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Abstract - -  Zusammenfassung 

Computer-Assisted Existence Proofs for Two-Point Boundary Value Problems. For (scalar) nonlinear 
two-point boundary value problems of the form - U " +  F(x, U,U')= O, Bo[U ] = BI[U ] = O, with 
Sturm-Liouville or periodic boundary operators B o and B1, we present a method for proving the existence 
of a solution within a "close" Cl-neighborhood of an approximate solution. 
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Computer-unterstiitzte Existenzbeweise fiir Zweipunkt-Randwertprobleme. Fiir (skalare) nichtlineare 
Zweipunkt-Randwertprobleme der Form - U " +  F(x, U, U')= 0, Bo[U] = Bx[U] = 0 mit Sturm- 
Liouville-oder periodischen Randoperatoren Bo, B1 wird eine Methode vorgestellt, mit der die Existenz 
einer L6sung innerhalb einer "kleinen" C1-Umgebung einer N~iherungsl6sung bewiesen werden kann. 

1. In troduc t ion  

The present  art icle is concerned  with scalar  two-po in t  b o u n d a r y  value p rob lems  of 
the fol lowing form: 

- v"(x)  + F(x,  V(x),  V'(x))  = 0 (0 <_ x <_ 1) , ]  
(1.1) 

B o E r ]  = ~ [ u ]  = o. S 
Here,  F is a given smoo th  funct ion on [0, 1] x R x N, and  B o, B a are l inear  
b o u n d a r y  opera tors ,  e i ther  of  Sturm-Liouville type: 

Bo[u]  = - e o U ' ( 0 )  + yoU(0), Bl[u  ] = cqu'(1) + 71u(1) (1.2) 

(where ~o 2 + 72 > 0, e~ + 72 > 0), or  of periodic type: 

Bo[u]  = u(1) - u(0), Bl[U ] = u'(1) - u'(0). (1.3) 

M a n y  o ther  b o u n d a r y  condi t ions  m a y  be t rea ted  bu t  will no t  be cons idered  here 
for reasons  of technical  uniformity.  

We will es tabl ish  a m e t h o d  for p rov ing  the existence of a so lu t ion  for p rob l e m (1.1), 
in c o m b i n a t i o n  with an  explici t  error bound for some a p p r o x i m a t e  so lu t ion  w e R, 
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where 

R := {u s H2(0, 1): Bo[u] = BI[u] = 0}. (1.4) 

The main parts of the method have algorithmical form and may therefore be carried 
out on a computer. These parts consist in 

i) the computation of an approximate solution co E R; 
ii) the estimation of the L2-norm of its defect - co" + F(.,  on, co'); 

iii) the calculation of a positive lower bound for the minimal eigenvalue of L*L on 
{u ~ R: L[u] ~ R*}, where L is the operator obtained by linearization of the 
given problem at ~o, i.e., 

L[u] := - u "  + bu' + cu, b := (•3F)(',co, co'), c := (~3zF)(',co, co'), (1.5) 

and L* denotes the (formally) adjoint operator; R* is defined as in (1.4), but with 
the adjoint boundary operators * * B0, B1 in place of B o, B1. 

Since safe bounds are required in parts ii) and iii), the rounding errors made during 
the corresponding computations must be taken into account. For this reason, 
we use interval-arithmetic (ACRITH[7], FORTRAN-SC[9]) in these parts of the 
algorithm. The computation of co (part i)), however, may be carried out in usual 
real floating-point arithmetic. Thus, well-established approximation methods may 
be used for that purpose, and there is no need for interval-arithmetical versions of 
these methods. 

It is important to note that we do not pose any kinds of monotonicity or growth 
conditions on the nonlinearity F, or inverse-positivity assumptions on the linearized 
operator L. We only require L to be invertible on R (compare part iii) mentioned 
above). Thus, many cases are covered where the well-known method of (smooth) 
comparison functions (upper and lower solutions) or monotonicity principles (see 
[2, 17]) cannot be applied. 

Other approaches avoiding monotonicity and inverse-positivity assumptions may 
be found, for example, in [5, 8, 10, 11, 19]. In [8], the Newton-Kantorovich Theorem 
is applied; under this aspect, the method is comparable to ours, but the estimation 
of the inverse of the linearized operator is carried out in a completely different way. 
Similar remarks hold true for the method presented in [10], and for the approach 
in [5_] where the given problem is transformed by introduction of breakpoints and 
breakpoint-functions; the transformed problem is suitable for the application of the 
method of(non-smooth) comparison functions. In I11], shooting methods are used; 
the occurring initial value problems are treated by interval-arithmetical versions of 
one-step methods. 

