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Abstract — Zusammenfassung

Computer-Assisted Existence Proofs for Two-Point Boundary Value Problems. For (scalar) nonlinear
two-point boundary value problems of the form —U” + F(x,U,U") =0, B,[U] = B;[U] = 0, with
Sturm-Liouville or periodic boundary operators By and B, , we present a method for proving the existence
of a solution within a “close” C;-neighborhood of an approximate solution.
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existence and inclusion

Computer-unterstiitzte Existenzbeweise fiir Zweipunkt-Randwertprobleme. Fiir (skalare) nichtlineare
Zweipunkt-Randwertprobleme der Form —U” + F(x,U,U") =0, B,{U] = B;[U] = 0 mit Sturm-
Liouville-oder periodischen Randoperatoren By, B, wird eine Methode vorgestellt, mit der die Existenz
einer Losung innerhalb einer “kleinen” C,-Umgebung einer Néherungslosung bewiesen werden kann.

1. Introduction

The present article is concerned with scalar two-point boundary value problems of
the following form:
=U'x)+ Fx,Ux),U(x)=0 (0<x< 1),}
B,[U] =B, [U] =0.

Here, F is a given smooth function on [0,1] x R x R, and B,, B; are linear
boundary operators, either of Sturm-Liouville type:

(1.1)

Bolu] = —aou'(0) + you(0), By [u] = o;u/(1) + pyu(l) (1.2)
(where o« + y2 > 0,02 + y? > 0), or of periodic type:
Bolu] = u(l) —u(0),  Bj[u]l =u'(1) —u'(0). (1.3)

Many other boundary conditions may be treated but will not be considered here
for reasons of technical uniformity.

We will establish a method for proving the existence of a solution for problem (1.1),
in combination with an explicit error bound for some approximate solution w € R,
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where
R = {ue H,(0,1): By[u] = B,[u] = 0}. (1.4)

The main parts of the method have algorithmical form and may therefore be carried
out on a computer. These parts consist in

i) the computation of an approximate solution w € R;
ii) the estimation of the L,-norm of its defect —w” + F(-,w, w');
iii) the calculation of a positive lower bound for the minimal eigenvalue of L*L on
{ue R: L[u] € R*}, where L is the operator obtained by linearization of the
given problem at o, i.e.,

Llu] = —u"+bu' + cu, b:=(0:F),0,0), c:=0,F)(,0,0), (1.5

and L* denotes the (formally) adjoint operator; R* is defined as in (1.4), but with
the adjoint boundary operators B¥, Bf in place of B, B;.

Since safe bounds are required in parts ii) and iii), the rounding errors made during
the corresponding computations must be taken into account. For this reason,
we use interval-arithmetic (ACRITH[7], FORTRAN-SC[9]) in these parts of the
algorithm. The computation of  (part i)), however, may be carried out in usual
real floating-point arithmetic. Thus, well-established approximation methods may
be used for that purpose, and there is no need for interval-arithmetical versions of
these methods.

It is important to note that we do not pose any kinds of monotonicity or growth
conditions on the nonlinearity F, or inverse-positivity assumptions on the linearized
operator L. We only require L to be invertible on R (compare part iii} mentioned
above). Thus, many cases are covered where the well-known method of (smooth)
comparison functions (upper and lower solutions) or monotonicity principles (see
[2,17]) cannot be applied.

Other approaches avoiding monotonicity and inverse-positivity assumptions may
be found, for example, in [ 5,8, 10, 11, 19]. In [ 8], the Newton-Kantorovich Theorem
is applied; under this aspect, the method is comparable to ours, but the estimation
of the inverse of the linearized operator is carried out in a completely different way.
Similar remarks hold true for the method presented in [10], and for the approach
in [57] where the given problem is transformed by introduction of breakpoints and
breakpoint-functions; the transformed problem is suitable for the application of the
method of (non-smooth) comparison functions. In [11], shooting methods are used;
the occurring initial value problems are treated by interval-arithmetical versions of
one-step methods.

In [13, 14], a modified version of our approach presented here is applied to several
examples where the nonlinearity F depends at most linearly on U’ and, moreover,
the linearized operator L is symmetric on R (with respect to some suitably weighted
inner product), which simplifies the eigenvalue estimates required in part iii) above.

