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Abstract - -  Zusammenfasstmg 

A Domain Splitting Algorithm for Parabolic Problems. In the parallel implementation of solution 
methods for parabolic problems one has to find a proper balance between the parallel efficiency of a 
fully explicit scheme and the need for stability and accuracy which requires some degree of implicitness. 
As a compromise a domain splitting scheme is proposed which is locally implicit on slightly overlapping 
subdomains but propagates the corresponding boundary data by a simple explicit process. The analysis 
of this algorithm shows that it has satisfactory stability and approximation properties and can be 
effectively parallelized. These theoretical results are confirmed by numerical tests on a transputer system. 

A M S  Subject Classifications: 65M55, 65Y05 (primary), 65M60 (secondary) 
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Ein Gebietszerlegungsalgodtlunus fiir parabolische Probleme. Die Implementierung von Lfsungs- 
methoden f/Jr parabolische Probleme erfordert eine ausreichende Balance zwischen der paraUelen 
Effizienz voll-expliziter Schemata und der Notwendigkeit von Stabilit/it und Genauigkeit, welche 
einen gewissen Grad an Implizitheit bedingt. Als ein Kompromig wird ein Gebietszerlegungsverfahren 
vorgeschlagen, welches lokal implizit ist auf leicht/iberlappenden Teilgebieten, die lokalen Randdaten 
aber durch einen einfachen expliziten Prozel3 fortpfianzt. Die Analyse dieses Algorithmus zeigt, dab 
er zufriedenstellende Stabilit~its- und Approximationseigenschaften besitzt und effektiv parallelisiert 
werden kann. Diese theoretischen Resultate werden best/itigt durch numerische Tests auf einem 
Transputer-System. 

1. The D o m a i n  Spli t t ing Algor i thm 

W e  cons ider  the mode l  diffusion p rob l em 

~tu - -  a A u  = f ,  in s x (0, T ] ,  ul~ ~ = 0, ult= o = u ~ (1) 

where I2 is a two-d imens iona l  d o m a i n  (for concep t iona l  s implici ty  assumed  to be 
convex polygonal) ,  and  the dr iv ing  force f m a y  be t ime dependent .  The  spat ia l  
d iscre t iza t ion  of  (1), e.g., by  a finite e lement  method ,  results  in a system of  o rd ina ry  
differential  equat ions ,  

gth - -  aAhUh = fh, on  (0, T ] ,  uh(O) = u ~ , (2) 

where dh s tands  for the discrete ana logue  of  the  Lap l ac i an  opera to r .  The  discret iza-  
t ion of(2) with respect  to  t ime has  to t ake  in to  accoun t  the  p rob lem ' s  s t rong  stiffness, 
with ra t io  O ( h - 2 ) ,  where  h is the mesh width.  F o r  explici t  schemes, the numer ica l  
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stability requires a step size restriction, k <_ ch 2, which leads to an undesirably large 
number of time steps to reach the time level T ~ 1. Hence, the good parallel 
efficiency of these schemes may be largely reduced through the losses caused by the 
frequent communication steps. On the other hand, the implicit schemes, being 
unconditionally stable, allow for the choice k ~ h, but they require the solution of 
globally coupled linear systems of dimension n = O(h -2) in each time step. For very 
large n, these systems have to be solved iteratively, for example by the well-known 
SSOR- or IC-CG-method or by an appropriate multigrid algorithm, [1]. However, 
the efficient parallelization of these methods is not easy to accomplish, because of 
the recursive nature of the preconditioning procedure and the need for the frequent 
exchange of small amounts of data within the iteration. As an alternative, we 
propose a simple domain splitting algorithm, described below, which is only 
blockwise implicit. 

Below, we will use the standard notation L2(s Hk(s and Hko(~2) for the Lebesgue 
and Sobolev spaces over f2, respectively. The inner product and norm of L2(O) are 
(', ")a and ll' II a, where the subscript f2 is usually suppressed. 

