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Summary -- Zusammenfassnng 

Finite Element Method for Domains with Corners. The rate of convergence of 
the finite element method is greatly influenced by the existence of corners on the 
boundary. The paper shows that proper refinement of the elements around the 
corners leads to the rate of convergence which is the same as it would be on domain 
with smooth boundary. 

Die Methode der endlichen Elemente fiir Gebiete mit Eeken. Die Konvergenz- 
geschwindigkeit der Methode der endlichen Elemente wird grunds/itzlich durch die 
Ecken der Grenze beeinfluBt. In dcr Arbeit wird gczeigt, daI~ man durch geeignetes 
Vcrfeinern in der Umgebung der Ecken dieselbe Konvergenz der Methode der end- 
lichen Elemente erzielcn kann, wie im Falle eines Gcbietes mit glatter Grenze. 

1. I n t r o d u c t i o n  

This pape r  deals wi th  the  p rob lem of proper  ref inement  in the  finite 
e lement  m e t h o d  to get the  highest  possible ra te  of  convergence on domains  
wi th  corners. I t  is known  for finite difference methods  t h a t  the  ra te  of  
convergence s t rongly  depends on the  angles of  the  corners. Fo r  regular  
meshes  lower (see e. g. [1]) and  a p p e r  (see e .g .  [2], [3]) bounds  for the  
r a t e  of  convergence are known.  I f  we solve the  nonhomogenous  p rob lem 
L u = f with  homogenous  b o u n d a r y  conditions then  in the  case of regular  
meshes  and  a domain  wi th  corners, the  ra te  of  convergence p r imar i ly  
depends on the  domain  and  not  on the  smoothness  of  f.  I n  the  case t h a t  
the  domain  has ve ry  smooth  boand~ry ,  the  ra te  of  convergence depends  
only on the  smoothness  of  f.  

So there  is the  question. I s  it possible to refine the  ne t  in a proper  
m a n n e r  such t h a t  the  n u m b e r  of  unknowns  ( tha t  we have  to solve) will 
no t  increase and  so t h a t  the  ra te  of convergence will be the  highest  possible 
given only b y  the  smoothness  of  f ?  The answer is a f f i rmat ive  in m a n y  
cases. We  shall show this app roach  on a model  p rob lem b y  solving the  
NEUMANN prob lem for LAPLACE equat ion.  The  approach  can be general ized 
for general  elliptic equat ions  and  na tu ra l  b o u n d a r y  conditions. The case 
of b o u n d a r y  condit ion which not  na tu ra l  will be t r ea t ed  in special paper .  

1 This work was supported in part by National Science Foundation Grant NSF-GP 
7844. 



I. BXBViKA: Finite Element Method for Domains with Corners 265 

The problem of  solving the  l inear system of algebraic equat ions  will 
be s tudied in a later  paper  also. 1%efinement of  t h e  meshsize or elements  
in the  ne ighbourhood  of the  corners is made  ve ry  often in practice.  The  
only mathemat ica l  analysis connected with this idea seems to  have been 
made  by  VOLKOV (see [1] and re la ted papers there).  He  is in teres ted only  
in the h ~ ra te  of convergence in  C norm. This paper  deals with the general  
case in the energy norm. 

2. Some Not ions  and L e m m a s  

Le t  R n  be the  n-dimensional EUCLIDian space, x ~ ( x ~ , . . . ,  Xn), 
__ 2 II x il ~ Z xi ' I x I : max  {1 x~ l}. A bounded  domain  Y2 ~ R n  will be said 

to be an L-domain  [LIPSCHITZ domain]  if there  exist  numbers  a > 0, 
fl > 0, systems of coordinates (xr, 1 . . . .  , X r , n )  ---- (x  r, Xr, n), r ~ 1 , . . . ,  M 
and LIPSCItlTZ functions ar defined on the cubes t Xr, i I ~ ~, i -~ 1 . . . . .  n - -  1 
r ~ 1 , . . . ,  M, so tha t  each point  x of the bounda ry  Y2' can be expressed 
in at  least one s y s t e m  in the form (x'~, ar (Xr)). For  each system the points  
(x~, Xr, n) are inside (resp. outside) of t2 for 

ar (x~) < Xr, n < ar (x~) § fl 

[resp. ar (x~) - -  fi < Xr, n < ar (x~)]. 

