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Abstract - -  Zusammenfassung 

A Direct Simulation Monte Carlo Scheme and Uniformly Distributed Sequences for Solving the Boltzmann 
Equation. The Direct Simulation Monte Carlo (DSMC) scheme of Nanbu is considered for the solution 
of the Boltzmann equation in a simplified case. It is interpreted as a one-step method using particles 
combined with numerical quadratures after each step. A modified scheme in which the particles are 
ordered after each step is proposed. It is called the Low Discrepancy (LD) method. The error of the LD 
method is defined as the discrepancy of the set of particles relative to the exact solution. This error is 
estimated by means of other discrepancies, namely those of the sequences which perform the 
quadratures. The replacement of pseudo-random numbers used in the quadratures by uniformly 
distributed sequences is consequently suggested. Numerical comparisons are given between the DSMC 
scheme and the LD method that repeatedly uses the HammersIey sequence in the quadratures (LDH 
method). 

AMS Subject Class~cations: Primary 65M15; secondary 65C05, 11K38. 

Key words: Boltzmann equation, low discrepancy sequences, error analysis. 

Ein direktes Monte-Carlo-Simulationsverfahren und gleiehverteilte Folgen zur Liisung der Boltzmann- 
Gleichung. Es wird das direkte Monte-Carlo-Simulationsverfahren (DSMC) von Nanbu betrachtet, um 
die Boltzmann-GIeichung in einem vereinfachten Fall zu 16sen. Das Verfahren wird als eine 
Einschrittmethode mit Teilchen interpretiert, die nach jedem Schritt mit Quadraturen kombiniert wird. 
Es wird ein modifiziertes Verfahren vorgeschlagen, in dem die Teilchen nach jedem Schritt angeordnet 
werden. Es heiBt die niedrige Diskrepanz-Methode (LD). Der Fehler der LD-Methode wird als die 
Diskrepanz der Menge der Teilchen bezfiglich der exakten L6sung definiert. Die Abschfitzung der 
Fehler erfolgt dabei fiber die Diskrepanzen der Folgen, die die Quadratnren generieren. Es wird folglich 
vorgeschlagen, die Pseudozufallszahlen in den Quadraturen durch gleichverteilte Folgen zu ersetzen. Es 
werden numerische Vergleiche zwischen dem DSMC-Verfahren und der niedrigen Diskrepanz- 
Methode, die mehrmals die Folge von Hammersley benutzt (LDH-Methode), angegeben. 

Introduct ion  

I n  1980 K . N a n b u  [12]  p r o p o s e d  a D S M C  s c h e m e  for  so lv ing  t h e  B o l t z m a n n  

e q u a t i o n  for  t h e  s p a t i a l l y  i n d e p e n d a n t  c a se  w h i c h  c a n  b e  s u m m a r i z e d  as  fol lows.  
T h e  in i t i a l  ve loc i t y  d i s t r i b u t i o n  (in Ns) )Co is a p p r o x i m a t e d  b y  a s u m  of  N D i r a c  

m e a s u r e s :  

f(o) = - - 1  ~ 6 ( v - v ? ) ) ;  
�9 N l < _ i < _ N  
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the time is discretized by steps of length A t; the approximation 

f t . ,  = 1 ~ 5 (v - v_~ ")) 
N 1NiNN 

of the velocity distribution at time t (") = nA ~ is obtained from f{" t) in two phases. 
First an intermediary measure g(") is defined by a direct one-step method. It is a 
linear combination of N Dirac masses and also of N z surface measures on spheres. 
Nanbu interprets the coefficients as collision probabilities, the points where the 
Dirac masses are concentrated as velocities of uncollided molecules and the spheres 
as sets of new velocities of colliding molecules. The approximation f(n) is then 
computed by using pseudo-random numbers which sample new discrete velocities 
according to the preceding collision probabilities and probability measures. The 
computing task of the original algorithm of Nanbu is proportional to N 2 (to N when 
a Maxwellian molecular model is used). In 1986 H.Babovsky [1] proposed a 
stochastic equivalent (subsequently called DSMC*) to the DSMC scheme that 
reduces the computing task to be always proportional to N. He has recently proved 
[2] that the DSMC (and DSMC*) scheme converges almost surely to the solution of 
the time-discretized Boltzmann equation. On the other hand, the numerical 
experiments ofH. Ploss [16] have shown that the DSMC* scheme can compete with 
the Bird algorithm [3] which is almost always applied by engineers. 

It turns out that the crucial tool for the numerical analysis of simulation schemes is 
the discrepancy. It was already used in 1973 by H. Neunzert and J. Wick [13] as a 
measure of the difference between the exact solution of an integro-differential 
equation and its simulated solution. For general information about uniform 
distribution of sequences and discrepancy, we refer to [9]. 

Here the analysis is restricted to the Boltzmann equation for an infinite, spatially 
homogeneous and isotropic gas (the velocity distribution is radially symmetric). A 
crude simplification of the Maxwellian molecular model is used: the differential 
cross section a (g) equals k/g, where g is the relative speed and k is some nonnegative 
constant. 