For the spatial discretization of problem (1), we consider a finite element Galerkin 
method using linear shape functions. Let Jh = {T} be a quasi-regular family of 
triangulations of~ ,  consisting of closed triangles T of width h (for a formal definition 
see [3]). The discrete spaces are 

Sh(f2) = {v h e Ht(f2), Vhl T e PI(T),  T e  Jh} ,  S~(I2) = Sh(f2) n H~(f2). (3) 

The mesh domain f2 = U {T e ~h} is divided into finitely many convex subdomains 
f2~, i = 1, . . . ,  N, each of which is a union of triangles of ~ and has width H ~ 1. 
Correspondingly, we consider enlarged subdomains f2~ = U {T e ~ ,  dist(T, f21) <_ 
6}, for some 6 = Lh. The union of the f2~ covers f2 with overlaps of width ~ 6. The 
corresponding finite element subspaces are denoted by sh(t2i), Sho(f2~), and Sh(f2r 
Sob (f2~), respectively, 

Now, fixing the overlap 6 = Lh, we formulate the following domain splitting 
algorithm. 

[2 3 

Figure 1. 2 x 2-splitting of a square 
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Step O. We choose some approximation U ~ ~ S~163 to the initial value u ~ e.g., its 
L2-projection into Sh~ 

Assume now that, for some m > 0, all approximations U ~ e Sob(g2), 0 _< # < m, to 
u ~--- u ( . , t  ~) have been calculated. Then the approximation U ~ is determined 
through the following sequence of steps. 

Step 1. In a predictor step, some approximation U ,  = ~m({UU},<,,)e sh((2) is 
computed through a suitable explicit procedure which will be specified below. 

Step 2. Then, on each (2/~, approximations U7 e Sh(Q~) are obtained through local 
Crank-Nicolson-steps, 

1 
~(u?  - t:  "-~, a~),~, + a(v[t:72 + c~-1 ], v ~ ) ~  = ( /% as)~, w ~ So~(~2:), (4) 

where f "  = �89 + f , ,-1) and 

U~ = U~", on 0(2~. (5) 

Step 3. Finally, from the patchwise solutions U~, a global single valued function 
U m = cg({ U~ }1< i_< N) e S~(O) is constructed through a suitable averaging process. 

As a particular realization of Step 1 we consider an explicit Euler step for 

~l({t:~L=o), 

l 1 ~ ( u ,  - u ~ a~) + a ( v u  ~ v~ )  = ( f l ,  ~),  w ,  ~ s~(a),  (6) 

and linear extrapolation for gm({UU}u=,,_l,,,_2), m _> 2, 

U .  = 2 U  " - 1  - u " - 2 .  (7) 

In the test calculations, reported below, we actually used quadratic extrapolation, 

U~ = 3U m-1 -- 3U m-2 + U m-3, (8) 

for m > 3, in order to increase the accuracy of the predicted boundary values. Note 
that the prediction step has to be performed only on the artificial boundaries Qg2:. 

There are various possibilities for realizing the operator :g in Step 3. It is natural 
to set U"~(P) = U~'(P) in the interior nodal points P of each Qi. For the nodal points 
at the interfaces or at the cross points of neighboring subdomains, one may take 
the corresponding arithmetic mean values. However, for our theoretical analysis it 
is convenient to assume that the operator cg satisfies an L2-stability estimate with 
constant 1, 

N 

]lU] Ita,- (9) 
i=1  

Further, cg should be the identity operator on those {v~m}~ _<f<N which correspond 
to a globally continuous function, i.e., 

~({V~f}l <~<~, ) = V ' ,  V ~ ~ So~(~2). (10) 
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The stability property (9) is guaranteed, e.g., if in the definition of G ~ the nodal values 
at the interfaces and cross points are taken according to 

I um(P)l -- min{] U~m(P)[, i~ {j, P ~ f2j}}. (11) 

We emphasize that the solution procedure in Step 2 can be performed completely 
in parallel, without any communication, while in Step 1 and Step 3 only local 
data from the interfaces and in the overlap strips have to be exchanged between 
neighboring subdomains. In particular, no global communication is required in this 
algorithm. 

