
Computing 48, 337-361 (1992) ~] ~ t i [~

�9 by Springer-Verlag 1992

The Convergence Rate of the Sandwich Algorithm
for Approximating Convex Functions

G. Rote*, Graz

Received June 18, 1991

Abstract - - Zusammenfassong

The Convergence Rate of the Sandwich Algorithm for Approximating Convex Functions. The Sandwich
algorithm approximates a convex function of one variable over an interval by evaluating the function
and its derivative at a sequence of points. The connection of the obtained points is a piecewise linear
upper approximation, and the tangents yield a piecewise linear lower approximation. Similarly, a planar
convex figure can be approximated by convex polygons.

Different versions of the Sandwich algorithm use different rules for selecting the next evaluation point.
We consider four natural rules (interval bisection, slope bisection, maximum error rule, and chord rule)
and show that the global approximation error with n evaluation points decreases by the order of O(1/nZ),
which is optimal.

By special examples we show that the actual performance of the four rules can be very different from
each other, and we report computational experiments which compare the performance of the rules for
particular functions.

AMS 1991 Mathematics Subject Classifications: 52-04 (41A15, 41A25, 52A10, 65D07, 68U05)

CR Categories and Subject Descriptors (1987 version): F.2.1. [Analysis of algorithms and problem
complexity]: Numerical algorithms and problems; G.1.2. [Numerical analysis]: Approximation--spline
and piecewise polynomial approximation; 1.3.5. [Computer graphics]: Computational geometry--
geometric algorithms

General Terms: Algorithms, theory

Key words: Piecewise linear convex approximation, convex polygonal approximation, Sandwich
algorithm.

Die Konvergenzrate des Sandwich-Algorithmus zur Approximation konvexer Funktionen. Der Sandwich-
Algorithmus approximiert eine konvexe Funktion einer Variablen fiber einem Intervall, indem er die
Funktion und ihre Ableitung an einer Folge yon Stfitzstellen ausrechnet. Die Verbindung der Punkte
ergibt eine stfickweise lineare obere Approximation, und die Tangenten liefern eine stfickweise lineare
untere Approximation. Auf/ihnliche Art kann man einen konvexen Bereich der Ebene durch konvexe
Polygone approximieren.

Verschiedene Versionen des Sandwich-Algorithmus unterscheiden sich dutch die Regel, nach der sic die
n~ichste Stfitzstelle bestimmen. Wir zeigen ffir vier natiirliche Regeln (Intervallhalbierung, Steigungs-
halbierung, maximaler-Fehler-Regel und Sehnenregel), dab der globale Approximationsfehler mit der
Anzahl n der Stfitzstellen mit der bestm6glichen Ordnung O(1/n z) abnimmt.

* This work was partially supported by the Fonds zur F6rderung der wissenschaftlichen Forschung,
Project P7486-Phy.

338 G. Rote

Anhand yon besonders konstruierten Beispielen zeigen wir, dab die vier Regeln sehr unterschiedliches
Konvergenzverhalten haben k6nnen, und wir berichten fiber Rechenexperimente zum Vergleich der
Regeln f/dr einige ausgesuchte Funktionen.

1. Introduction

The Sandwich algorithm is an iterative procedure for approximating a convex
function of one variable by piecewise linear convex functions. It starts by evaluating
the function and its one-sided derivatives at the endpoints of the given interval. The
line connecting the two endpoints of the graph of the function yields an initial upper
bound of the function, and the two supporting lines described by the derivatives at
the endpoints give an initial lower bound for the function (cf. Fig. 1). Now we select
some point x I in the interval and evaluate the function and its derivative. (If the
function is not differentiable, any subgradient will do.) In this way, we get an
improved upper and lower approximation, and the problem is split into two
subintervals. Now we select the subinterval in which the error is larger, and we
partition it in the same way as above. We continue this process for a given number
of iterations or until a specified error bound is met.

1
I J

! / x ! i
a xl z2 b

, 2"

Figure 1. The Sandwich algorithm after two partitioning steps

Since the convex function in which we are interested is enclosed from above and
below by the two approximations, we call such a pair of piecewise linear approxi-
mating functions a Sandwich approximation, and an algorithm which produces a
Sandwich approximation in the way described above is called a Sandwich algorithm
(cf. Burkard, Hamacher, and Rote [1992], Martelli 1-1962]).

The error measure that we consider in this paper is the maximum vertical distance
between the lower and the upper approximation. Other error measures, like the area

The Convergence Rate of the Sandwich Algorithm for Approximating Convex Functions 339

between the two approximations or their maximum projective distance (normal
distance, Hausdorff distance), can be handled by the Sandwich algorithm in the
same way (see Section 5).

Different versions of the Sandwich algorithm differ in the way how they partition
intervals into subintervals. We consider four partition rules, that would naturally
come to one's mind (cf. Fig. 2):

(i) The interval bisection rule: The interval is partitioned into two equal parts.
(ii) The slope bisection rule: We find the supporting line whose slope is the mean

value of the slopes of the tangents at the endpoints. We partition the interval
at some point where this line touches the function.

(iii) The maximum error rule: The interval is partitioned at the breakpoint of the
lower approximation, i.e., at the point where the error between the two approxi-
mations is maximum.

(iv) The chord rule is similar to the slope bisection rule. However, we take the slope
of the line connecting the two endpoints as the slope of the supporting line.

the interval bisection rule

the maximum error rule

the slope bisection rule

the chord rule

Figure 2. Four partition rules for the Sandwich algorithm

The rules fall into two classes: Rules (i) and (iii) specify the abscissa of the new point,
whereas rules (ii) and (iv) find the point by specifying the slope of a supporting line.
Which way of specifying the new breakpoint is more convenient depends on the
application. However, we will see in section 2 that there is a very doge connection
between rule (i) and (ii) and between rule (iii) and (iv).

There is another classification of the rules: The two bisection rules (i) and (ii) are
the "stubborn" rules, whereas rules (iii) and (iv) are more adaptive to the shape of
the function.

340 G. Rote

The chord rule is actually also a kind of maximum error rule, since it selects the
point on the function whose distance from the upper approximation is maximum.
The chord rule also locally minimizes the area between the upper approximation
and the function (cf. Lew and Quarles [-1989]).

The main result of this paper is that, for all four partition rules, the maximum error
decreases quadratically with the number of iterations.

Motivation of the problem. A very closely related and equally important problem is
that of approximating a convex plane figure by a polygon (see section 5).

The applications of approximating convex functions (and convex bodies) can be
classified into two categories:

1. It is computationally expensive to evaluate the funtion at a given point, but we
want to get an approximate idea what the function looks like.

2. The function is completely known, but it is nevertheless expedient to replace it
by a piecewise linear function with few pieces.

We list two examples of applications falling into the first category and three
examples of the second category:

�9 Bicriteria linear programs: We are given two linear objective functions (describ-
ing, e.g., time and costs) which are to be optimized subject to a set of linear
constraints. Since not both objectives can be optimized at the same time, we have
to be satisfied with a description of the feasible (time, cost)-pairs. These pairs form
a polygon in the plane (cf. Fig. 3), and the efficient points from part of its boundary.
For large problems, the work to compute all vertices of this polygon might be
prohibitive. In such a situation, an approximation of the polygon which can be
computed at reasonable cost is better than nothing. For the case of bicriteria
minimum-cost network flow problems, the Sandwich algorithm was successfully
tested with a couple of different partition rules by Fruhwirth, Burkard, and Rote
[1989].

�9 Parametric linear programs with one parameter in the objective function or on
the right-hand sides are similar to the previous case.

