) as n - ~  is completely determined by 
the behaviour of solutions of the corresponding homogeneous equation, it is 
sufficient to study the equation 

(c~-h4flOY,+~-h2rl ~ 7,,+~ jYi = 0 .  (3,3) 
v=O j=O 

The following definitions are analogues of standard definitions in the case of 
ordinary differential equations (see [3], p. 66). 

Definition: For given values of h, 4, ~/, the method (6, a; 2) is said to be 
absolutely stable if all solutions of (3.3) tend to zero as n ~  oo. 

Definition: A region r of the (h 4, h 2 t/)-plane is said to be a region of absolute 
stability of the method (6, a; 2) if, for all (h 4, h 2 t/)s ~t, the method (6, or; 2) is 
absolutely stable. 

In practical applications, once the region ~ for a particular method has been 
established, estimates for 4 and 1/are computed from (3.1) (such estimates can be 
re-evaluated from time to time as the numerical solution proceeds), and h is 
chosen such that (h 4, h 2 t/)e ~.  This ensures that the global error e,, assumed 
to satisfy (3.3), will decay as n--. ~ .  

It is readily seen that equation (3.3) arises if the method (6, a; 2) is applied 
to the linear test equation 

y' (x) = ~ y (x) + ~/ S y (t) d t. (3.4) 
0 

All solutions of (3.4) tend to zero as x ~  oo if and only if 

4<0, q<o. (3.5) 

The following definition is again an analogue of a standard definition for 
ordinary differential equations (see [3], p. 253): 

Definition: The method (6, ~; 2~) is said to be A-stable if its region ,~ of absolute 
stability contains the quarter plane h 4 < 0, h 2 ~/< 0. 

All solutions of the difference equation, which results from the application of an 
A-stable method (6, a; 2) to the test equation (3.4) for which (3.5) holds, will 
tend to zero as x-~ 0% for all positive values of h. 

It will occasionally be convenient to employ the following alternative form of 
(3.4), obtained by setting 4 = 2 + # ,  r/= -;1 #: 

y' (x)=(;1+#) y(x)-)~l-t i y(t) dt. (3.6) 
0 

All solutions of (3.6) tend to zero as x ~  m if and only if 

;1 < 0, ~t < 0, when ;t and # are real, (3.7) 
R e (~)< 0, when ;1 (=/7) is complex. 
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Indeed, the unique solution of (3.6) satisfying y (0) = Yo is given by 

(x) = 2Y~~ ()~ exp (fl x)- /~  exp (g x)). (3.8) Y 

When method (4, a; ~) is applied to the test equation (3.4), equation (1.3) becomes 
k k 

~ y,+v=h ~ fi~(~y,+~+tlz,+~). (3.9) 
v=O v - O  

For Method I, m >__ ~, equation (1.4) becomes (using (1.9)), 
M-1 /T 

zm=J(s(m),m)+h ~ ~ fi~Yi(,~'~, i(m)=s(m)+ik+v. 
i=0 v=O 

Since s (m + k) = s (m), it follows that 

~~ y ~vy~+~. (3.10) 
v=0 

For Method II, m_>_ q, equation (1.4) becomes (using (1.10) and (1.6)), 

z~=h[�89 +...+y~-~ +�89 

- h [c~ (V y,.  - A Yo) + c2 (V 2 Ym + A2 YO) +'-' -t- Cq (V q Ym 4- (-- 1) q A q Y0)]" 

H e n c e ,  

zm+ l -  zm=h [ 1 - � 8 9  V 2 - - C 2  V 3 - -  . . .  - -Cq V q+ l ]  Ym+ l - 

On replacing m by m +q  and expressing differences in terms of function values, 
we may write this relation in the form 

q + l  

Zm+q+l--Zm+q =h Z fl~Y~+~' (3.11) 
v = 0  

where the coefficients {/~, :v = 0, ..., q + 1 } can easily be computed from the known 
values of c~, c 2, ..., % Indeed, the coefficients {/~} are precisely those appearing 
on the right-hand side of the (q + D-step Adams-Moulton method of order q + 2, 

q + l  

Y,+q+l-Y,+q =h E fl~L+~ 
v=O 

for the numerical solution of (1.2) (see equation (1.7)). Since Methods I and II 
are alternatives, there is no loss of generality in setting q + 1 = k,/3~ =/3~, v = 0,1,..., k, 
whereupon, on introducing the forward shift operator E, (3.10) and (3.11) can be 
combined in the single equation 