Compared with the other methods mentioned above, our way of proceeding has
the advantage of being transferable to elliptic boundary value problems in a more
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or less direct manner (although with much more theoretical effort), if the non-
linearity F depends only on x and U; see [15, 16] and further forthcoming papers.

2. The Existence and Inclusion Theorem

In this section, we will describe the structure of our algorithm and prove the
resulting existence and inclusion statement. The general algorithmical framework
is based on J. Schroder’s ideas (see [ 18, 19]). The main parts of the algorithm will
be discussed in more detail in the following sections.

Suppose that some approximate solution w € R (see (1.4)) of problem (1.1) and some
constant § > 0 satisfying

I—o"+ F(,0,0)|; <6 2.1)

have been computed. Moreover, let constants K and K’ be known such that, with
L defined in (1.5),

lullo < KILLulllz, 'l < K'|LLu]l,  forueR. (2.2)

In particular, L is required to be invertible on R. It will turn out in section 4 that
the main numerical work which has to be done to compute such constants K, K’
consists in the calculation of an cigenvalue bound as described in section 1.

Finally, let some function G: [0, o0) x [0, o0) - [0, o) be given which is monotoni-
cally nondecreasing with respect to both its variables and which satisfies, with b and
¢ defined in (1.5),

|F(x, 0(x) + y,0'(x) + p) — F(x, o(x), 0'(x)) — c(x)y — b(x)p| < G(lyl,|p)) (23)
for x e [0,1], y e R, p € R. Since F is smooth, G may be chosen such that
G(a,p) = O(* + $2) fora, f—0. (2.4)

Usually, such a function G may easily be calculated “by hand” if (rough) constant
upper and lower bounds for @ and o’ are known.

Theorem 1. Suppose that constants o, § > 0 exist such that

& < min {%g} — G, ). 2.5)

Then, there exists a solution U € C,[0,1] of problem (1.1) satisfying
IU—-olle <o, U -0, <B. (2.6)

Due to (2.4), the crucial condition (2.5} is satisfied for “small” «, f if & is sufficiently
small, i.e, if the approximate solution w has been computed with sufficient accuracy.

Proof of Theorem 1: Consider the boundary value problem
Liu] +f(,uu)= —dlew] on(0,1),  By[u] =B [u]=0 2.7)
where f(x, y, p) := F(x, o(x) + y,0'(x) + p) — F(x, o(x),w’(x)) — ¢(x)y — b(x)p and
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dlo] = —w” + F(-,w, ). It suffices to prove that problem (2.7) has a solution
u* € R such that ||u*| , < o, |(u*) ], < B because then U := @ + u* € R is a solu-
tion of problem (1.1) satisfying the estimates (2.6). The smoothness of U follows a
posteriori from the differential equation in (1.1).

(2.2) and the well-known theory of linear boundary value problems show that the
inverse operator L™': L,(0,1) > R < H,(0, 1) exists and is continuous. Due to the
compactness of the embedding H,(0,1) =s C,[0,1], the operator T: C,[0,1] —
C,[0, 1] defined by

Tu:= —L Y (d[w] +f(,u,u) (2.8)

is therefore continuous and compact. Thus, the existence of a solution of problem
(2.7) with the required properties follows from Schauder’s fixed-point theorem if we
show that

TD < D for D= {ue C,[0,1]: lull, < o, |u']l, < B}.
For u € D, (2.3) and the monotonicity of G imply
G, u(x),w’ ()] < G(lu)L [w'(x)) < G, f} 0 <x<T)
and thus, || f(-,u,¢')|, < G(a, B). Using (2.8), (2.1), and (2.5) we therefore obtain
IL[Tulll, = lld[e] + f(-,u,u’)ll; < 6 + G(x, f) < min {%%}
so that (2.2) provides (regard that Tu € R):
ITull, < KIL[Tull, <o,  [(Tu)|, < K'ILLTu]ll, < B.

3. Computation of @ and ¢

The computation of an approximate solution @ € R of problem (1.1) and the
estimation of the L,-norm of its defect may be carried out by any suitable sub-
algorithms. In our examples, we used a Newton-collocation method for the former,
and a theorem by Ehlich and Zeller [3] for the latter task. Most of the details have
been developed in joint work with M. Gohlen and J. Schréder (see [5]).