In [13, 14], a modified version of our approach presented here is applied to several 
examples where the nonlinearity F depends at most linearly on U' and, moreover, 
the linearized operator L is symmetric on R (with respect to some suitably weighted 
inner product), which simplifies the eigenvalue estimates required in part iii) above. 

Compared with the other methods mentioned above, our way of proceeding has 
the advantage of being transferable to elliptic boundary value problems in a more 
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or less direct manner (although with much m o r e  theoretical effort), if the non- 
linearity F depends only on x and U; see [15, 16] and further forthcoming papers. 

2. The Existence and Inclusion Theorem 

In this section, we will describe the structure of our algorithm and prove the 
resulting existence and inclusion statement. The general algorithmical framework 
is based on J. Schr6der's ideas (see [18, 19]). The main parts of the algorithm will 
be discussed in more detail in the following sections. 

Suppose that some approximate solution m ~ R (see (1.4)) of problem (1.1) and some 
constant 6 _> 0 satisfying 

I I - c o "  + F ( ' , ~ , c o ' ) [ 1 2  -< • (2.1) 

have been computed. Moreover, let constants K and K' be known such that, with 
L defined in (1.5), 

Ilu[]~ G KIIL[u]]I2, ]lu']l~ G K'IIL[u][[2 for u E R. (2.2) 

In particular, L is required to be invertible on R. It will turn out in section 4 that 
the main numerical work which has to be done to compute such constants K, K' 
consists in the calculation of an eigenvalue bound as described in section 1. 

Finally, let some function G: [0, oo) x [0, oo) - ,  [0, oo) be given which is monotoni- 
cally nondecreasing with respect to both its variables and which satisfies, with b and 
c defined in (1.5), 

[F(x, co(x) + y,o)'(x) + p) - F(x,  co(x),co'(x)) - c(x)y - b(x)pl < a(lyl, Ipl) (2.3) 

for x e [0, 1], y E ~, p E N. Since F is smooth, G may be chosen such that 

G(,,f l)  = O(c~ 2 + f12) for a, fl ~ 0. (2.4) 

Usually, such a function G may easily be calculated "by hand" if (rough) constant 
upper and lower bounds for co and co' are known. 

Theorem 1. Suppose that constants c~, fl > 0 exist such that 

6 _< min ~ ,K7  - G(~,/3). (2.5) 

Then, there exists a solution U e C210, 1] of  problem (1.1) satisfying 

IIU - coll~ < ~, IIU' - co'll~ -< 13. (2.6) 

Due to (2.4), the crucial condition (2.5) is satisfied for "small" c~,/3 if 6 is sufficiently 
small, i.e., if the approximate solution co has been computed with sufficient accuracy. 

Proof  of  Theorem I: Consider the boundary value problem 

L[u] + f ( ' , u , u ' )  = -d [co ]  on (0, I), Bo[u ] = B~[u] = 0 (2.7) 

where f ( x , y , p )  := F(x, co(x) + y, co'(x) + p) - F(x,  co(x),co'(x)) -- c(x)y - b (x )pand  
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d[(~] := -~o" + F(-,co, co'). It suffices to prove that problem (2.7) has a solution 
u* ~ R such that Ilu*lJ~ < ~, I[(u*)'ll| <-/3 because then U := co + u* ~ R is a solu- 
tion of problem (1.1) satisfying the estimates (2.6). The smoothness of U follows a 
posteriori from the differential equation in (1.1). 

(2.2) and the well-known theory of linear boundary value problems show that the 
inverse operator L-l :  L2(0, 1) ~ R c / / 2 (0 ,  1) exists and is continuous. Due to the 
compactness of the embedding Hz(O, 1) c_, Ct[0 ' 1], the operator T: C1[0, 1] --* 
C 1 [0, 1] defined by 

Tu := - L - l ( d [ o ]  +f( ' , u ,u ' ) )  (2.8) 

is therefore continuous and compact. Thus, the existence of a solution of problem 
(2.7) with the required properties follows from Schauder's fixed-point theorem if we 
show that 

T D c D  f o r D : = { u e C l [ O ,  1]:Null~ <_~,llu'lloo <_/3}. 

For u e D, (2.3) and the monotonicity of G imply 

If(x,u(x),u'(x))[ < G(tu(x)l, [u'(x)l) _< G(cr (0 < x < 1) 

and thus, If f ( ,  u, u')N 2 -< G(e,/3). Using (2.8), (2.1), and (2.5) we therefore obtain 

IIg[ru]ll2 = lid[col + f(',u,u')l[2 < ~ + G(~,/3) < min ~ , ~  

so that (2.2) provides (regard that Tu e R): 

[[ru]l~ < K[Ig[ru]ll2 < ~, II(ru)'tl~ < K'llm[ru]ll2 </3. 
[] 

3. Computation of  co and 

The computation of an approximate solution co e R of problem (1.1) and the 
estimation of the L2-norm of its defect may be carried out by any suitable sub- 
algorithms. In our examples, we used a Newton-collocation method for the former, 
and a theorem by Ehlich and Zeller [3] for the latter task. Most of the details have 
been developed in joint work with M. G6hlen and J. Schr6der (see [5]). 