In  the paper  we shall assume t ha t  all domains ~2 will be LlesCmTZ domains.  
F u r the r  let us define for h > 0 

~gh = E [x e ~9, q (x, ~9") > h] 
t 2 " h - ~ E [ x ~ s  e ( x , s  ~ h ]  

where Q (x, tg") is the  distance of the point  x to ~2". F r eq u en t l y  we shall 
s tudy  a special t ype  of a domain.  Le t  Z (x'), for x '  E Rn-1 ,  Z (0) --~ 0 be a 
LIPSCHITZ funct ion (with the  LIeSCHITZ constant  M). Then  for h > 0 
let  us define 

GM, ~ 

G~/ ,  z ---- 

. h  
GM, g ~-- 

The domain  GM, x will 

E [(x', x~); 

X t E [( , x~), 

E [(x', Xn); 

Xn > Z ( x ' ) ] ,  

x~ > z (x') + h], 
Z (x') < x~ ~< Z (x') § h]. 

be called M-LIPSCHITZ domain.  Le t  W~ (~9), resp. 
W~ (GM,x),  s >~ 0 reM (not in general an integer) is the  usual SOBOLEV 
fract ional  space, (see e .g .  [4], [5]). Fu r the r  let  y ---- (Yl . . . .  , Y~), Y* ~ Q" 
y~ . yj for i . j ,  ~ --~ (~1 . . . . .  ~ ) ,  ~i ~> 0, k ~> 0 an integer.  

WIt, s Let  Its in t roduce the space 2,v,~ (~Q), k ~ s ~> 0, k integral  

2 2 
II f I1~,,. ---- 11 f Ilw~ (.) + 

W2, y, ~x 
P 

2 _]2 
+ E f [min{1,  I [  o'J (x, Y')}][~x/l~x 25 ~!... ~xj. dx (2.1) 

Xig=k ~ ] = 1  
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where ~ (x, yj) is the distance of  the  points x and Yi. Analogously let us 
define the space W~;v, ~ (GM, z). 

Le m ma  2.1. Let f e W~ (~Q), s >~ O. Let f : 0 on D h. Then 

Ilflin~(~) ~< C h s l[f []w~ <~) (2.2) 

where C does not depend on h and f .  

Proof. 

(1) Using the  usual me thod  of par t i t ion  of un i ty  it is sufficient to  
prove the theorem for GM, ~. 

(2) Because of the  well known theory  of in terpola ted  spaces (see e. g. 
[4], [5]) it is enough to  prove the  result  for s an integer, s >~ 1. 

~]s-1 (x',xn) is an (3) We m a y  assume tha t  for almost  every  x', ~xn 

absolutely continuous funct ion in xn. (See e. g. [6], p. 313). 
Obviously we have 

cO 

.f  ( x ' , x n )  - r ( 8 )  - (x ' , t )dt ,  Yn > Z(x') �9 (2.3) 
Xn 

Using HARDY inequal i ty  (see [7] Theorem 329), we get 

o0 o0 

~ -  tx,  (2.4) 

z (x) z (z) 

In tegra t ing  by  x', we get our  result. 

Le mm a  2.2. Let GM, x be a M-LII'SCHITZ domain. There exists a mapping 
T of W ~ (GM, z) into W ~ (Rn), such that 

( T f ) ( x ) = f ( x )  for x e G M ,  z (2.5) 

and for .f+ W; (GM, z), S ) S ) O we have 

]] T flIw~(Rn ) ~ D (M, S) Hfllw~(~M,z). (2.6) 

where D (M, S) does not depend on Z. 