(~) z~=h ~ (F~) y,., m> Ti, (3.12) 

where 

-= )" r/~ - 1 for Method I , .  8 (r): = ~ fly r~. (3.13) ~(r). 
[ r k - r  k-1 for Method I I '  ,.=o 

In Method I, 8 will be determined by the k-step quadrature formula, whereas in 
Method II, K will always be the second characteristic polynomial of a k-step 

Comput ing  12/1 6 
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Adams-Moulton method of order #+  1. Note that the two methods coincide if 
k=  1 and, in Method I, the quadrature formula is chosen to be the Trapezoidal 
Rule. 

To any method (0, 0.; 2) for the numerical solution of (1.1) there correspond 
unique polynomials 0, a, ~, and #. We may therefore refer to such a method as 
E(4, 0.); (~, a)]. 

Equation (3.9) can also be written in the form 

(E) y, = h  0. (E). (~ y ,+r l  z,). (3.14) 

If we eliminate z, between (3.12) and (3.14), we obtain the difference equation 

E~ (E) ~o ( E ) -  h ~ ~ (E) 0. ( E ) -  h ~ . a (E) 0. (E)] y. = 0. 

It follows that the region ~ of absotute stability of [(4, a); (~, #)] is the set of points 
(h ~, h 2 q) for which all zeros of the stability polynomial 

rc (r, h r h 2 ~): = ~ (r) [4 ( r ) -  h r 0. ( r ) ] -  h 2 ~ a (r) a (r) (3.15) 

lie in the interior of the unit disk. 

By considering the alternative form (3.6) of the test equation it is possible to 
establish a relationship between the region ~ of absolute stability of [(4, 0.); (4, a)] 
and the complex region ~ of absolute stability of the linear multistep method (4, a) 
(see, for example, [31, p. 222). 

Theorem 2: Let ~ be the (compiex) region of absolute stability oj" the iinear 
multistep method (4, a) for (1.2). 
Then the region of absolute stability of [(o, a); (O, cr)] is that s'eg~on oj the 
(h ~, h 2 tl)-plane for which h 2 ~ ~,  h # ~ ~ ,  where 2 + t~ = ~, 2 # = - t 1; L, tx e C, 

Proof: On setting ~ = ~o, 5 = a, ~ = 2 + ~, fl = - 2  #, (3.15) takes the form 

= (r, h 4, h2 r/) = ~2 (r) - h (2 + fl) Q (r) a (1") + h 2 ,). ]/0 .2 (r) 

= [0 ( r ) -  h 2 a (r)] [4 ( r ) -  h # o (r)]. 

The result follows immediately, since for h 2 e ~ ,  h # e ~ ,  all zeros of ~o ( r ) -  h 2 a (r) 
and of 4 ( r ) -  h # 0. (r) lie inside the unit disk. 

Since ~ is constrained by (3.13), Theorem 2 is applicable only to a subclass of 
methods (4, 0.; 2). It is of interest to note that, in view of the remarks following 
(3.11), this subclass contains the class of methods for which (4, 0.) is an Adams- 
Moulton method, and the quadrature formula is a Gregory formula of appropriate 
order. 

It is an immediate consequence of Theorem 2 that, if the linear multistep method 
(0, 0.) is A-stable and is such that 4 (=~) is of the form (3.13), then the method 
E(4, o-); (4, 0.)1 is also A-stable. The most obvious example of an A-stable method 
for (1.1) arises when (0, 0.) and (0, 0.) are both the Trapezoidal Rule (in which 
case Methods I and II are identical). 
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The effects of the individual stability properties of (Q, a) and (~, 8) on the stability 
properties of [(Q, a); (~, ~)] can be illustrated, in the case k = ~ = 1, by plotting the 
region N of absolute stability of [(r a); (~, ff)] for all nine combinations of: 

( ~  - 1, 1 (Euler's Rule) ff 

(Q, a )=  ~ p = r -  1, a = �89 (r + 1) (Trapezoidal Rule) 
[ r = r -  1, a = r (Backward Euler Rule), 

~repeated application of Euler's Rule (open formula) 
.~ = ~repeated application of Trapezoidal Rule (closed formula) 

1 
~repeated application of Backward Euler Rule (open formula). 

