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Summary — Zusammenfassung

Finite Element Method for Domains with Corners. The rate of convergence of
the finite element method is greatly influenced by the existence of corners on the
boundary. The paper shows that proper refinement of the elements around the
corners leads to the rate of convergence which is the same as it would be on domain
with smooth boundary. ‘

Die Methode der endlichen Elemente fiir Gebiete mit Ecken. Die Konvergenz-
geschwindigkeit der Methode der endlichen Elemente wird grundsétzlich durch die
Ecken der Grenze beeinflult. In der Arbeit wird gezeigt, dall man durch geeignetes
Verfeinern in der Umgebung der Ecken dieselbe Konvergenz der Methode der end-
lichen. Elemente erzielen kann, wie im Falle eines Gebietes mit glatter Grenze.

1. Introduction

This paper deals with the problem of proper refinement in the finite
element method to get the highest possible rate of convergence on domains
with corners. It is known for finite difference methods that the rate of
convergence strongly depends on the angles of the corners. For regular
meshes lower (see e. g. [1]) and upper (see e.g. [2], [3]) bounds for the
rate of convergence are known. If we solve the nonhomogenous problem
L w = f with homogenous boundary conditions then in the case of regular
meshes and a domain with corners, the rate of convergence primarily
depends on the domain and not on the smoothness of f. In the case that
the domain has very smooth boundary, the rate of convergence depends
only on the smoothness of f.

So there is the question. Is it possible to refine the net in a proper
manner such that the number of unknowns (that we have to solve) will
not increase and so that the rate of convergence will be the highest possible
given only by the smoothness of f? The answer is affirmative in many
cases. We shall show this approach on a model problem by solving the
NEUMANN problem for Laprack equation. The approach can be generalized
for general elliptic equations and natural boundary conditions. The case
of boundary condition which not natural will be treated in special paper.

t This work was supported in part by National Science Foundation Grant NSF-GP
7844,
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The problem of solving the linear system of algebraic equations will
be studied in a later paper also. Refinement of the meshsize or elements
in the neighbourhood of the corners is made very often in practice. The
only mathematical analysis connected with this idea seems to have been
made by VoLkov (see [1] and related papers there). He is interested only
in the A2 rate of convergence in € norm. This paper deals with the general
case in the energy norm.

2. Some Notions and Lemmas
Let R, be the n-dimensional EuoLipian space, x = (2, . . ., Zn),
lzi?= E 22, | x| = max {| #; |}. A bounded domain Q2 = R, will be said
to be an L-domain [Lipscuitz domain] if there exist numbers o« > 0,

g >0, systems of coordinates (%, 1, ..., %ru) = (2, Zr,a), r=1,..., M
and LrpscHiTz functions a, defined on the cubes |2y ; | < 2,9 =1,...,n — 1
r==1,..., M, so that each point x of the bounda,ry £2° can be expressed

in at least one system in the form (x;, a, (z,)). For each system the points
(%7, r,n) are inside (resp. outside) of 2 for

ar (-Z'l) < xr n << Qr (x’) _|_ /3
[resp. ar (z;) — B < xp,n < ar(x ;).

In the paper we shall assume that all domains Q will be LipscHITZ domains.
Further let us define for & > 0

On=Fxe®, ol Q) >h]
Or=Eze®, o Q) <h]

where g (x, £2') is the distance of the point 2 to £°. Frequently we shall
study a special type of a domain. Let y (z'), for ' € Ry—1, 7 (0) = 0 be a
LipscHITz function (with the LrpscHITZ constant M). Then for A > 0
let us define

Gy, = B [(x', xp); an >y ()],

Ghr,, = B[, ) @0 > g (2') + A1,

Gify = B [(@', 2n); (') < @0 <y (@) + R].

The domain Gy, will be called M-Lipscarrz domain. Let W (), resp.
WS (Ga,y), s >0 real (not in general an integer) is the usual SoBoLEV
fractional space, (see e.g. [4], [5]). Further let y = (yy, - . ., ¥p), ¥i€ 2

yi £y;for i =74, a= (.. ocp) o; 20, k > 0 an integer.
Let us introduce the space W& . (2), k >s > 0, k integral
2 _ 2
1By =171,

+ 2 f[min{l, l_p[ 0% (, yj)}]z[ vl Mz:f e ]2 dx (2.1)

Z‘ij=k Q2 j=1
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where ¢ (%, y;) is the distance of the points # and y;. Analogously let us
define the space W& . (Gar,y).