�9 In mathematical programming a convex constraint is often replaced by a piece-
wise linear constraint, since such constaints are easier to deal with.

�9 In computational geometry, the dependence of the running time of algorithms
on the number of polygon vertices is often quadratic or of even higher degree
(for example in motion planning). Replacing the input of a problem by a simpler
approximation is a way to get approximate results while speeding up the calcula-
tions. (Another approximation problem which was motivated in this way has
been considered in Fleischer et al. [1990], [1992].)

�9 In image processing, a complicated polygon boundary might be replaced by a
simpler polygon in order to eliminate input noise or to reduce the storage
requirement.

In the applications of the first category, the problem is to get an acceptable
approximation with as few function evaluations as possible. Here the Sandwich

costs

The Convergence Rate of the Sandwich Algorithm for Approximating Convex Functions 341

. time

Figure 3. The feasible reNon of a bicriteria linear program. The emphasized part of the boundary is the
efficient point curve

algorithm is the ideal candidate, because it uses just the best approximation that
can be obtained from the information that is known.

In the second case, the problem of finding an approximating function with a
specified error bound and the smallest possible number of linear pieces can be solved
in principle, and there are direct methods for it: For optimal approximations, of.
Imai and Iri [1986], Cantoni [1971], or the surveys in Imai and Iri [1988] and
Kurozumi and Davis [1982]. For approximations which are asymptotically optimal
for small error bounds, cf. McClure and Vitale [1975] and Miiller [1991]. However,
some of these methods are complicated and slow, and it is often not even clear what
the optimization criterion of the approximation should really be. Thus, the Sand-
wich algorithm might still be the method of choice if a simple and fast algorithm
with a good performance guarantee is asked for.

Previous and related results. The problem of approximating a convex body by a
polygon (or polytope) has attracted a great deal of attention in the theoretical
literature (cf. the surveys in Gruber [1983], [1992] or Gruber and Kenderov
[1982]). It is well known that the distance between a given convex plane figure and
its best approximating n-gon is O(1/n2). This holds for approximations by enclosed
or enclosing or arbitrary polygons, and for a variety of error measures, like Haus-
dorff distance and area of the symmetric difference. This convergence rate is best
possible (as is easy to see, by considering the case of a circle). For the approximation
of convex functions, with the maximum vertical distance as the error, no algorithm
can guarantee a convergence rate better than O(1/n2): the parabola y = x 2 is the
worst case.

The Sandwich algorithm is so natural that is has been proposed very often, with
different applications in mind; especially the chord rule has been popular, sometimes
even for approximating non-convex curves, see e.g. Ramer [1972], Freeman and
Shapiro [19753, Aneja and Nair [19793, or Khang and Fujiwara [1989] in higher
dimensions. However, steps towards a thorough analysis were taken only in recent
years. Noltemeier [1970] considered the maximum error rule for approximations

342 G. Rote

which do not use derivatives and proved that the approximation error converges
to zero. Ruhe [1988] (see also Ruhe [1991]) proved that the error of the chord rule
decreases at least linearly. Lew and Quarles [1989] considered the chord rule for
maximizing the area of a polygon inscribed inside a convex curve in the plane.
However, in each iteration they subdivide every interval of the approximation. They
showed that this non-adaptive method yields maximum-area inscribed polygons if
and only if the convex curve is an arc of a conic section. Gruber [1991] showed that
by this simple method of subdividing intervals uniformly a quadratic convergence
rate can be achieved if the function h(x) is twice continuously differentiable in the
whole interval including the endpoints (see G ruber [1991], Theorem 4 and Remarks
8 and 4). Uniform subdivision is however not sufficient for a function like h(x) = x 3/2,
0 _< x _< 1, or for non-differentiable functions. The Sandwich algorithm with
any of the four partition rules can handle these functions well because it is more
adaptive.

Incidentally, when the Sandwich algorithm is used to approximate a parabola
h(x) = x 2, the sequence of upper approximations is just the sequence which Archi-
medes used to exhaust the area of a parabolic segment, in his second proof (Archi-
medes [w167 cf. also Boyer [1968], pp. 142-143). Archimedes constructed his
sequence of polygons according to the chord rule.

A proof of the quadratic convergence rate of the Sandwich algorithm for the interval
bisection rule was given in Sonnevend [1984] (in a more general setting), and for
the case of the interval and slope bisection rules in Burkard, Hamacher, and Rote
[1992] (with a different proof). Fruhwirth, Burkard, and Rote [1989] proved
analogous results for the angle bisection rule, a natural variation of the slope
bisection rule. The relation between these proofs and our proof will be discussed in
the concluding section. For the maximum error rule and the chord rule, quadratic
convergence is proved for the first time in this paper.

Ruhe and Fruhwirth [1990] considered the approximation criterion of e-efficiency,
which is useful in connection with multicriteria problems (see also Ruhe [199t]).
They investigated the performance of the chord rule in this context.

Our results are a quantitative counterpart to the results on probing of polygons (cf.
Cole and Yap [1987] or Skiena [1989]), where a polygon is to be reconstructed by
asking for the intersection of the polygon with a specified line or for the supporting
line with a specified direction. These two types of probes correspond, in our problem
setting, to a function evaluation and to finding the point with a given value of the
derivative. The results on probing are of a more combinatorial nature, since the
polygons are to be reconstructed exactly and the number of probes depends only
on the number of polygon sides.

Overview of the paper. In Section 2 we discuss duality between convex functions
and we establish a close connection between the partition rules which specify the
abscissa and those which specify the slope. Sections 3-4 contain the main part of
the paper: the quadratic convergence theorems. These theorems are applied to the
approximation of convex plane figures in Section 5. The next two sections comple-

The Convergence Rate of the Sandwich Algorithm for Approximating Convex Functions 343

ment our worst-case convergence results by studying how the different rules may
behave for particular functions: In Section 6 we compare the four partition rules
from a theoretical point of view. We will see that there is no reason to prefer any
rule to another, because each rule can perform arbitrarily badly when compared
to the other rules. In Section 7 we show the behavior of our partition rules for
a few selected functions. In the final Section 8 we summarize the conclusions
from the comparison of the rules, and we discuss possible extensions and open
problems.

2. Geometric Duality of Convex Functions

We can describe a convex function h: I-a, b] ~ ~ as the set of all pairs ((p, q), (k, d)),
where (p, q) is a point on the graph of the function and y = kx + d is a supporting
line in this point:

q = kp + d = h(p), and for all x ~ [a, b]: h(x) >_ kx + d.

The dual transformation @ maps each pair ((p, q), (k, d)) to the pair ((k, - d), (p, - q)).
It maps points to lines and lines to points by the polarity with respect to the parabola
y = x2/2. (This mapping is also a special projective duality.) This transformation is
a tool which is often used in computational geometry (cf. Edelsbrunner [1987],
Section 1.4 or 15.2). It transforms the given function h into another convex function
@(h). If the derivatives of h and ~(h) are defined, they are inverse functions of each
other. ~(h) is also known as the conjugate of h (cf. Rockafellar [1970], ~12 and 26)
or the Legendre transform of h (cf. Arnol'd [1978], pp. 61-63).

As the slopes of the supporting lines at the endpoints of the definition interval are
not unique, there is some arbitrariness regarding the domain of ~(h). At the left
endpoint a, there are supporting lines with slopes in the range between - ~ and
h+(a), the right derivative of h at a. If we include them all, ~(h) will be defined on
the whole of ~ and it will have linear pieces in [- ~ , h+(a)] and in [h-(b), ~] , but
usually we don't want this. So we define ~(h) on the interval [h + (a), h-(b)]. However,
we lose the involutory property of ~: If h has linear piecesat its ends, ~(~(h)) will
have lost these pieces. However, if h is strictly convex, then we will always have
~(9(h)) = h.