L e m m a  2.2 is a form of extension theorem which follows immedia te ly  
from the theorem for s integral  by  using the theory  of in terpola ted  spaces. 
(See e . g .  [4], [5]). For  s an integer the lemma is known as the 
CALDERO2q theorem or E.  STEIN universal  extension theorem (see [8]). 

Le m ma  2.3. Let GM, x be a M-LIPSCHITZ domain. Further let ~ > 1, 

q > O, Z7 'q = E [ll x ]l > x-J q], K~ "q -= E [11 x I1 ~< ~-J q], y = (o), 

~ - "  W2,y,c r (GM, x) and f ~-- 0 on GM x (~ Z~ "q* q* q ' 8 .max(1,  M) " 

C is a generalic constant with different values on different places. 
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Then 

where 

~v 

f = ~ _ , f j + g  
j = O  

(2.7) 

(1) = o on  GM,  n q, (2.8) 

(2) f j e  W~ (GM, g) and (2 .9 )  

[I f j  Hw~ ~ Cl z j~ ]l f w~s " ( 2 . 1 0 )  

(3) g = 0 on GM, x N Z~v+l ,  ( 2 . 1 1 )  

Hgl[w~(oM, z ) ~ C 2 1 ] f l l w  ks  G " (2.12) 
2:y,~(M,z) 

In  the  above inequalities, C~ and C 2 do not  depend on j .  

Proof. 

(1) Le t  us pu t  A M = E [(x'~ Xn) , x n > - -  3 �9 m a x  (1, M ) t l  x '  [[]. 

A M(t )  = A M + t, t = (O,t), t > 0 

(i. e. A M (t) -~ E [(x', xn), Xn - -  t ~ - -  3 m a x  (1, M) ]] x'  HJ)- 

t ~ - - t  is F a r t h e r  let us define GM, z GM, z ~ ( AM d- t). Obviously G~, z _ 
3 m a x  (1, M)-LiPscmTz domain.  

(2) Le t  ~j be the extension of the  funct ion f f rom Gt~, z, t1 = q z - j  
into W~(Rn) .  Because [[f[[w~(r 2:0,~(aM, z) we have 

II ~j Ilw2k(~) ~< C~ #~' �9 q[ff[[wk~ a (2.13) 
' 2~0,~r ( M , X  ) 

where C2 does depend in general on q. We have 

G~,z  ~ Z~ 'q n GM, z for all j .  (2.14) 

Le t  ~s now pu t  

q~j+l - -  (~j = f j -  ( 2 .15 )  

On G~, x we have ~sj+l = ~sj = f .  Because f j  = 0 on G~,z, (2.8) holds 
and because of  (2.13) we have proved also (2.10). 

to Because GM, z c Z~,q* (~ GM, x we have q0 = 0 and so 

j = 0  

fi_t N+ 1 u, q and f - -  qN+l ~- 0 on ~ i , z  ~ Z~+I n GM, z so (2.11) is proved.  Because 
of  the  extension theorem - -  L e m m a  2.2 - -  (2.12) holds also. So the  theorem 
is complete ly  proved.  

Le t  us in t roduce one definition. 
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Definition 2.1. We shall say that the function co (x), x ~ Rn is a k-proper 
function (k > 1) / f  

(a) ~ (x) e w~ (R~). 

(b) co (x) has compact support. 

(c) There exists a constant C such that for every f ~ W~ (Rn) and every 
h > 0  there exists C(k ,h) ,  k = ( k , ~ . . . , k n ) ,  k~, i =  1 , . . . , k n ,  integers, 
such that 

]if -- ~ C (k, h) co - (Rn) ~ C Ilfl]w~2(Rn) h '~ (2.17) 

where 0 <~ o~ <~ 1, ~ ~ fi and # ----- min [ /3- -~ ,  k - - ~ ] .  

