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Abstract - -  Zusammenfassung 

An Approach to a Systematic Theorem Proving Procedure in First-Order Logic. A complexity 
degree for theorems in first-order logic is introduced which naturally reflects the difficulty of proving 
them. Relative to that degree it is required that a systematic proof procedure should prove simple 
theorems faster than harder ones. Such a systematic but relatively inefficient procedure and a semi- 
systematic but efficient procedure are presented. Both are developed on the basis of the consistency 
and completeness theorem for the underlying formal system rather than Herbrand's theorem. 

Ein Ansatz zu einem systematischen Beweisverfahren flit die Pr~idikatenlogik. FUr Theoreme der 
Pr~idikatenlogik erster Stufe wird ein Komplexit/itsgrad eingeffihrt, der in natiirlicher Weise die Kom- 
pliziertheit der zugeh6rigen Beweise migt. Im Sinne dieses Grades wird von einer systematischen 
Beweisprozedur verlangt, dab sie einfache Theoreme schneller beweist ats schwierigere. Solch ein 
systematisches, jedoch relativ ineffizientes Verfahren und ein halb-systematisches, jedoch effizientes 
Verfahren werden in dieser Arbeit beschrieben. Beide Verfahren stiitzen sich auf den Konsistenz- 
und Vollst/indigkeitssatz des zugrundeliegenden formalen Systems "and nicht, wie fiblich, auf den 
Herbrand-Satz. 

O. In troduc t ion  

In  the field of  theorem proving in first-order logic almost  all work is based on 
Herbrand ' s  theorem. This is a surprising fact since f rom a logical point  of  view the 
mos t  natural  way to prove a theorem (syntactically) is by giving a derivation for it, 
and this, of  course, is primari ly not  the way suggested by Herbrand ' s  theorem. 
Therefore a t ho rough  study of  how to find a derivation of  a theorem might  yield 
results and techniques for theorem proving procedures in a more  natural,  perhaps 
easier way. 

This motivates  why, in this paper,  a p roof  procedure  has been presented which 
uses Prawi tz '  ideas [3] and is based on the usual consistency and completeness 
theorem for the underlying formal system rather than Herbrand ' s  theorem. 

Hereby,  a sort of  a complexity degree for theorems will play an impor tan t  role 
which reflects in a natural  way  the difficulty of  proving them. For  example it 
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will be proved (see chapter 2) that, relative to this concept, it is advantageo~as to 
transform a given formula into an equivalent anti-prenex or miniscope [73 form 
before trying to prove its validity (and disadvantageous to transform it into 
prenex form as has been done in quite a few papers). 

Moreover this degree suggests another important requirement on theorem 
proving procedures, namely the natural demand to prove "simple" theorems 
faster than "hard" ones where these terms are measured in a way which, 
originally, is independent of the procedure as it is done with the proposed 
complexity degree. It is not hard to give such a "systematic" procedure, i.e. one 
which satisfies this requirement (see chapter 3). But it turns out to be rather 
complicated to give one, which is also efficient. 

In the way this problem is tackled here one is faced with two major problems. 
One of these has been solved (see chapter 4) resulting in a "semi-systematic" 
procedure which fulfills that requirement only for a subclass of formulae (proving 
all others in later steps than it could be done with a systematic procedure). 

1. The Formal System 

For simplicity the discussion is restricted to first-order logic without equality. 
Among the various Gentzen-type systems we choose one developed by Schtitte 
[6], which is briefly described in the next few paragraphs. 

Let a, b denote free object variables, x, y bound object variables, f, g n-ary function 
symbols, and p, q n-ary predicate symbols. (All denotations here and in the 
following are understood to be used with or without indices.) Addition of the 
logical symbols ~ ,  v ,  V, the comma, and parentheses completes the alphabet, 
say A. Let * be a special symbol. Then by F, G we denote words over A w {*} 
and call them indicative forms. If W is a word over A and F an indicative form 
then F [ W ]  denotes the word over A obtained from F by replacing each 
occurence of * in F by W. 

Terms are the free variables and the words of the form f ( t l , . . . ,  6) over A 
where tl, ..., t, denote terms. 

Atomic formulae are of the form p (tl . . . .  , t,) and are denoted by P. 

Formulae, denoted by A, B, F, G, are defined inductively as follows. 