Our theoretical analysis will show that the proposed splitting method is numerically 
stable under a step size condition of the form 

k < 1-tc(L)h2, (12) 
a 

where ~:(L)~ tcoL2(logL) -2, independent of the number, N, of subdomains. 
Furthermore, the global error behavior is of the order O(h z + k2). For a model 
situation, the constant ~c o has been found through a numerical experiment to be of 
the size ~Co ~ 2. Hence, for overlap parameters L = 3 or 4, the scheme should possess 
satisfactory stability and convergence properties. This has been confirmed by several 
test calculations. 

The domain splitting algorithm presented in this paper is primarily constructed as 
a direct time discretization scheme. A similar approach based on a finite difference 
discretization on non-overlapping subdomains has been proposed in [4], where the 
global information transfer is realized through an explicit discretization on a coarse 
mesh; for extensions of this idea to finite elements see [5] and [6]. However, this 
approach differs from ours as it depends on the coarse grid mesh size H and the 
number N of subdomains. But, in their underlying philosophy both schemes are 
similar and differ from the standard approaches for the (implicit) parallel solution 
of parabolic problems mostly found in the literature. There, the domain splitting is 
used, in the spirit of elliptic problems, in order to construct a preconditioning 
procedure for the iterative inversion of the operator Ih -- akdh,  see, e.g., I-8] for such 
a method on non-overlapping domains, and [10] and [9] for one using overlapping 
subdomains. The latter approach is somewhat related to ours as here also the 
singular perturbation character of the operator Ia - akAh isused to suppress the 
global communication within each time step. 

2. Stability and Error Analysis 

We shall give an analysis of the stability and the approximation properties of the 
domain splitting algorithm, described above. The key idea is to compare U" with 
the solution of the standard global Crank-Nicolson discretization V ' ~  S~(f2), 
successively defined through the equations 

a V m ([vm--vm-1],~ IV "q-vrn-1],VCd~)-~-(ym,~), V(tl~ ~ sh (~r (13) 

and the initial condition V ~ = U ~ 
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For this, there holds (see, e.g., 113] and [14]) 

[IV m - U(',tm)][ _< c{h 2 + t~lk2}, tm> O, (14) 

if the data of problem (1) satisfy 

u ~ e Ho 1 (f2) ~ H2(ff2), O;f e L~176 T]; L2(f2)), r = 0, 1, 2. (15) 

Theorem. Suppose that the foregoing assumptions are satisfied. Further assume that 
the overlap width, ~5 = Lh, is chosen sufficiently large such that 

L 2 > Mog2(a)/~Co, a = ak/h 2, (16) 

with a certain constant ~c o. Then the proposed domain splitting scheme is numerically 
stable and for the difference between the approximation U '~ and the global Crank- 
Nicolson solution V", there holds 

IlV" - U"[I <_ Crt~,~k 2, 0 < t,, <_ T. (17) 

Clearly, the estimate (17) combined with the estimate (14) for the global Crank- 
Nicolson scheme implies that the proposed domain splitting algorithm is indeed of 
second order accurate in space and time if the condition (16) is satisfied. 

We note that in our numerical tests, the logarithmic growth in the condition (16) 
was never observed. Instead, we found the simpler relation 

L 2 > a/Ko, (18) 

for a fixed time step k, or, equivalently, the step size restriction 

k <<_ tC~ (19) 
a 

for a fixed overlap width Lh. The constant tco turned out to be independent of the 
size of the domain 12 and of the number N of subdomains. 

For the proof of the above theorem, we employ the following decay property for 
the solutions of a certain class of singularly perturbed problems. 

Lemma 1. For given 2 > 0 and G e sh(g2~), let U e Sh(~)  be defined through 

(U, ~)af + 2(VU, V~b)a ~ = O, Vq~ e S~(E2~), U = G on 0s (20) 

Then, there holds 

IIUIl~, + ,~JlVUt[2~, <- ce-~O/m"x{'fLh}{lIGrl~f + 2WfVGII~}, (21) 

where c and ? are positive constants independent of the size of the subdomain Qi. 