The interval bisection rule now corresponds to the slope bisection rule for the dual
function (with the above proviso regarding the domain of the dual), and the vertical
errors are the same in both cases. Similarly, the maximum error rule and the chord
rule are dual: The maximum error rule looks for the point with the same abscissa
as the intersection of the two supporting lines at the endpoints; the chord rule looks
for the line with the same slope as the connection of the two points at the interval
boundaries.

Therefore, in the proofs below, it will be sufficient to consider only one rule of each
pair of rules.

344 G. Rote

3. The Interval and Slope Bisection Rules

The following elementary lemma is the basis of our proofs.

Lemma 1. (Lemma 2.1 of Burkard, Hamacher, and Rote [1992]) Let L = b - a
denote the length of an interval [a, b], and let A = h-(b) - h+(a) denote the slope
difference of the two parts o f the lower approximation. Then the maximal vertical
error e in this interval is bounded as follows:

LA

4

Proof" If the greatest error between the lower and the upper approximation occurs
at some point x in the interval [a, b], elementary geometric considerations lead to
a lower bound for A in terms of x - a, L, and e. The smallest value of this bound
is assumed when x is the midpoint of the interval, and it yields the desired inequality.

The next lemma is the core of the induction step in our inductive proofs:

Lemma 2. I f L D Lz , A1, A2 >_ O, e > O, L 1 + L 2 ~ L, and A t + A z <_ A, then

Proof:

(+ < (+ 2 + - ,/r2 l)

= (LI + L~)(~I + ~) <- La .

The lemma follows by dividing by ~ and taking square roots. �9

We need two more elementary lemmas, whose proofs are omitted. The next one is
needed to ensure that the induction hypothesis can be applied, and Lemma 4 will
help us to deal with the rounding that occurs in the theorem:

Lemma 3. For x > 3 we have: [x / i ~ " x'l < Ix] - 1.

Lemma4. l f c > a + b t h e n [c - 2] _ > l + [a - 2] + [b - 2] .

Now we are ready for the main theorem of this section. In the statement of the
theorem we assume that the Sandwich algorithm computes h(x) and the two
one-sided derivatives h-(x) and h+(x) for each new breakpoint x, and it uses h-(x)
as the slope of the lower approximation to the left of x and h+(x) on the right side
of x. These one-sided derivatives exist always because h is convex. However, it is
sufficient and sometimes more practical to just take any value between h-(x) and
h+(x) as the slope of the lower approximation, as long as we take a steeper slope to
the right of x than to the left of x, and the theorem still holds. (Some care has to be
taken in the case of the slope bisection rule; see the remark at the end of this section.)

Theorem 1 (Theorem 2.3 of Burkard, Hamacher, and Rote [1992]). Let h be a
convex function defined on an interval [a, b] of length L = b - a, and suppose that
the function values h(a) and h(b) and the one-sided derivatives h+(a) and h-(b) have
been evaluated. Let A = h-(b) - h+(a). Then, in order to make the greatest vertical

The Convergence Rate of the Sandwich Algorithm for Approximating Convex Functions 345

error between the upper and the lower approximation smaller than or equal to e, the
interval bisection rule or the slope bisection rule needs at most z(LA/e) additional
evaluations of h(x), h- (x), and h + (x), where

z(LA/e) = 9 LA
I

for LA/e <_ 4,

- - - 2 1 , for LA/e > 4.

Before proving this bound, let us check that the expression LA/e is the natural
measure in terms of which the bound z should be expressed: If we scale the function
in the y-direction, replacing h(x) by f . h(x) for some f > 0, A and all vertical
dimensions are multiplied by f. Thus, we also replace e by fe, and LA/e remains
invariant. Similarly, if we scale the function equally in both directions, replacing
h(x) by f . h(x/f), A remains constant but L and e are multiplied by f, and LA/e is
again unchanged.

Proof: We first consider the interval bisection rule. We prove the theorem by
induction on the integer number z(LA/e). More precisely, our induction hypothesis
is that the given expression forz(LA/e) is an upper bound on the number of iterations
for all convex functions for which z(LA/e) is less than a certain value n, and then we
prove it for z(LA/e) = n. The first case, z(LA/e) = 0, which establishes the basis for
the induction, is directly equivalent to lemma 1.

In the other case, z(LA/e) is at least one. If the vertical error is greater than e then
the interval bisection rule will evaluate h(x), h-(x), and h+(x) for x = (a + b)/2, thus
splitting the interval into two intervals of length L/2, with slope differences A 1 and
A2, where A1 + A 2 ~ A. Thus we have to prove

z(LA/e) >_ max 1 + z At/e + z A2/e .
A I + A z < A

We distinguish three subcases:

(i) Both z A~/e and z are zero. Then there is nothing to prove.

(ii) z ~A2/e = 0, but z gA~/e > 0 (or vice versa): This means tha tLA~/e > 4.

We have to show that z(LA/e)> 1 + z . Lemma 3, applied to

x = LA1/e, implies that z ~- 1/e is strictly smaller than z(LA1/e), which

in turn is smaller than z(LA/e). This ensures that the induction hypothesis can
be applied, and it also proves the theorem.

(iii) Both z At/e and z ~A2/e are positive. We have to show:

9 __LA _ 2 > 1 + max 2 + 2 .

346 G. Rote

As in the previous case, it follows from Lemma 3 that the induction hypothesis
can be used. By Lemma 4, it is sufficient to show the following relation:

x/(9/8)LA/e > max ~A~ +
AI+Aa<-A ~ 2 "

By canceling the common factor x / ~ on both sides, the above statement
becomes a direct consequence of Lemma 2.

For the slope bisection rule, the roles of L and A must simply be interchanged. �9

The constant 9/8 in the theorem is best possible. For a worst-case example, x in
Lemma 3 must be just greater than 3. We define a function h on two adjacent
intervals of lengths L~ = L 2 = 1, with slope differences A~ = 0 in the left interval
and A 2 just a little bigger than 4e in the right interval. L 2 and A2 just barely fail to
satisfy the inequality of Lemma 1. Thus, we can set up the function h in the
right interval in such a way that the error is greater than 5, for example by
setting h(x)= (A2/2)x2+ ax + b, for appropriate constants a and b. For the
whole interval we have L = 2 and A = A2 > 45, and thus we get z(LA/e)=
[~/9 + something - 2] = 2, which is the true number of additional function evalu-
ations. By taking 2 k instead of 2 intervals of length 1, alternatingly with A = 0 and
A > 4e, one can create infinitely many examples where the theorem is tight.

Corollary 1. I f we always subdivide the interval with largest error according to the
interval bisection rule or the slope bisection rule, then the maximum vertical error after
n > 2 evaluations o f h, h-, and h + is at most

9 LA
8 n 2 "

Proof." For the case n = 2 (evaluation only at the endpoints), we get the error bound
e = 9/32. LA > LA/4, and the result follows from Lemma 1. For n > 3 we have
LA/e = 8n2/9 >_ 8 > 4, and from Theorem 1 we conclude that we need at most

z(LA/e)-- I / 9 L A _ 2] = I n - 2] = n - 2 /x/8
/

additional evaluations to achieve the claimed error bound 5. �9

The best possible Sandwich approximation (assuming that the whole function is
given in advance, before any of the n - 2 partition points have to be chosen) would
have the bound (1/4)LA/(n - 1) 2, as can be shown with the help of Lemma 1. Thus,
the bisection rules are by a factor of 9/2 off the optimum.