The paper is organized as follows. In Section 1 we first derive a weak formulation of 
the simplified Boltzmann equation to which the analysis is restricted. A formulation 
of the DSMC scheme is then given: the intermediate step which leads from g(") to f(") 
is presented as a numerical quadrature of some function on [0, 1) 4, with the pseudo- 
random numbers as nodes. A modified scheme, subsequently called Low 
Discrepancy (LD) method, is proposed. In addition to the steps of the DSMC 
scheme, the v~ "), 1 <_i<_N, must be ordered according to their magnitude. In 
Section 2 we recall the definitions of discrepancy, *-discrepancy and uniformly 
distributed sequences. We then define the error of the LD method at time r as the 
*-discrepancy of F ~") = {vl ") : 1 _< i _< N} relative to the exact velocity density at time t ("). 
The numerical analysis of the LD scheme is achieved by combining a classical error 
analysis of a one-step method with an estimation of a quadrature error (the ordering 
of the vl "), 1 _<i<N, is crucial here). The error is estimated by means of the 
discrepancies of the sequences in [0, 1)4 which perform the quadratures. This ensures 
the convergence when uniformly distributed sequences are used. In Section 3 we first 



A Direct Simulation Monte Carlo Scheme and Uniformly Distributed Sequences 43 

give the exact solution discovered by M. Krook and T. T. Wu [8J. The three schemes 
that are implemented are precisely presented. The DSMC and DSMC* schemes 
make use of linear congruential pseudo-random numbers; the LD method 
repeatedly uses the same Hammersley sequence for the quadratures (LDH method). 
In the case considered by Krook and Wu, the effective errors at a given time T are 
then computed by these three schemes. The errors of the DSMC and DSMC* 
schemes increase when N grows and is always a power of 2. Otherwise, the LDH 
method outperforms the others for large time steps but, in accordance with the 
theoretical predictions of Section 2, its error increases when A t decreases. 

1. T h e  D S M C  S c h e m e  and the  L D  M e t h o d  

We consider an infinite spatially homogeneous gas whose differential cross section is 
inversely proportional to the relative speed. We suppose that the velocity 
distribution is radially symmetric. From the Boltzmann equation which describes 
the evolution of this gas we derive a weak formulation which is suited to a numerical 
treatment. For the mathematical analysis of the Boltzmann equation we refer to [4]. 

Let k > 0 and fo be a function ~+--, ~+ such that 

v2 fo(v)dv= l. (1.1) 
~+ 

Let T >  0 a n d f b e  a regular function R + x [0, T] ~ N + which verifies the Boltzmann 
equation 

Of k 
- -  [ f ( l _  ], t ) f ( I  I,t) at  (l_vl, t ) = - -  S v' _w' 

rr ~3 • (1.2) 
n. (v-_w) 

-f(Iv_l,t) f(Iw_ l,t)] - dw_ dn, v_sR 3, t~(O, 7) 
I_v-_w I 

where 

2 2. . (v-_w)>O},  &_,~={_neS n_ 

v ' = v - n .  (_v- _w)_n, _w'=_w +_n. (_v-_w)_n 

with the initial condition 

f(l_v], 0) =f0 (I v [), _v ~ N3. (1.3) 

The integral on the right-hand side of(1.2) a priori depends on v: we establish that it 
only depends on I_vl. 

If B (N +) is the space of all bounded measurable functions everywhere defined on ~ +, f 
also satisfies 

d k 
d~ ~ 4(v)v2f(v't)dv=4rr2 ~ O([v_[)[f(lv_'l,t)f(lw_'l,t) 

~+ ~6 x s~, z (1.4) 
n. (_v- _w) 

--f([_v[, t)f(I _w I, t)] d v d_w d_n, q5 6 B (R +). 
I v-_wl 
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For  n ~ S 2 the application 

T,: (;, _w) e ~6__, (_v', _w') e R6 

is linear and its determinant  equals - 1. The change of variables defined by ~ in the 
first par t  of the r ight-hand side of (1.4) leads to 

d k 
d t  ~+ ~ c/)(v)vZf(v't)dv=--4~r 2 ~ [q~(l_v'l)-q~(l_vl)] 

~o~s~.~ (1.5) 
n .  ( v -  _w) 

�9 f(l_vl, t)f(lkvl, t) - dv_dwdn_, dpsB(~+) .  
I_v-wl 

For  (v, _w) ~ R 6 with _v 5~ ~_v, the application 

1 
T ~  2 ~ _ _ [ v _ w _ _ 2 n . ( v _ w ) n _ ] ~ S 2  _, : _ n ~ S ~ , _ ~  _v I_v -_w]  - - 

is a Cl-diffeomorphism. The change of variables defined by ~ ,~  in the integral term 
of (1.5) leads to 

d k 
- ~ [q~ (l_v' I ) -  4~ (l_v I)] dt y dP(v)vaf(v ' t )dv ( 4n)2 a~215 

2+ 
( 1 . 6 )  

�9 f([  v I, t)f([ w_[, t) dr_ dkv dr, ~ ~ B (~+),  

where 

1 
v' = ~  (_~+_w+ I v -  w I_~). 

Let us denote / =  [0, 1). The  r ight-hand side of (1.6) is expressed by using the 
variables 

1 ( ;+~y) ._v  1 v . w  
v=l_v], w=l_wl, a = ~ %  2 I v + w ] '  b =  2--t 21;l/_wl" 

For  (a, b, w, v) e I z x N2+ let 

[a, b; w, v] = [-v 2 + w z + ((132 -~ w2) 2 - 4 (2 b - 1 )  2 t; 2 W2) 1/2 (2 a - -  1)]1/2/21/2. 