The estimate (21) states that the effect of the nonhomogeneous boundary data in 
(20) decays exponentially into the interior of the subdornain f2~. This was suggested 
by the related decay property of the LZ-projection of the point Dirac functional 
onto finite element spaces (see [7]). A similar result has been shown in the present 
context in [10] by using a maximum principle for the discrete operator Ih - 2Ah. 
The following proof of Lemma 1 will be entirety based on Hilbert space arguments. 
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Proof of Lemma 1. We only analyze the practically important case x/~ > h. The 

case x/~ _ h can be treated by an analogous argument. 

We introduce the distance function d ( ' ) =  dist(-, ~f2~) x E sh(~2~), where here and 
below the subscript I denotes the piecewise linear nodal interpolation. Since 
d - 6 ___ 0 on f2i, there holds 

IIUI[~i + 2][17UI1~i < e-~/"/~{(e~a/"/YU, U)a,, + (e~d/'SVU, VU)~}, (22) 

with some constant V ~ (0, 1"1, which will appropriately be chosen below. Sub- 
sequently, we shall drop the subscript i and the reference to the set s in the notation 
of the inner products. 

For abbreviation, we set g~ = e~a/',/~U. Note that d = 0 on ~2 ~ and thus, gt I = G 
on ~O ~ In view of (20) and the identity 

(e~*~Vu, vu)  = (r(e~*~ u), vu)  - (UVe'*J;, vu),  (23) 

there holds 

(e~d/'/;~:, u) + ,t(e~*'/-ivv, vV) = (~  - %, V) + ,~(v(~' - %), vU) + (G, U) 

+ 2(VG, VU) - 2(UVe ~a/'~, VU). (24) 

Since I Ve~a/'/~[ < 17e~a/'/~/x/2[, the last term on the right of (24) can be absorbed 
into the left hand side. Next, we estimate the first term on the right of (24), 

(~ - %, U) < (e-~d/"/~(~ -- gs), ~ _ ~,)~/2(era/,f2V, V)V2. (25) 

Using the relation 

m a x  ( e-minr edlx/ ~ / e-maxT" vd/x/~ ) "~ e r h l ' / ~  , (26) 
T e~-h 

the standard LZ-interpolation estimates for finite elements carry over to the 
corresponding weighted L2-norms, 

(e-ra/"/~(~ u -  ~ I ) , ~ - -  ~rti)<-ch4e rh/x/~ Z I e-rn/"/~lV2~12dx (27) 
T e g-~ tJ T 

< c~2h4~-Ze~h/'f~{(e~/',/~U, U) + ,~(e~d/~VV, VU)}. 

Here, we have used that V2U -- 0 and V2d = 0 on each T ~ ~ .  By an analogous 
argument we get 

A(e-~d/,/YV(e- ~),  V ( e -  7~)) 

<_ c?2h22-aeeh/'/Y{(e~d/'/YU, U) + 2(e~a/x/~VU, VU)}. (28) 

Consequently, choosing 7 sufficiently small, we can absorbe also the remaining 
terms on the right of (24) into the left hand side, obtaining 

(erd/'/~ U, U) + 2(e~a/"/~ VU, VU) <_ c{llGl[ 2 + 2]IVG[]2}. (29) 

Then, combining (29) with (22) yields the desired estimate (21). [] 
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Furthermore, we shall need the following a priori estimate for higher order time 
difference quotients of the global Crank-Nicolson solution V", which can easily be 
derived by a spectral argument (see, e.g., [13] and [14]). 

Lemma 2. The second order difference quotient of the global Crank-Nicolson solution 
of problem (1) satisfies the estimate 

\ 1/2 

Proof of the Theorem. The proof of estimate (17) for E"  = I l U " -  V"ll ~ is by 
induction over the time levels tin- Without loss of generality, we may assume that 
tr = ak/h 2 > 1. By definition, we have E ~ = 0. For  any globally defined function 
W e Soh(t'2), we introduce the notation W~ = WI~ f. Then, from the assumed properties 
(9) and (10) of the operator cg, we obtain 

N 
E" = II:g({U~ - V~m}l___,<n)ll 2 -< Y, I I U ~ -  V "lla,.2 (31) 

i=1 

We shall compare each U~ with the restriction to t2f of the auxiliary function 
17m e S~(f2), which is obtained through a global Crank-Nicolson step from time level 
t,,_, to tm with the initial data U "-~, 