(d) There exits a constant L, such that i f  S is the compact support of 

then the function Z C (k, h)co(x --hhk ) (2.17) has the support f W~ (Rn) 
% 

in an L .  h neighborhood of S. 

Such functions have been studied in [9]. 

We have introduced the space W k' 2, y,~ (Y2). Let  us introduce now the  
k, s space V2, y,~ (f2), s > 1, k ~ 2, k integer. Le t  

k 

V~: ~ ., ~,~ (~) ~ I I  w~,~,~+j_~ (~), ~ = ( ~ , . .  ~ ) ,  ~ ~>0, 
: = 2  

with the norm 

= max [llfllw~;~,~+:_2(o)]. 

3. The Neumann  Problem 

As a model problem we shall investigate the NEVMA~ problem for 
the equation 

- - ~ u ~ - a ( x )  u = f  on ~ (3.1) 

with a ( x ) ~  0, a (x)~ C% a (x) non equal identically zero with the 
boundary  condition 

~ u  
- - 0  on .(2". (3.2) 

3 n  

We shall be interested in the weak solution. 

DeIinition 3.1. Let ~2 be a LIPSCItITZ domain. The function u ~ W~ (D) 
will be a weak solution of the NEUMANN problem (3.1) and (3.2) i f  and only i f  

f ~u ~v dx  + f 
i=i~ 

a(x) u v d x =  f f v d x  for every v ~ W ~ ( ~ ) .  
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Theorem 3.1. Let  f e L~ (.(2). Then  there exists exactly one weak solution 
of  the NEUMANN problem. 

This is well k n o w n  theorem.  (See e. g. [10]). 

Definition 3.2. Let  f2 be a LIPSCHITZ domain,  y =- (y~ . . . . .  yp) y~ ~ Q',  
Yi # Yj, i ~: j ,  ~ = (ill . . . .  , tip), fli >~ O. The  N~,VMA~N problem wil l  be 
said to be (k, s, y, g) regular i f  its weak solution u e W~ (~)  is such that 

I! u IIv~:~ ~,~(m ~< C Ilf Ilw~_ 2 ~  (~), k >~ 2, s > 1. (3.3) 

4. The Numerical Solution of the Neumann Problem 

Le t  us propose  a m e t h o d  for the  a p p r o x i m a t i v e  solut ion of the  
NEUMANN prob lem in the  sense of  the  Defini t ion 3.1. P u t  ;t > 1, 1 > h > 0, 

> 1, q > 0 ,  q~ > 0 ,  k > 0 ,  ~ > 0  (k, Q integrals).  F u r t h e r  let  (see 
Defini t ion 2.1). 

Q 

1 = 0  k 

where ~o is k-proper  funct ion and  the  second sum is t a k e n  in following 
m a n n e r  

(1) C o ( k , h ) = 0  for k such t h a t  

(2) cj  (k, h) = o, 

supp[w(x--hkql)]h~tl ( 3 D  4 0 3  . 

>~j > 0  for all k such t h a t  

(4.2) 

where 

Qj = 

(x supp ~o h ~-J ql ) ]  (3 Qj # 0 

P 
U K ~.'2q n'q ~,~ , K~,~ = E [x ~ ~ ,  I] X - -  yr l[ <~ y.-J q] 

r = l  

r =  1, . . ., p ,  Yr E -(2". 

(4.3) 

The  value  Cj (k, h) are to  be de te rmined  so t h a t  

U q ---- (V~ ( h' V)A f)L2 

holds for all v = o) ~ : j~  t h a t  occur  in the  sum (4.1), wi th  

(4.4) 

n 

= f ( 2 :  ) ~xi ~x~ -+- a u S v d x  
D i=I 

(4.5) 

8 supp [J (x)] means support of / (x). 