1. Each atomic formula is a formula. 
2. With F, G also 7 F, (F v G) are formulae. 
3. If F is a formula of the form F [a] and does not contain x, then V x F Ix] 

is also a formula. 

Inductive definition of positive parts of a formula F. 

1. F itself is a positive part of F. 
2. If G is a positive part of F and is of the form -7 --1 G o or (G1 v G2) then 

Go, or GI and Gz, resp., are positive parts of F. 
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E.g., in (-1 Go v (-1 -n 61 v -7 (G2 v 63))) the positive parts are the whole 
formula, -7 6o, (-1 --n 61 v -1 (62 v 63)), -7 -n G1, 61, --7 (G2 v 63). 

A positive part of a formula which does not contain another positive part 
than itself is called a minimal part. 

Positive forms, denoted by P, are indicative forms satisfying the following two 
conditions. 

1. The �9 occurs exactly once in P. 
2. If F is any formula, then P IF] is a formula with F being positive part in it. 

Axioms are all those formulae in which an atomic formula and its negation 
occur as positive parts. 

Rules of inference are 

r 1. P [-7 F], P [-n G] ~- P [--7 (F v G)] 
r 2. P [--n F [a]] ~- P [ 7  Vx F Ix]] ,  where the eigenvariable a may not occur 

in the conclusion 
r 3. P [Vx F [x]]  v F l-t] }- P [Vx F Ix-l]; t is called eigenterm of the inference. 

This concludes the description of the formal system. Without restricting 
generality, affecting any further definition, or changing efficiency of any of the 
following algorithms, conjunction and all-quantification have been omitted, 
since they are easily defined within the system in the usual way. This allows us 
to deal with only three rules. 

In the rest of this section we prepare and state the definition of "degree of a 
theorem". 

Let us call the main part of an inference the (unique) positive part in the 
conclusion which is indicated by the involved positive form (e.g., --7 (F \/G) in 
P [-7 (F v G)] in r 1). Each positive part in the conclusion of an inference according 
r 1 or r 2, except those which contain the main part of this inference, occurs 
also in each premise. In the case of r 3 this applies even to all positive parts in 
the conclusion without exception. We express this commutative relation on the 
occurrences of the positive parts in the formulae of an inference also by saying 
that the positive part in the conclusion corresponds to that (unique) positive 
part in each premise (cf. [6]). This relation provides a commutative relation on 
the occurrences of the positive parts of the formulae in a derivation by taking the 
union of the relations of all inferences occuring in the derivation, which we 
extend to its transitive closure. Still we say related elements correspond to each 
other. Furthermore two inferences r 3 in a derivation are called corresponding 
if their main parts correspond to each other. 

Now the degree of a derivation is the maximal number of inferences r 3 which 
correspond to each other and lie in the same branch of the derivation tree. 

A theorem T has (complexity) degree d iff all derivations of T have degree _> d 
and there is a derivation of T whose degree is d. 
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Consider the theorem Vx ~ V y ~  (p ( x ) v -7  p (y)) (abbreviated by 7) and the 
following derivation of T as an example. 

(T v ~ ~ (p (a) v 7 p (b))) v -7 -7 (p (b) v -7 p (c)) t- 

(Vv -7 7 (p (a) v -7 p (b)))v ~ V y ~  (p (b) v 7 p (y)) }-- 

( r v  -7 -7 (p (a)v 7 p (b)) F- T v  -n Vy-7 (p (a)v -7 p (y)) F- 7". 

In this derivation all the T's correspond to each other and T occurs twice as the 
main part of an inference according to r 3; therefore the degree of the derivation 
is 2 by definition. It is easy to see that in this example the number of 
corresponding inferences according to r 3 cannot be reduced by transforming 
the derivation to another one of the same formula. Thus T has degree 2. 

In theorem proving the formula is given and the derivation has to be found which 
means that the rules of inference have to be applied in a backward way. This is a 
straightforward process as far as the rules r 1 and r 2 are concerned; the difficulty 
lies in the transition from the conclusion to the premise of an inference according 
to r 3 since the conclusion gives no hint which choice of the eigenterm to make. 
Therefore only the inferences according to r 3 contribute to the degree. Among 
them only those are added up which correspond to each other and lie in the same 
branch of the derivation because all others are relatively independent from these 
and the difficulty of the hardest of the independent subproblems seems to be 
adequate as a rough measure for the difficulty of the whole problem. 