I ~m -v--1,~)+z(z(~+u~-~),v~)=(f-,~), w ~ So~(O). (32) ~(v 

Then, the difference Z~' = U/~ - ~ "  e S"(I2/~) satisfies 

(Z?, 4) + ak(VZ'~, V~) = O, V~ e Sho(t2f), Z? = U ,  - ~"  on 8t2f. (33) 
z 

In view of Lemma 1, it follows that 

Z m 2 ,, ~m 2 (34) [I ~ 11o, -< ce-r~/'/~(llU;, - V 11~ + akIIV(U~ - -  ]~mXllEfijll(2j, 
with some constant 7 e (0, 1]. Hence, using the standard inverse property of finite 
elements, 

II vwIT~ <_ ch -~ II wlta~, (35) 

and recalling that a = ak/h 2 > 1 and 6 = Lh, we conclude that 

I{ U~' ~,n 2 ce-rL/x/~ a [[ u~n ~m 2 - V [lo, < - V [lar (36 )  

Since 8a represents an explicit Euler step, we have that 

I[U~, - Vail = IIC({V~},~o) - V~I] -< ck. (37) 

This together with (31) implies that 

E 1 < cok4tl 2, (38) 

with a certain constant c o. Now, we consider the case m _> 2. Suppose that for all 
tr < tin, there holds 
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E u < cok4t22 . (39) 

In  order  to est imate E",  the est imate (36) is now used for the right hand  side of (31). 
By Young ' s  inequality, we get that  

_ ~ m 17m G , (40) E m < c e - l e - r L / ' f i a  IIU~ o, + (1 + ~)IlV m - Vmll 2 
i=1 

where the constant  e ~ (0, 1] will be suitably fixed, below. 

To  est imate the second te rm on the right of (40), we observe that  17m - V m is 
obta ined  th rough  one global  Crank-Nico l son  step with a homogeneous  right hand  
side and the initial da ta  U '~-1 - V "-1. Therefore,  again by a s tandard  spectral  
argument ,  one sees tha t  

Ilg '~ - Vmll 2 < (1 - ~x/~r)llU ~-~ - Vm-li[ 2 = (1 - e / ( r ) E  m-1 , (41) 

with some numerical  constant  e > 0. 

The  first t e rm on the right of  (40) is now est imated as follows, 
N 

IIU2 - vm[l~  "Q c{l]~ra({Utt}#<m) -- gm({V#}lt<m)H 2 (42) 
i=l 

+ II~m({Vq~<,~) - V'II ~ + 1IV m - 17m112}. 

The  last n o r m  on the right has already been es t imated in (41). Fo r  the second term, 
for m >_ 2, we have tha t  

[l~m({U" - V"}u<m)l] 2 <- c m a x { E m - ~ , E " - 2 } .  (43) 

Not ice  that,  by definition, g~({UU}u=o) = gl({V"},=o).  To  complete  the est imate of 
(42) it remains  to bound  the term Ilgm({V~'},<,.) -- vmll. For  m > 2, we use the 
s tandard  est imate for linear ex t rapola t ion  to get 

Ilg.,({V").<.,) -- vm[[ <- ck 2 lid 2 V"I[, (44) 

where d 2 stands for the second order  difference quot ient  in time. In  virtue of 
L e m m a  2 it follows tha t  

I I~ ({g~} ,< , , )  - rmtl <_ ck2tm ~ Ilu~ (45) 

Combin ing  the est imates (41), (43), and  (44) with (40), we get the final result 

E "  ~ ce- le-~L/ ' fg  o { m a x { E " - l , E  " - z }  + k a - t m Z l ) u ~  (46) 

+ (1 + ~3)(1 -- e/ f f )E m-1. 