One Newton-step is carried out as follows. Given w,_, € R we compute an ap-
proximate solution u, € R of the linear boundary value problem

—u" 4+ (05 F) 0y g, 1) W+ (0 F) (s 0ppy 0) u = —d[w, 1], (3.1)
By[u] = B,[u] =0
(with d[w,_;]1:= —w,_; + F(",w,-;,w,_,)) and define w,:= w,_; + u,. To de-
termine u, we use a collocation procedure for the “ansatz”

M

u) = Y. a,Px) (3:2)

k=0
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with polynomials P, ..., Py € R, i.e., we fix the coefficients aq, ..., a,, by requiring
that the differential equation (3.1) is satisfied at given points X, ..., x, € [0, 1],
which obviously results in a linear algebraic system for a, ..., a,,. This system is
solved (approximately) by a GauB-algorithm with partial pivoting.

In particular, we choose the collocation points

1 k+1
Xy = 2[:1 - COS(mTL)] (k - 05"'7M)

and the basis functions
P(x):=x*(1 — x’T,_,2x — 1)  fork>2,

with T; denoting the i-th Chebyshev-polynomial of the first kind. P, and P; are
chosen to form a basis of the space of polynomials of degree <3 which satisfy the
required boundary conditions. More general spline-type bases {P,,..., Py} are
discussed in [5].

The above Newton-iteration is terminated when, for some n € N, the coefficients
a{® of u, are (in modulus) below some given tolerance. Then, the approximate
solution ® := w, is given in the form (3.2), provided that the starting approximation
o, of the Newton-iteration has that form. To find such a function w, we use a
homotopy method in our (parameter-dependent) examples.

To compute a constant ¢ satisfying (2.1) one may use several approaches. For
example, one may apply a quadrature formula and a remainder-term-estimate, as
described in [12] for a similar situation. Here, we proceed differently. Suppose first
that the nonlinearity F is a polynomial with respect to all its variables. Then, with
o calculated as described above, the defect d[w] = —w” + F(-,w,®’) is a poly-
nomial of some known degree n. Thus, a theorem by Ehlich and Zeller {3, Theorem
2] provides the estimate

ld[@]ll, < Cmax{|d[w](&)]:j=0,...,N} (3.3)

where N e N, N > n, C = C(n,N) := [cos(nn/2N)]7", and ¢; := 3[1 + cos(jn/N)]
forj=0,...,N.Since |d[w]l, < l[d[®]] . (3.3) reduces the problem of calculating
4 to the evaluation of d[w] at the points &, ..., £y. In order to take rounding errors
into account we use interval-arithmetic (ACRITH [7] and FORTRAN SC [9]) for
that purpose. Practical details may be found in [5].

For non-polynomial but smooth F (see our first example) we apply a method
proposed by Giértel [4]. First we use the Ehlich/Zeller-Theorem mentioned above
to compute constant lower and upper bounds @, @ and @', @’ for the polynomials
o and w’, respectively. Suppose next that, for some given ¢ > 0, numbers ny, n,,
ny € N are known such that

[F(x,y,p) = P(x,y,p)|<e¢ (O<x<lLo<y<o,0'<p<d) (34

for some function P which is a polynomial in x, y and p with degrees n,, n, and n,,
respectively (P need not be computed!). Such numbers can easily be calculated by
use of well-known error estimates for polynomial approximations, if explicit for-
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mulas for higher derivatives of F are at hand (as in our first example). Now, since
d[w] = —w”" + P(-,w,®"} is a polynomial of some known degree n, one may use
(3.3) and (3.4) to estimate d[w] as follows:
ld[o]ll, <[]l +& < C max [d[w](E)] +e
=

0,..., N

< C max [d[@](&) +(C + e (3.5)

j=0,...,

It should be regarded that N usually depends on ¢, so that the numerical effort
increases as e decreases. In our first example, ¢ is chosen such that the two summands
in (3.5) are approximately equal.

