
Comput ing 12, 4 3 - - 5 5 (1974)

�9 by Springer-Verlag 1974

An Approach to a Systematic Theorem Proving Procedure
in First-Order Logic

By

W . Bibe l , Mfinchen

With 1 Figure

Received May 13, 1973

Abstract - - Zusammenfassung

An Approach to a Systematic Theorem Proving Procedure in First-Order Logic. A complexity
degree for theorems in first-order logic is introduced which naturally reflects the difficulty of proving
them. Relative to that degree it is required that a systematic proof procedure should prove simple
theorems faster than harder ones. Such a systematic but relatively inefficient procedure and a semi-
systematic but efficient procedure are presented. Both are developed on the basis of the consistency
and completeness theorem for the underlying formal system rather than Herbrand's theorem.

Ein Ansatz zu einem systematischen Beweisverfahren flit die Pr~idikatenlogik. FUr Theoreme der
Pr~idikatenlogik erster Stufe wird ein Komplexit/itsgrad eingeffihrt, der in natiirlicher Weise die Kom-
pliziertheit der zugeh6rigen Beweise migt. Im Sinne dieses Grades wird von einer systematischen
Beweisprozedur verlangt, dab sie einfache Theoreme schneller beweist ats schwierigere. Solch ein
systematisches, jedoch relativ ineffizientes Verfahren und ein halb-systematisches, jedoch effizientes
Verfahren werden in dieser Arbeit beschrieben. Beide Verfahren stiitzen sich auf den Konsistenz-
und Vollst/indigkeitssatz des zugrundeliegenden formalen Systems "and nicht, wie fiblich, auf den
Herbrand-Satz.

O. In troduc t ion

In the field of theorem proving in first-order logic almost all work is based on
Herbrand ' s theorem. This is a surprising fact since f rom a logical point of view the
mos t natural way to prove a theorem (syntactically) is by giving a derivation for it,
and this, of course, is primari ly not the way suggested by Herbrand ' s theorem.
Therefore a t ho rough study of how to find a derivation of a theorem might yield
results and techniques for theorem proving procedures in a more natural, perhaps
easier way.

This motivates why, in this paper, a p roof procedure has been presented which
uses Prawi tz ' ideas [3] and is based on the usual consistency and completeness
theorem for the underlying formal system rather than Herbrand ' s theorem.

Hereby, a sort of a complexity degree for theorems will play an impor tan t role
which reflects in a natural way the difficulty of proving them. For example it

44 w. Bibel:

will be proved (see chapter 2) that, relative to this concept, it is advantageo~as to
transform a given formula into an equivalent anti-prenex or miniscope [73 form
before trying to prove its validity (and disadvantageous to transform it into
prenex form as has been done in quite a few papers).

Moreover this degree suggests another important requirement on theorem
proving procedures, namely the natural demand to prove "simple" theorems
faster than "hard" ones where these terms are measured in a way which,
originally, is independent of the procedure as it is done with the proposed
complexity degree. It is not hard to give such a "systematic" procedure, i.e. one
which satisfies this requirement (see chapter 3). But it turns out to be rather
complicated to give one, which is also efficient.

In the way this problem is tackled here one is faced with two major problems.
One of these has been solved (see chapter 4) resulting in a "semi-systematic"
procedure which fulfills that requirement only for a subclass of formulae (proving
all others in later steps than it could be done with a systematic procedure).

1. The Formal System

For simplicity the discussion is restricted to first-order logic without equality.
Among the various Gentzen-type systems we choose one developed by Schtitte
[6], which is briefly described in the next few paragraphs.

Let a, b denote free object variables, x, y bound object variables, f, g n-ary function
symbols, and p, q n-ary predicate symbols. (All denotations here and in the
following are understood to be used with or without indices.) Addition of the
logical symbols ~ , v , V, the comma, and parentheses completes the alphabet,
say A. Let * be a special symbol. Then by F, G we denote words over A w {*}
and call them indicative forms. If W is a word over A and F an indicative form
then F [W] denotes the word over A obtained from F by replacing each
occurence of * in F by W.

Terms are the free variables and the words of the form f (t l , . . . , 6) over A
where tl, ..., t, denote terms.

Atomic formulae are of the form p (tl , t,) and are denoted by P.

Formulae, denoted by A, B, F, G, are defined inductively as follows.