We then obtain the convenient  weak formulation 

d t  (~ (v ) v z f ( v ' t ) dv=4kTr  ~ V(~(v')-O(v)] 
Rz+ x 12 

~ (1.7) 
�9 v z f ( v , t ) w 2 f ( w , t ) d v d w d a d b ,  (o~B(R+) ,  

where v' = [a, b; w, v]. 

Starting from equation (1.7) we present the D S M C  scheme and the alternative 
DSMC* scheme. By modifying the D S M C  scheme we define a new method.  As this 
method is expected to lead to small discrepancies, that  is, to small errors (see 
Section 2), we call it Low Discrepancy method.  
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We denote by 6 (v-Vo) the Dirac measure located at the point Vo E R. For two 
nonnegative integers M and N, define 
(i) a time step A t = T/M, assuming q = 4 k 7~ A t < 1, 

(ii) a sequence F ~~ = {v! ~ : t _< i <_ N}, such that 

f(o)_ 1 - ~  Y, ~(~- ~?)) 
l <_i<_N 

approximates (in a sense that will be subsequently specified) the initial velocity 
density V2fo(V). For 1 <_n<_M, 

Vtn)={v!') : I _ < i < N } ~ +  
and 

f(.) =--1 E a (v - vl ")) 
N i<_igN 

are generated as follows. 

(i) 

(ii) 

A Radon measure g(") on R+ is defined by 

dP(v)g(")(dv) = ~ ~)(v)f("-l)(dv) 

+q ~ [~(v')-dp(v)]f("-X)(dv)f("-l)(dw)dadb, ~EB(~+), 
~2+ x 12 

or equivalently, 

. 1 
4)(v)g()(dv)=~[(1-q) 2 0 ( v l  "-1~) 

R+ l<_i<_N 

q 
+ ~  ~ ~ ~ O([a,b;v}"-l),v~"-l)])dadb], 4EB(N+). 

l<_i<_N I<_j<~N 12 

For 1 < i_< N, 1 < j  <_ N, let 
Zj, i be the characteristic function of 

[q~__j--i j )  [ i - 1  N )  
,q x N ' ' 

Zi be the characteristic function of 

[q, 1) x EiN1 ; )  

If K (") ~b is defined on ! 4 by 

K(")4)(a,b,c,d)= F. 4J(v~'-l)))~i(c,d) 
l <_i<_N 

+ ~, Z dp([a,b;vT-1),v!"-')])Zj, i(c, d) 
l <i<~N I <_j<N 

then 

i 4 (v) g(")(dr) = ~ K(") r (z) & .  
~+ 14 

(1.8) 

(1.8') 
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Let us choose a sequence in 14, 

z(n) = {Z(n-1)N +/=(a(n-1)N +t, b(n-1)N+/, C(n- t)N +t, 

do,_t)N+t) : 1 G L E N }  
such that: 

A n y s u b s e t 1 3 x l i N l  i )  , ~- , 1 <_i<_N, contains one term of Z ~'). (1.9) 

Then f(") is defined by 

1 
O(v) f ( " ) (dv )=~t  ~ K(")O(z(,,_,)u+,). (1.10) 

~+ <_I<_N 

According to property (1.9) the possibility of a collision for a given molecule i within 
the time interval (r r is once considered. If 

Zj, i(C(n-1)N +l, d(n_ l)N +l) = 1, 

then molecule i collides with molecule j and its new velocity v(. ") equals 
1 

[a{,-1)N+l, b(,-1)N+l" V} "-1), V~"-I)]. 

If 

Xi(c(, 1)u+l, d(,-1)N+t) =1 ,  

then molecule i does not collide and vl")=v} "-~1. 

A formulation of the DSMC* scheme is obtained as follows: 

)~i, ~ is replaced by ),~, the characteristic function of 

Zi is replaced by 

Zj, i, 
1 <_j<_N 

where 7,1 is the characteristic function of 

The LD method is defined by modifying the DSMC scheme as follows: 

Each sequence V (~), 0 <_ n < M, is ordered such that if i <__ i~ then v! ") < vl ~,). 

This additional requirement permits us to estimate the errors of the LD method by 
means of the discrepancies of the Z ("). 
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2. Error Est imates  for the L D  Method 

We first recall the definition of the discrepancy of a sequence. It measures how well 
this sequence is uniformly distributed. We then define the error  at time t ("~ of the L D 
method  as the discrepancy of V (") relative to vZf(v, t(")). It measures how well V (") is 
uniformly distributed with density vZf(v, t(")), 

Let s be some nonnegat ive integer. 