4. Computation of K and K’

In order to calculate constants K and K’ satisfying the estimates (2.2), with L given
by (1.5), we first compute constants C,, C;, Ko, K, K, such that

lull o < Collull, + Cyllu'll,  for ue Hi(0,1), (4.1)
lull, < KollLLulllz, 1wl < Kyl[LLulll2, flu"ll; < KylIL[u]ll, forueR.
Then, (2.2) obviously holds with K := Cy K, + C, K, and, since u’ may be inserted
into (4.1) in place of u, with K’ :== C4 K| + C, K,. This approach has the advantage

of being transferable to elliptic boundary value problems, as long as only the first
estimate in (2.2) is considered (see [15]).

Lemma 1: The estimate (4.1) holds with
1

V3¢

Moreover, corresponding inequalities hold also with other constants Cy, C, for some
restricted classes of functions u € H,(0, 1), in particular, with

Cy = 1 arbitrary, C, =

1
C, =0, C, =5 if u(0)=u(1) =0,
C, =0, C =1 if u©=0o0ru(1)=0,
C, > 1 arbitrary, C,=——— if u(0) = u(1).
0 Y 1 2 /3¢,

For a proof, see [14]. Depending on the given boundary operators B, and B,, one
will prefer different choices of corresponding pairs (C,, C, ), according to Lemma 1,
for the computation of K and K’ described above. If, for example, By[u] = u(0) and
B, [u] = u(1), one may choose Cy = 0,C; = 3 forK,and C, = 1,C, = 1/\/3 for K'.
If By[u] = u(0) and B,[u] = u'(1), one may use C, = 0, C; = 1 for both K and K".

4.1. Computation of K,

By variational arguments, it is easy to reduce the calculation of a constant K,
satisfying
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fully < KofiL{ulll,  forueR 4.2)

to the estimation of eigenvalues of a symmetric differential operator. In [14], where
L itsell is assumed to be symmetric on R (with respect to some suitably weighted
inner product), (4.2) is proved to hold for K, := ¢! B, with o denoting a lower bound
for the distance between 0 € R and the spectrum of L on R, and with some constant
B depending on the weight function. This approach has the advantage of being
related to a second-order eigenvalue problem, compared with the method described
below. However, it is not applicable if L is not symmetric on R (as partly in our first
example presented here); if the constant B is “large” (as partly in our second
example), it is applicable but not recommendable.

Here, we assume that the coefficients b and ¢ defined in (1.5) are sufficiently smooth
(which is certainly true if F is smooth and w is computed as described in section 3)
and consider the fourth-order eigenvalue problem

L*L[u] = Au on(0,1),  Bo[u] = B,[u] = BF[LLu]] = Bf [L[u]] =0, (43)

with L*, B, Bf denoting the operators adjoint to L, B,, B, with respect to the
canonical inner product { , > on L,(0,1). The variational characterization of the
minimal eigenvalue 4, of problem (4.3) reads

1 = min SElul, LIul>
,=min——— -~
ueR <M, Ll>
(regard that only the boundary conditions By{u] = B,[u] =0 are “essential”).
Thus, (4.2) holds with

Ky := A712.
In order to compute a lower bound for A, we use a numerical homotopy method
which is described in [12] for second-order eigenvalue problems. Here, we give a
brief description of the modifications which have to be made for the fourth-order
problem (4.3). The “elementary” eigenvalue estimates stated in Theorems 1, 2, 4,
and 5 in [12] may be transferred to problem (4.3) without any significant changes.
We are left to construct a homotopy starting at some “simple” problem with known
eigenvalues and ending at the given problem, such that all eigenvalues are mono-
tonically nondecreasing with respect to the homotopy parameter. Then, the eigen-
value estimation algorithm described in [12] may be applied to problem (4.3).