For  further motivation we mention here without proof that this particular degree 
of theorems coincides in the case of a prenex theorem T with the number of 
instances of the matrix of T over its Herbrand universe, which are needed to 
prove Tusing a procedure based on Herbrand's theorem (see e. g. [5]). This number 
is widely accepted to determine the number of basic steps of such a procedure. 
Therefore, as the degree of a theorem turns out as a generalization for all 
theorems, not only prenex ones, it is proposed here to give it an analoguous role 
in procedures which are not restricted to prenex theorems. 

Apart from this, it is the fact that to any given positive integer n there are 
theorems of degree higher than n, which makes first-oder logic an undecidable 

theory. Therefore it seems to be natural to introduce the partition T =  @ T~, 
i=o 

T~ denoting the class of theorems of degree i, of the class T of all theorems in 
first-order logic and regard a theorem T(~ T i essentially harder to prove than 
another T o) e Tj iffj < i holds. 

2. Formulae in Antiprenex Form 

Formulae in antiprenex or miniscope form have been used in proof procedures 
as early as 1960 by Wang [7] and very recently by Ernst [21. The main idea of 
independent subgoals in the latter paper comes out automatically in the 
procedure presented here. 
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First, the inductive definition of "formulae in antiprenex form" is given here 
for the system introduced in the previous chapter (whereby the discrimination 
between free and bound variables will be neglected for simplicity). 

1. Each atomic formula is in antiprenex form. 

2. With F, G also ~ F and (F v G) are in antiprenex form. 

3. If a formula of the form -7 (F v G) is in antiprenex form, then V x ~  (F v G) 
is in antiprenex form iff x occurs in F and in G. 

4. If a formula of the form ~ Vy F is in antiprenex form then Vx--1 Vy  F is in 
antiprenex form iff x occurs in F. 

5. If a formula of the form Vy F is in antiprenex form, then Vx Vy F is in 
antiprenex form iff V x  F is in antiprenex form. 

6. If F is (the negation of) an atomic formula then V x F is in antiprenex form iff 
x occurs in F. 

If a formula F is of the form -~ G then let F be G else let P be -7 F. Then the 
rules according to which a formula can be transformed recursively into anti- 
prenex form are the following, Q denoting a (possibly empty) string of 
(existential) quantifiers. 

1 . 7 - n A s A  

2. V x F => F, x not in F 

3. V x Q ( A v B ) ~ Q ( V x A v B ) ,  x in A, not in B 

4. Vx  Q-n (A v B)~Q--n(-n V x  A v B), x in A, not in B 

5. V x Q ( A v B ) ~ Q ( A v V x B ) , x i n B ,  n o t i n A  

6. V x  Q-n (A v B ) ~ Q ~  (A v - 1 V x  B), x in B, not in A 

7. V x Q ( A v  B ) ~ Q ( V x A v  VxB) ,  x in A and B. 

As announced in the introduction it will be stated in the following theorem 
that for theorem proving antiprenex is preferable to prenex form, relative to the 
concept "degree of a theorem". 

Theorem. a) I f  F is a formula then there exists a uniquely determined equivalent 
formula F' in antiprenex form which is obtained from F by applying the 
transformation rules1.--7. 
b) I f  F is a theorem then the degree of F' is not greater than that of F and in 
general it is also not equal. 

Part a) follows from well-known equivalences in first-order logic. 

The second part of part b) can be shown by an example. In chapter 1 it has 
already been shown that the theorem V x -1 V y -~ (iv (x) v 7 p (y)) has degree 2. 
Its antiprenex form is V x p ( x ) v - n  Vyp (y )  which is of degree 1 because of 
( V x  p(x) v -n p(a))v p(a) t- V x  p ( x ) v  -7 p(a) F- V x  p ( x ) v - 1  V y p(y). 