Lemma 2.1. Let fe W3 (2), s = 0. Let f = 0 on Q. Then
<

1fllzy@ < OB fllws o (2.2)

where C does not depend on h and f.

Proof.

(1) Using the usual method of partition of unity it is sufficient to
prove the theorem for Gr,,.

(2) Because of the well known theory of interpolated spaces (see e. g.
[4], [5]) it is enough to prove the result for s an integer, s > 1.
df¢-L (&, Ta)

(3) We may assume that for almost every «, o is an
absolutely continuous function in x,. (See e. g. [6], p. 313).
Obviously we have
F@ o) = — p [ ¢ =il @ ndt g =2 @). (23)
F@a) = — 5 )" " g 0L Yn = (X ) '
Using HARDY inequality (see {7] Theorem 329), we get
, 5F v oV
f(f(x,xn))zdxn < O (s) ¥ f (w (x,t)) at. (2.4)
x (@) % ()

Integrating by 2’, we get our result.

Lemma 2.2. Let Gur,y be a M-LipscHITZ domain. There exists a mapping
T of WS (Gu,y) into W3 (Ry), such that

(Tf)®) =f(x) for xzelGy,, (2.5)
and for fe W5 (Ga,y), S = s >0 we have
< . 2.
1Ty gy < DAL Ul (26)

where D (M, 8) does not depend on y.

Lemma 2.2 is a form of extension theorem which follows immediately
from the theorem for s integral by using the theory of interpolated spaces.
(See e.g.[4], [5]). For s an integer the lemma is known as the
CALDERON theorem or E. STEIN universal extension theorem (see [8]).

Lemma 2.3. Let G, be a M-LipscHITZ domain. Further let » > 1,
q>0, Zp'=E[lz| >x7ql, Ky'=E[|x| <x7q]l, y=/(0),

s 5, q* q
o = o, fE Wg:y’a (GM’%) and f: 0 on GM,Z N Zo’q q* :m .

t C is a generalic constant with different values on different places.
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Then
N
f=Yrli+g (2.7)
i=0
where
(1) fj =0 on GM,Z N Z’;’ q’ (28)
(2) fje Wt (Gu,y) and (2.9)
11l gy SO 1 N (2.10)
(3) g=0on Gy, NZ%1,, (2.11)
191 e <O 1 Tt (2.12)

In the above inequalities, C; and C, do not depend on j.

Proof.
(1) Let us put AM = K [(z/, ), xp > — 3 - max (1, M) ||z’ |[].
AM (@) =AM b, £ =(0.0), (>0

(i.e. AM () = B [(z, zp), ®p — ¢ = — 3max (1, M) | 2" ||]).

Further let us define G4 , = G,y N (AM + ¢). Obviously G4, , — ¢ is
3 max (1, M)-LipscHITZ domain.

(2) Let ¢; be the extension of the function f from 6% ,, t; =g =™

into W% (R,). Because | f]| . w6l ) <0 4" HfHW’é’M(GM,x) we have
193yt gy < O 0 s (213)
where C, does depend in general on ¢g. We have
G4, > Z7" N Gy, for all j. (2.14)
Let us now put
pi+1 — @5 = Js. (2.15)

On G% , we have @1 = @; = f. Because f; =0 on G%, , (2.8) holds
and because of (2.13) we have proved also (2.10).

Because Gy , © Z%7 N G,y we have g, = 0 and so
N
Z Ji=onn (2.16)
i=0

and f — py+1 = 0 on fo”;l > Z%%, N G,y so (2.11) is proved. Because

of the extension theorem — Lemma 2.2 — (2.12) holds also. So the theorem
is completely proved.

Let us introduce one definition.
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Definition 2.1. We shall say that the function o (x), x € By is a k-proper
SJunction (k > 1) if

(@) o (x) € W3 (Ry).
(b) w (x) has compact support.

(¢) There exisis a constant C such that for every fe WE(R,) and every
h > 0 there exists C (k,h), k= (k,,..., kn), ks, 1 =1,..., ky, infegers,
such that

Hf— YO (%, h,)w(”“hh’“.) |

where 0 <o <1, o« < and p =min [f — o, k — a].