Integration by parts shows that the bilinear form £ associated with problem (4.3)
is given by

1
Blu,v] = (L[u),L{v]) = J [u”v” + pu'v’ + gquv]dx + S[u,v] 4.4)
(4]

for u,veR, where p=b>+b +2 q=c?—c" —(bc), and Blu,v]:=
[—bu'v) — cu'v + uv’) + (¢’ + bc)uv]s. Let p, and g, denote constant lower
bounds for p and g, respectively, and define, for s € [0,1] and «, v € R,

poi=sp+ (1 —3)py, goi=s5q9+ (1 —9)q,,

1
B[u,v] = J [u"v” + pu'v’ + guv]dx + Blu,v].

¢}
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Integrating by parts one derives that, for s € [0, 1], the eigenvalue problem asso-
ciated with %, is given by

u® — (pu'y + qu = Au on (0,1),

. . (4.5)
By[u] = By [u] = B'[u] = BY’[u] =0

where, in the Sturm-Liouville-case (1.2},
BY[u] = —oao(L[u1)'(0) + (70 — %b(0)L[u](0) + 7o(1 — 5)(p(0) — po)u(0),
BP[u] == oy (LLu]) (1) + (yy + e BD)LLuI(1) + 3.1 — s)(p(1) — po)u(D),

and in the periodic case (1.3),
BY[u] := L[u](1) — L[u](0), BO[u] := [(L[u]Y + b-L[u] — (1 — 5)(p — po)u'15 -

It is easy to see that problem (4.5), is the given problem (4.3), while problem (4.5),
has constant coefficients and may therefore be solved explicitly, possibly up to
the solution of a real transcendental equation. Moreover, for fixed u € R, %,[u, u]
is monotonically nondecreasing with respect to s, so that Courant’s Maximum-
Minimum-principle implies the required monotonicity of all eigenvalues of the
problems (4.5), with respect to s € [0,1].

As explained in [12], certain parts of the homotopy algorithm have to be carried
out in interval-arithmetic, so that rounding errors are taken into account. For these
parts, we use ACRITH [7] and FORTRAN-SC [9] subroutines.

It should be noted that, in place of our homotopy algorithm, other cigenvalue
estimation methods may be used to compute a lower bound for 4,. In particular,
the approach developed by Bazley and Fox (e.g., [1]) or the method by Goerisch
and Albrecht (e.g., [6]) are reasonable.

4.2. Computation of K, and K,

While the calculation of a constant K, satisfying (4.2) requires a good deal of
numerical work, constants K, and K, satisfying

lu'lly < Ky lLlulla,  lu”l; < Kp | LLu]l,  forueR (4.6)

may be computed in a much more direct way, as shown in the following lemmata.
The first of them constitutes an alternative to Lemma 1 in [14], where the weight
function mentioned at the beginning of the preceding subsection is used.

Lemma 2: Suppose that (4.2) holds for some K. Let A denote a real constant such
that, in the Sturm-Liouville-case (1.2),

1 1
Az -2 lb0)  fa#0, Az ob) i £0,
ag 2 o, 2
and A = 1[b(0) — b(1)] in the periodic case (1.3). Moreover, let c be a constant

satisfying
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c<e(x) — %b’(x) — AR+ (1 —29[24(1 — 2x) — b(x)]}  forx€[0,1],

and define E = exp(3|A|). Then, the first estimate in (4.6) holds with

k. o JE Kol —~ cKo)]"? if Ky <3
FERVY otherwise.
Proof : Letw(x) := exp[ —2A4x(1 — x)](0 < x < 1). Forfixed u € R\{0} we obtain

jl wuL[u]dx

0
1

= Jl ul[ —(wu'Y]dx + % jl (w' + wh)(u?) dx + J weu? dx

0 0 0

1 1
= [—wuu’ + %(w’ + wb)uz:l + j w(u')? dx

0 0

1
+ J [wc - 1(w’ + wb)’] u?dx
0 2

= u(1)|:—u’(1) + (A + ;b(l)) u(l):|

+ u(0) [u’(O) + <A — %b(O))u(O)] + fl w(u')* dx

0

1 1
+ J wl:c — E(4A +4A4%(1 — 2x)*) + A(1 — 2x)b — %b’:l udx.

0

The sum of the boundary terms is nonnegative due to our choice of 4. Moreover,
the term in brackets in the last integral is bounded from below by c. Consequently,
the above equality implies, with w, denoting the minimum of w,

1
j wuL[u] dx > wo |[u'|1 + c|l/wul3.