Comput ing  6 / 3 -  4 18 



270 I. BABUgKA : 

and  

(v,f)L,, = f v f  dx. (4.6) 
.Q 

So for Cj (k, h) we get a system of linear algebraic equations. Provided 
tha t  all functions are linear independent  we get a positive definite matr ix .  
Hence the solution exists in this case. I f  the functions were linear dependent  
we m a y  exclude some of them and we get a positive definite m~trix also. 
So u S is determined uniquely by  (4.4) (may be Cj (]c, h) are not). 

Now our goal in general will be following. To select 2, ~, q, ql, k, ~ as 
functions of the parameter  1 > h > 0, to construct the functions 
u~ (h) ~ Wh and 

(1) to est imate the error 

(h)  = [I u - -  llw . 

(2) to determine number  P (h) of the unknowns which we have to 
solve by the system of linear algebraic equations (4.4). 

(3) to get the est imate in the form 

1 

e (h) ~ C lIP (h)]- ~-]" II f ilw~- 

Let  us prove the following theorem. 

Theorem 4.1. Let the N~UMANN problem be (k, s, y, ~) regular with 
/~ ~ 2, fl = (ill, �9 �9 ", tiP), ~i  ~ ~0 < 1, S > 1 as in Definition (3.2). Let ~o 
be It-proper function and 

z > l ,  ~ - - ~ > I ,  ~ <  1. (4.7) 

[51 [ '  l l g ~ ] - i  > 2 ( / c _  1) max i,  max  s - - 1  ' 1 -flo- (4.8) 

e = I s - -  1 lg~ J ~- la (4.9) 

Then 

q 
ql ~ 2 L n  

fl ug -- u I]w~(~ ) ~ c a  ~-1 I]fllw~_2(~). (4.11) 

Proof. 

(1) Let  us take  q ~ 0 such tha t  the sets K ~,2q r = 1.. ~ are disjoint. 

(2) By  the assumption u ~ ~,u,~ (D), and using L e m m a  2.3 we m a y  

4 I[~]l means the integral part of ~. 
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write  

where 

u = u  o +  Z Z U l , ~ + u o ,  o (4.12) 
/ = 1  ~ = 0  

!i Uo Itw~ (~> ~< C Ilf llw~- ~(~ ), (4.13) 

II uz,~ Ilw~(~ > ~< C ~<~+~-2)I l f  Iiw~_ 2 <.~) , (4.14) 

u~,l = 0 outside of  K~,~'q, 

(4.15) II Uo, o ![w~ (z> ~< C ]l f IIw~- (~) '  

P 
uo, o = 0 outside U Kv+~, ~.~'q (4.16) 

/ = 1  

(3) Le t  1 > h > 0. Because of  cont inuat ion theorem (see Lemma 2.2) 
and Definition 2.1 there exist  constants  C o (k, h) such tha t  

n o -  ~ Co(k, h) o~( ~q~ )llw~(~) ~< Chk-X ltfllw~_~(~). (4.17) 

Similarly we m a y  find Cj, t (k, h) such tha t  

ul, l Z C , , , ( k , h ) o J ( x - q ~ h ( ~ ) - ' k )  

�9 Ilw2k_ = (4.18) <'~Chk-1 g~'(flt-t-k- 2)(~ ~)-<k-1)J I]f 2<z> 

= C hk-1 zJ<~t- 1) ~-(k-1)j llf Ilw~- 2 (z) 

The funct ion 

'~ Cj, ~ <k, h) o~ ( x - ql h <~ ~)-j ((u ~)-J <4.19) 
k 

has suppor t  inside the  L .  h (~ ~)-J ql neighbourhood of K~:[. Provided  
tha t  ~-J h ~< 1 we have 

supp lo~ (x -- ql h (~ ~)-J k )] 

for every k tha t  occurs in (4.19). B u t  from (4.8) it follows immedia te ly  
tha t  for h < 1, h ~-q ~< 1. Because of  the  L e m m a  2.1 we have 

It Uo, o Ilwl<~) ~< C [q ~-<~ + 1>38-1 IIf IIw~ 2 (~) 

B y  assumption we have 

~--(~-l-1) (8--1) ~ hk-1. 