A word of caution about implementing the slope bisection rule. Before the statement
of Theorem 1 we said that we may take any subgradient of h at x instead of the
value h-(x) or h+(x). However, we cannot just take some subgradient h'(x) which
depends only on x. Consider the function h(x) = max(0, x 2 + 4x) in the interval
- 1 _< x _< 1, which has a breakpoint at x = 0. After one iteration of the slope
bisection rule we have two subintervals [- 1, 0] and [0, 1]. For the right subinterval,
the Sandwich algorithm determines the mean value between the slopes h'(0) and

The Convergence Rate of the Sandwich Algorithm for Approximating Convex Functions 347

h'(1). If we always took h ' (0)= h - (0) = 0 and h ' (1)= h - (1) = 6, we would get
(h'(0) + h'(1))/2 = 3 for the slope of next partition point. But this would again yield
the point x = 0, and the Sandwich algorithm would cycle forever.

Therefore we have to take the following precaution. The Sandwich algorithm with
the slope bisection rule uses derivatives on two occasions: as slopes of the lower
approximation, and for computing the slope (h + (a) + h-(b))/2 of the next partition
point. In both cases, if a point x has previously been determined as the point where
a supporting line of slope s touches the function h then we may take instead of the
value of h+(x) any subgradient of h at x which is at least s; similarly, the value that
we take instead of h-(x) must be at most s. It is easy to incorporate this rule into
the algorithm, and thus the slope bisection rule is viable even if we do not want to
compute one-sided derivatives.

4. The Maximum Error Rule and the Chord Rule

We need an additional lemma which is used to bound the product L 1 zl~ for the left
subinterval from below when the error in the right subinterval is more than e after
the maximum error rule has been applied. This will replace Lemma 3 in ensuring
that the induction hypothesis can be applied.

Lemma 5. Consider an interval [b, c] which has been subdivided at the breakpoint d
o f the lower approximation, as in the maximum error rule, see Fig. 4. Suppose that in
one o f the subintervals, say, in [d, c], the vertical error GG' is greater than e. Then the
length L~ = d - b o f the other interval and its slope difference A 1 = h-(d) - h+(b)
satisfy the following relation:

LIA 1 > e.

C

b f d c

Figure 4. Proof of lemma 5. GG' is greater than

, X

Proof." We clearly have DE > GG' > e, since the lines EG' and DG meet in C, which
is to the right of G, and D is to the left of G. From the triangle DEF, we have

e < DE = (d f) . (s l o p e (F E) - slope(FD))

= (d - f) . (h - (d) - h+(b)) <_ (d - b) . (h-(d) - h+(b)) = L1A1. �9

348 G. Rote

Theorem 2. Let h be a convex function defined on an interval [a, b] of length
L = b - a, and suppose that the function values h(a) and h(b) and the one-sided
derivatives h + (a) and h- (b) have been evaluated. Let A = h- (b) - h + (a). Then, in order
to make the greatest vertical error between the upper and the lower approximation
smaller than or equal to e, the maximum error rule or the chord rule needs at most
m(LA/~) additional evaluations of h(x), h-(x), and h+(x), where

m(LA/e)-= LA _ 2 , for LA/e > 4.

Note that the first formula in the definition of m(Ld/e) is a special case of the second
one, except for LA <_ e, where it would be negative.

Proof: We consider only the maximum error rule. For the chord rule, the result
follows by duality. We prove the theorem by induction on m(Ld/e). The induction
basis, m(LA/e) = 0, is equivalent to Lemma 1.

In the other ease, m(Ld/e) >_ i. If the error is at most e in both subintervals we are
done.

Otherwise, let L, A, Lt , At, L2, and A2 denote the lengths and slope differences of
the original interval [a, b] and of the left and right subintervals. We assume w.l.o.g.
that the vertical error exceeds e in the right subinterval. From Lemma 5 we get
L1Ai /e > 1, and from Lemma 1 we get LzAz/e > 4.

Thus we have to prove

m(Ld/e) >_ max (1 + m (L i d l / e) + m(L2Az/e)).
ztt+A2 <_A
LI +L2=L

Lidl>e, L2d2>4~

Lemma 2, together with Lx/~A~A1/e >_ 1, implies that m(L2A2/e) is strictly smaller
than m(LA/e), and similarly, m(L ~ A 1/e) < m(LA/e). Hence the induction hypothesis
can be applied. If m(L 1A ~/e) = 0 the theorem follows directly; otherwise, we have
to show the following relation:

21 > 1 + max - 21 + [~ - 21).
Al+,~2 <_ A
Li +L2=L

L 1 A 1 >e,L2 A2>ge

By Lemma 4, it is sufficient to show

m a x
d l+d2_< A
LI +L2=L

which follows directly from Lemma 2. �9

Corollary 2. I f we always subdivide the interval with largest error according to the
maximum error rule or to the chord rule, then the greatest vertical error after n >_ 2
evaluations of h, h , and h + is at most

LA/n 2 .

The Convergence Rate of the Sandwich Algorithm for Approximating Convex Functions 349

Proof" Similar to the proof of the corollary of Theorem 1. �9

Note that Lemma 1 is a special case of this corollary.

The above proof shows that we could even mix the application of the chord rule
and the maximum error rule arbitrarily and still get the same bounds. (If we also
include the bisection rules, we would get the bounds of Theorem 1.)

It is easy to find examples where the bounds of Theorem 2 and its corollary cannot
be improved. Simply take the function h(x) = x 2, 0 _< x < 1. We have L = 1 and
A -- 2, and any of our four partition rules will split every interval into half. After
n = 2 k evaluations of h, the interval [-0, 1] will thus be split into 2 k - 2 intervals of
length 1/2 k and one interval of length 1/2 k-1 in which the error is 1/22k-1. This
coincides with the bound in the corollary. If we impose a bound e which is slightly
smaller than this error, we have to evaluate h at 2 k + 1 points, which is equal to
the bound m(LA/e) of Theorem 2.

A comparison with the best possible "off-line" approximation bound (cf. the discus-
sion after corollary 1) shows that the maximum error rule and the chord rule are
worse by a factor of 4. The above example shows why one cannot expect more from
a simple "on-line" algorithm that selects its next partition point without taking into
account how many further iterations it will make in the future: If every subinterval
looks completely symmetric, the Sandwich algorithm can do nothing better than
split each interval into half. But after 2 k evaluations, this partition will be very
unfavorable, with one left-over interval that is twice as long as the remaining
intervals.

5. The Approximation of Convex Plane Figures

We shall now apply our results to the approximation of convex plane figures.
For approximating a convex figure (or a convex curve), there is no distinguished
"vertical" direction for measuring the error. Thus we use the Hausdorff distance,
which is defined for an inner approximation Pi "and an outer approximation Poutor
as follows:

sup inf d(x, y).
X E Pouter Y E Piuner

Here d(x, y) denotes the Euclidean distance. When we consider the graph of a convex
function as a convex curve, the Hausdorff distance is always bounded by the
maximum vertical distance. Therefore the bounds of Theorems 1 and 2 immediately
carry over.