0

Dividing by w,, observing that ./w/w, < E, and defining

pi= I/ wiwoull /| LLu]ll,

we obtain

'l < w(E — eI LLul3 - (4.7)
Moreover, (4.2) implies u < E- K. Calculation of the maximum of the quadratic
expression in g in (4.7) on [0, E - K] provides the assertion. O

Lemma 3: Suppose that (4.2) and the first estimate in (4.6) hold with constants K,
and K, respectively. Let by, ¢, denote real constants which satisfy, in the Sturm-
Liouville case (1.2),

yabo + 20070Co — %3byco = 0, —92by + 207, + a3bycy = 0
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(and which are arbitrary in the periodic case (1.3)). Then, the second estimate in (4.6)
holds with
K, = + ||b = bl oK + [lc = ¢ollwKo)? + max{0, —b5 — 2¢o} K312,
Proof : For u € R, integration by parts shows that
=" + by’ + coull = llu”ll3 + (b3 + 2¢0) 'l + g liuli
+ [—bo(u')? — 2couu’ + bycou®]}.

The boundary term vanishes in the periodic case (1.3). In the Sturm-Liouville case
(1.2), it is nonnegative due to our conditions on b, and ¢,. Consequently,

[ul3 < | —u” + bot' + coull3 — (b3 + 2¢o) '3
< (ILLudll, + 16 = Bollo 141l + lle — collo lull)* — (B3 + 2¢0) Iu'lI3
so that (4.2) and the first estimate in (4.6) provide the assertion. O

The inequalities required for b, and ¢, in Lemma 3 are always satisfied for
by = ¢, := 0. However, a smaller constant K, may often be obtained by other
choices of by and c,.

Lemma 3 may be generalized by consideration of functions by, ¢, in place of
constants. Here, we will not discuss such choices in general, but only formulate a
lemma concerned with the particular case by = b, ¢y = c.

Lemma 4: Let (4.2) and the first estimate in (4.6) hold with constants Ko and K,
respectively, and let p, q, B, po, 4o denote the terms defined after (4.4). Suppose that

plu,u] >0  forueR. (4.8)
Then, the second estimate in (4.6) holds with
K, = [1 + max{0, —po} K? + max {0, —qo} K§1">.
Proof : (4.4), (4.8) and the choice of p, and g, imply, for u € R,
ILL113 = w13 + pollw’ll; + qollullz.
The assertion now follows by use of (4.2) and the first estimate in (4.6). O

In our examples, where condition (4.8) is satisfied, we computed two constants K,
according to Lemmata 3 and 4, and chose the minimum of both values.

5. Numerical Examples

We applied our existence and inclusion method to two parameter-dependent non-
linear boundary value problems. Starting at some “trivial” solutions we combined
the Newton-collocation procedure described in section 3 with a step-wise homotopy
along the solution branches. We used M := 80 in (3.2), i, 81 basis functions for
the collocation. The estimate (3.3) was applied with N := 2n, so that C = ﬁ
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In our first example, we looked for 2zn-periodic solutions of the forced pendulum
equation
—U" —U(u+vU)?)—sinU = icosx. (5.1

Wetreated three cases:a) u = v = 0(nodamping),b) u = 1,v = 0(linecar damping),
¢) 4= 1,v = 0.1(nonlinear damping). For each of them, we computed approximate
solutions w for several values of 4, after transformation of the interval [0, 27} onto
[0, 1]. The corresponding bifurcation diagrams (in the (4, w(0))-plane) are plotted
in Figures 1a, 1b and 1c below. The branches drawn in heavy lines are formed by
significantly different (approximate) solutions; all other branches (drawn in dotted
lines) are obtained from them by the simple transformations w — @ + 2nk (k € Z),

w(0)
3 O . !
10 BT 1
1 ’ 1 ; 1
0 F—mit ‘
S0 4 e e e T
N
-10 -5 0 5 10

Figure 1a. The pendulum equation, no damping (4 = v = 0)

wl0)
T e e !
10 4
j ...... :
0 +—— —
....... .-c'_-‘.*
ST S
o —r ' — — T T
-10 -b 0 5 10

Figure 1b. Linear damping (u = 1,v = 0)
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-10 ] - S

Figure 1¢. Nonlinear damping (u = 1,v = 0.1)

which obviously provide physically identical solutions, and w - —w, A — — 4. In
case a), all approximate solutions are (approximately) symmetric with respect to
reflection at «, but not in cases b) and c).