One Newton-step is carried out as follows. Given con_ 1 e R we compute an ap- 
proximate solution u, e R of the linear boundary value problem 

- u "  + (03F)(',oo,_l,o)',_l)'u' + (OzF)(',e),-1,co',_l)'u = -d [co , -1 ] ,  (3.1) 

B o [ u ] = B  l [ u ] = 0  

(with d[co,_l] := - 0 ) ' _  1 + F(',con_l,co~_l)) and define co n := co,_ 1 + u,. To de- 
termine u, we use a collocation procedure for the "ansatz" 

M 

u(x) = ~, akPk(x ) (3.2) 
k - O  
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with polynomials Po . . . . .  PM e R, i.e., we fix the coefficients ao, . . . ,  aM by requiring 
that the differential equation (3.1) is satisfied at given points Xo . . . .  , xM e [0, 1], 
which obviously results in a linear algebraic system for ao . . . . .  aM. This system is 
solved (approximately) by a GauB-algorithm with partial pivoting. 

In particular, we choose the collocation points 

12[ f k + l "~] 1 -  cost  (k-- 0 . . . . .  M) 

and the basis functions 

Pk(X) := xZ(1 -- x)2Tk_2(2x -- 1) for k > 2, 

with T~ denoting the i-th Chebyshev-polynomial of the first kind. Po and P1 are 
chosen to form a basis of the space of polynomials of degree < 3 which satisfy the 
required boundary conditions. More general spline-type bases {P0 . . . . .  PM} are 
discussed in [5]. 

The above Newton-iteration is terminated when, for some n ~ ~, the coefficients 
ak ~") of U, are (in modulus) below some given tolerance. Then, the approximate 
solution to := ~o, is given in the form (3.2), provided that the starting approximation 
oJ 0 of the Newton-iteration has that form. To find such a function ~Oo we use a 
homotopy method in our (parameter-dependent) examples. 

To compute a constant 6 satisfying (2.1) one may use several approaches. For  
example, one may apply a quadrature formula and a remainder-term-estimate, as 
described in [12] for a similar situation. Here, we proceed differently. Suppose first 
that the nonlinearity F is a polynomial with respect to all its variables. Then, with 
co calculated as described above, the defect d[co] = -co"  + F(.,~o, og') is a poly- 
nomial of some known degree n. Thus, a theorem by Ehlich and Zeller [3, Theorem 
2] provides the estimate 

lld[co]ll~ < Cmax{Id[co](#j)l:j = 0 . . . .  ,N} (3.3) 

where N E ~, N > n, C = C(n,N):= [cos(rm/2N)] -1, and ~j :--- �89 + cos(jrc/N)] 
forj  = 0 . . . . .  N. Since IId[09] II 2 < l id[u]  II ~, (3.3) reduces the problem of calculating 
6 to the evaluation of d [col at the points 4o . . . . .  IN. In order to take rounding errors 
into account we use interval-arithmetic (ACRITH [7] and FORTRAN SC [9]) for 
that purpose. Practical details may be found in [5]. 

For  non-polynomial but smooth F (see our first example) we apply a method 
proposed by G~irtel [4]. First we use the Ehlich/Zeller-Theorem mentioned above 
to compute constant lower and upper bounds ~ ~ and ~',  ~ '  for the polynomials 
~o and ~' ,  respectively. Suppose next that, for some given ~ > 0, numbers n~, n 2, 
n 3 E ~ are known such that 

IF(x,y,p) - P(x,y,p)[ < ~ (0 < x < 1,o9_ < y < ~ , ~ '  < p < c5') (3.4) 

for some function P which is a polynomial in x, y and p with degrees na, n2 and n3, 
respectively (P need not be computed!). Such numbers can easily be calculated by 
use of well-known error estimates for polynomial approximations, if explicit for- 
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mulas  for higher derivatives of F are at hand (as in our  first example). Now,  since 
d[co] := - c o "  + P(-,co, co') is a po lynomia l  of  some known degree n, one m a y  use 
(3.3) and (3.4) to est imate d[co] as follows: 

I/d[co]lloo < ]13 [co] l[ oo + 5 _< C max [d[co](~j)[ + 5 
j = 0  . . . . .  N 

< C max  [d[co](~j)l + (C + l)e.  (3.5) 
j = 0  . . . . .  N 

It should be regarded that  N usually depends on 5, so that  the numerical  effort 
increases as 5 decreases. In our  first example,  5 is chosen such that  the two summands  
in (3.5) are approx imate ly  equal. 