48 W. Bibel: 

A thorough proof of the first half of b) is rather lengthy. We therefore content 
ourselves with a short outline. Let the degree of F be d and H be a derivation 
of F of degree d. In each step towards a transformation of F into antiprenex form 
one of the transformation rules is applied; for example assume F contains a part 
V x (A v B) and A, B, already in antiprenex form, contain x (case 7). Replacing 
that part in F by (VxA v Vx B) resulting in F1, H is to be transformed in a 
natural way into a derivation H1 of F1 with same degree. This is easily done by 
transferring the change in F to an analogue change in the premise(s) of F 
and so forth through the whole derivation. In that process the only complication 
occurs if the main part V x (A v B) or -1 V x (A v B) of an inference according to 
r 3 or r 2 changes to (Vx  A v Vx  B) or -1 (Vx  A v V x  B), resp. In the first case 
the inference P [Vx  (A v B)] v (A' v B') ~- P [Vx  (A v B)] has to be transformed 
to ( P [ V x A v V x B ) v A ' ) v B ' b - P  [ V x A v V x B ] v A '  t--P [ V x A v V x B ] .  
Since these two new inferences according to r 3 do not correspond to each other 
the degree of H1 will remain the same as of H. In the second case we have to con- 
sider an inference P [-7 (A'v B')] ~-P  [-7 V x ( A  v B)]. From the derivation of 
the premise one gets easily a derivation of P [-1 A'] and another of P ~ B'] 
(see [6]); P (-7 A'] t- P [-1 V x  A], P [-n B'] I-- P [~  V x  B], from which one 
gets P [ 7  (Vx  A v V x  B)] by r 1. - -  The discussion for the other cases 1.--6. is 
similar. The process after a finite number of steps results in a derivation H' 
of F' in antiprenex form of degree d' <_ d, i.e. for the degree d" of F' the maintained 
relation d" <_ d' <_ d holds. 

What is called antiprenex form here is a further simplified "simplified miniscope 
normal form" introduced in [2], because no advantage is taken from the associative 
laws of the propositional operations (see chapter 5). 

3. A Systematic Procedure 

Since we now have available a concept, namely the degree of a theorem, with 
which we can measure the complexity of a theorem, it is quite natural to ask for 
a procedure that tries to identify a given formula (in antiprenex form) as a theorem 
of degree 1 in the first step, in case of failure as a theorem of degree 2 in the 
second step, and so on. Let us refer to such a procedure as a systematic procedure. 
Even if this would result in an algorithm which requires much more combinatorial 
work to be done in each step it would be worthwhile to pursue this aim because 
we know from conventional procedures how rapidly the amount of work increases 
from step to step; i.e., the gain obtained by eventually reducing the number of 
steps may make up for the increase of work in each step. 

As far as I looked through the literature I found only one theorem whose 
equivalent antiprenex form was of degree higher than 1 (namely of degree 2, see 
[8], 7.3 example 1). So I have a strong feeling that for "everyday" reasoning 
one could restrict such a systematic procedure to rather low degrees. 

The simplest but admittedly least efficient algorithm of that type is described as 
follows and uses Prawitz's idea of introducing dummies in the place of terms 
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(see [3]). It consists of two subroutines. One is called TRF and is applied 
recursively. It transforms at each call a matrix, whose elements are subformutae 
of the given formula which is to be proved, to another matrix by removing a logical 
operation in a certain element. Its arguments are the matrix (M), the row number 
(r), the list of variables and dummies (VD), the list of forbidden relations (R), and 
the step number (s). The process in the i-th step, i=  1, 2 . . . .  , is initiated by calling 
TRF with M being a matrix whose only element is the given formula, r =  1, 
VD, R being the empty list, s = i. 

The other subroutine, which is called CPT, is activated whenever TRF is not 
applicable anymore and tests whether each row can be made to contain a 
complementary pair of literals, i.e. an atomic formula and its negation, by 
replacing dummies by terms while observing the forbidden relations, returning 
a success or failure message, say "yes" or "no", resp. It is not described in detail 
here because a version for a special case is found in chapter 4 (subroutine AX). 
If CP T fails then the process continues with the next step. 

This section concludes with a brief description of TRF. 

1. Each element in M is replaced by its minimal parts. 

2. If all elements in the current row are either literals or labelled with the 
number s (the current step) then 

a) if r is less than the number of rows in M then call TRF with M, r +  1, VD, R, s 
as arguments and return the result; otherwise 

b) call CPT and return the result; otherwise 

3. assume M1 . . . . .  M,  are those elements in row r which are not literals and not 
labelled with s. 