Note that the repeated application of the Trapezoidal Rule is equivalent to one 
application of the second-order Gregory formula (Method II). 

The results are summarized in Fig. 1. 

Eu/er Trapezoidal Backwo, rd Euler 

2 

V 
e; ,~g.'%. d 

/-z, o) 

Y 
(-e, -~)  

Jzr 

~ ~ i r I )  

" ~ a 2  , , , 

7 

7zz~ 
t '-z.a) 

Fig. 1 

The (complex) stability regions ~ of Euler's Rule, the Trapezoidal Rule, and the 
Backward Euler Rule are, respectively, the interior of the circle with centre at 
- 1, radius 1, the whole left half-plane, and the exterior of the circle with centre 

6* 
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at + 1, radius 1. A straightforward calculation shows that, if h 2 and h # lie in 
one of these regions, then (h (2 + #), - h 2 2 #) lies in the corresponding region 
shown on the main diagonal of Fig. 1; thus Theorem 2 is corroborated. It is also 
of interest to note from Fig. 1 that only combinations of A-stable (~, ~r) with 
A-stable (5, ~) result in A-stable methods [(Q, a); (5, #)]. 

The case where (Q, o-) and (5, a) are both Euler's Rule is of particular interest. 
Let ~ < 0  and q < 0 ;  then all solutions of (3.4) tend to zero as x ~ .  From the 
slope of the relevant stability region ~ shown in Fig. 1, it is clear that there exist 
values of h such that the method [(Q, a); (Q, a)], with (~, o-) given by Euler's Rule, 
will produce stable numerical solutions, whereas, for the same value of h 4, 
Euler's Rule, applied to the ordinary differential equation y '=  ~ y, will produce 
unstable solutions. Thus, in this case, the back information inherent in a Volterra 
integro-differential equation has a stabilizing effect. 

4. A Start ing  Procedure  

If k>2 ,  1=>2 in (if, o-; ~), it will become necessary, as pointed out in section ! and 
section 2, to generate the following sets of starting values: {Yl,--., Yk-1}, and 
{J (v, v ) : v = l ,  ..., ~ - 1 } ,  {J (v, m ) : v = l ,  ..., ~ - 1 ,  m=>k} for Method I; 
{J (v, v) : v=  1, ..., q -  1} for Method II. 

In this section a starting procedure will be described which, in addition, satisfies 
the accuracy requirements (2.1). 

Define 

av x v u (x): = ~ .  (co> 1), (4.1) 
v=0 

where the (real) coefficients {a~} are determined by requiring that u (x) satisfy 
the following conditions: 

(i) U (Xo)= Yo, 

(ii) u' (Xo) = F (xo, Yo, 0), 

(iii) u' (x j )=F (xj, u (xj), v (xj)), j = 1,..., co-  1, (4.2) 

with 

v (x~): = ~J K (x~, t, u (t))dr. (4.3) 
o 

Clearly ao=Yo, a 1 = F ( x o ,  Yo, 0), and (4.2) constitutes a system of (co-1) non- 
linear equations for the remaining coefficients {a 2, ..., %}. In general, this system 
will be solved by fixed-point iteration, and it is easily verified that the well-known 
fixed-point principle may be used to show that, for all sufficiently small h and for 
all functions F and K satisfying the conditions stated in section 1, there exists 
a unique solution {a2 . . . . .  ao} of(4.2). Once the coefficients in (4.1) are known, then: 

(a) yj = u (x j), j = 1, . . . ,  c o -  1, 
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x v 

(b) J (v, v)= ~ K (x,, t, u (t)) dt,  and 
0 

x v 

(c) a @, m)= S K (x~, t, u (t)) dr. 
0 

In (b), v = 1 . . . . .  k -  1 for Method I; v=  1 . . . . .  q -  1 for Method II. 
In (c), v=  1 . . . . .  ~ - l ; m = k  . . . . .  N. 