Now,  we fix e = e/or to obtain,  

(1 + e)(1 - e/o) = (1 - ~z/a2) < 1. (47) 

The  first coefficient in (46) can then be made  arbitrari ly small  by taking the over lap 
width sufficiently large according to L 2 _> a log2(cr)/~:o, to obta in  

E "  < cok4t~n  2 . (48) 

Now,  the assert ion follows by induction. [ ]  
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Remark .  The numerical results obtained by the proposed algorithm in its basic form 
are not satisfactory since the accuracy of the second order boundary extrapolation 
is insufficient. Therefore, we used quadratic extrapolation in time, for m _> 3, which 
contributes to the global error by 

I[~,.({VU).<m) - V~ll~ - ck 3 [[dt 3 V ' l l n  , (49) 

instead of (44). However, the required "smoothing" a priori estimate 

I[dt3gmll <_ etmZl]u~ + [lO~fll2 dt , (50) 
i=O 

for the third order time difference of the global Crank-Nicolson solution V m, similar 
to Lemma 2, can only be guaranteed if some damping is added to the scheme. For  
example, one may replace the first time step by one implicit Euler step, see also [13] 
for a related procedure. 

3. Numerical Results 

The theoretical results of the preceding section have been verified through various 
test calculations. It turns out that, for practical step sizes h and k, the simplified 
conditions (18) and (19) are indeed sufficient to guarantee the stability and the 
optimum order accuracy of the proposed domain splitting algorithm. Its run time 
behavior and accuracy is compared with that of a global Crank-Nicolson scheme. 
Both algorithms have been implemented on a transputer system (Transputer- 
SuperCluster 128 of the IWR Heidelberg) using up to p = 64 processors. This 
parallel computer is based on the T800 transputer of INMOS which has a measured 
performance of 0.5-1 MFlops (64 Bit), and 4 MBytes of local memory. The T800 
has 4 communication links with a speed of 2.35 MBytes/sec. The coding has been 
done in F OR TR AN 77 under the operating system Helios 1.1. For  a comprehensive 
measurement of the practical performance of this parallel computer, see [2]. 

All test computations have been performed for rectangular domains using N = 
1 x p (pipe) or N = r x s subdomains (rectangular splitting). The number p of 
processors was always chosen according to p = N. 

First, the stability property of the domain splitting algorithm has been tested on 
various processor configurations. Table 1 shows the calculated intervals (~cs, ~%), 
where the method is found to be stable for ~c o < tq and unstable for ~:o > ~cu. 
These results are essentially independent of the number of subdomains and of 
the size of the domain 12. We note that for problems in one space dimension the 
stability properties are nearly identical to those for the 1 x p-configurations in two 
dimensions. 

Test examples. The parallel performance of the proposed domain splitting method 
has been tested at the model problem (1), with the data a -- r~ -1, and T = 1, on a 
rectangular domain g2 = {(x, y): 0 < x < 8, 0 < y < 4}. The number ofsubdomains, 
N = 32, coincides with the number of processors, p -- 32. The linear systems on 
each subdomain are solved by the cg-method with SSOR-preconditioning up to the 
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Table 1. Numerical intervals for the stability constant ~c o 

configuration h L 

pipe 1/50 

1/100 

rectangle 1/50 

1/100 

2 3 4 5 

(2.75, 2.88) (2.56, 2.81) (2.64, 3.17) (2.53, 3.38) 

(2.72, 2.75) (2.62, 2.68) (2.64, 2.75) (2.53, 2.70) 

(1.98, 2.04) (2.01,2.16) (1.98, 2.26) (2.03, 2.53) 

(1.99, 2.01) (2.20, 2.25) (2.26, 2.34) (2.25, 2.38) 

residual accuracy of the order 10 -1~ This algorithm is compared against the 
"global" Crank-Nicolson method where the linear system in each time step is solved 
by the conjugate gradient method without preconditioning. Clearly, this solution 
method is slow for k > 2h, but may suffice for k < hi2. Its paralMization is effectively 
accomplished by direct data partitioning on the underlying 4 x 8-domain de- 
composition. For  the tests, the following particular solutions were selected 

(a) u(x, y, t) = sin(rex/16) sin(roy/16) sin(Tot), 

(b) u(x, y, t) = sin(2.7rcx) sin(2.77zy) sin(rot). 