Theorem 3. The Sandwich algorithm approximates a convex plane f ieure P o f
circumference D by two n-cons (n >_ 4) with an error at most 9D/(n - 2) 2 in case o f
the interval or slope bisection rule, or at most 8D/(n - 2) 2 in case o f the maximum
error rule or the chord rule. Or vice versa, to achieve a specified error bound e, the
Sandwich algorithm needs at most ~(D/e) or r~(D/e) points, respectively, where

~(D/e) = max{4, [~ + 2]},

350 G. Rote

and

~(D/e) = max{4, [8 x / ~ + 21}.

Proof'. We determine the smallest enclosing axis-parallel rectangle of P. The points
where the rectangle touches P divide the boundary into four pieces. By looking from
the proper diagonal direction, each piece can be viewed as a convex function with
slope between - 1 and + 1. Thus we have A _< 2, and the lengths L 1, L 2, L 3, L 4
are bounded by the lengths of the corresponding pieces of P's circumference. We
apply the Sandwich algorithm to each piece individually. Now let us prove the
last part of the theorem. For the maximum error rule or the chord rule, we get from
Theorem 2:

L ' ~ , for i = 1, 2, 3, 4. m(~.2/~) _<

Assuming that we need at least 5 points we even get m(Li" 2/e) < ~ e - 1 for
at least one i. Thus the number of points is bounded by

4 + m(2L1/e) + m(2L2/~) + m(2L3/e) + m(2L4/e)

< 3 + x / ~ (x / ~ l + ~ 2 + x/~3 + x/~4).

We have L~ + L2 + L3 + L,~ ___ D. The sum of the square roots is thus maximized
when L~ = L2 = La = L4 = D/4. Therefore, the number of points is an integer

number less than 3 + x/Sx/~, and our expression for r~(D/e) is the largest such
number. The proof for 3(D/e) works in the same way. The proof of the error bounds
in the first part of the theorem is analogous to the proof of Corollary 1. �9

We can decrease the multiplicative constants from 8 arbitrarily closely towards 2~
and from 9 towards 9~/4 by initially decomposing the boundary of P into more
than four pieces. This reduces the difference between the Hausdorff distance and
the vertical distance. The constant for the best possible Sandwich approximation is
~t2.

The only partition rule which carries over naturally from convex functions to convex
figures is the chord rule, because it is completely insensitive to directions. This is
one reason why the approximation of plane figures is less convenient to deal with
than the approximation of functions. The analog of slope bisection is angle bi-
section, which has been treated in Fruhwirth, Burkard, and Rote [1989]. Analogs
of the interval bisection rule and the maximum error rule can be applied if some
point in the interior of P is chosen. Corresponding rules would then be related to
each other by a polarity with respect to a circle centered at this point. This polarity,
however, preserves only the "relative error" with respect to this center and not
absolute distances llke the dual transform 9.

6. Comparison of the Partition Rules--Theoretical Results

All partition rules that we have considered are optimal in the worst case: For given
values of L and A their worst case is only by a constant factor off the worst case for

The Convergence Rate of the Sandwich Algorithm for Approximating Convex Functions 351

an "optimal" Sandwich approximation. It is conceivable that the Sandwich algo-
rithm with some partition rule would even remain "close to optimal" for all

functions, in the following sense: If there exists an optimal approximation for a
given function with n intervals and an error e, the Sandwich algorithm finds an
approximation with an error ee in at most dn iterations, for some global constants
c and d.

The purpose of this section is to dismiss any hopes about such an optimality
property for any of the four partition rules.

Bad examples for the bisection rules. Take an interval of length 2 "+a where the
function is constant except in the left-most piece of length 1 where it has slope - 2E
(see Fig. 5). Then the interval bisection rule will make n iterations to reduce the
error to E, whereas all other rules will even find the exact function after just one
iteration.

2E

1 1 2 ~+1 - 2

Figure 5. A bad example for the interval bisection rule

By duality, an analogous example can be constructed for the slope bisection rule.
Before applying the duality, the function of Fig. 5 should be made strictly convex,
for example by adding x2 / lO0" to it (see Section 2).

Bad examples for the adaptive rules. We now construct an example where the chord
rule performs badly. It is a piecewise linear function which we describe as a
polygonal chain (Q, O, P,, P,-1 P1, P0), where Q = (- E , E) for some parameter
E > 1, O = (0, 0), and the points P~ have the following properties (see Fig. 6):

1. All points Pi lie above the x-axis, and each line PiPi+ 1 intersects the x-axis
in the point (1 - i/n, 0). This implies in particular that the function is indeed
convex.

2. The supporting line parallel to QPi touches the chain in Pi+l. Therefore the chord
rule, when subdividing the interval QP~, will select P~+~ as its next partitioning
point.

If we denote the coordinates by Pi = (xl, Yi) and write di := 1 - i/n, these conditions
can be written as follows:

1. Yi+l _ Yi f o r i = 0 , 1 n - 1 (1)
Xi+l - di x i - di '

352 G. Rote

u = f(~)

Q= (-E,E) <

i

0 d~

= (x~, y d

Figure 6. Construction of the bad example for the chord rule. Because of the huge dimensions which
arise in the actual construction, this figure cannot give true proportions. Although it is hard to notice,

the two rays do eventually meet. Their intersection is Pi

2. The slope of QP~ is steeper than the slope Pi+zPi+l; the lat ter line goes th rough
the point (di+l, 0), and thus we can write

Yi - E Yi+l
x i + E > , for i = 0, 1 , . . . , n - 1 (2)

Xi+ 1 - - di+ t

xi is then defined f rom Yi, xi+l, and Yi+l by (1). Before checking (2) we show the
following, by induct ion on i (from i = n down to 0):

xi - yi >_ i, for i = n, n - 1 1,0.

N o w we define P~ recursively by setting P, = (x,, y,) = (E + n, E) and

Yi = (2E + 1)n 'x i+a, for i = n - 1, n - 2 2, 1 ,0 .

The case i = n is true by the definition of P,. Fo r the inductive step, we have

x i - y i = Y i Yii 1 + d ~ = y i \ Yi+l

~> Yi \ Yi+l " - Yi+l -- Yi+i

In part icular, Yo < Xo and thus Po lies below the line y = x. As the tangent at Po
goes th rough the point (do, 0) = (1, 0), the function between O and Po is conta ined
in the triangle O, (1, 0), Po, and the initial Sandwich approx ima t ion for the interval
O P o or any subinterval P, Po has an er ror less than 1. O n the other hand; the error
of the approx ima t ion over an interval QP~ is always at least E, for all i.

The Convergence Rate of the Sandwich Algorithm for Approximating Convex Functions 353

Equation (2) is shown as follows, using (1) and the definition of Yz:

Yi+I Yi+I xi+ 1 - di fli xi+ 1 - dz

Xi+l -- di+l Xi+l -- di xi+~ -- di+l x i - d~ x~+~ - di+ 1

_ - - < Yi x i + l - - l / n < Yl (- l - - 1)
X i -- d i xi+l - ~ nxi+l

= Y i ~ . (1 2 E + l) - - y i - 2 E - 1 y i - - E

x~ Yi x i - 1 < - - ' x i + E

Now, when we start the chord rule with the interval QPo and the error bound E, it
will take n iterations, whereas the single partition at point O would have sufficed
to achieve even e -- 1.

If we extend our convex chain on the left through the points Q2

(- x o , y o + 2x o + 1) and Q1 = (-Xo/2 ,Xo/2 + 1), this does not help the chord rule,
since it will first split the interval [-Xo, Xo] at Q, and the right subinterval is the
same as before. However, one can check that the three other rules find an approxi-
mation with e _~ 1 after at most three iterations.

By duality, there is an analogous family of bad examples for the maximum error rule.

Bad examples for an arbitrary subset of rules. By gluing together the bad examples
from above we can establish the following statement.