For  the following discussion we shall assume that k < k  (Method I), and q<=k 
(Method II). To justify this assumption we first observe (as mentioned in 
section 2) that the order of (1.5) is at least (k+2) if the quadrature formula is 
interpolatory, whereas the Gregory formula (1.6) is known to have order (q + 2) 
(see, for example, [6]). On the other hand, the order of a convergent linear 
k-step method (0, a) cannot exceed (k+ 1) if k is odd, and (k+2) if k is even 
(see [3], p. 38). 

Theorem 3 : Assume: 

(i) In (4.1), a o and a 1 are given by a o =Yo, al = F  (Xo, Yo, 0). 

(ii) In the computation o f  {a2 . . . .  , ao~} from (4.2), the occuring integrals are 
computed exactly.  

Then: i f  F, K,  and y in (1.1) are sufficiently smooth, there exists a C < oo such 
that for  all h ~ (0, H0) (H o > 0): 

I Y ( x ) - u  (x) l < C h ̀ ~ 1, x ~ [0, x<.~_ 1], (4.4) 

I z ( x v ) - J ( v , v ) l < ( c o - 1 )  C L 3  h~+2, v = l  . . . .  , c o - l ,  (4.5) 

and 

! z m ( x ~ ) - J ( v , m ) l < = ( c o - 1 ) C L 3 h  ~ v = l  . . . .  , c o - l ;  m = c o , . . . , N .  (4.6) 

Here, 
x v 

z~ (xD: = ~ K (xm, t,y (t)) at.  
0 

Remark:  

In view of the remarks preceding Theorem 3, the usual choice for ~o will be 
co = k, except in the case of an optimal (0, o-) (whose order is k + 2), when we shall 
set c o = k +  1 (assuming that the multistep method (Q, a; 2) is of order k +  1 and 
k + 2, respectively). 

Proof: Let y (x) E C '~+ 1 [0, a], and set 

aj = y(J) (0) + bj h ~ + 1 - j, j = 2 . . . .  , co. 

Hence, with e (x):= y ( x ) - u  (x), and by using (4.1), we get 

bj ~  
e ( x ) = h  'o+' -~=z'-'2 7[. \ h i  (co+l)! 

and 

1) 
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b~ 
e' ( x )=h  ~ -=._2 (j-1)~ 

with 0 < ~o (x) < x, 0 < ~1 (x) < x. 

Here we have used e (0) =0 ,  e' (0)=0.  

t h )  j-1 Y('~ + 1)(~1 (x))(x~W~ 
- -  ~ co! \ h ;  s 

We shall first show that the coefficients {bj : j=2 ,  ..., co} are uniformly bounded 
for h s (0, H0), H o > 0. Clearly, by (4.2), 

e' (xo) = F (x~, y (x ~), z (x~)) - F (x~,, u (x~), v (xv)) = 

* z *  ~ x * * =e(x~)~yF(x~,y~,  ~ ) + A ( x ~ , ) ~ z  F (v,y~,z~.) ,  v = l  . . . .  , c o - l ,  

with 

~ Tj~ y* (t)) d,. A (x~,): = ! e (t) K (xv, ~, 

Here, y* is between y (xv) and u (xv), y* (t) is between y (t) and u (0- Using the 
above expression for e (x) and e' (x) we obtain (after division by h~'), 

__bJ vj_ 1 = Y('~ v'~ [-~yF(x~,y~, ~ z*) ~ )~v  
j=2 0 - 1 )  ! co[ (4.7) 

- a ~  F(~,y*~,~*~) ! T;y~:(xo, t,y*(t)) ~ Yr. dt +o(h),~=~, ,co-~, j=2 
If {b(2 ~ ., h (~ �9 . ~o } denotes the (unique) solution of the linear system 

b~ ~j-~_ (r 
j=2 ( ] - 1 ) ~  - co! v C~, v = l  . . . . .  c o - l ,  

then, by continuity,  there exists a H o > 0  such that, for all h e (0, Ho), the system 
(4.7) possesses a unique solution {b2, . . . ,  b~o } for which 

bj = b} ~ + 0 (h), j = 2 , . . . ,  co. 