Set j ~  1. 

a) If Mj is of the form -1 (A v B) then call TRF with M', r, R, s where M' results 
from M by adding a copy of row r to the rows in M and replacing in row r and in 
that additional row Mj by the minimal parts in -7 A or 7 B, respectively. 

b) If Mj is of the form --1 V x F Ix] then call TRF with M', r, VD', R', s where 
M' results from M by replacing Mj by the minimal parts in -1 F [a], a is a new 
variable, VD' is a added to VD, R' is R together with the restrictions that a may 
not be contained in any element of VD. 

c) If Mj is of the form V x F [x] and labelled with a number 1 (supposed to be 
zero if no label) then call TRF with M', r, VD', R, s where M' results from M by 
replacing Mj by V x F Ix] labelled with l+  1 and all minimal parts in F [d], 
where d is a new dummy, and VD' is d added to VD. 

If the answer of the procedure call in one of the cases a)--c) is "yes" then return 
this result; otherwise ifj < n then increase j by one and start in 3. a) again; otherwise 
return "no" as result, indicating that the formula does not turn out as a theorem 
in the s-th step. 

Computing 12/t 4 
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An example may be helpful. Obviously, the formula -7 V x p  (x)~--, A x-7 p (x) 
is valid. By definition, in our formal system it reads -7 -7 V x  p (x) v -7 V x  -7 7 p(x), 
shortly denoted by F. By step 1 it is transformed to the matrix 
( V x  p (x), 7 V x  7 7 p (x)). Then, in step 3, j is set equal to 1, to consider one 
possible premise of F, and, by 3. c, TRF is called again with M ' = ( V x  p(x) (1~, 
p (d 1), 7 V x  7 -7 p (x)), VD' =(d 1), which results, by 3. b, with M" = ( V x p ( x )  (1~, 
p (d 1), 7 p (a)), r = 1, VD' = (d 1, a), R' = ("a not in d 1"). M "  cannot be made an 
axiom by any suitable substitution of a term for the dummy d 1 because d 1 = a 
is forbidden by R'; therefore, after another call of TRF, C P T  and TRF return 
"no" to the original call of TRF, where now j is increased by 1, to try the other 
possible premise of F, namely M ' = ( V x p  (x),-7 p (a)), VD'=(a). R' now remains 
the empty list, so that M " = ( V x p ( x )  (1~, p(dl ) ,  7 p ( a ) )  now can be made an 
axiom by setting d 1 = a yielding the "yes'-result in the first step. (Actually the 
procedure could now tell us more, namely the whole derivation of F.) 

For  what follows, it would be helpful to keep in mind that such a little 
modification as interchanging the two disjunctive components in F (which 
yields 7 V x  7 7 p (x) v 7 --7 V x  p)) would have avoided the intermediate ~'no-"- 
result. 

4. An Efficient, Semi-Systematic Procedure 

The disadvantages of the procedure in section 3 are obvious. First of all, after 
each step it forgets everything what it possibly might have learnt in earlier steps, 
working it out again and again. Moreover, it neglects completely that ira the 
situation as described in step 3 the ordering of the M/s i = 1 . . . .  , n is relevant with 
respect to efficiency for the following reason: If we assume the case where the loop 
in step 3 eventually returns "yes" then obviously there is a permutation rr and 
with it the tuple M~ (1), ..., M~ ~,) which in comparison with all other permutations 
causes a minimal number of procedure calls and returns the "yes" result while j 
only has the value 1. 

The problem to find out this optimal permutation can naturally be divided in 
subproblems such that in each of those one has to test whether it is more efficient 
to treat some element M~ before some other Mj or the other way around (TRF 
simply tries both ways for all pairs M~, M j). 

The relevance of this test is dependent on the structure of the formulae M~ and 
Mj. In the cases where both Mi and Mj are of the form V x F, 7 V x F, or 
-7 (F v G), resp., and the case where Mi is of the form 7 V x F and Mj of the 
form 7 (F v G) (or vice versa) the choice turns out to be irrelevant in general. 
This is a consequence of the wellknown fact that in a derivation two inferences 
according to the same rule r 1, r 2 or r 3, resp., or to r 1 and r 2, which do not 
correspond (in an extended sense) to each other, can be interchanged without 
affecting the remaining derivation. 