1. Each atomic formula is a formula.
2. With F, G also 7 F, (F v G) are formulae.
3. If F is a formula of the form F [a] and does not contain x, then V x F Ix]

is also a formula.

Inductive definition of positive parts of a formula F.

1. F itself is a positive part of F.
2. If G is a positive part of F and is of the form -7 --1 G o or (G1 v G2) then

Go, or GI and Gz, resp., are positive parts of F.

An Approach to a Systematic Theorem Proving Procedure in First-Order Logic 45

E.g., in (-1 Go v (-1 -n 61 v -7 (G2 v 63))) the positive parts are the whole
formula, -7 6o, (-1 --n 61 v -1 (62 v 63)), -7 -n G1, 61, --7 (G2 v 63).

A positive part of a formula which does not contain another positive part
than itself is called a minimal part.

Positive forms, denoted by P, are indicative forms satisfying the following two
conditions.

1. The �9 occurs exactly once in P.
2. If F is any formula, then P IF] is a formula with F being positive part in it.

Axioms are all those formulae in which an atomic formula and its negation
occur as positive parts.

Rules of inference are

r 1. P [-7 F], P [-n G] ~- P [--7 (F v G)]
r 2. P [--n F [a]] ~- P [7 Vx F Ix]] , where the eigenvariable a may not occur

in the conclusion
r 3. P [Vx F [x]] v F l-t] }- P [Vx F Ix-l]; t is called eigenterm of the inference.

This concludes the description of the formal system. Without restricting
generality, affecting any further definition, or changing efficiency of any of the
following algorithms, conjunction and all-quantification have been omitted,
since they are easily defined within the system in the usual way. This allows us
to deal with only three rules.

In the rest of this section we prepare and state the definition of "degree of a
theorem".

Let us call the main part of an inference the (unique) positive part in the
conclusion which is indicated by the involved positive form (e.g., --7 (F \/G) in
P [-7 (F v G)] in r 1). Each positive part in the conclusion of an inference according
r 1 or r 2, except those which contain the main part of this inference, occurs
also in each premise. In the case of r 3 this applies even to all positive parts in
the conclusion without exception. We express this commutative relation on the
occurrences of the positive parts in the formulae of an inference also by saying
that the positive part in the conclusion corresponds to that (unique) positive
part in each premise (cf. [6]). This relation provides a commutative relation on
the occurrences of the positive parts of the formulae in a derivation by taking the
union of the relations of all inferences occuring in the derivation, which we
extend to its transitive closure. Still we say related elements correspond to each
other. Furthermore two inferences r 3 in a derivation are called corresponding
if their main parts correspond to each other.

Now the degree of a derivation is the maximal number of inferences r 3 which
correspond to each other and lie in the same branch of the derivation tree.

A theorem T has (complexity) degree d iff all derivations of T have degree _> d
and there is a derivation of T whose degree is d.

46 W, Bibel:

Consider the theorem Vx ~ V y ~ (p (x) v -7 p (y)) (abbreviated by 7) and the
following derivation of T as an example.

(T v ~ ~ (p (a) v 7 p (b))) v -7 -7 (p (b) v -7 p (c)) t-

(Vv -7 7 (p (a) v -7 p (b)))v ~ V y ~ (p (b) v 7 p (y)) }--

(r v -7 -7 (p (a)v 7 p (b)) F- T v -n Vy-7 (p (a)v -7 p (y)) F- 7".

In this derivation all the T's correspond to each other and T occurs twice as the
main part of an inference according to r 3; therefore the degree of the derivation
is 2 by definition. It is easy to see that in this example the number of
corresponding inferences according to r 3 cannot be reduced by transforming
the derivation to another one of the same formula. Thus T has degree 2.

In theorem proving the formula is given and the derivation has to be found which
means that the rules of inference have to be applied in a backward way. This is a
straightforward process as far as the rules r 1 and r 2 are concerned; the difficulty
lies in the transition from the conclusion to the premise of an inference according
to r 3 since the conclusion gives no hint which choice of the eigenterm to make.
Therefore only the inferences according to r 3 contribute to the degree. Among
them only those are added up which correspond to each other and lie in the same
branch of the derivation because all others are relatively independent from these
and the difficulty of the hardest of the independent subproblems seems to be
adequate as a rough measure for the difficulty of the whole problem.