4. Computation of K and K' 

In order  to calculate constants  K and K '  satisfying the est imates (2.2), with L given 
by (1.5), we first compute  constants  C o, C~, Ko, K~, K 2 such that  

I[u[l~o -< Coliull2 + Cai[Utl]2 for  u e Ha (0,1) , (4.1) 

[luli2 -< g o l l L [ u ] l l 2 ,  Itu'll2 -< K~l lL[u] l [2 ,  Ilu"JI2 < KzllL[u]l[2 for u ~ R. 

Then, (2.2) obviously holds with K := CoKo + Ca KI and, since u' may  be inserted 
into (4.1) in place of u, with K '  := CoK1 + Ca K2. This approach  has the advantage  
of being transferable to elliptic bounda ry  value problems,  as long as only the first 
est imate in (2.2) is considered (see [15]). 

L e m m a  h The estimate (4.1) holds with 

Co > 1 arbitrary, 
1 

C 1 - x / 3 C  ~ 

Moreover, corresponding inequalities hold also with other constants Co, C 1 for some 
restricted classes of functions u E Hi(0,  1), in particular, with 

1 
C o = O, C1 - 2 if u (0) -- u(l) = O, 

C o = 0 ,  CI = 1 i f u ( O ) = O o r u ( l ) = O ,  

1 
C O >>_ 1 arbitrary, C1 2 ~ 3 C o  if u(0) = u(l).  

Fo r  a proof,  see [14]. Depending  on the given bounda ry  opera tors  B o and B1, one 
will prefer different choices of corresponding pairs (Co, C1), according to L e m m a  l, 
for the computa t ion  of K and K '  described above.  If, for example,  Bo[u] = u(0) and 
B 1 [u] = u(1), one m a y  choose C O = 0, C1 = �89 for K, and Co = 1, C 1 = l / x /3  for K'.  
I fBo [u  ] = u(0) and Ba[u] = u'(1), one may  use Co = 0, C~ = 1 for both  K and K'. 

4.1. Computation of K o 

By variat ional  arguments ,  it is easy to reduce the calculation of a constant  Ko 
satisfying 
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[{U[Iz <- Ko [{L[u]{12 for u ~ R (4.2) 

to the estimation of eigenvalues of a symmetric differential operator. In [14], where 
L itself is assumed to be symmetric on R (with respect to some suitably weighted 
inner product), (4.2) is proved to hold for K 0 := a-IB, with r denoting a lower bound 
for the distance between 0 ~ ~ and the spectrum of L on R, and with some constant 
B depending on the weight function. This approach has the advantage of being 
related to a second-order eigenvalue problem, compared with the method described 
below. However, it is not applicable ifL is not symmetric on R (as partly in our first 
example presented here); if the constant B is "large" (as partly in our second 
example), it is applicable but not recommendable. 

Here, we assume that the coefficients b and c defined in (1.5) are sufficiently smooth 
(which is certainly true if F is smooth and co is computed as described in section 3) 
and consider the fourth-order eigenvalue problem 

L*L[u] = 2u on (0, 1), B o [u] = B 1 [u] = B~' [L[u]]  = B~'[L[u]] = 0, (4.3) 

with L*, B~', B* denoting the operators adjoint to L, Bo, B 1 with respect to the 
canonical inner product < , ) o n  L2(0 , 1). The variational characterization of the 
minimal eigenvalue 21 of problem (4.3) reads 

<L[u], L[u]> 
21 = min 

uoR (u ,u)  

(regard that only the boundary conditions Bo[u] = B1 [u] = 0 are "essential"). 
Thus, (4.2) holds with 

K o := 2~-m. 

In order to compute a lower bound for 21 we use a numerical homotopy method 
which is described in [12] for second-order eigenvalue problems. Here, we give a 
brief description of the modifications which have to be made for the fourth-order 
problem (4.3). The "elementary" eigenvalue estimates stated in Theorems 1, 2, 4, 
and 5 in [12] may be transferred to problem (4.3) without any significant changes. 
We are left to construct a homotopy starting at some "simple" problem with known 
eigenvalues and ending at the given problem, such that all eigenvalues are mono- 
tonically nondecreasing with respect to the homotopy parameter. Then, the eigen- 
value estimation algorithm described in [12] may be applied to problem (4.3). 