Theorem 4. For any subset o f the four partition rules (interval bisection, slope
bisection, maximum error rule, chord rule), there are functions where these rules
perform close to the bounds of Theorems 1 and 2, whereas the remaining rules perform
arbitrarily much better. More specifically: for any positive integer numbers n and m
and real numbers E ~_ e > O, there exists a convex function with the following prop-
erties:

(i) There is no Sandwich approximation with error bound e and fewer than m
intervals, but there is such a Sandwich approximation with at most 32m intervals.

(ii) The Sandwich algorithm with any of the designated "bad" partition rules does not
achieve the error bound E in at most nm iterations.

(iii) The Sandwich algorithm with any of the remaining partition rules achieves the
error bound e in at most 32m iterations.

What this theorem says is that no partition rule "beats" another partition rule
consistently for all functions; and one cannot even beat a partition rule by using
any combination of other partition rules, letting them run independently, and taking
the best approximation.

Proof" By scaling the parameters we may assume E _ ~ = 1. Before gluing copies
of the above two bad examples and their duals together we must make them look
more uniform. Note that we can increase their slope difference A arbitrarily without
destroying their essential properties, by replacing a very small piece at the left end
with another piece of the appropriate steeper slope. In this way we can achieve that
the two examples have equal values of the product LA. By scaling each example in

354 G. Rote

the x-direction, we can change the length L arbitrarily while leaving the product
LA constant. Thus we can even achieve L = A = , ~ , and our two bad examples
will now have equal L and A values. By applying duality, we get two more examples
for the dual rules with the same L and A values. Now we glue together side by side
each of the four functions with a copy of itself, reflected along the y-axis. We add
an appropriate linear function to one copy so that the combined function has a
breakpoint at the midpoint x with h+(x) - h - (x) = 1.

Now we have four function pieces, one for each rule, which look the same from
outside: They all have the same length L and the same slope difference A, and the
two parts of the lower approximation intersect at the midpoint. We take [m/2]
function pieces of each designated rule which we want to perform badly with respect
to the other rules, we add more of these pieces to make their total number of power
of two, and we glue them all together. This is our function whose existence is claimed
in the theorem. Any rule will first decompose the interval evenly until it has broken
the function into half-pieces. This initial phase takes at most 8m iterations because
there are at most 8m half-pieces. Each rule of our designated "bad" subset finds at
least m half-pieces which have been especially designed for it, and it will take n more
iterations on each half-piece to achieve the bound E. This proves (ii). The other rules
will finish off each half-piece in at most 3 iterations and achieve ~ = 1. Thus, we get
a total number of at most 8m + 8m. 3 iterations, and this proves (iii) and the second
part of (i). []

7. Comparison of the Partition Rules--Computational Exneriments

In this section we demonstrate the behavior of the Sandwich algorithm with the
different partition rules for a couple of selected convex functions. We show results
for three functions that are given as explicit expressions and average results for
convex functions that might be more typical of convex functions that occur in
practice.

We have always subdivided the interval with the largest error, as in corollaries 1
and 2, and so we could observe the smallest possible error that the Sandwich
algorithm achieves, for any number of iterations.

Example 1. The square root function. Our first function is the square root function
h(x) = - 2 , i x , 1 _< x < 4 (Fig. 7). The figure shows the maximum error for the four
partition rules, interval bisection (I), slope bisection (S), maximum error rule (M)
and chord rule (C), for n = 240 to n --- 1100 iterations. Since the error e decreases
quadratically with n the ordinate axis has been normalized to show en 2. Both axes
are drawn to the same logarithmic scale. A period in the algorithm during which
remains constant would therefore be shown as a line of slope 2.

We can observe that the curves are essentially periodic, with one period for every
time the number of iterations is doubled: After the first few iterations the definition
interval is divided into a number of subintervals. Subsequently, the Sandwich
algorithm splits each of those intervals into two until the number of intervals has
doubled.

The Convergence Rate of the Sandwich Algorithm for Approximating Convex Functions 355

, C n 2

0.5

// 1.0

0.9

0.8

0.7

0.6

-q-

/ /

p c
,/~,M

~ n

256 512 1024

Figure 7. The error e of the Sandwich algorithm for the function h(x) = - 2 ~ , 1 < x < 4, for iterations
n = 240, . . . , 1100. The four partition rules are designated by their initial letters

For the maximum error rule and the chord rule, e decreases very slowly until n
reaches a power of two, where it suddenly drops. This means that these rules are
rather successful in splitting the definition interval into 2 k subintervals where the
approximation errors are quite balanced. The error decreases slowly for a long
period of time; and then the error decreases drastically. (This phenomenon is shown
in an extreme way by the function h (x) = x 2, see the remark at the end of Section 4.)
The other two rules have also a characteristic periodic shape, although there are no
such sharp jumps and the error behaves more uniformly. Note the tiny periodic
oscillations on the rising portions of the curves.

In this example we have L = 3 and A = 1/2. Thus Corollaries l and 2 yield
en 2 < 27/16 --- 1.6875 for the interval bisection rule and the slope bisection rule,
and en 2 < 3/2 f o r t h e maximum error rule and the chord rule. The dual of h is
(~(h))(x) = - 1/x , - 1 < x < - 1/2. Thus, Fig. 7 could equally well represent N(h),
with I and M interchanged with S and C, respectively.

Example 2. A hyperbolic arc. The next function that we are going to look at is an
arc of the hyperbola y2 _ x 2 = 1. We have h(x) = x / 1 + x 2, 0 <_ x <_ 3/4 (see Fig.
8). This time, all partition rules have big jumps at the powers of two. Quite different
shapes of curves occur. We have L = 3/4 and A = 3/5. Corollaries 1 and 2 yield
en 2 <_ 0.50625 and en 2 <_ 0.45, respectively. The dual function is an arc of the unit
circle: (@(h))(x) = - x / 1 - x 2, 0 _< x < 3/5.

Example 3. The sine function. Our third example is the sine function: h(x) = - sin x,
0 ___ x _< re/2 (see Fig. 9). This example exhibits quite a variety of shapes, sometimes
with little periodic jumps occurring between the main periods. We have L = n/2
and A = 1, giving the bounds en 2 <_ 1.77 and en 2 < 1.57, respectively. The dual
function is (@(h))(x) = - x a r c c o s (- x) - x//] - x 2, - 1 _< x _< 0.

Convex functions that "oeeur in practice". Since artificial examples alone are not
satisfactory, we generated ten bicriteria minimum-cost network flow problems,

356 G. Rote

0.40

0.35

0.30

0.25

0.20

y

/
V
/

0"15 l

---q.
256

m

f S

- + - ~ n
512 1024

Figure 8. The error e of the Sandwich algorithm for the function h(x) = ~ + x 2, 0 < x < 3/4,
(a hyperbolic arc)

, ~ n 2

1" iiii!i l
1,0 /

0 . 9

0 , 7

0.6

o.~ i/ }/o

0.4 I I L n
256 512 1024

Figure 9. The error e of the Sandwich algorithm for the function h(x) = - s i n x, 0 _< x < zt/2

The Convergence Rate of the Sandwich Algorithm for Approximating Convex Functions 357

similar to those in Fruhwirth, Burkard, and Rote [-1989], and we computed the
efficient point curves (cf. Fig. 3). We got ten piecewise linear convex curves which
had between 4260 and 4800 linear pieces, with an average number of about 4550.
Then we approximated these curves with each of the four partition rules. The plots
of the approximat ion error are quite erratic and not so uniform as for the previous
examples and are therefore not shown. StiI1, certain characteristic patterns that
appear between iterations n and 2n tend to reappear between iterations 2n and 4n.