For further motivation we mention here without proof that this particular degree
of theorems coincides in the case of a prenex theorem T with the number of
instances of the matrix of T over its Herbrand universe, which are needed to
prove Tusing a procedure based on Herbrand's theorem (see e. g. [5]). This number
is widely accepted to determine the number of basic steps of such a procedure.
Therefore, as the degree of a theorem turns out as a generalization for all
theorems, not only prenex ones, it is proposed here to give it an analoguous role
in procedures which are not restricted to prenex theorems.

Apart from this, it is the fact that to any given positive integer n there are
theorems of degree higher than n, which makes first-oder logic an undecidable

theory. Therefore it seems to be natural to introduce the partition T = @ T~,
i=o

T~ denoting the class of theorems of degree i, of the class T of all theorems in
first-order logic and regard a theorem T(~ T i essentially harder to prove than
another T o) e Tj iffj < i holds.

2. Formulae in Antiprenex Form

Formulae in antiprenex or miniscope form have been used in proof procedures
as early as 1960 by Wang [7] and very recently by Ernst [21. The main idea of
independent subgoals in the latter paper comes out automatically in the
procedure presented here.

An Approach to a Systematic Theorem Proving Procedure in First-Order Logic 47

First, the inductive definition of "formulae in antiprenex form" is given here
for the system introduced in the previous chapter (whereby the discrimination
between free and bound variables will be neglected for simplicity).

1. Each atomic formula is in antiprenex form.

2. With F, G also ~ F and (F v G) are in antiprenex form.

3. If a formula of the form -7 (F v G) is in antiprenex form, then V x ~ (F v G)
is in antiprenex form iff x occurs in F and in G.

4. If a formula of the form ~ Vy F is in antiprenex form then Vx--1 Vy F is in
antiprenex form iff x occurs in F.

5. If a formula of the form Vy F is in antiprenex form, then Vx Vy F is in
antiprenex form iff V x F is in antiprenex form.

6. If F is (the negation of) an atomic formula then V x F is in antiprenex form iff
x occurs in F.

If a formula F is of the form -~ G then let F be G else let P be -7 F. Then the
rules according to which a formula can be transformed recursively into anti-
prenex form are the following, Q denoting a (possibly empty) string of
(existential) quantifiers.

1 . 7 - n A s A

2. V x F => F, x not in F

3. V x Q (A v B) ~ Q (V x A v B) , x in A, not in B

4. Vx Q-n (A v B)~Q--n(-n V x A v B), x in A, not in B

5. V x Q (A v B) ~ Q (A v V x B) , x i n B , n o t i n A

6. V x Q-n (A v B) ~ Q ~ (A v - 1 V x B), x in B, not in A

7. V x Q (A v B) ~ Q (V x A v VxB) , x in A and B.

As announced in the introduction it will be stated in the following theorem
that for theorem proving antiprenex is preferable to prenex form, relative to the
concept "degree of a theorem".

Theorem. a) I f F is a formula then there exists a uniquely determined equivalent
formula F' in antiprenex form which is obtained from F by applying the
transformation rules1.--7.
b) I f F is a theorem then the degree of F' is not greater than that of F and in
general it is also not equal.

Part a) follows from well-known equivalences in first-order logic.

The second part of part b) can be shown by an example. In chapter 1 it has
already been shown that the theorem V x -1 V y -~ (iv (x) v 7 p (y)) has degree 2.
Its antiprenex form is V x p (x) v - n Vyp (y) which is of degree 1 because of
(V x p(x) v -n p(a))v p(a) t- V x p (x) v -7 p(a) F- V x p (x) v - 1 V y p(y).