A subinterval J of P is a subset of P of the form 

[ I  [a,, b~); 
i<_l<_s 

its measure is 
IJI = ~ lb,-a,I. 

l<_l<_s 

Let [ d e n o t e  the family of all subintervals of P and I* the family of all subintervals of 
the form 

[1 [o,c,). 
l< l_<s  

If X = {x i : 1 _< i_< N} is a sequence of P,  the discrepancy D N (X) of X is defined by 

Card ({i 'x  i ed}) 
D N (X)  = Sup I J [ " 

J~T N ' 

the *-discrepancy D} (X) of X is defined by 

[ Card  ({i : xl ~ J}) 
D~ (X) Supj~r, ] N [dl �9 

An infinite sequence X =  {x~:i>_ 1} is uniformly distributed if 

lim DN ({xl : 1 _< i _< N}) = 0 
N~co 

(or equivalently lim D* ({x i " 1 _< i _< N}) = 0). 
N~oo 

Throughout  the paper t("}=n A t and, for r > 0 ,  q~ is the characteristic function of 
[0, r). Let  

d~)(r)= N 2 q~r(vl")) - S (G(v)v2f( v,t("))dv, (2.1) 
l <_i<_N N+ 

D* ( F ~"), f )  = Sup I d~ ) (r)[ (2.2) N 
r > 0  

According to the definition of E. Hlawka and R.Miick [6], D}(IA"),f) is the 
*-discrepancy of IA") relative to v2f(v, t('~ It is the error that  we estimate. For  this 
purpose we need some addit ional  error  terms: 

e~' (r) = S [qS, (v') - qb r (v)] f~"~ (d v) f(") (d w) d a db 

~ • i~ (2.3) 
- -  S [ 4 r  (V') - -  q~r (V)] v2 f ( v ,  t (")) w 2 f ( w ,  t 00) d v  dw da db, 

~2+ x I 2 

4 Computing 41/1--2 
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where v' = [a, b; w, v] ; 

e(")(r) = ~dpr(v)FS~yf (v , t (" ) ) -3S(v , t ) ]v2dvdt ;  (2.4) 
[t,.,, e.+ ,] • ~+ Lot  6t 

a~(,') = 1  F, K~"+l~4)~(z,~+,)-~ K~"+~,(z)dz. (2.5) 
1 <_l<_N I ~ 

A relation between d~)(r) and d~-a)(r),  e~-l)(r), e("-~)(r), 6~ ~)(r)is derived by a 
classical error  analysis of  a one-step method.  We first est imate the error  terms e~ ) (r) 
and e (") (r). In  order  to est imate 6~ ) (r) we need to bound  the difference between the 
exact measure  of a set and its quas i -Monte  Carlo approx imat ion :  this is achieved by  
an analysis of H. Niederrei ter  and J. M. Wills [15]. The  final error est imation is 
obta ined  by gathering the previous ones. 

+ 

where 

Theorem 1: The error term (2.3) can be estimated by 

[ e~)(r)[ <'~ n *  :tAn) - ~ N ,  , f ) .  

Proof: Since V t e [ 0 ,  7-3, ~ v2 f ( v , t ) dv=l  we get 
~+ 

1 
2 ~dN(a,b;v}")) dadb e ~ ) ( r ) = N  I_<~___N ,~ 

ds(a, b ; v) v2 f (v, tt">) dv da db - d(~) (r), 

(2.6) 

1 dN(a,b;v)=~ ~ ~,([a,b;v?),v]) 
I <_j<_N 

- ~ #)r([a,b;w,v])wZf(w, t("))dw. 
R+ 

Est imat ion (2.6) is obta ined by noticing that,  for (a, b, v) e 12 x ~ + and r > 0, the 
applicat ion w e  ~+--*~b~([a, b; w, v]) is the characterist ic function of an interval 
[0, s (a, b, v)) where s (a, b, v) e ~ +. [ ]  

One  gets immediate ly  by integrat ion by parts :  

Theorem 2: I f  f is twice continuously differentiable with respect to t, the error term 
(2.4) can be estimated by 

• 02f  [2  
le(")(r)]<At ~ ~ ( v , t )  v dvdt .  (2.7) 

[too, tl~ + 1~] 

In order  to est imate 6~ ) (r) we need some new notations.  For  0_< n < M let 

i~"~(r) = y~ 4,, (v:) ; 
l <_i<N 

since the v~ "), 1 < i_< N are ordered according to their magni tude,  we have 

{i : 1 < i_< N, v~ ") < r} = [1, i (") (r)]. (2.8) 
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For (b, v, w) e [0, 1] x Nz+ we define 

2 r2 - v2 - w2 ~ 1 ,  0),1] ' 
gw,~ (b)= min [Max (2  [(v2+w2)2_4(2b - 1)2vZw211/2 

if v r  or v=w:/=O and b=p0, 1; otherwise 

~,~(0) = ~, , (1)=  Cr(v), ~o,o(b)= 1. 

The function gw., is continuous and satisfies 

v Gv' w<_w' ~ Vb E [0, 1] dw,~ (b)_> ~w,,~, (b), (2.9) 

[a,b; w,v] <r ~=~a <dw, o(b). (2.10) 

For l <_i<_N, I <_j<_N, let g}7)=~6o,~Io,. 

We denote by 

[0 J~)(r)=I  2x[q,1)  x , 

e ~ ( r ) =  U U A}7 ~• C~,, (2.ai) 
l<_i<_N I<_j<_N 

where 

A}7 ~ = {(~, b) ~ I ~. a < g~)(b)), 

C i i = [ q ~ - , O N )  X l i N l , ; ) .  