Clfl h (2.17)

« <Rn> wh ()

(d) There exits a constant L, such that if S is the compact support of
f € WE (Ry) then the function 2 C (k, h) w(m _hﬂ) in (2.17) has the support
in an L - b neighborhood of 8.

Such functions have been studied in [9].

We have introduced the space W&? . (2). Let us introduce now the
space V&7 . (9), s > 1, k > 2, k integer. Let
k

V535(Q) < T[ Witvsri-2 (2 8= (Bu - Bo) B =0,

j=2
with the norm
i = max [|f] .
Vzgﬁm) =2 ..k W%;ﬂ'r? 2 )

3. The Neumann Problem
As a model problem we shall investigate the NEUMANN problem for
the equation
—Au+a@u=f on £ (3.1)
with a(z) >0, a(x)eC», a(z) non equal identically zero with the
boundary condition

dU

220 on Q. (3.2)

dINn

We shall be interested in the weak solution.

Definition 3.1. Let Q be a Liescurrz domain. The function uw e Wy (2)
will be a weak solution of the NEUMANN problem (3.1) and (3.2) if and only if

Z f Sz szdﬂc-i—f zavdxﬁ]fvdx for every ver( )

i=18
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Theorem 3.1. Let f € L, (2). Then there exists exactly one weak solution
of the NEUMANN problem.

This is well known theorem. (See e. g. [10]).
Definition 3.2. Let ©Q be a LipscHITZ domain, ¥ = (Y, . - ., Yp) Y1 € &2,

Yi =Y 0 *+75 B={(B...,0p) Bi =0. The NEUMANN problem will be
said to be (k, s, y, B) regular if its weak solution we W} (Q) is such that

! <C , k=2 s>1. 3.3
1 sy SOW lpms i B> (3.3)

4. The Numerieal Solution of the Neumann Problem

Let us propose a method for the approximative solution of the
NEUMANN problem in the sense of the Definition 3.1. Put 1 > 1,1 > h > 0,
x>1,4g>0,¢,>0, k>0, 0 >0 (k, o integrals). Further let (see
Definition 2.1).

4

w=3 Y 0k h)w(%) (4.1)

j=0 &k

where o is k-proper function and the second sum is taken in following
manner

(1) Cy(k, h) == 0 for k such that
supp [w (ﬁ——ﬁ%lki)] N Q2 = 3 (4.2)
(2) Cj(k,h) =0, ¢ >=j >0 for all £ such that
supp [w (%)] NQ; =0 (4.3)
where

P
Q= U Kb, K =E[we®, |o—yll <x7q]

r=1

r=1,...,p, yr.

The value C; (k, k) are to be determined so that

(uf, ©)a = (v, flz, (4.4)
holds for all v = (W—) that occur in the sum (4.1), with
" bu" d
v
(ug, v)a = f(z Mc: S T 4 U)dx (4.5)
o i=1

3 supp [f (x)] means support of f (z).

Computing 6/3—4 18
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and

@, f)zs = f vf da. (4.6)

Q

So for C;(k, h) we get a system of linear algebraic equations. Provided
that all functions are linear independent we get a positive definite matrix.
Hence the solution exists in this case. If the functions were linear dependent
we may exclude some of them and we get a positive definite matrix also.
So ¢ is determined uniquely by (4.4) (may be C; (k, k) are not).

Now our goal in general will be following. To select 1, x, ¢, ¢y, k, o as
functions of the parameter 1 >h >0, to construct the functions
U™ = wy and

(1) to estimate the error

) =llw—u .

(2) to determine number P (k) of the unknowns which we have to
solve by the system of linear algebraic equations (4.4).

(3) to get the estimate in the form

1
e(h) <CIPR)] "FISI_4-
2
Let us prove the following theorem.

Theorem 4.1. Let the NEUMANN problem be (k, s, y, B) regular with
E>=2 8= (Bp---Pp) bi <Po< 1, s >1 as in Definition (3.2). Let w
be k-proper function and

x>1, A==xz&>1 &<l (4.7)

g£] >2(k —1) max[l, Tél—,;]max[}—_l—l, ﬁ] (4.8)

9——-[?:1 ]I%h,‘;]‘—i-l‘l (4.9)
0 <gio- (4.10)
Then
| ug —u I!W; o SO RE-Lf I{W,zﬂ_zm) . (4.11)
Proof.
(1) Let us take ¢ > O such that the sets I?;‘:rzq r=1,..., p are disjoint.