Thus, we have measured for each function and each partition rule the average value,
the minimum, and the maximum of en 2 over the iterations n = 51, 52 100, over
the iterations n = 101, 102 ,200, and over the iterations n = 201, 202 ,400.
The following table shows the averages over these numbers over the ten examples.

,~n2: average, minimum, and maximum

rule 50 < n _< 100 100 < n _< 200 200 < n _< 400

interval bisection 352.5 (316.0-387.0) 341.1 (315.9-367.1) 327.8 (309.2-353.3)
max. error rule 334.3 (304.5-367.7) 326.1 (302.1-359.0) 308.9 (285.5-337.4)

slope bisection 332.0 (303.2-370.5) 309.7 (283.0-341.0) 273.9 (249.6-302.2)
chord rule 322.1 (291.4-361.2) 302.3 (280.4-332.7) 266.7 (246.t-293.5)

The three intervals from n to "2n are sufficiently wide to level out accidental devia-
tions from the average behavior, and the maxima and minima are not just local
irregularities.

If the function that is to be approximated is already piecewise linear, as in our case,
the slope bisection rule and the chord rule will terminate with the exact function
after a finite number of iterations. This is reflected in the falling tendency of en z as
n gets larger. The maximum error rule will also terminate with the exact function,
but only after twice as many iterations. The interval bisection rule will in general
never obtain the function exactly. This gives the slope-specifying rules an advantage
on the long run, but since we consider only n _< 400 iterations, this effect is not so
strong. (It is possible to modify the maximum error rule and the interval bisection
rule so that they take care of linear pieces of the function, and then this drawback
disappears.)

The two adaptive rules are slightly superior to the corresponding bisection rules on
the average. Unlike in the other three examples, the range of variation of the
bisection rule is not always smaller than for the adaptive rules.

To get meaningful error bounds from theorems 1 and 2, we have to turn the efficient
point curve counterclockwise by 45 ~ as in section 5. The average value of this
bound for the chord rule was about 366, which compares reasonably with the actual
figures.

Conclusion. When we compare the four partition rules as to their performance, we
may say that the adaptive rules (maximum error rule and chord rule) are usually

358 G. Rote

more successful in finding a good partition into intervals where the error is distrib-
uted evenly and the maximum global error is therefore small. However, this occurs
only at certain times during the algorithm. With sequential algorithms that select
the points one by one, the price that one may have to pay for a very good
approximation at certain times is a great variation of the error at other times. On
the average, the adaptive rules win slightly. Generally, the bounds in Theorems 1
and 2 and their corollaries estimate the order of magnitude of the actual error quite
well.

8. Concluding Remarks

The relation to other proofs. The proofs in the present paper work by induction on
the number of function evaluations that are needed to make the global error smaller
than a given error bound e. In Burkard, Hamacher, and Rote [1992], our Theorem
1 is proved in a different way: They consider the tree of intervals that is implicitly
built during the algorithm. This proof gives more insight into the structure of the
algorithm but it cannot be extended to cover the other two rules. Sonnevend [1984]
establishes his results in a more general setting. His proof for the interval bisection
rule works inductively, similarly to our proof; he does not specify constants in the
expression O(1/nZ).
Comparison of the partition rules. We have seen in section 6 that, in theory, every-
thing can happen as regards the relative performance of the four rules for a
particular function. In practice, the rules do not differ too much in their average
behavior (see Section 7). This is confirmed by the comparisons between the chord
rule and the angle bisection rule in Fruhwirth, Burkard, and Rote [1989]. The
adaptive rules seem to be slightly better, but sometimes their performance may
exhibit a greater variation for different numbers of iterations, and thus the bisection
rules might be preferable.

By the duality of convex functions, there is no theoretical difference between a rule
which specifies the abscissa of the partition point and the corresponding slope rule.
This is rather a matter of the practical implementation of Computing the partition
point. Consider the example of bicriteria linear programs mentioned in the intro-
duction. Finding the point with a given slope is just an ordinary linear program
with a single objective function (Fig. 3 shows such an objective function.) Finding
the point with a given abscissa amounts to solving the problem with one additional
linear constraint, which might destroy some inherent structure of the problem (for
example, in network flow problems).

All rules are invariant under affine transformations which leave the y-axis vertical.
This includes in particular scalings of the coordinate axes. The chord rule is the
only rule which is invariant under all affine transformations, including rotations.
This makes it attractive for bicriteria problems, since it does not favor one objective
function over the other.

One possible conclusion from the results of section 6 would be the development of
some sort of combined "primal-dual" partition rule that would exclude most of

The Convergence Rate of the Sandwich Algorithm for Approximating Convex Functions 359

those pathological examples. But this would be of theoretical value only, and
furthermore, we believe that it would be possible to construct for any conceivable
"super-rule" pathological examples that fool this rule.

Higher dimensions. The problem of approximating a convex function of two vari,�9
abl6s is Congiderabiy more difficult, from an algorithmic viewpoint. If such a
function and its (sub-)differentials have been evaluated at some points, the best
upper approximation is the convex hull of a set of points in three dimensions, and
the best lower approximation is the intersection of halfspaces.

Whereas these subproblems are still quite tractable in three dimensions--they can
be solved in O(n log n) time, cf. Preparata and Shamos [1985J--they become more
and more complex in higher dimensions. Moreover, in the one-variable case, the
approximation problems for the subintervals are completely independent of each
other. In higher dimensions, there is no straightforward way to define subregions
into which the given domain is decomposed.

Sonnevend [1983] proposed an approximation scheme for convex functions of two
variables which avoids the above difficulties by constructing the approximating
functions only from local information: He essentially uses "square quadrisection"
(in analogy to interval bisection). The resulting approximating function is in general
not convex, and the bound on the global error could only be shown to be O(log n/n),
as opposed to a rate of O(1/n) for optimal approximations. It is open whether
O(log n/n) is the true worst-case bound for that algorithm.

Gruber's result [1991] for twice continuously differentiable functions, which was
mentioned in the introduction, holds in arbitrary dimensions: Essentially, it implies
that an asymptotically optimal approximation can be obtained by evaluating the
function on a "regular grid".

A bivariate extension of the Sandwich algorithm with the maximum error rule has
been implemented and visualized (see Fruhwirth [1991]). Fruhwirth also discusses
implementations issues, data structure representations, and he reports some numer-
ical experience with tricriteria network flow problems. Khang and Fujiwara [1989]
essentially use the maximum error rule as a method for finding all vertices of a
higher-dimensional polytope which is given by linear inequalities.

Optimal Sandwich algorithms. The Sandwich algorithm acquires information
about the function to be approximated step by step, it does not "see" the whole
function. Therefore, it makes no sense to ask for optimality of the resulting approxi-
mation in the traditional meaning, with as few points as possible. However, the
following type of question would still make sense:

Given an initial Sandwich approximation and a number n, what is the
best strategy to choose partition points so that the worst possible error
after n iterations becomes as small as possible?

In other words, we ask for the best possible performance guarantee. Already for
small values of n, this problem looks far from trivial. Even if the starting approxima-
tion is completely symmetric, and we are allowed to query the function at n = 2

360 G. Rote

addi t ional points, it is hard to find the best choice for the first par t i t ion point. The
s i tuat ion is similar to the F ibonacc i search algori thm for finding a m i n i m u m of a
un imoda l function, where the best search point is no t the midpoint .