The spatial discretization was set up on a uniform grid of width h = 1/100 in each 
of the subdomains (2i, i = 1, . . . ,  32, resulting in a discrete problem with about 
320.000 unknowns. The local boundary values were predicted by quadratic extra- 
polation, in order to enhance the accuracy of this crucial step. The two considered 
test cases, (a) and (b), are complementary in the difficulties they may cause for the 
splitting algorithm. The solution (a) has a very small variation in space. Hence, a 
balance between the spatial and the time discretization error is achieved only for 
relatively small time steps, k ~ hi4. In this case, the solution performance of the 
(locally preconditioned) splitting scheme is not expected to be superior to that of 
the global method. For  the solution (b) the optimal error balance is reached for 
coarse time steps k ~ 2h, which causes stability problems for the domain splitting 
scheme for small overlaps. 

In Table 2 the discretization errors, measured in the L~(O)-norm at the time T = 1, 
of the domain splitting scheme, errspli, and that of the global Crank-Nicolson 

Table 2. Comparison of the discretization errors (for h = 1/100) 

(a) (b) 

k L errsp  n errglo b k L errspll errglo b 

1/130 2 3(-5) 1(-5) 1/30 4 3(-3) 5(-4) 
1/180 2 1(-5) 5(-6) 1/40 4 7(-4) 4(-4) 
1/260 2 3(-6) 3(-6) 1/50 4 3(-4) 3(-4) 
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scheme, errg~o,, are c o m p a r e d  for var ious  t ime steps k and  over laps  6 = Lh. The 
t ime step is decreased down  to an "op t imal"  value kopt, at which the t ime and the 
space discret izat ion errors  appea r  to be balanced.  

The  deter iora t ion  of  the accuracy  in the doma in  splitting a lgor i thm for larger t ime 
steps k > kop t is main ly  due to the insufficient accuracy in the predict ion of the 
b o u n d a r y  values on the artificial interior  boundaries .  I t  drops  below the time 
discretization error  for k ~ kopt. In  all tests it turned out  that, for overlaps 
3h _< 3 _< 4h, the "op t imal"  t ime step kop t was well within the stability region of the 
scheme. Hence,  it can be expected that  this remains  true if the t ime step size is 
adapt ively  chosen according to an a posteriori  er ror  control.  

Next,  we compare  the computa t iona l  efficiency of the domain  splitting scheme 
with tha t  of  the "global"  Crank-Nico l son  method.  Table  3 shows the run  t ime 
per fo rmance  of  the two a lgor i thms on a 2 • 2-processor  a r ray  for the solut ion (a). 
In  this case the t ime step has to be taken relatively small, k ,~ h/2, and the global  
me thod  appears  slightly more  efficient than  the splitting algori thm. This is because 
the lat ter  has  to work  on an increased n u m b e r  of unknowns,  abou t  8~o, due to the 
over lap  ~ = 2h in the domain  decomposi t ion.  This addi t ional  computa t iona l  load 
goes up to 2 0 ~  in the case 6 = 5h. However ,  the losses by the communica t ion  time, 
tcomm, are negligible compa red  to the total  run time, ttota 1. 

Table 3. Comparison of the work per time step in the case (a) (for h = 1/100) 
global method splitting method L = 2 

k # cg-iter, ttot~ 1 tcorn m # cg-iter, ttot,i t~om~, 
i 

1/130 35 50 sec ! 2 see 7 41 sec .016 sec 
1/180 30 46 sec I 2 sec 6 40 sec .016 sec 
1/260 24 37 sec 2 sec 7 40 sec .016 sec 

Clearly, for the solut ion (b) the global  me thod  cannot  be compet i t ive with the 
(locally precondi t ioned)  splitting method ,  due to the slow convergence of the simple 
cg-method  for large t ime steps, k > h. Therefore,  the corresponding results are listed 
in Table  4 only for the split t ing scheme. 

Finally, to demons t ra te  that  the p roposed  splitting me thod  really scales with respect 
to the n u m b e r  of subdomains ,  we list the total  run times for the model  case (b), with 
the pa ramete r s  h = k = 1/100, T = l, and  L = 3, for var ious  sizes of  problems.  