Our existence and inclusion method could be applied successfully to prove the
existence of a 2z-periodic solution of problem (5.1) in a close neighborhood of w,
for all approximate solutions w we computed, except for those which are close to
a bifurcation point or, in case a), to the origin (A = 0, @ = 0), since the operator L
is not invertible at these points and thus, the constants K and K’ are “large” in their
neighborhood. A selection of pairs (4, @(0)) on the “main” branches (passing through
the origin) and of the computed constants J, K, K, o, f, satisfying (2.1), (2.2) and
(2.6), respectively, is listed in Table 1 below. The results are similar on the other
branches.

In case a), where the operator L is symmetric on R, we computed a second constant
K, according to the method presented in [14], besides the constant calculated by
the algorithm described in subsection 4.1. The results are nearly identical. However,
the method in [14] has the advantage of providing, as a by-product, the number of
negative eigenvalues of L, which may serve as a tool for discovering bifurcation
points in the course of a branch, where this number (usually) changes. These
numbers are written down at the respective parts of the branches in Fig. 1a. It should
be noted that the “classical” existence and inclusion method by smooth comparison
functions can only be applied on the branch-parts with no negative eigenvalue. In
cases b) and c), the operator L is not symmetric on R (with respect to any weight
function), so that the method in [14] is not applicable.

In our second example, we treated the boundary value problem

U= AU[I — %(U’)Z — é(U’)“] on(0,1, U©=U1)=0 (52
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Table 1. The forced pendulum equation (“main” branches)
p) o0y~ ) K K a B
i =v =0 (no damping)
L.E-10 0.001 .990E-14 633375.962 3979618.751 .627E-08 394E-07
1.E-05 0.043 A463E-12 294.013 1847.551 136E-09 .855E-09
1. 2.106 134E-10 0.342 2.363 A57E-11 .316E-10
1.61 2532 .140E-09 60.708 381.653 .845E-08 S31E-07
1.6139 2.535 143E-09 5457.650 34291.640 912E-06 .573E-05
Bifurcation point
1.613945 2.535 .143E-09 751022.981 4718816.769 — —
1.614 2.535 .144E-09 4331.577 27216.315 .686E-06 A431E-05
4. 3.852 4A22E-06 0.208 1.520 .876E-07 .641E-06
62 5460 .198E-04 21.359 134414 573E-03 .360E-02
6.206 5.467 .200E-04 153.585 965.212 — —
Bifurcation point
6.208 5470 201E-04 223.770 1406.203 — —
6.3 5.586 237E-04 1.552 9.964 .368E-04 237E-03
8. 8.582 .199E-03 2.743 17.450 .578E-03 .368E-02
8.1 8.675 318E-03 45.792 287.928 — —
Bifurcation point
8.13 8.701 419E-03 36.771 231.253 — —
82 8.763 .686E-03 4.072 25.794 — —
8.3 8.847 116E-02 1.864 11.926 250E-02 .160E-01
10. 10.027 A37E-01 0.338 2.333 489E-02 339E-01
© =1, v =0(linear damping)
0.1 1.E4 297E-11 0.082 0.626 242E-12 186E-11
1. 0.116 324E-10 0.102 0.723 330E-11 234E-10
29 1311 127E-08 2,784 16.685 353E-08 212E-07
298 1.366 .167E-08 28.908 172.560 A81E-07 287E-06
2.988 1.371 .170E-08 388.407 2317.523 .665E-06 .397E-05
Bifurcation point
2.989 1.372 .171E-08 703.426 4197.383 .124E-05 .T38E-05
3. 1.379 .175E-08 22.110 132.288 .386E-07 231E-06
6. 3.050 238E-05 0.203 1.488 A83E-06 .354E-05
8.27 4.122 .150E-03 7.498 47.322 .150E-02 942E-02
8.29 4.132 .154E-03 22281 140.206 — —
Bifurcation point
831 4142 .159E-03 26997 169.840 — —
8.33 4.151 .164E-03 7.880 49.723 A81E-02 114E-01
10. 4937 145E-02 0.228 1.646 .332E-03 240E-02
1 =1,v=0.1 (nonlinear damping)
0.1 1L.E-4 297E-11 0.082 0.627 242E-12 186E-11
1. 0.089 324E-10 0.110 0.803 354E-11 .260E-10
3.6 0.855 .993E-08 23.049 243.646 .230E-06 243E-05
3.621 0.860 .106E-07 285.192 3021.080 .353E-05 .374E-04
3.622 0.861 .106E-07 618.519 6552.720 — —
Bifurcation point
3.623 0.861 .106E-07 3716.354 39375.776 — —
3.624 0.861 107E-07 463.224 4908.466 — —
3.625 0.861 A107E-07 247.179 2619.443 299E-05 316E-04
37 0.881 132E-07 6.996 74.677 917E-07 979E-06
5. 1.172 252E-06 0.528 6.235 .133E-06 .158E-05
8. 1.616 270E-04 0.312 T 4248 .840E-05 115E-03
10. 1.787 .670E-04 0.338 5.258 227E-04 .354E-03
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which has an infinite number of nontrivial branches bifurcating from the trivial
solution U = 0 at the eigenvalues A, = 2(2k — 1)’>n? of the linearized problem.