Hence, 
ie(x) l<(B+M.,+~) h "*~, xe  [O,x~ 1~, 

where 

B : =  ~ ibji ( c o _ l ) j < o c  ' hs(O, Ho) ' 
j=2 ~ - ,  T 

(co-  l) ~+l 
M,~+I :=  max ]y(~ 

The assertions (4.5) and (4.6) of Theorem 3 now follow from the Lipschitz 
condit ion on K:  

~'~1 ~x t ,y(t))dt--K(x~,t ,u(O)ld~ ,Iz(xv)-J(v,v)l<J'= K t  ~, 
o 

<C L~lr l), v=t  ..... co- l ,  
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and similarly, 

I Zm(Xv)-d(v,m)l<=CL3 h ~ (co- 1), v = l  .....  c o - l ;  re=co, ..., N. 

Here, L 3 denotes the Lipschitz constant for K, as defined in section 1. This 
completes the proof of Theorem 3. 

In practical applications, the integrals occuring in (4.2) as well as the integrals 
J (v, v) and d (v, m) will not be computed exactly but will be approximated by 
numerical quadrature. An argument similar to the one used above shows that 
Theorem 3 remains valid (with an appropriate modification of C and Ho) if the 
quadrature formulae used to evaluate these integrals have at least order co. We 
shall omit the corresponding proof. 

5. Practical Applications 

For methods of reasonably high order, the derivation of stability regions in the 
(h 3, h 2 ~)-plane becomes prohibitively complicated. It is, of course, feasible to 
calculate estimates for ~ and r/ from the numerical solution, and to check 
computationally whether, with the corresponding values of h ~ and h 2 t7, the zeros 
of the stability polynomial lie within the unit disk. However, such an approach 
leads to a somewhat complicated algorithm. A much simpler procedure can be 
devised if we choose methods which satisfy the hypotheses of Theorem 2, that is, 
methods [(Q, o); (Q, 0)] for which ~o ( = 0) satisfies (3.13). In particular, such a method 
always results if we choose the linear multistep method to be an Adams-Moulton 
method, and the quadrature formula to be a Gregory formula of appropriate order. 
From time to time, as the numerical solution proceeds, estimates for 0 F/O y and 
(0 F/O z)(0 K/O y) can be computed, whence values of ~ and ~ are obtained 
from (3.1). A simple program allows ;t and ~t to be calculated from the relations 
2 + # = ~ ,  ;t/~= - 7 .  

For absolute stability, the steplength h must be such that h )~ and h/~ both lie within 
the (complex) region of absolute stability of the method (0, o) for ordinary diffe- 
rential equations. Not only are such regions more easily computed than are the 
corresponding regions in the (h 3, h 2 ~)-plane (see [3], p. 77), but the existing 
literature already contains much information on such regions. In the particular 
case when (@, o) is an Adams-Moulton method, plots of the regions for methods 
of order 4, 5, 6, 7, and 8 may be found in Krogh [2]. 

As an illustration we consider the integro-differential equation 

dt 
ytx)l of l+(l+x)y(t) 0<_x__<10, y' (x)=g (x)+f(x).--TC+ 

with 
y (0)= 1, 

g(x)= l + x ( l + x ) 2  ( 2 + 2 x ~  
(l+x)Z , f ( x ) = l o g \ 2 + x  ]" 

Its exact solution is given by y (x)--- 1/(1 + x). 
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Here, we have 

and 

0F=0y - f ( x ) ' ( - ~ )  2<0  for x>0,  

0F OK l + x  
Oz Oy = ( l+( l+x)y)z<O,  x>O(y>O). 

The numerical solution was computed by using the Adams-Moultor~ method of 
order four, 

Y,+I -Y,=~4 (9 F,+I + 19 F , - 5  F,_ 1 q - F n _ 2 )  , 

combined with the Gregory formula (1.6) with q = 2. The required starting values 
were computed by means of the starting procedure described in section 4, with 
co = 3 in (4.1). 

A selection of numerical results is contained in Table 1. 