Integration by parts shows that the bilinear form ~ associated with problem (4.3) 
is given by 

~[u,v]  = (L[u] ,L[v])  = j /  [u"v" + pu'v' + quv]dx + fl[u,v] (4.4) 

for u, v ~ R, where p :=  b 2 + b '  + 2c, q := c 2 - e" - (be)', and fl[u, v] := 
[--bu'v' - c(u'v + uv') + (c' + be)uv]~. Let Po and qo denote constant lower 
bounds for p and q, respectively, and define, for s E [0, 1] and u, v E R, 

Ps := sp + (1 -- s)po, qs := sq + (1 -- s)qo, 

~s[u,v] := 11 [u"v" + psu'v' + q~uv]dx + fl[u,v]. 
Jo 
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Integrating by parts one derives that, for s ~ [0, 1], the eigenvalue problem asso- 
ciated with ~s is given by 

u (4) - (p~u')' + qsu = 2u on (0, 1), 
(4.5)s 

Bo Eu] = B1 Eu] = ~o s)Eu] = ~ ' [ u ]  = 0 

where, in the Sturm-Liouvilte-case (I.2), 

/~d~[u] : =  - z o ( L [ u ] ) ' ( 0 )  + (70 - c%b(O))L[u] (0) + 7o(1 - s)(p(O) - Po)u(O), 

/3~S)[u] := el(L[u])'(1) + (71 + alb(1))LEu](1) + 71( 1 -- s)(p(1) - po)u(1), 

and in the periodic case (1.3), 

/~(oS)[u] := L[u] (1) - L[u] (0),/~)[u] := [(L[u])' + b .L[u]  - (1 - s)(p - po)U']~. 

It is easy to see that problem (4.5)1 is the given problem (4.3), while problem (4.5) 0 
has constant coefficients and may therefore be solved explicitly, possibly up to 
the solution of a real transcendental equation. Moreover, for fixed u e R, N~[u, u] 
is monotonically nondecreasing with respect to s, so that Courant's Maximum- 
Minimum-principle implies the required monotonicity of all eigenvalues of the 
problems (4.5)~ with respect to s e [0, 1]. 

As explained in [12], certain parts of the homotopy algorithm have to be carried 
out in interval-arithmetic, so that rounding errors are taken into account. For these 
parts, we use ACRITH [7] and FORTRAN-SC [9] subroutines. 

It should be noted that, in place of our homotopy algorithm, other eigenvalue 
estimation methods may be used to compute a lower bound for 21. In particular, 
the approach developed by Bazley and Fox (e.g., [1]) or the method by Goerisch 
and Albrecht (e.g., [6]) are reasonable. 

4.2. Computation of  K 1 and K 2 

While the calculation of a constant K o satisfying (4.2) requires a good deal of 
numerical work, constants K1 and K2 satisfying 

Nu'][2 -< KallL[u]ll2, ]]u"ll2 < KzllL[u]fl2 for u e R (4.6) 

may be computed in a much more direct way, as shown in the following lemmata. 
The first of them constitutes an alternative to Lemma 1 in [14], where the weight 
function mentioned at the beginning of the preceding subsection is used. 

Lemma 2: Suppose that (4.2) holds for  some K o. Let  A denote a real constant such 
that, in the Sturm-Liouville-case (1.2), 

A >_ - 7_0 + l b(o ) iY o O, A >_ 7, lb (1)  iY l O, 
O~ o Z 0r 1 Z 

and A >_ �88 - b(1)] in the periodic case (1.3). Moreover, let c_ be a constant 

satisfying 
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c_ <<_ c(x) - ~b'(x) - A{2 + (1 - 2x) [2A(1 - 2x) - b(x)]} for x ~ [0, 1], 

and define E := exp(�88 Then, the first estimate in (4.6) holds with 

J'E. [Ko(1 -- cKo)] ~/z /f c Ko _< �89 
K1 := ) E/(2~_c) otherwise. 

Proof: Let w(x):= exp [ - 2 A x ( 1  - x)] (0 _< x <_ 1). For  fixed u e R\{0} we obtain 

f ] wuL[u] dx 

;~ l f f  f f  = u[--(wu') '] dx + ~ (w' + wb)(u2) ' dx + wcu 2 dx 

= - w u u ' + ~ ( w  +wb)u 2 + w(u')2dx 
0 

+ 1  

f2[ + w c - -~ (4A+4AZ(1 - -2x )Z )+A(1 -2x )b  - b' u2dx. 