48 W. Bibel:

A thorough proof of the first half of b) is rather lengthy. We therefore content
ourselves with a short outline. Let the degree of F be d and H be a derivation
of F of degree d. In each step towards a transformation of F into antiprenex form
one of the transformation rules is applied; for example assume F contains a part
V x (A v B) and A, B, already in antiprenex form, contain x (case 7). Replacing
that part in F by (VxA v Vx B) resulting in F1, H is to be transformed in a
natural way into a derivation H1 of F1 with same degree. This is easily done by
transferring the change in F to an analogue change in the premise(s) of F
and so forth through the whole derivation. In that process the only complication
occurs if the main part V x (A v B) or -1 V x (A v B) of an inference according to
r 3 or r 2 changes to (Vx A v Vx B) or -1 (Vx A v V x B), resp. In the first case
the inference P [Vx (A v B)] v (A' v B') ~- P [Vx (A v B)] has to be transformed
to (P [V x A v V x B) v A ') v B ' b - P [V x A v V x B] v A ' t--P [V x A v V x B] .
Since these two new inferences according to r 3 do not correspond to each other
the degree of H1 will remain the same as of H. In the second case we have to con-
sider an inference P [-7 (A'v B')] ~-P [-7 V x (A v B)]. From the derivation of
the premise one gets easily a derivation of P [-1 A'] and another of P ~ B']
(see [6]); P (-7 A'] t- P [-1 V x A], P [-n B'] I-- P [~ V x B], from which one
gets P [7 (Vx A v V x B)] by r 1. - - The discussion for the other cases 1.--6. is
similar. The process after a finite number of steps results in a derivation H'
of F' in antiprenex form of degree d' <_ d, i.e. for the degree d" of F' the maintained
relation d" <_ d' <_ d holds.

What is called antiprenex form here is a further simplified "simplified miniscope
normal form" introduced in [2], because no advantage is taken from the associative
laws of the propositional operations (see chapter 5).

3. A Systematic Procedure

Since we now have available a concept, namely the degree of a theorem, with
which we can measure the complexity of a theorem, it is quite natural to ask for
a procedure that tries to identify a given formula (in antiprenex form) as a theorem
of degree 1 in the first step, in case of failure as a theorem of degree 2 in the
second step, and so on. Let us refer to such a procedure as a systematic procedure.
Even if this would result in an algorithm which requires much more combinatorial
work to be done in each step it would be worthwhile to pursue this aim because
we know from conventional procedures how rapidly the amount of work increases
from step to step; i.e., the gain obtained by eventually reducing the number of
steps may make up for the increase of work in each step.

As far as I looked through the literature I found only one theorem whose
equivalent antiprenex form was of degree higher than 1 (namely of degree 2, see
[8], 7.3 example 1). So I have a strong feeling that for "everyday" reasoning
one could restrict such a systematic procedure to rather low degrees.

The simplest but admittedly least efficient algorithm of that type is described as
follows and uses Prawitz's idea of introducing dummies in the place of terms

An Approach to a Systematic Theorem Proving Procedure in First-Order Logic 49

(see [3]). It consists of two subroutines. One is called TRF and is applied
recursively. It transforms at each call a matrix, whose elements are subformutae
of the given formula which is to be proved, to another matrix by removing a logical
operation in a certain element. Its arguments are the matrix (M), the row number
(r), the list of variables and dummies (VD), the list of forbidden relations (R), and
the step number (s). The process in the i-th step, i= 1, 2 , is initiated by calling
TRF with M being a matrix whose only element is the given formula, r = 1,
VD, R being the empty list, s = i.

The other subroutine, which is called CPT, is activated whenever TRF is not
applicable anymore and tests whether each row can be made to contain a
complementary pair of literals, i.e. an atomic formula and its negation, by
replacing dummies by terms while observing the forbidden relations, returning
a success or failure message, say "yes" or "no", resp. It is not described in detail
here because a version for a special case is found in chapter 4 (subroutine AX).
If CP T fails then the process continues with the next step.

This section concludes with a brief description of TRF.

1. Each element in M is replaced by its minimal parts.

2. If all elements in the current row are either literals or labelled with the
number s (the current step) then

a) if r is less than the number of rows in M then call TRF with M, r + 1, VD, R, s
as arguments and return the result; otherwise

b) call CPT and return the result; otherwise

3. assume M1 M, are those elements in row r which are not literals and not
labelled with s.

Set j ~ 1.

a) If Mj is of the form -1 (A v B) then call TRF with M', r, R, s where M' results
from M by adding a copy of row r to the rows in M and replacing in row r and in
that additional row Mj by the minimal parts in -7 A or 7 B, respectively.

b) If Mj is of the form --1 V x F Ix] then call TRF with M', r, VD', R', s where
M' results from M by replacing Mj by the minimal parts in -1 F [a], a is a new
variable, VD' is a added to VD, R' is R together with the restrictions that a may
not be contained in any element of VD.

c) If Mj is of the form V x F [x] and labelled with a number 1 (supposed to be
zero if no label) then call TRF with M', r, VD', R, s where M' results from M by
replacing Mj by V x F Ix] labelled with l+ 1 and all minimal parts in F [d],
where d is a new dummy, and VD' is d added to VD.