We deduce from (2.8) and (2.10) that K("+')qS, is the characteristic function of 
J~) (r) u E~ ) (r). Consequently, the error term (2.5) is expressed as follows: 

~ )  (r) = 1 Card (J~)(r) c~ Z (" + ~)) -[J~)(r)l  
N 

(2.12) 
1 

+ - -  Card ( E~ ~ ( r) c~ Z ~" + 1)) _ ] E~) (r ) ] . 
N 

The first difference on the right-hand side of (2.12) is bounded by DN(Z ~+ ~)). In 
order to estimate the second difference we need the following result of Niederreiter- 
Wills [15] : 

Let E be measurable subset of P. For e > 0 let 

E~ = { z ~ P : ~ z ' ~ E ,  I[z-z'll<~}, 
E-~={z6 lS :Vz '~ IS \  E, [I z - z '  II >~}, 

where I1" II is the Euclidean norm in R ~. Then, 

if 3 K >  1 Ve>0, Max(I E~\E 1, ]E\E_~I)<_Ke (2.13) 

then, for every sequence X = {x~ : 1 _< i _< N}  in P 

Card (E ~ X ) - ]  EI <_(4Ks ~/2 +2 K +  1) DN(X) ~/'. (2.14) 

4* 
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Lemma: For all e > 0  the set (2.11) satisfies 

Max (1E~ ) (r)~\E(u n) (r)l, I E(N ") (r)\ECN ~) (r)_ ~ [) N 55. (2.15) 

Proof: Let 5 > 0 and define 

S~= {z=(a ,b , c ,d )6  l 4 : c <e or d <e}. 

For  1 _< i < N, 1 < j  < N, we set 

i - 1  
T~ Cji= IqJ~Nl + ~, q J  + 5) x [ ~ -  + ~, ~ + ~) Fs I2. 

If 

= U U A~• ~c~, 
l<i<_N I<_j<_N 

we first prove 
E~)(r)~ cS~ u T~. (2.16) 

Let z --- (a, b, c, d) ~ E~ ) (r)~. Then 

"i . . . .  A~.n ~. x Cj,~, 3[ ,j ) 3z' ~ ~,,, 

such that  il z - z '  II < 5. Either z ~ S~ or 

3(i,j), l <i<_f, l <_j<_j', (c ,d)c T~ Cj,. 

Since the vl ") are ordered, we deduce from (2.9) that  (a', b') ~ A}~ -). Therefore (a, b) ~ A(~) *-Jt~ 
and the inclusion (2.16) holds. Consequently,  

I g~) (r)~\E~7) (r) l -< I S, I + / T~ I - I E~) (r) l. 

The inequality 

follows then by noticing 

The inequality 

is similarly established. 

l e~) (r)~\~7) (r)l -< 5 

(n) (n) % 2 .  I Aji~\A~I l - 2 (5 + e ) 

I E~)(r)\E~7)(r)_~ I - 5 
[ ]  

Inequali ty (2.15) leads to estimation (2.14). This, in turn, combined with identity 
(2.12) leads to: 

Theorem 3: The error term (2.5) can be estimated by 

I ~NA(") ,(r'~lJl- < 52 O u (Z (n + 1))1/4-. (2.17) 

An estimation of the error of the L D  method is then obtained by gathering 
inequalities (2.6), (2.7) and (2.17). As an additional regularity requirement on f ,  let us 
assume that  it is twice continuously different\able with respect to t and that  

I)2 c~2 f , 
[I), t) ~ g 1 ( ~  + X (0, r ) )  . 
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Theorem4:  I f  the discrepancies of all the Z (') are bounded by some Dw, then 

D} (IA'), f )  < exp (12 k 7r t (")) D* (tAo), f )  

~ ( v ,  t) v +At ~ exp[12kn(t(")-t)] (? f :dvdt  
[o, ~,",] • ~+ (2.18) 

D1/4 
+ exp(12knt ( " ) ) ~  l<_n<_M. 

A t '  

Proof: The Bol tzmann equation (1.7) together with equalities (1.8) and (1.10) leads to 

d~ ) (r) = d~-  ')(r) + q e~ - 1)(r) + ~('- 1)(r) + 5~- 1)(r). 

The result of the theorem is achieved by combining estimations (2.6), (2.7) and (2.17) 
with the s tandard error  analysis of a one-step method.  [ ]  

The third term on the r ight-hand side of (2.18) has an unpleasant At in the 
denominator .  But the computat ional  experiments show that, for fixed N, 
D}(V (M),f) does not  grow to infinity when A t tends towards 0. The following 
theorem provides us with another  estimation. 

Theorem 5: 

then, for 

If all the sequences Z (") equal 

Z* = {(a~, bl, cr d,) 1 _< l_< N} c (0, 1) 4 u {0} 

1 
At< min{ct:l<l<_N, cl>O}, 

4kTr 

D* (IA'), f )  _< exp (12 k n t (')) D} (lAo), f )  

•2 f , t) v 2dr +At ~ exp[12kn(t(")-t)] ~ t v ,  dt (2.19) 
[0, t c'~] x ~ + 

1 
+ ~-  exp (12 k n t(")). 