The sum of the boundary terms is nonnegative due to our choice of A. Moreover, 
the term in brackets in the last integral is bounded from below by c. Consequently, 
the above equality implies, with w o denoting the minimum of w, 

f~ wuL[u] >_ wollu'Ll~ + c]lx//wuN~. dx 

Dividing by w o, observing that w x / ~ o  < E, and defining 

:= ll wx/-W/Wooull2/llZEu]ll2 

we obtain 

Ilu'llz 2 < #(E - ~)l lZ[u]l[ ,  z . (4.7) 

Moreover, (4.2) implies # < E. Ko. Calculation of the maximum of the quadratic 
expression in # in (4.7) on [0, E- Ko] provides the assertion. [] 

L e m m a  3: Suppose that (4.2) and the first estimate in (4.6) hold with constants K o 
and K1, respectively. Let b o, c o denote real constants which satisfy, in the Sturm- 
Liouville case (1.2), 

72bo + 2aoYoC o - otgboc o >_ O, -7~bo + 2a~71Co + ~ZlboCo >- 0 
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(and which are arbitrary in the periodic case (1.3)). Then, the second estimate in (4.6) 
holds with 

K 2 : =  [-(l q- lib - bo[l~oK1 + [[c - col[~oKo) 2 + max{0, - b g  - 2 c o } K ~ ]  1/2. 

Proof: For  u ~ R, integration by parts shows that 

]1-u" + bou' + CoUlt 2 = []u"[]22 + (bo z + 2c o) [lu'l! 2 + c~j}u]l 2 

+ [ -bo(u ' )  2 - 2CoUU ' + bocoU2]~. 

The boundary  term vanishes in the periodic case (1.3). In the Sturm-Liouville case 
(!.2), it is nonnegative due to our  conditions on bo and co. Consequently,  

[[u"[J 2 <- Pl-u" + bou' + CoUl] 2 - (b 2 + 2%)l[u']l 2 

_< ([[L[u]]]2 + lib - boll~o llu'[12 + [Ic - coll~o [lull2) 2 - (bo 2 + 2co)llu'll2 2 

so that  (4.2) and the first estimate in (4.6) provide the assertion. [ ]  

The inequalities required for b o and c o in Lemma 3 are always satisfied for 
bo = Co := 0. However,  a smaller constant  K2 may often be obtained by other  
choices of bo and c o. 

Lemma 3 may  be generalized by considerat ion of functions b o, c o in place of 
constants. Here, we will not  discuss such choices in general, but  only formulate a 
lemma concerned with the part icular  case bo - b, Co = c. 

Lemma 4: Let (4.2) and the first estimate in (4.6) hold with constants Ko and K 1, 
respectively, and let p, q, fl, Po, qo denote the terms defined after (4.4). Suppose that 

fi[u,u] >_ 0 f o r u e R .  (4.8) 

Then, the second estimate in (4.6) holds with 

K 2 := [1 + max{0, - p o } K ~  + max{0, - q o } K 2 ]  1/2. 

Proof: (4.4), (4.8) and the choice ofpo  and qo imply, for u e R, 

[[L[u]]l~ > Ilu"l[~ + Pollu'll2 2 + qorlUl] 2. 

The assertion now follows by use of (4.2) and the first estimate in (4.6). [ ]  

In our  examples, where condit ion (4.8) is satisfied, we computed  two constants K 2 
according to Lemmata  3 and 4, and chose the minimum of both  values. 

5. Numerical Examples 

We applied our  existence and inclusion method  to two parameter-dependent  non- 
linear bounda ry  value problems. Starting at some "trivial" solutions we combined 
the Newton-col locat ion procedure  described in section 3 with a step-wise homotopy  
along the solution branches. We used M := 80 in (3.2), i.e., 81 basis functions for 
the collocation. The estimate (3.3) was applied with N := 2n, so that C = x/2. 
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In our first example, we looked for 2re-periodic solutions of the forced pendulum 
equation 

- U "  - U'(# + v(U') 2) - sin U = 2 c o s x .  (5.1) 

We treated three cases: a) # = v -= 0 (no damping), b) /z = 1, v = 0 (linear damping), 
c) /~ = 1, v = 0.1 (nonlinear damping). For each of them, we computed approximate 
solutions ~ for several values of 2, after transformation of the interval [0, 2r~] onto 
[0, 1]. The corresponding bifurcation diagrams (in the (2, ~(0))-plane) are plotted 
in Figures la, lb and lc below. The branches drawn in heavy lines are formed by 
significantly different (approximate) solutions; all other branches (drawn in dotted 
lines) are obtained from them by the simple transformations e9 ~ ~ + 2rck (k e Z), 
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Figure la. The pendulum equation, no damping (/1 = v = 0) 
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Figure lb. Linear damping (# = 1, v = 0) 
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Figure lc. Nonlinear  damping (# = 1, v = 0.1) 

which obviously provide physically identical solutions, and co ~ -co,  2 ~ - 2 .  In 
case a), all approximate solutions are (approximately) symmetric with respect to 
reflection at n, but not in cases b) and c). 