If the answer of the procedure call in one of the cases a)--c) is "yes" then return
this result; otherwise ifj < n then increase j by one and start in 3. a) again; otherwise
return "no" as result, indicating that the formula does not turn out as a theorem
in the s-th step.

Computing 12/t 4

50 w. Bibel:

An example may be helpful. Obviously, the formula -7 V x p (x)~--, A x-7 p (x)
is valid. By definition, in our formal system it reads -7 -7 V x p (x) v -7 V x -7 7 p(x),
shortly denoted by F. By step 1 it is transformed to the matrix
(V x p (x), 7 V x 7 7 p (x)). Then, in step 3, j is set equal to 1, to consider one
possible premise of F, and, by 3. c, TRF is called again with M ' = (V x p(x) (1~,
p (d 1), 7 V x 7 -7 p (x)), VD' =(d 1), which results, by 3. b, with M" = (V x p (x) (1~,
p (d 1), 7 p (a)), r = 1, VD' = (d 1, a), R' = ("a not in d 1"). M " cannot be made an
axiom by any suitable substitution of a term for the dummy d 1 because d 1 = a
is forbidden by R'; therefore, after another call of TRF, C P T and TRF return
"no" to the original call of TRF, where now j is increased by 1, to try the other
possible premise of F, namely M ' = (V x p (x),-7 p (a)), VD'=(a). R' now remains
the empty list, so that M " = (V x p (x) (1~, p(dl) , 7 p (a)) now can be made an
axiom by setting d 1 = a yielding the "yes'-result in the first step. (Actually the
procedure could now tell us more, namely the whole derivation of F.)

For what follows, it would be helpful to keep in mind that such a little
modification as interchanging the two disjunctive components in F (which
yields 7 V x 7 7 p (x) v 7 --7 V x p)) would have avoided the intermediate ~'no-"-
result.

4. An Efficient, Semi-Systematic Procedure

The disadvantages of the procedure in section 3 are obvious. First of all, after
each step it forgets everything what it possibly might have learnt in earlier steps,
working it out again and again. Moreover, it neglects completely that ira the
situation as described in step 3 the ordering of the M/s i = 1 , n is relevant with
respect to efficiency for the following reason: If we assume the case where the loop
in step 3 eventually returns "yes" then obviously there is a permutation rr and
with it the tuple M~ (1), ..., M~ ~,) which in comparison with all other permutations
causes a minimal number of procedure calls and returns the "yes" result while j
only has the value 1.

The problem to find out this optimal permutation can naturally be divided in
subproblems such that in each of those one has to test whether it is more efficient
to treat some element M~ before some other Mj or the other way around (TRF
simply tries both ways for all pairs M~, M j).

The relevance of this test is dependent on the structure of the formulae M~ and
Mj. In the cases where both Mi and Mj are of the form V x F, 7 V x F, or
-7 (F v G), resp., and the case where Mi is of the form 7 V x F and Mj of the
form 7 (F v G) (or vice versa) the choice turns out to be irrelevant in general.
This is a consequence of the wellknown fact that in a derivation two inferences
according to the same rule r 1, r 2 or r 3, resp., or to r 1 and r 2, which do not
correspond (in an extended sense) to each other, can be interchanged without
affecting the remaining derivation.

Therefore only two cases are left where the choice (to handle the part Mz before
Mj or Mj before M~) in general is not irrelevant. This is whenever one is of the

An Approach to a Systematic Theorem Proving Procedure in First-Order Logic 51

form V x F , the other .-1 V y G or one is of the form V x F , the other
-n (F1 v F2). Let us refer to them as the first and the second problem.

How could the choice for these two cases be made in an efficient way? I suggest
a solution similar to that one Prawitz proposed in a similar problem (mentioned
earlier in this paper), namely when he introduced dummies instead of choosing
specific terms: delay the choice as long as possible, that is till the rows of the
matrix are tested for complementary pairs. Unfortunately this becomes a very
complicated algorithm. Therefore an algorithm is presented here as a first
approach which solves the first but neglects the second problem and thus
provides only a semi-systematic procedure. In the rest of this section this algorithm
will be described.