Proof: The error term (2.5) can be expressed as follows: 

1 
- - -  ~ 2 v(') c 5~)(r)= N l_<l_<N l_<i_<N 4r(  i ))/to,q)(l)Zri-1/N,i/N)(dl) 

1 
+ y  2 2 ~ ~r([a;,bt;v}"),vl')])Z~,~(Cl,d~) (2.20) 

1 N I < _ N  l < _ i < N  I<_j<_N 

+q 
i (") (r) q 

N N 2 ~ ~ I A}~)[' 
l <_i<_N I <_j<_N 

where ZJ denotes the characteristic function of J.  When 

q < m i n  {c~ �9 l<_l<_N, c l>0} ,  
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the right-hand side of (2.20) equals 

q - - Z IA}7) l 
t <<_i<_N I <_j<~N 

Estimation (2.19) is then obtained with the same techniques that are used in 
Theorem 4. []  

The estimate (2.18) provides us with some hints for the optimization of the LD 
method: the error is kept to a minimum if the Z (") have small discrepancies. In the 
next section we test the simplest choice: all the Z (') equal Z*, a sequence of very low 
discrepancy introduced by J. M. Hammersley [5] (which fulfills the assumption of 
Theorem 5). 

3. Computational Experiments 

In 1977 M. Krook and T. T. Wu ES] have reported the discovery of an exact solution 
of the Boltzmann equation, in the simplified case to which the present analysis is 
restricted, for the following initial velocity distribution 

f 0 ( v ) = - ~ -  \ ~ - j  v ~ exp - 5 v 2  . (3.1) 

Then, for k = 3/2 7r, 

4 ( 5 H ( O - 3 - ~ l - H ( t )  v 2 ) e x p ( - 2 ; ( ~ ) ( 3 . 2 )  
f(v, t)= (2 lr) 1/2 H (t) s/2 H (t) 

where 
2 

H ( t ) = l - - - e x p ( - t ) .  
5 

We take T= 1.5 which almost corresponds to an equilibrium state. We compute the 
effective error D}(I  A~t), f )  when fo and f are given by (3.1) and (3.2), k = 3/2 ~z and by 
using three schemes: DSMC, DSMC* and LDH. Let us first specify the choices of 
l/~ and Z (') (verifying hypothesis (1.9)) for each scheme. 

The DSMC and DSMC* schemes make use of pseudo-random numbers for defining 
l/o) as well as for defining the Z ("). These pseudo-random numbers are generated by 
a linear congruential method (for an account of pseudo-random number generation 
we refer to [14]): 

Let m >_ 3 and r be integers, let Y0 be an integer with 0 <_ Yo < m and let 2 be an integer 
co-prime to m with 2 _< 2 < m and 

( 2 -  1 ) y o + r ~ 0  (mod m). 

A sequence {Yi " i > 0} of integers with 0 _<yl < m is generated by the recursion 

YI+I -)~yi+r (mod m), i>_0. (3.3) 

A sequence X =  {xi: i>_0} of pseudo-random numbers is then defined by 

x i = yl/m, i >_ O. (3.4) 
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We have used the program RANU2 which is implemented on the computer 
SIEMEN S/FUJITSU VP 100 of the University of Kaiserslautern. It takes m = 231, 
r =  1234567891, Yo = 0  and 2 =  32771. The sequence lAO) is defined as follows. We 
associate to the initial condition fo the application 

F o : v f f R + - - - ~  S U2fo(U) du" 
[o, v] 

It is differentiable and its inverse function ~o is also differentiable. We then set 

vl ~ = ~o (xi), 1 _< i _< N (3.5) 

(where X={xi:i>_O} is defined by (3.3)-(3.4)). 

The sequence Z (") is defined as follows: 

Z(n-1)N+l ~ (n-1)N+l~X(n-1)N+l+l,X(n-1)N+l+2,N , 

(where X is defined by (3.3)-(3.4)). 

The last component never appears in the computations: it just means that the others 
are valid for particle 1. 

The L D H  method makes use of sequences of low discrepancy for defining l ~~ as well 
as for defining the Z ("). 

We first want to minimize D}(V(~ which appears on the right-hand side of 
estimation (2.18). If lAo) is defined by (3.5), for some X = { x  i " 1 <_iNN}, it is easily 

_(2i-12N l _< i <- N} : it is shown that D* ( V ~~ f )  = D} (X). Consequently we take X = J " 

proved in the book of Kuipers-Niederreiter [9-] that this sequence has the smallest *- 
1 

discrepancy, namely 2N-" 

On the other hand, all the Z (") equal Z * = { z * ' l < - i < - N } ,  i.e. the Hammersley 
sequence [5-] in dimension 4: 

i - 1  
z* =(q52 ( i -1) ,  q53 ( i -  1), q~ ( i -  1), ~ - ) ,  

where q~z is defined as follows. 

To any integer k let us associate its expansion in basis l: 

q) < I k =  ~ a} ~ p, where 0_<aj _ - 1 ;  
j_>O 

then 
r (k) = 2 a} (k) 

j>_0 

The estimates of L. K. Hua and Y. Wang [7] lead to 

480 l o g 2 N  l o g 3 N  l o g 5 N  
DN (Z*) < if N >_ 5. 

- N l o g 2  l o g 3  l o g 5  ' 
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A convenient algorithm for vector computer generation of the Hammersley 
sequence is available in [10]. 

First experiment 

N is always a power of 2. The values of D} (IAM), f )  for the three schemes are listed in 
Tables 1, 2 and 3 respectively. The DSMC and DSMC* schemes exhibit some 
unpleasant features. For the DSMC scheme, when M = 4 0 9 6 ,  the error first 
decreases and thereafter increases when N grows. For the DSMC* scheme and for 
small M the error decreases then increases and becomes constant when N grows; for 
M_> 1024 it just increases and becomes constant. We believe that this peculiarity is 
related to the way the pseudo-random numbers are generated. Some interference 
may occur between the m=231 of the linear congruential method (3.2) and the 
number N = 2 v of particles. In addition, the DSMC scheme generally outperforms 
the DSMC* scheme. On the other hand, for all M, the error of the LDH method 
decreases when N grows (with an exception for M = 4096). But, for a given N, the 
error of the method increases when M grows: this behaviour reflects estimation 
(2.18). In addition, for small M (16 or 64), the LDH method outperforms the others. 
Moreover, it attains the best accuracy (1.25 E - 3 ) .  