18" 
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(4) Because (zz~ ~ - ( k - D ) <  1 b y  assumption,  we have const ructed a 
funct ion ~o(h) such t ha t  

F r om this we get immedia te ly  t h a t  

[I ui(n) - -  u [Iw~ (m ~< C hk,  1 [[ f [lw~ _ 2 (~) 

(see e.g. [11]). 
Let  us now count  the number  P of unknowns  t h a t  we have to find 

under  conditions of  Theorem 4.1. Denot ing by  Pj ,  the number  of Cj (k, h) 
in (4.1) we have 

i 
Po ~ C 1 7 '  

P I  ~ C 1  [1 + ~ - J h L ' ] n ~ J .  

Because ~-e h < 1 and 0 < $ < 1 we have 

] 
P ~< h~  C. 

Now let us in t roduce the quan t i ty  

where I DI  is the volume of the domain  D. Le t  us call H an efficient 
meshsize. I t  is obvious t h a t  in the  ease of regular  ne t  H N h. So we have 
proved  

[1 u - - u g  I[w~ (m ~ CH~'llf[]w~_2 

with 
# - - - - k - - l .  

5. Applications and Conclusions 

The basic not ion which we have used is the not ion about  (k, s, y, [3) 
regular i ty .  This is a typical  case for the boundaries  with cones. The sin- 
gular i ty  of  the  solution in the neighborhood of  a cone is s tud ied  by  
KOND~AT'EV (see [12]). These results are especially impor t an t  in the  case 
n = 2, i . e .  in the  plane when the  domain  has piecewise smooth  
boundary ,  par t icular ly  if the  boundary  is composed from straight  
lines in the  neighborhood of  the corner. In  this case and cases t h a t  are 
close to  tha t ,  the  behavior  of the  solution is described b y  KONDRAT'EV 

1 
in a sufficient manner  for our  purposes. In  this case we have/3  0 = ~ -  -~ e, 

e > 0, e arbi t rary .  In  the case tha t  a (x) = 0 in (3.1) in the  neighborhood 
of the  corner we m a y  show the regular i ty  b y  approach similar to [13]. 
F rom these results and [14] we see also t ha t  the  solution u ~ W~ (I2), s > 1. 
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T h e  conc lus ion  is t h a t  we  a re  a b l e  t o  so lve  t h e  p r o b l e m  in  t h e  p l a n e  
on  d o m a i n s  w i t h  co rne r s  w i t h  t h e  s a m e  r a t e  o f  c o n v e r g e n c e  as  on  i n f in i t e  
s m o o t h  d o m a i n  p r o v i d e d  t h a t  we  ref ine  t h e  m e s h s i z e  in  t h e  p r o p e r  w a y  
in t h e  n e i g h b o r h o o d  o f  t h e  corners .  T h e  r a t e  we m e a n  w i t h  r e s p e c t  t o  
t h e  n u m b e r  o f  u n k n o w n s  or  - -  i t  is  e q u i v a l e n t  - -  w i t h  r e s p e c t  to  t h e  
e f f ic ien t  m e s h s i z e  H .  I t  is e a s y  t o  see b y  t h e  t h e o r y  o f  t h e  n - w i d t h  t h a t  
i t  is t h e  h i g h e s t  p o s s i b l e  o rde r .  See  a lso  [15] ,  [16] .  

W e  d i d  n o t  d i scuss  t h e  p r o b l e m s  c o n n e c t e d  w i t h  t h e  use  o f  t h i s  
t e c h n i q u e  in  t h e  n u m e r i c a l  a p p r o a c h .  T h e s e  p r o b l e m s  wi l l  be  d i s c u s s e d  
in  a s u b s e q u e n t  p a p e r .  
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