For simplicity let us restrict the formal system by removing the function symbols
from it. Later on the changes, necessary to include them again, will be indicated.

First the given formula is transformed into an antiprenex formula F according
to the rules given in chapter 2. The main part then again consists of two sub-
routines, ALZ and AX.

ALZ transforms a matrix M of (possibly labelled) formulae into a matrix L
of literals and a matrix K of existential formulae and establishes a tree ordering
"< among the introduced variables and dummies. In the first step M initially
consists of one element, the formula F.

I. Set i=O.

2. If i is less than the number of rows in M, set i ~ i + l and goto 3; otherwise
exit to main program.

3. If row i in M is empty, goto 2.; otherwise take the leftmost formula G in it.

3.1 If G is a literal then remove it in M and add it to the i-th row in L.

3.2 If G is of the form -7 -q G o then drop the two negation signs.

3.3 If G is of the form (G1 v G2) and labelled with l then replace it by G~, G2
both labelled with I.

3.4 If G is of the form -1 (G 1 v G2) and labelled with l, then add a new row to M,
which is a copy of row i, except G is replaced by -7 G 2 labelled with l, and replace
in row i G by -n G1 labelled with I. Further copy row i in matrix L and K into a
newly created row in L and K, respectively.

3.5 If G is of the form V x F Ix] and labelled with I then let d be a new dummy
and replace G by F [d] labelled with d; further note l~<d, and add G labelled with
d to the i-th row of K.

3.6 If G is of the form -n V x F Ix] and labelled with I then let a be a new
variable and replace G by -1 F [a] labelled with a, and note l~a.

Then return to 3.

After exit from ALZ the subroutine AX is called to test whether the dummies
can be replaced consistently by terms so that each row of the matrix L contains

4*

52 W. Bibel:

a complementary pair. In that process the relation -< plays now an important
role.

To illustrate this I mention that each derivation of F determines a unique relation
among the eigenvariables and eigenterms, namely ej ~ e2 iffthe inference which el

belongs to lies below the inference which e a belongs to. < is roughly spoken a
first approach (a sub-relation) to such a relation <.. Therefore A X has also to
extend ~< to such a relation <. which in case of success reflects part of the structure
of the derivation of F. In detail the algorithm A X reads as follows.

1. Set i<-1.

2. In row i find a pair of an unnegated and a negated literal which has not yet been
considered. If there is none such pair, forget that in row i any pair has been
considered already, cancel all tentative identifications originating from row i,
and if i> 1 then set i ~ i - 1, otherwise return a failure message; otherwise check
for that pair whether the predicate variable and the number of arguments are
the same. If no, start again in 2., otherwise compare each pair of corresponding
arguments in the following way.

a) If both are variables, but different, cancel all tentative identifications from row
i and start in 2. again.

b) If one is a variable a, the other a dummy d and d has been identified already
with a term different from a, or d-<a holds, then cancel all tentative identifications
from row i and start over in 2.; otherwise tentatively identify d with a.

c) If both are dummies dl and d2 with different identifications or dl is identified
with a but for d2 (or any other dummy identified with d2) d2~,a or an analogue
situation for d2 holds, then cancel all tentative identifications from row ~ and
start again in 2.; otherwise identify one with (the identification of) the other and
vice versa.

3. If i is less than the number of rows then set i<- i + 1 and goto 2.; otherwise return
the message that the formula turned out to be valid in the current step of the
procedure.

If A X returns a failure message the procedure will enter a further step, will call
ALZ with M being initiated by the value of K which will transform it into extended
matrices L and K, and will call A X again; and so forth.

Recall the example of section 3 to compare the operations of TRF and CPT
with those of A L Z and AX; then it can be seen that now the unnecessary inter-
mediate "no'-result disappears completely, due to the additional information
given in the relation ~ which after execution of A L Z with F still is empty. There-
fore in A X 2. b the identification d 1 = a can be made immediately.

A more interesting example would be

A x a yA z (p (x, y)--+ -7 p (y, z))~ VyA x-'n p (x, y).

The reader is invited to apply to it both procedures and find out that it is a
theorem (in antiprenex form) of degree 2.