T a b l e  1. Errors D} (V ~), f) for the DSMC scheme 
! 

256 1024 4096 16 384 65 536 262 144 

16 
64 

256 
1024 
4096 

1 . 1 5 E - 1  
1.00  E - 1 

9 . 1 2 E - 2  
5 . 6 7 E - 2  
8.31 E - 2  

7 . 2 3 E - 2  
2 . 5 5 E - 2  
1.99 E - 2 

1 . 4 1 E - 2  
5 . 5 3 E - 2  

4 . 1 5 E - 2  
2 . 6 3 E - 2  
4 . 2 8 E - 2  
1 . 3 3 E - 2  
1 . 7 5 E - 2  

3 . 1 6 E - 2  
2 . 0 1 E - 2  
1 . 6 8 E - 2  
1 . 9 5 E - 2  
7 . 0 4 E - 3  

4.01 E - 2  
1 . 6 2 E - 2  
7 .38E--3  
7 . 2 9 E - 3  
1.35E--2 

3 . 2 3 E - 2  
1 . 1 6 E - 2  
6 . 8 5 E - 3  
7.63 E - 3 
7 . 8 6 E - 2  

T a b l e  2. Errors D*(VCm, f)  for the DSMC* scheme 
' I 

256 1024 4096 16 384 65 536 262 144 

16 
64 

256 
1024 
4096 

5 . 5 1 E - 2  
5 . 8 7 E - 2  
5 .60E--2  
2 . 9 6 E - 2  
4 . 8 7 E - 2  

5 . 7 7 E - 2  
2 . 4 7 E - 2  
4 . 3 1 E - 2  
2 . 9 3 E - 2  
7 . 4 5 E - 2  

6 . 4 1 E - 2  
1.48  E - 2 

3 . 2 4 E - 2  
6 . 5 4 E - 2  
9 . 7 0 E - 2  

3 . 4 5 E - 2  
5 . 2 5 E - 2  
8 .68E--2  
9 . 4 2 E - 2  
9 . 5 7 E - 2  

5.71 E -  2 
8 . 4 2 E - 2  
9 . 1 1 E - 2  
9 . 3 0 E - 2  
9 . 3 3 E - 2  

5 . 2 7 E - 2  
8 . 4 0 E - 2  
9 . 0 8 E - 2  
9.21 E -  2 
9 . 2 6 E - 2  

T a b l e  3. Errors D}(V (M) f)for the LDH method 

1024 4096 16 384 65 536 262 144 256 

16 9.88 E - 2  
64 9 , 7 9 E - 2  

256 5 . 3 3 E - 1  
1024 3.96 E - 1 
4096 5.12 E - 1 

2 . 1 7 E - 2  
8.29 E - 2  
2 . 3 0 E -  1 
3.06 E - 1 

8 . 7 1 E -  1 

6 . 7 7 E - 3  
1 . 9 8 E - 2  
4 . 7 1 E - 2  
3.05 E - 1 
5 . 8 2 E -  1 

3 . 6 7 E - 3  
6 . 6 4 E - 3  
1 . 6 4 E - 2  
6 . 0 5 E - 2  
2.69 E - 1 

2 . 2 0 E - 3  
4 . 7 1 E - 3  
9 . 6 3 E - 3  
4 . 6 4 E - 2  
5.60 E - 2 

1 . 2 5 E - 3  
1 . 4 7 E - 3  
3 . 0 5 E - 3  
8 . 3 0 E - 3  
2 . 7 6 E - 2  
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Second experiment 
Here, N is always a power of 3. The values of D} (V ~),  f )  for the three schemes are 
listed in Tables 4, 5 and 6. The behaviour of the DSMC and DSMC* schemes is 
quite different from their behaviour in the first experiment. It happens that, for a 
given M, the error for N equal to a power of 2 completely differs from the error for N 
equal to a power of 3 of the same magnitude. But, in the present experiment, for a 
fixed M, the errors of the DSMC and DSMC* schemes decrease when N grows. This 
decrease is however irregular and it often appears that the error for a calculation 
with N particles is smaller than the error for a calculation with 3 N particles: it 
cannot be assured that the accuracy increases when more particles are used. In 
addition, in this experiment, the differences in the performances of the DSMC and 
DSMC* schemes are small. On the other hand, for all M, the error of the LD H  
method regularly decreases when N grows (with an exception for M = 4096). As in 
the preceding experience, for a given N, the error increases when M grows. 
However, for small M (16 or 64), the LDH method outperforms the others. Once 
again it attains the best accuracy (1.60 E - 3 ) .  