Our existence and inclusion method could be applied successfully to prove the 
existence of a 2n-periodic solution of problem (5.1) in a close neighborhood of co, 
for all approximate solutions co we computed, except for those which are close to 
a bifurcation point or, in case a), to the origin (2 = 0, co = 0), since the operator L 
is not invertible at these points and thus, the constants K and K' are "large" in their 
neighborhood. A selection of pairs (2, co(0)) on the "main" branches (passing through 
the origin) and of the computed constants 6, K, K', ct, fl, satisfying (2.1), (2.2) and 
(2.6), respectively, is listed in Table 1 below. The results are similar on the other 
branches. 

In case a), where the operator L is symmetric on R, we computed a second constant 
Ko according to the method presented in [14], besides the constant calculated by 
the algorithm described in subsection 4.1. The results are nearly identical. However, 
the method in [14] has the advantage of providing, as a by-product, the number of 
negative eigenvalues of L, which may serve as a tool for discovering bifurcation 
points in the course of a branch, where this number (usually) changes. These 
numbers are written down at the respective parts of the branches in Fig. la. It should 
be noted that the "classical" existence and inclusion method by smooth comparison 
functions can only be applied on the branch-parts with no negative eigenvalue. In 
cases b) and c), the operator L is not symmetric on R (with respect to any weight 
function), so that the method in [14] is not applicable. 

In our second example, we treated the boundary value problem 

L .z ~ J 
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Table 1. The forced pendulum equation ("main" branches) 

2 r ~ c5 K K' ~ fl 

# = v = 0 (no damping) 

1.E-10 0.001 .990E-14 633375.962 3979618.751 .627E-08 .394E-07 
1.E-05 0.043 .463E-12 294.013 1847.551 .t36E-09 .855E-09 
1. 2.106 .134E-10 0.342 2.363 .457E-11 .316E-10 
1.61 2.532 .140E-09 60.708 381.653 .845E-08 .531E-07 
1.6139 2.535 .143E-09 5457.650 34291.640 .912E-06 .573E-05 

Bifurcation point 
1.613945 2.535 .143E-09 751022.981 4718816.769 - -  - -  
1.614 2.535 .144E-09 4331.577 27216.315 .686E-06 .431E-05 
4. 3.852 .422E-06 0,208 1.520 .876E-07 .641E-06 
6.2 5.460 .198E-04 21.359 134.414 .573E-03 .360E-02 
6.206 5.467 .200E-04 153.585 965.212 - -  - -  

Bifurcation point 
6.208 5.470 .201E-04 223.770 1406.203 - -  - -  
6.3 5.586 .237E-04 1.552 9.964 .368E-04 .237E-03 
8. 8.582 .199E-03 2.743 17.450 .578E-03 .368E-02 
8.1 8.675 .318E-03 45,792 287.928 - -  - -  

Bifurcation point 
8.13 8 .701 .419E-03 36,771 231.253 - -  - -  
8.2 8 .763 .686E-03 4,072 25.794 - -  - -  
8.3 8.847 .116E-02 1,864 11.926 .250E-02 ,160E-01 

10. 10.027 .137E-01 0.338 2.333 .489E-02 ,339E-01 

# = 1, v = 0 (linear damping) 

0.1 1.E-4 .297E-11 0.082 0.626 .242E-t2 .186E-11 
1. 0.116 .324E-10 0.102 0.723 .330E-11 .234E-10 
2.9 1.311 .127E-08 2.784 16.685 .353E-08 .212E-07 
2.98 1.366 .167E-08 28.908 172,560 .481E-07 .287E-06 
2,988 1.371 .170E-08 388.407 2317,523 .665E-06 .397E-05 

Bifurcation point 
2.989 1.372 .171E-08 703.426 4197.383 .124E-05 .738E-05 
3. 1.379 .175E-08 22.110 132.288 .386E-07 .231E-06 
6. 3.050 238E-05 0.203 1,488 .483E-06 .354E-05 
8.27 4.122 .150E-03 7.498 47,322 .150E-02 .942E-02 
8.29 4.132 .154E-03 22.281 140,206 - -  - -  

Bifurcation point 
8.31 4.142 .159E-03 26.997 169,840 - -  - -  
8.33 4,151 .164E-03 7.880 49.723 .181E-02 .l14E-01 

10. 4.937 .145E-02 0.228 1.646 .332E-03 .240E-02 

# = 1, v = 0,1 (nonlinear damping) 

0.1 1.E-4 .297E-11 0.082 
1. 0.089 .324E-10 0.110 
3.6 0.855 .993E-08 23.049 
3.621 0.860 .106E-07 285.192 
3.622 0.861 .106E-07 618.519 

Bifurcation 
3.623 0.861 .106E-07 3716.354 
3.624 0.861 .107E-07 463.224 
3.625 0.861 .107E-07 247.179 
3.7 0.881 .132E-07 6.996 
5. 1.172 .252E-06 0.528 
8. 1.616 .270E-04 0.312 