Table 4. Total run time over [0, T] of the splitting 
method in the case (b) (for h = 1/100) 

k L # cg-iter, gtotal teomm 

1/130 2 5 109 min 2 sec 
1/60 3 9 60 min 1 sec 
1/50 4 10 53 min 1 sec 
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Table 5. Run time (in rain.) for processor configurations of increasing size 

Topology 3 x 3 4 x 4  5 x 5 6 x 6  7 x 7  8 x 8 

# unknowns 9 0 . 0 0 0  160.000 250.000 360.000 490.000 640.000 

time,oral 90.07 90.11 90.16 90.20 90.22 90.26 

Summary 

The proposed domain splitting algorithm has satisfactory stability properties and 
is as accurate as the "global" method, for balanced step sizes h and k. It scales 
up to large numbers of processors with constant losses through communication 
overheads, data transfer times, and idle times. The overall communication losses 
are significantly smaller than those for the considered "global" method. However, 
for very small time steps this advantage of the "splitting" over the "global" algorithm 
may be largely compensated by the increase in the computational costs due to the 
domain overlap. Therefore, this type of domain splitting method seems to be 
attractive particularly for cases when the computational domain naturally splits 
into several components and when an effectively parallelized "global" solution 
algorithm is not available. In the latter case, it may even be used as a preconditioner 
within a global iteration process. 

References 

[1] Axelsson, O., Barker, V. A.: Finite element solution of boundary value problems. London: 
Academic Press 1984. 

[2] Bader, G., Gehrke, E.: On the performance of transputer networks for solving linear systems of 
equations. Parallel Comp. 17, 1397-1407 (1991). 

[3] Ciarlet, Ph. G.: The finite element method for elliptic problems. Amsterdam: North Holland 1978. 
[4] Dawson, C. N., Du, Q., Dupont, T. F.: A finite difference domain decomposition algorithm for 

numerical solution of the heat equation. Report TR90-24, Rice Univ., Houston 1990. 
[5] Dawson, C. N., Du, Q.: A domain decomposition method for parabolic equations based on finite 

elements. Report TR90-25, Rice Univ., Houston 1990. 
[6] Dawson, C. N., Dupont, T. F.: Explicit/implicit, conservative, Galerkin domain decomposition 

procedures for parabolic problems. Report TR90-26, Rice Univ., Houston 1990. 
[7] Douglas, Jr., J., Dupont, T., Wahlbin, L.: The stability in L q of the L2-projection into finite element 

function spaces. Numer. Math. 23, 193-197 (1975). 
[8] Dryja, M.: Substructuring methods for parabolic problems. Technical Report 529, New York 

University, Department of Computer Science, November 1990. 
[9] J~iger, J., Hebeker, F. K., Kuznetsov, Y.: Investigation of overlapping in a domain decomposition 

method for a model heat equation. IBM WZH Technical Report, Heidelberg (in preparation). 
[10] Kuznetsov, Y. A.: Domain decomposition methods for time dependent problems. Pubbl. 1st Anal. 

Numer. Cons. Naz. Ric., Pavia 730, 261-264 (1989). 
[11] Lisky, S.: Eine Gebietszerlegungsmethode zur parallelen L6sung parabolischer Gleichungen auf 

Transputersystemen. Diplomarbeit, Heidelberg 1992. 
[12] L6hner, R., Morgan, K.: Domain decomposition for the simulation of transient problems in CFD. 

In: R., Glowinski, et al. (eds.) Proc. First Syrup. on Domain Decomposition Methods for Part. Diff. 
Equ. pp. 426-43l, SIAM, Philadelphia 1988. 

[13] Rannacher, R.: Finite element solution of diffusion problems with irregular data. Numer. Math. 
43, 309-327 (1984). 



A Domain Splitting Algorithm for Parabolic Problems 23 

[14] Thom~e, V.: Galerkin finite element methods for parabolic problems. Berlin, New York: Springer 
1984 (Lecture Notes in Mathematics 1054). 

H. Blum 
Fachbereich Mathematik 
Universit/it Dortmund 
Vogelpothsweg 87 
D-W-4600 Dortmund 
Federal Republic of Germany 

S. Lisky and R. Rannacher 
Institut f/ir Angewandte Mathematik 
Universit/it Heidelberg 
Im Neuenheimer Feld 293 
D-W-6900 Heidelberg 
Federal Republic of Germany 