Therefore only two cases are left where the choice (to handle the part Mz before 
Mj or Mj before M~) in general is not irrelevant. This is whenever one is of the 
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form V x F ,  the other .-1 V y G  or one is of the form V x F ,  the other 
-n (F1 v F2). Let us refer to them as the first and the second problem. 

How could the choice for these two cases be made in an efficient way? I suggest 
a solution similar to that one Prawitz proposed in a similar problem (mentioned 
earlier in this paper), namely when he introduced dummies instead of choosing 
specific terms: delay the choice as long as possible, that is till the rows of the 
matrix are tested for complementary pairs. Unfortunately this becomes a very 
complicated algorithm. Therefore an algorithm is presented here as a first 
approach which solves the first but neglects the second problem and thus 
provides only a semi-systematic procedure. In the rest of this section this algorithm 
will be described. 

For  simplicity let us restrict the formal system by removing the function symbols 
from it. Later on the changes, necessary to include them again, will be indicated. 

First the given formula is transformed into an antiprenex formula F according 
to the rules given in chapter 2. The main part then again consists of two sub- 
routines, ALZ  and AX. 

ALZ  transforms a matrix M of (possibly labelled) formulae into a matrix L 
of literals and a matrix K of existential formulae and establishes a tree ordering 
"< among the introduced variables and dummies. In the first step M initially 
consists of one element, the formula F. 

I. Set i=O. 

2. If i is less than the number of rows in M, set i ~ i + l  and goto 3; otherwise 
exit to main program. 

3. If row i in M is empty, goto 2.; otherwise take the leftmost formula G in it. 

3.1 If G is a literal then remove it in M and add it to the i-th row in L. 

3.2 If G is of the form -7 -q G o then drop the two negation signs. 

3.3 If G is of the form (G1 v G2) and labelled with l then replace it by G~, G2 
both labelled with I. 

3.4 If G is of the form -1 (G 1 v G2) and labelled with l, then add a new row to M, 
which is a copy of row i, except G is replaced by -7 G 2 labelled with l, and replace 
in row i G by -n G1 labelled with I. Further copy row i in matrix L and K into a 
newly created row in L and K, respectively. 

3.5 If G is of the form V x  F Ix] and labelled with I then let d be a new dummy 
and replace G by F [d] labelled with d; further note l~<d, and add G labelled with 
d to the i-th row of K. 

3.6 If G is of the form -n V x  F Ix] and labelled with I then let a be a new 
variable and replace G by -1 F [a] labelled with a, and note l~a. 

Then return to 3. 

After exit from ALZ the subroutine AX is called to test whether the dummies 
can be replaced consistently by terms so that each row of the matrix L contains 

4* 
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a complementary pair. In that process the relation -< plays now an important 
role. 

To illustrate this I mention that each derivation of F determines a unique relation 
among the eigenvariables and eigenterms, namely ej ~ e2 iffthe inference which el 

belongs to lies below the inference which e a belongs to. < is roughly spoken a 
first approach (a sub-relation) to such a relation <.. Therefore A X  has also to 
extend ~< to such a relation <. which in case of success reflects part of the structure 
of the derivation of F. In detail the algorithm A X  reads as follows. 

1. Set i<-1. 

2. In row i find a pair of an unnegated and a negated literal which has not yet been 
considered. If there is none such pair, forget that in row i any pair has been 
considered already, cancel all tentative identifications originating from row i, 
and if i>  1 then set i ~ i -  1, otherwise return a failure message; otherwise check 
for that pair whether the predicate variable and the number of arguments are 
the same. If no, start again in 2., otherwise compare each pair of corresponding 
arguments in the following way. 

a) If both are variables, but different, cancel all tentative identifications from row 
i and start in 2. again. 

b) If one is a variable a, the other a dummy d and d has been identified already 
with a term different from a, or d-<a holds, then cancel all tentative identifications 
from row i and start over in 2.; otherwise tentatively identify d with a. 

c) If both are dummies dl and d2 with different identifications or dl is identified 
with a but for d2 (or any other dummy identified with d2) d2~,a or an analogue 
situation for d2 holds, then cancel all tentative identifications from row ~ and 
start again in 2.; otherwise identify one with (the identification of) the other and 
vice versa. 