For several values of 1, we computed approximate solutions w on the first and on
the second branch, and applied our existence and inclusion method. It was success-
ful for A up to 28 on the first, and for A up to 39 on the second branch. The computed
branch-parts are plotted in Fig. 2 below, where w(1) serves as bifurcation parameter.
Several pairs (4, w(1)) and the calculated constants J, K, K', a, § satisfying (2.1),
(2.2) and (2.6), respectively, are contained in Table 2 below.

As in case a) of our first example, we applied also the alternative method described
in [14] to compute a second constant K. The results are worse than those obtained
from subsection 4.1. The reason is the rough estimation of the weight function in
[14] (which, however, is unavoidable in that approach). Nevertheless, this alterna-
tive method provides the number of negative eigenvalues of L, which is written down
at the two branches in Fig. 2.

In [5], problem (5.2) is treated by the “breakpoint”-approach mentioned in
section 1. The obtained error bounds are similar to the results presented here.

Table 2. Second example

A w(l)~ d K K’ o B

First Branch

2.4675 0.011 A410E-14 7941.320 12478.997 326E-10 SHE-10
2468 0.028 -101E-13 1311.363 2064.686 132E-10 208E-10
248 0.128 A462E-13 62312 102.712 .288E-11 474E-11
25 0.204 .735E-13 24.084 42.714 177E-11 314E-11
3. 0.685 274E-12 1.627 6.118 445E-12 168E-11
5. 1.004 564E-12 0.541 4.062 305E-12 229E-11
10. 1.123 205E-11 0.399 6.290 J18E-11 .186E-10
15. 1.154 466E-08 0.360 8.705 .168E-08 406E-07
20. 1.169 351E-06 0.336 10.975 118E-06 .387E-05
25. 1.177 A01E-05 0.318 13.125 136E-05 .562E-04
28. 1.181 .149E-04 0.309 14.369 .612E-05 .285E-03
29. 1.182 266E-04 0.307 14.777 — —

Second Branch

22207 0.003 .525E-14 6041.244 28473.542 317E-10 .150E-09
2221 0.007 A57E-13 695.012 3280.017 .109E-10 .514E-10
223 0.039 .814E-13 25.220 123.725 206E-11 101E-10
23. 0.109 245E-12 2981 19.118 .728E-12 A67E-11
24, 0.157 .380E-12 1.344 10.957 .510E-12 416E-11
26. 0.210 .522E-11 0.668 6.951 .348E-11 .363E-10
28. 0.243 258E-10 0.557 6.763 .144E-10 175E-09
30. 0.266 .603E-09 0.709 9.818 428E-09 .592E-08
32. 0.282 .535E-08 0.917 14.196 490E-08 J359E-07
34. 0.295 965E-07 1.196 20422 .116E-06 .198E-05
36. 0.306 .566E-06 1.567 29.203 .905E-06 .169E-04
38. 0.314 .189E-05 2.060 41.497 447E-05 .9500E-04
39. 0.318 .330E-05 2.362 49.353 .108E-04 .225E-03

40. 0.321 518E-05 2.710 58.614 — —
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Figure 2. Bifurcation diagram for the second example
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