(2) By the assumption u € V&, ;(2), and using Lemma 2.3 we may

4 |[£]] means the integral part of &.
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write
V4 4
+ Z D w4 o0 (4.12)
-1 j=0
where
I} 2o Ilwk(m Clfil w2 (4.13)
R j (B, +k—2) 4.14
00,1 < €4 nfnw,é_m (4.14)
uy,; = 0 outside of K}/,
| < 4.15
000y gy < O s (4.15)
Y4
Uy, o = 0 outside U Kp%,, (4.16)

=1

(3) Let 1 > A > 0. Because of continuation theorem (see Lemma 2.2)
and Definition 2.1 there exist constants C, (k, k) such that

—hkqg,
] = X Ok by 0“5 EL
Similarly we may find Cj ; (k, k) such that

J s = X O o Mo (SHEEET)
k

OB Sl gz, (417

l 1 )]
Wg ()

w} @
SO hE1 . Btk =2 (50 £)= G- || f Hw’“— g = (4.18)
2
— O Bh1 56— D) g~(k-1)j | X
O RE-1 5 B =1 g=(6=1J .!fllwg_z(g)
The function
g h (& Tk
Y Cj.1 (k. 1) w(x—gqh(x‘—’;)_)]—) (4.19)
k

has support inside the L -k (x &)~/ ¢, neighbourhood of K7:f. Provided
that &7 h <1 we have

z—qih(E) Tk .2
supp [a) (WJ](\K;Z‘I + 0
for every k that occurs in (4.19). But from (4.8) it follows immediately
that for A < 1, h & < 1. Because of the Lemma 2.1 we have

< O [g x—{et+D]s-1 .
e <Ol P ez

[l 2o, 0
By assumption we have
w—@t1) (s-1) < ph-1,

18*
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(4) Because (x%~1 £~(¢-1)) < 1 by assumption, we have constructed a
function %e® such that

” ﬁlf;(h) " u“ 1 < O hk-1 ”f“wk— 9
2

W3 (@) @

From this we get immediately that

1D — Ly SO

g () @)
(see e. g. [11]).

Let us now count the number P of unknowns that we have to find
under conditions of Theorem 4.1. Denoting by P;, the number of Cj (k, k)
in (4.1) we have

1
h_n ’

P, <C

Py <Co [l + &7 h L.

Because &°h < 1 and 0 << £ < 1 we have
]

ixa

P <+ 0.

Now let us introduce the quantity

where | Q| is the volume of the domain 2. Let us call H an efficient
meshsize. It is obvious that in the case of regular net H ~ h. So we have
proved

=l ) < O H I f s

)
with
w=F%k—1

5. Applications and Conclusions

The basic notion which we have used is the notion about (k,s,y, B)
regularity. This is a typical case for the boundaries with cones. The sin-
gularity of the solution in the neighborhood of a cone is studied by
KonDRAT'EV (see [12]). These results are especially important in the case
n =2, i.e. in the plane when the domain has piecewise smooth
boundary, particularly if the boundary is composed from straight
lines in the neighborhood of the corner. In this case and cases that are
close to that, the behavior of the solution is described by KoNDRAT'EV

. . . 1
in a sufficient manner for our purposes. In this case we have §, = — + &,

e > 0, ¢ arbitrary. In the case that @ () = 0 in (3.1) in the neighborhood
of the corner we may show the regularity by approach similar to [13].
From these results and [14] we see also that the solution » € W5 (2), s > 1.
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The conclusion is that we are able to solve the problem in the plane
on domains with corners with the same rate of convergence as on infinite
smooth domain provided that we refine the meshsize in the proper way
in the neighborhood of the corners. The rate we mean with respect to
the number of unknowns or — it is equivalent — with respect to the
efficient meshsize H. It is easy to see by the theory of the n-width that
it is the highest possible order. See also [15], [16]. .

We did not discuss the problems connected with the use of this
technique in the numerical approach. These problems will be discussed
in a subsequent paper.
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