3. If i is less than the number of rows then set i<- i + 1 and goto 2.; otherwise return 
the message that the formula turned out to be valid in the current step of the 
procedure. 

If A X  returns a failure message the procedure will enter a further step, will call 
ALZ with M being initiated by the value of K which will transform it into extended 
matrices L and K, and will call A X  again; and so forth. 

Recall the example of section 3 to compare the operations of TRF and CPT 
with those of A L Z  and AX;  then it can be seen that now the unnecessary inter- 
mediate "no'-result  disappears completely, due to the additional information 
given in the relation ~ which after execution of A L Z  with F still is empty. There- 
fore in A X  2. b the identification d 1 = a can be made immediately. 

A more interesting example would be 

A x a  yA z (p (x, y)--+ -7 p (y, z ) )~ VyA x-'n p (x, y). 

The reader is invited to apply to it both procedures and find out that it is a 
theorem (in antiprenex form) of degree 2. 
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To conclude this section let us briefly indicate how the algorithm A X  has to 
be changed if function symbols are allowed, a) and b) under 2. remain unchanged. 
In c) one has to include also that e. g. d~ is identified already with a quasi-term 
(eventually still containing dummies) in which a variable a occurs for which 
dz'<a holds in which case also no identification can be performed. Three more 
cases have to be considered. 

d) Variable - -  quasi-term, starting with a function symbol (fails always). 

e) Both quasi-terms, starting with a function symbol (function symbols have to 
be the same; each argument has to be tested). 

f) Dummy - -  quasi-term, starting with a function symbol (identify, whenever no 
conflict with relation < arises). 

5. Concluding Remarks 

The algorithm described in chapter 4 has been coded as a SNOBOL4 program 1. 
Figure 1 shows the output of a run of it for the formula 

A x A y ((( V z h (x, z)--* A z g (x, z)) A A z (g (z, z )~  h (z, y)))--* (h (x, y)+-*A z g (x, z))) 

whose antiprenex form 

--1 Vx  Vy-n ((-7 (-1 Vzh(x , z )  v --1 Vz-7 g(x,z)) v V z ~  (-n g(z,z) v h (z,y))) v 

h(x, y)v Vz-  g (x, z)),, (Vz  0(x, z)v h(x,y)))) 
is of degree 1 but which here is proved in the second step since the procedure 
is only semi-systematic, not systematic. (LIST OF CLAUSES is the resulting 
matrix after A L Z  has been applied - -  only the labelled existential formulae are 
not printed; VARIABLES WITH INCOMPATIBLE DUMMIES indicates 
the relation ~( and has to be read: VI"<V2 ,  V2-<V3,  V I < V 3 ,  ....) 

The test results are encouraging. But comparison of the size of the two 
matrices make obvious the advantage of a systematic procedure because it would 
avoid running into the second step. Therefore as mentioned before I actually 
regard the procedure of chapter 4 as a stop en route to a systematic and 
efficient procedure which would also take into account the second problem 
from chapter 4 using the same philosophy: postpone any choice until the sub- 
routine A X  where it can be made in an optimal way. 

The procedure could then be further improved by taking advantage of the 
associative and distributive laws of the propositional operations. Since each of 
these problems has to be solved in connection with all others, the desired 
algorithm undoubtedly will be a very complicated but also a very efficient one. 
Moreover this method is qualified for extending the procedure such that after 
eventually identifying a formula as a theorem, it also provides an actual de- 
rivation of it. 

I I wish to thank the Computer Science Section of the Mathematics Department of Wayne State 
University, Mich., for offering its facilities to complete this work. 
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For certain applications the degree d of a theorem might be too rough a 
measure since it does not discriminate among theorems of the same degree. But 
this could easily be improved for example by taking into account the length I 
of the formula, e. g, taking a). d + I. 