Table  1 

x .  e .  = y (x . )  - y .  e .  er, 

h = 0 . 1  h = 0 . 2  h = 0 A  

0.0 0. 0. 0. 
0.1 6 . 6 7 . 1 0  -5 

0.2 6 . 93 . 10  -6  7 .42 .10  -4  

0.3 2 . 03 . 10  -5 

0.4 3 . 05 . 10  -5 1 .15 .10  . 4  6.15- 10 3 

0.8 4.04~ 10 - s  3.55- 10 -4  7.06- 10 -4  

1.2 2 . 8 7 . 1 0  -5 2 .68 .10  -4  1 .82 .10  -3 

4.8 

5.2 

7.2 

7.6 

8.0 

8.4 

9.6 

10.0 

- 5 . 6 0 . 1 0  -7  - 5 . 3 9 .  10 -6  - 4 . 0 2 . 1 0  5 

- 4 . 5 6 -  10 -v  - 4 . 3 7 -  10 -6 - 3 . 6 7 . 1 0  -5 

- 1 . 9 0 . 1 0  7 - 1 . 7 8 -  10 -6 ! . 4 2 . 1 0  - s  

- 1 . 6 3 . 1 0  -7 - 1 . 5 2 . 1 0  6 - 6 . 1 4 -  10 -5 

- 1 . 4 1 . 1 0  . 7  - 1 . 3 1 . 1 0  -6  7 .9 0 .1 0  -5 

- 1 . 2 3 . 1 0  -7  - 1 . 1 4 . 1 0  -6  - 1 . 7 3 . 1 0  -4  

- 8 . 2 5 . 1 0  -8 - 7 . 5 8 . 1 0  -7 1 .11 .10  3 

- 7 . 2 9 . 1 0  -8  - 6 . 6 7 . 1 0  -7 - 2 . 2 6 . 1 0  -3 

We observe that ~:= 0 F/O y (computed along the exact solution of (5.1)) behaves 
asymptotically like - ( 1  +x )  2, whereas t/: =(0 F/c3 z) (0 K/O y) changes more 
slowly; it behaves like - (1 + x). In all cases, the magnitudes of ~ and r/, computed 
from the numerical solutions, increase monotonically with x. The region of abso- 
lute stability of the fourth-order Adams-Moulton method has an intercept of 
( - 3 ,  0) on the real axis (see [2]). In the case when h=0.4,  for x=0.0 ,  0.4, 
0.8, ..., 2.8, the computed values of h ~ and h z q are such that h 2 and h # lie within 
this region. However, for x=3.2, we find that ~ - 8 . 4 6 ,  r/~-1.05, whence 
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h 2 ~ - 3 . 3 3 ,  h # , ~ -0 .05 ,  indicating that a reduction of steplength should be 
made at this point. For  the numerical results displayed in Table 1, no such 
reduction was made, and, indeed, it can be seen that for h=0.4,  the error 
oscillates and eventually grows in magnitude. Similarly, the stability analysis 
recommends a reduction of steplength at x = 4.4 and x = 6.3 in the cases h = 0.2 and 
h=0.1,  respectively. Further computation indicated that the error does indeed 
begin to grow in the neighbourhood of x =  10.8 and x = 11.5, respectively. For  
this highly nonlinear example, the bounds on the steplength recommended by the 
(linearized) stability analysis are seen to be rather conservative in practice. That 
the same is frequently true of stability analysis for ordinary differential equations 
is well-known. 

Acknowledgement 

The work of this paper was carried out while the second author was visiting the Department of 
Mathematics, Dalhousie University, during April and May 1973. 

References 

[1] Isaacson, E., and H. B. Keller: Analysis of Numerical Methods. New York: Wiley. 1966. 
[2] Krogh, F. T. : Predictor-corrector methods of high order with improved stability characteristics. 

J. Assoc. Comput. Mach. 13, 374 (t966). 
[3] Lambert, J. D.: Computational Methods in Ordinary Differential Equations. London: Wiley. 

1973. 
[4] Linz, P. : Linear multistep methods for Volterra integro-differential equations. J. Assoc. Comput. 

Mach. 16, 295 (1969). 
[5] Mocarsky, W. L. : Convergence of step-by-step methods for nonlinear integro-differential equations. 

J. Inst. Math. Appl. 8, 235 (1971). 
[6] Steinberg, J.: Numerical solution of Volterra integral equations. Numer. Math. 19, 213 (1972). 

H. Brunner 
Department of Mathematics 
Dalhousie University 
Halifax, Nova Scotia, Canada 

J. D. Lambert 
Department of Mathematics 
University of Dundee 
Dundee, Scotland 