An Approach to a Systematic Theorem Proving Procedure in First-Order Logic 53

To conclude this section let us briefly indicate how the algorithm A X has to
be changed if function symbols are allowed, a) and b) under 2. remain unchanged.
In c) one has to include also that e. g. d~ is identified already with a quasi-term
(eventually still containing dummies) in which a variable a occurs for which
dz'<a holds in which case also no identification can be performed. Three more
cases have to be considered.

d) Variable - - quasi-term, starting with a function symbol (fails always).

e) Both quasi-terms, starting with a function symbol (function symbols have to
be the same; each argument has to be tested).

f) Dummy - - quasi-term, starting with a function symbol (identify, whenever no
conflict with relation < arises).

5. Concluding Remarks

The algorithm described in chapter 4 has been coded as a SNOBOL4 program 1.
Figure 1 shows the output of a run of it for the formula

A x A y (((V z h (x, z)--* A z g (x, z)) A A z (g (z, z)~ h (z, y)))--* (h (x, y)+-*A z g (x, z)))

whose antiprenex form

--1 Vx Vy-n ((-7 (-1 Vzh(x , z) v --1 Vz-7 g(x,z)) v V z ~ (-n g(z,z) v h (z,y))) v

h(x, y)v Vz- g (x, z)),, (Vz 0(x, z)v h(x,y))))
is of degree 1 but which here is proved in the second step since the procedure
is only semi-systematic, not systematic. (LIST OF CLAUSES is the resulting
matrix after A L Z has been applied - - only the labelled existential formulae are
not printed; VARIABLES WITH INCOMPATIBLE DUMMIES indicates
the relation ~(and has to be read: VI"<V2 , V2-<V3, V I < V 3 , )

The test results are encouraging. But comparison of the size of the two
matrices make obvious the advantage of a systematic procedure because it would
avoid running into the second step. Therefore as mentioned before I actually
regard the procedure of chapter 4 as a stop en route to a systematic and
efficient procedure which would also take into account the second problem
from chapter 4 using the same philosophy: postpone any choice until the sub-
routine A X where it can be made in an optimal way.

The procedure could then be further improved by taking advantage of the
associative and distributive laws of the propositional operations. Since each of
these problems has to be solved in connection with all others, the desired
algorithm undoubtedly will be a very complicated but also a very efficient one.
Moreover this method is qualified for extending the procedure such that after
eventually identifying a formula as a theorem, it also provides an actual de-
rivation of it.

I I wish to thank the Computer Science Section of the Mathematics Department of Wayne State
University, Mich., for offering its facilities to complete this work.

54 W. Bibel :

For certain applications the degree d of a theorem might be too rough a
measure since it does not discriminate among theorems of the same degree. But
this could easily be improved for example by taking into account the length I
of the formula, e. g, taking a). d + I.

INPUT FORMULA :

AXAY(((EZ(H,X,Z) SAZ(G,X,Z))CAZ((G,Z,Z)S(H,Z,Y)))S((H,X,Y)BAZ(G,X,Z)))

EQUIVALENT TRANSFORMATION :
NEXEYND(D(ND(NEZ(H,X,Z),NEZN(G,X,Z)),EZND(N(G,Z,Z),(H,Z,Y))),ND(ND(N(H,X,Y),

NEZN(G,X,Z)),ND(EZN(G,X,Z),(H,X,Y))))

LIST OF CLAUSES:
(H,V 1,D 1) (G,D2,D2)N(H,V 1,V2) (G~V 1,V3)
N(G,V1,D3) (G,D4,D4)N(H,V 1,V2) (G,V 1,V4)
(H,V1,D 1)N(H,D2,V2)N(H,V1,V2) (G,V1,V5)
(H,V 1,D 1) (G,D2,D2)N(G,V 1,D5) (H,V l,V2)
N(G,V1,D3)N(H,D4,V2)N(H,V1,V2) (G,V1,V6)
N(G,V1,D3) (G,D4,D4)N(G,VI,D6) (H,V I,V2)
(H,V1,D 1)N(H,D2,V2)N(G,V1,D7) (H,V1,V2)
N(G,V 1,D3)N(H,D4,V2)N(G,V1,D8) (H,V 1,V2)