M• 
16 
64 

256 
1024 
4096 

16 
64 

256 
1024 
4096 

5 . 7 9 E - 2  
1 . 0 7  E - 1 

4.47 E - 2 
4 . 7 5 E - 2  
3 . 7 2 E - 2  

8 . 8 5 E - 2  
7 . 3 2 E - 2  
1 . 9 4 E - 2  
6 . 3 8 E - 2  
4.78 E - 2 

4 . 5 9 E - 2  
2 . 1 5 E - 2  
2 . 0 4 E - 2  
3 . 2 9 E - 2  
4 . 5 5 E - 2  

5.03 E - 2 
3 . 4 0 E - 2  
9 . 6 7 E - 3  
2 . I 7 E - 2  
3 . 3 9 E - 2  

4 . 5 6 E - 2  
2 . 4 6 E - 2  
8 . 9 9  E - 3 

6.09 E - 3 
1 . 7 2  E - 2 

3.80 E - 2  
1.20 E - 2 
5 . 1 6 E - 3  
5.31 E -  3 
4 . 6 3 E - 3  

3 . 2 3 E - 2  
1 . 2 6 E - 2  
2.01 E - 3  
8 . 2 8 E - 3  
1 . 9 9  E - 3 

Table  5. Errors D} (IAM) f)  for the DSMC* scheme 

I I 
243 729 6561 19683 i 59049 177 147 

1 . 1 7 E - 1  
6 . 8 8 E - 2  
4 . 1 2 E - 2  
7 . 1 2 E - 2  
1 . 4 7  E - 1 

243 

6 . 6 5 E - 2  
7.68 E - 2 
1 . 1 7 E - I  
3 . 4 8 E - 2  
4 . 9 9 E - 2  

2187 

7.67 E - 2 
5 . 3 6 E - 2  
4.48 E - 2 
1 . 5 7 E - 2  
2.06 E - 2 

4.33 E - 2  
1 . 2 9  E - -  2 

1 . 1 7 E - 2  
1 . 2 8 E - 2  
2.07 E -- 2 

1 . 6 5 E - 2  
5.97 E - 3 
1 . 2 4 E - 2  
3 . 9 2 E - 3  
1 . 1 4 E - - 2  

i 2.94 E - 2  
I 1 . 3 6 E - 2  

] 7 . 5 8 E - 3  
1 . 0 6 E - 2  

I 5.49 E -  3 

3.20 E - 2 
8 . 2 9 E - - 3  
2 . 7 8 E - - 3  
7 . 1 3 E - 3  
7.36 E - 3 

Table  6. Errors D} (VIM), f ) for  the LDH method 

16 
64 

256 
1024 
4096 

729 

6 . 3 6 E - 2  
1 . 8 8 E - 1  
4.04 E - -  1 
8.97 E -  1 

4.86 E -  1 

2187 

3 . 5 1 E - 2  
6 . 1 2 E - 2  
2.70 E -  1 
4.01 E - 1  
3 . 8 2 E - 1  

6561 

1 . 5 7 E - 2  
5 . 7 4 E - 2  
6 . 8 0 E - 2  
2.80 E -  1 
8 . 4 4  E - 1. 

i9  683 

9 . 2 7 E - 3  
1 . 7 6 E - 2  
6 . 8 7 E - 2  
1.93 E -  1 
1 . 1 4 E - 1  

59049 

4.41 E -  3 
1 . 0 8 E - 2  
2.06 E -  2 
5 . 1 5 E - 2  
1 . 2 6  E - 1 

Table  4. Errors D~-(V ~MI, f ) for  the DSMC scheme 

243 729 2187 6561 19683 59049 177 147 

2.74 E - 3 
4.21 E -  3 

, 7.83 E - 3  
2.44 E -  2 
8.58 E - 2  

177 147 

1 . 6 0 E - 3  
1 . 7 6 E - 3  
3 . 8 2 E - 3  
1 . 5 8 E - - 2  
3 . 0 0 E - 2  
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Conclusion 

The first es t imat ions  of the errors  genera ted  by a s imula t ion  me thod  for solving the 
Bo l t zmann  equat ion are given in this paper .  The accuracy of these es t imat ions  is 
assessed th rough  compu ta t ion  of effective errors  in an example  where an exact  
solut ion is known.  The physical ly  interest ing macroscopic  quant i t ies  such as mass  
velocity, m o m e n t u m  flow and  energy flow are expressed by integrals  involving the 
velocity dis t r ibut ion.  Consequent ly ,  they can be a p p r o x i m a t e d  with a given 
accuracy by  using the L D  method .  Firs t ,  an a rb i t ra r i ly  low discrepancy D* (IAM), f )  
is assured as follows: a small  t ime-s tep is selected (to minimize the second term of the 
r igh t -hand  side of (2.18)) and  then a sufficiently large number  of part icles  N is 
choosen (to minimize  the first and  th i rd  terms of the bound).  Secondly,  the 
differences between the exact  macroscopic  quanti t ies  and  the compu ted  ones are 
es t imated  by  combin ing  the K o k s m a - H l a w k a  inequal i ty  [9] and  the previous 
es t imat ion  of D * ( ~ t ) , f ) .  In  addi t ion ,  it is shown that  the L D  me thod  is more  
rel iable than  the D S M C  and  D S M C *  schemes which can diverge for i l l-fated N 
(here a power  of 2). The  L D  method  a l ready  outper forms the D S M C  and D S M C *  
schemes for large t ime steps. The improvemen t  of the convergence proper t ies  of the 
L D  method  with respect  to the t ime step is a t t empted  in [11]. 
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