INPUT FORMULA : 

AXAY(((EZ(H,X,Z) SAZ(G,X,Z))CAZ((G,Z,Z)S(H,Z,Y)))S((H,X,Y)BAZ(G,X,Z))) 

EQUIVALENT TRANSFORMATION : 
NEXEYND(D(ND(NEZ(H,X,Z),NEZN(G,X,Z)),EZND(N(G,Z,Z),(H,Z,Y))),ND(ND(N(H,X,Y), 

NEZN(G,X,Z)),ND(EZN(G,X,Z),(H,X,Y)))) 

LIST OF CLAUSES: 
(H,V 1,D 1) (G,D2,D2)N(H,V 1,V2) (G~V 1,V3) 
N(G,V1,D3) (G,D4,D4)N(H,V 1,V2) (G,V 1,V4) 
(H,V1,D 1)N(H,D2,V2)N(H,V1,V2) (G,V1,V5) 
(H,V 1,D 1) (G,D2,D2)N(G,V 1,D5) (H,V l,V2) 
N(G,V1,D3)N(H,D4,V2)N(H,V1,V2) (G,V1,V6) 
N(G,V1,D3) (G,D4,D4)N(G,VI,D6) (H,V I,V2) 
(H,V1,D 1)N(H,D2,V2)N(G,V1,D7) (H,V1,V2) 
N(G,V 1,D3)N(H,D4,V2)N(G,V1,D8) (H,V 1,V2) 

VARIABLES WITH INCOMPATIBLE DUMMIES: 
V1 
V2 V1 
V3 V2 
V4 V2 
V5 V2 
V6 V2 

AFTER 1TH STEP OF PROCEDURE NO DECISION ABOUT CURRENT FORMULA 

LIST OF CLAUSES: 
(H,V1 ,D 1)(G,D2,D2)N(H,V1,V2)(G,V1,V3)(H,V1,D9)(G,D 10,D 10) 
N(G,V 1,D3)(G,D4,D4)N(H,V1,V2)(G,V 1 ,V4)N(G,V 1,D 11)(G,D 12,D 12) 
(H,V1,D 1)N(H,D2,V2)N(H,V I,V2)(G,VI,VS) (H,V 1,D 13) (G,D 14,D 14) 
(H,V1,D 1)(G,D2,D2)N(G,V1,D5)(H,VI,V2)(H,V1,D 15)(G,D 16,D16)N(G,V1,D 17) 
N(G,V1,D3)N(H,D4,V2)N(H,V1,V2)(G,V1,V6)N(G,V1,D 18)(G,D 19,D 19) 
N(G,V1,D3)(G,D4,D4)N(G,V1,D6)(H,V1,V2)N(G,V1,D20)(G,D21,D21)N(G,V1,D22) 
(H,V1,D !)N(H,D2,V2)N(G,V 1,D7)(H,V 1,V2)(H,V1,D23)(G,D24,D24)N(G,V 1,D25) 
N(G,V1 ,D3)N(H,D4,V2)N(G,V1 ,D8)(H,V1 ,V2)N(G,V 1,D26)(G,D27,D27)N(G,V 1 ,D28) 
(H,V 1,D I)(G,D2,D2)N(H,V 1,V2)(G,V 1,V3)(H,V 1,D9)N(H,D 10,V2) 
N(G,V 1,D3)(G,D4,D4)N(H,VI ,V2) (G,V 1,V4)N(G,V1 ,D 11)N(H,D 12,V2) 
(H,V 1,D 1)N(H,D2,V2)N(H,V 1,V2) (G,V 1,VS)(H,V1,D 13)N(H,D 14,V2) 
(H,V 1,D 1)(G,D2,D2)N(G,V 1,D5) (H,V 1,V2)(H,V1,D 15)N(H,D 16,V2)N(G,V 1,D29) 
N(G,V1,D3)N(H,D4,V2)N(H,V1,V2)(G,V1,V6)N(G,V1,D18)N(H,DIg,V2) 
N(G,V 1,D3)(G,D4,D4)N(G,V1,D6)(H,V 1,V2)N(G,V1,D20)N(H,D21,V2)N(G,V 1,D30) 
(H,V 1,D 1)N(H,D2,V2)N(G,V1,DT) (H,V 1,V2)(H,V 1,D23)N(H,D24,V2)N(G,'V I,D31) 
N(G,V1,D3)N(H,D4,V2)N(G,V1,DS)(H,V1,V2)N(G,V 1,D26)N(H,D27,V2)N(G,V1,D32) 

VARIABLES WITH INCOMPATIBLE DUMMIES: 
IN 2TH STEP OF PROCEDURE CURRENT FORMULA TURNS OUT TO BE VALID 

Fig. 1 
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