The proper setting for these quest ions is the framework of informat ional complex-

ity (cf. the monographs of Traub, Wasilkowski, and Wo~niakowski [1988], N ova k
Et:988], o r T r a u b a n d W o ~ n i a k o w s k i E1980]). Al though op t imiza t ion problems for
convex funct ions have received a great deal of a t ten t ion (cf. Nemirovsky and Yudin
[1979]), problems of approximat ing convex functions have no t been investigated
in this context so far.

Acknowledgements

I thank Rainer E. Burkard and Horst Hamacher for the discussions initiating this work, and I thank
Emo Welzl for pointing out the possibility of duality between the maximum error rule and the chord
rule, which made it possible to eliminate one of two independent convergence proofs.

References

Aneja, Y. P., Nair, K. P. K.: Bicriteria transportation problem. Management Science 25, 73-78 (1979).
Archimedes: Quadratura parabolae, In: Heiberg, J. L. (ed.) Archimedis opera omnia, vol. II. Leipzig:

B. G. Teubner 1913, pp. 261-315.
Vladimir lgorevi6 Arnol'd: Mathematical methods of classical mechanics. New York, Berlin, Heidelberg:

Springer 1978.
Boyer, C. B.: A history of mathematics. New York, London, Sidney: Wiley 1968.
Burkard, R. E., Hamacher, H., Rote, G.: Sandwich approximation of univariate convex functions with

an application to separable convex programming. Naval Research Logistics 38, 911-924 (1992).
Cantoni, A.: Optimal curve fitting with piecewise linear functions. IEEE Transactions on Computers

C-20, 59-67 (1971).
Cole, R., Chee Keng Yap: Shape from probing. J. Algorithms 8, 19-38 (1987).
Edelsbrunner, H.: Algorithms in combinatorial geometry. Berlin, Heidelberg, New York, Tokyo:

Springer 1987.
Fleischer, R., Mehlhorn, K., Rote, G., Welzl, E., Yap, C.: On simultaneous inner and outer approximation

of shapes. In: Proceedings of the Sixth-Annual Symposium on Computational Geometry, Berkeley,
California, June 6-8, 1990, Association for Computing Machinery, pp. 216-224.

Fleischer, R., Mehlhorn, K., Rote, G., Welzl, E., Yap, C.: Simultaneous inner and outer approximation
of shapes. To appear in Algorithmica (1992).

Freeman, H., Shapiro, R.: Determining the minimum-area encasing rectangle for an arbitrary closed
curve. Communications ACM 18, 409-413 (1975).

Fruhwirth, B.: Approximation of convex functions and multicriteria linear programs, dissertation. Tech-
nische Universit/it Graz, Institut fiir Mathematik, August 1991.

Fruhwirth, B., Burkard, R. E., Rote, G.: Approximation of convex curves with application to the bicriteria
minimum cost flow problem. European J. Operational Research 42, 326-338 (1989).

Gruber, P. M.: Approximation of convex bodies. In: Gruber, P. M., Wills, J. M. (eds.) Convexity and its
applications. Basel, Boston: Birkh/iuser 1983, pp. 131-162.

Gruber, P. M.: Asymptotic estimates for best and stepwise approximation of convex bodies I, manuscript.
Technische Universitiit Wien, Abteilung fiir Analysis, 1991.

Gruber, P. M.: Aspects of approximation of convex bodies. In: Gruber, P. M., Wills, J. M. (eds.)
Handbook of convex geometry. Amsterdam, New York, Oxford, Tokio: North-Holland 1992 (to appear).

Gruber, P. M., Kender0v, P.: Approximation of convex bodies by polytopes. Rendiconti Circ. Mat.
Palermo, Serie II 31, !95-225 (1982).

Imai, H., Iri, M.: An optimal algorithm for approximating a piecewise linear function. J. Information
Processing 9, 159-162 (1986).

Imai, H., Iri, M.: PolygOnal approximations of a curve--formulations and algorithms. In: Toussaint,
G. T. (ed.) Computational morphology--a computational geometric approach to the analysis of form.
Amsterdam, New York: North-Holland 1988, pp. 71-86.

The Convergence Rate of the Sandwich Algorithm for Approximating Convex Functions 361

Do Ba Khang, Okitugu Fujiwara: A new algorithm to find all vertices of a polytope. Oper. Res. Lett. 8,
261-264 (1989).

Kurozumi, Y., Davis, W. A.: Polygonal approximation by the minimax method. Computer Graphics
and Image Processing 19, 248-264 (1982).

Lew, J. S., Quarles, D. A.: Optimal inscribed polygons in convex curves. Amer. Math. Monthly 96,
886-902 (1989).

Martelli, G.: Jemmy Twitcher--A life of the fourth Earl of Sandwich, 1718-1792. London: Jonathan
Cape 1962.

McClure, D. E., Vitale, R. A.: Polygonal approximation of plane convex bodies. J. Math. Anal. Appl.
51, 326-358 (1975).

Miiller, J.: Step by step approximation of plane convex bodies. Archiv der Mathematik 57 (1991).
Arkadii Semenovi~ Nemirovksy and David Borisovi~ Yudin: Slo~nost' zada6 i effektivnost' metodov

optimizatsii, Moscow: Nauka 1979. English translation: Problem complexity and method efficiency in
optimization. Chichester, New York, Brisbane, Toronto, Singapore: Wiley 1983.

Noltemeier, H.: Sensitivit/itsanalyse bei diskreten linearen Optimierungsproblemen. Berlin, Heidelberg,
New York: Springer 1970 (Lecture Notes in Operations Research and Mathematical Systems 30).

Novak, E.: Deterministic and stochastic error bounds in numerical analysis. Berlin, Heidelberg, New
York, London, Paris, Tokyo: Springer 1988 (Lecture Notes in Mathematics 1349).

Preparata, F. P., Shamos, M. I.: Computational geometry: an introduction. New York: Springer 1985.
Ramer U.: An iterative procedure for the polygonal approximation of plane curves. Computer Graphics

and Image Processing 1,244-256 (1972).
Rockafellar, R. T.: Convex analysis. Princeton: Princeton University Press 1970.
Ruhe G.: Fliisse in Netzwerken--Komplexit/it und Algorithmen, Dissertation B. Technische Hochschule

Leipzig, Sektion Mathematik und Informatik, 1988.
Ruhe, G.: Algorithmic aspects of flows in newtorks. Dordrecht: Kluwer 1991.
Ruhe, G., Fruhwirth, B.: e-optimality for bicriteria problems and its application to minimum cost flows.

Computing 44, 21-34 (1990).
Skiena, S. S.: Problems in geometric probing. Algorithmica 4, 599-605 (1989).
Sonnevend, G.: An optimal sequential algorithm for the uniform approximation of convex functions on

[13, 1] 2. Appl. Math. Optim. 10, 127-142 (1983).
Sonnevend, G.: Sequential algorithms of optimal order global error for the uniform recovery of functions

with monotone (r - 1) derivatives. Analysis Mathematica 10, 311-335 (1984).
Traub, J. F., Wasilkowski, G. W., Wo~niakowski, H.: Information-based complexity. New York,

London, Toronto, Sidney, San Francisco: Academic Press 1988.
Traub, J. F., Wo~niakowski, H.: A general theory of optimal algorithms. New York, London, Toronto,

Sidney, San Francisco: Academic Press 1980.

Dr. Giinter Rote
Technische Universit~it Graz
Institut fiir Mathematik
Steyrergasse 30
A-8010 Graz, Austria
Electronic mail: rote@ftug.dnet.tu-graz.ac.at.