10. 1.787 .670E-04 0.338 

point 

0.627 .242E-12 .186E-11 
0.803 .354E-11 .260E-10 

243.646 .230E-06 .243E-05 
3021.080 .353E-05 .374E-04 
6552.720 - -  - -  

39375.776 - -  - -  
4908.466 - -  - -  
2619.443 .299E-05 .316E-04 

74.677 .917E-07 .979E-06 
6.235 .133E-06 .158E-05 
4.248 .840E-05 .115E-03 
5.258 .227E-04 .354E-03 



32 M. Plum 

which has an infinite n u m b e r  of nontr iv ia l  branches bifurcating from the trivial 
solut ion U -- 0 at the eigenvalues 2k = �88 - 1)2x 2 of the linearized problem. 

For  several values of 2, we computed  approximate  solutions co on the first and  on 
the second branch,  and  applied our  existence and  inclusion method.  It was success- 

ful for 2 up to 28 on the first, and for 2 up to 39 on the second branch. The computed 
branch-par t s  are plotted in Fig. 2 below, where co(1) serves as bifurcat ion parameter.  

Several pairs (2, o9(1)) and the calculated constants  c5, K, K' ,  ~,/~ satisfying (2.1), 

(2.2) and (2.6), respectively, are conta ined  in Table 2 below. 

As in case a) of our  first example, we applied also the alternative method described 
in [-14] to compute  a second cons tant  K o. The results are w o r s e  than  those obta ined  

from subsection 4.1. The reason is the rough est imation of the weight funct ion in 

E14] (which, however, is unavoidable  in that  approach). Nevertheless, this al terna- 
tive method provides the n u m b e r  of negative eigenvalues of L, which is writ ten down 

at the two branches in  Fig. 2. 

In  [5], problem (5.2) is treated by the "breakpoin t" -approach  ment ioned  in 
section 1. The obta ined error bounds  are similar to the results presented here. 

Table 2. Second example 

2 co(1)~ 6 K K' ~ /3 

First Branch 

2.4675 0.011 . 4 1 0 E - 1 4  7941 .320  12478.997 . 3 2 6 E - 1 0  .511E-10 
2.468 0.028 . 1 0 1 E - 1 3  1311.363 2064.686 . 1 3 2 E - 1 0  .208E-10 
2.48 0.128 .462E-13 62.312 102.712 .288E-11  .474E-11 
2.5 0 .204 .735E-13 24.084 42.714 . 177E-11  .314E-11 
3. 0.685 .274E-12 1.627 6.118 . 4 4 5 E - 1 2  .168E-11 
5. 1.004 .564E-12 0.541 4.062 . 305E-12  .229E-11 

10. 1.123 .295E-11 0.399 6,290 .llSE-11 .186E-10 
15. 1.154 .466E-08 0.360 8.705 . 1 6 8 E - 0 8  .406E-07 
20. 1.169 .351E-06 0.336 10.975 . 1 1 8 E - 0 6  .387E-05 
25. 1.177 .401E-05 0.318 13.125 . 1 3 6 E - 0 5  .562E-04 
28. 1.181 .149E-04 0.309 14.369 . 6 1 2 E - 0 5  .285E-03 
29. 1.182 ,266E-04 0.307 14.777 - -  - -  

Second Branch 

22.207 0.003 , 5 2 5 E - 1 4  6041 .244  28473,542 . 3 1 7 E - 1 0  .150E-09 
22.21 0.007 A57E-13 695.012 3280,017 , 1 0 9 E - 1 0  .514E-10 
22.3 0.039 ,814E-13 25.220 123.725 . 206E-11  .10IE-10 
23. 0.109 .245E-12 2,981 19.118 . 7 2 8 E - 1 2  .467E-11 
24. 0.157 .380E-12 1,344 10.957 . 5 1 0 E - 1 2  .416E-11 
26. 0 .210 .522E-11 0.668 6.951 . 348E-11  .363E-10 
28. 0.243 .258E-10 0.557 6.763 . 1 4 4 E - 1 0  .175E-09 
30. 0.266 .603E-09 0.709 9.818 . 4 2 8 E - 0 9  .592E-08 
32. 0.282 .535E-08 0.917 14.196 . 490E-08  .759E-07 
34, 0.295 .965E-07 1,196 20.422 . 116E-06  .19gE-05 
36. 0.306 .566E-06 1.567 29.203 . 9 0 5 E - 0 6  .169E-04 
38. 0.314 .189E-05 2.060 41.497 . 4 4 7 E - 0 5  .900E-04 
39. 0.318 .330E-05 2.362 49.353 . 1 0 8 E - 0 4  .225E-03 
40. 0.321 .518E-05 2.710 58.614 - -  - -  
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Figure 2. Bifurcation diagram for the second example 
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