VARIABLES WITH INCOMPATIBLE DUMMIES:
V1
V2 V1
V3 V2
V4 V2
V5 V2
V6 V2

AFTER 1TH STEP OF PROCEDURE NO DECISION ABOUT CURRENT FORMULA

LIST OF CLAUSES:
(H,V1 ,D 1)(G,D2,D2)N(H,V1,V2)(G,V1,V3)(H,V1,D9)(G,D 10,D 10)
N(G,V 1,D3)(G,D4,D4)N(H,V1,V2)(G,V 1 ,V4)N(G,V 1,D 11)(G,D 12,D 12)
(H,V1,D 1)N(H,D2,V2)N(H,V I,V2)(G,VI,VS) (H,V 1,D 13) (G,D 14,D 14)
(H,V1,D 1)(G,D2,D2)N(G,V1,D5)(H,VI,V2)(H,V1,D 15)(G,D 16,D16)N(G,V1,D 17)
N(G,V1,D3)N(H,D4,V2)N(H,V1,V2)(G,V1,V6)N(G,V1,D 18)(G,D 19,D 19)
N(G,V1,D3)(G,D4,D4)N(G,V1,D6)(H,V1,V2)N(G,V1,D20)(G,D21,D21)N(G,V1,D22)
(H,V1,D !)N(H,D2,V2)N(G,V 1,D7)(H,V 1,V2)(H,V1,D23)(G,D24,D24)N(G,V 1,D25)
N(G,V1 ,D3)N(H,D4,V2)N(G,V1 ,D8)(H,V1 ,V2)N(G,V 1,D26)(G,D27,D27)N(G,V 1 ,D28)
(H,V 1,D I)(G,D2,D2)N(H,V 1,V2)(G,V 1,V3)(H,V 1,D9)N(H,D 10,V2)
N(G,V 1,D3)(G,D4,D4)N(H,VI ,V2) (G,V 1,V4)N(G,V1 ,D 11)N(H,D 12,V2)
(H,V 1,D 1)N(H,D2,V2)N(H,V 1,V2) (G,V 1,VS)(H,V1,D 13)N(H,D 14,V2)
(H,V 1,D 1)(G,D2,D2)N(G,V 1,D5) (H,V 1,V2)(H,V1,D 15)N(H,D 16,V2)N(G,V 1,D29)
N(G,V1,D3)N(H,D4,V2)N(H,V1,V2)(G,V1,V6)N(G,V1,D18)N(H,DIg,V2)
N(G,V 1,D3)(G,D4,D4)N(G,V1,D6)(H,V 1,V2)N(G,V1,D20)N(H,D21,V2)N(G,V 1,D30)
(H,V 1,D 1)N(H,D2,V2)N(G,V1,DT) (H,V 1,V2)(H,V 1,D23)N(H,D24,V2)N(G,'V I,D31)
N(G,V1,D3)N(H,D4,V2)N(G,V1,DS)(H,V1,V2)N(G,V 1,D26)N(H,D27,V2)N(G,V1,D32)

VARIABLES WITH INCOMPATIBLE DUMMIES:
IN 2TH STEP OF PROCEDURE CURRENT FORMULA TURNS OUT TO BE VALID

Fig. 1

An Approach to a Systematic Theorem Proving Procedure in First-Order Logic 55

References

[1] Bibel, W.: Schnittelimination in einem Teilsystem der einfachen Typenlogik. Archiv f. Math.
Logik 12, I59--178 (1969).

[2] Ernst, G. W. : The utility of independent subgoals in theorem proving. Inform. and Contr. 18,
237--252 (1971).

[3] Prawitz, D.: An improved proof procedure. Theoria 26, 102--139 (1960).
[4] Prawitz, D. : A proof procedure with matrix reduction. In: Symposium on Atomic Demonstration,

1968. (Lect. notes in Mathem., vol. 125.) Berlin-Heidelberg-New York: Springer. 1970.
[5] Robinson, J. A.: A review of automatic theorem-proving. Proc. Syrup. Appl. Math., Amer.

Math. Soc. 19, 1966.
[6] Sehfitte, K. : Beweistheorie. Berlin: 1960.
[7] Wang, H. : Toward mechanical mathematics. IBM Journal 1960, 2--22.
[8] Nilsson, N. J. : Problem-solving methods in artificial intelligence. New York: 1971.

Dr. Wolfgang Bibel
Mathematisches Institut
der Technischen Urfiversit~it
ArcisstraBe 21
D-8000 Miinchen 2
Bundesrepublik Deutschland

