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Abstract - -  Zusammenfassung 

Nonmonotone Trust Region Methods with Curvilinear Path in Unconstrained Optimization. A general 
nonmonotone trust region method with curvilinear path for unconstrained optimization problem is 
presented. Although this method allows the sequence of the objective function values to be nonmonotone, 
convergence properties similar to those for the usual trust region methods with curvilinear path are 
proved under certain conditions. Some numerical results are reported which show the superiority of the 
nonmonotone trust region method with respect to the numbers of gradient evaluations and function 
evaluations. 
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Ein nichtmonotones Konfidenzbereiehs-Verfahren mit krummlinigem Pfad zur unrestringierten Optimie- 
rung. Es wird ein allgemeines nichtmonotones Konfidenzbereichs-Verfahren mit krummlinigem Pfad fiir 
die unrestringierte Optimierung vorgeschlagen. Obwohl bei diesem Verfahren die Folge der Werte der 
Objektfunktion nicht monoton zu sein braucht, werden Konvergenzeigenschaften bewiesen, die denen 
der g/ingigen Verfahren dieser Art entsprechen. An Hand einiger numerischer Beispiele wird die Uber- 
legenheit des nichtmonotonen Verfahrens bezfiglich der Zahl der Gradienten- und der Funktions- 
auswertungen gezeigt. 

1. Introduction 

In this paper we consider the unconstrained minimization problem 

(P) minf(x), x ~ R" 

where f :  R" ~ R 1 is a twice continuously differentiable function. 

Trust region method is an algorithm which can ensure global convergence and 
locally fast iterative processes for optimization. It has proven to be effective and 
robust for solving unconstrained minimization problem. The idea of combining 
curvilinear paths and trust regions is originally due to Powell [13], Sorensen [16, 
17], Mor6 and Sorensen [-11], and BuReau and Vial [1]. The basic step of these 
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algorithms is to find a trim point which is a minimizer of the local quadratic model 
of the function within the trust region along a curve. All their methods always 
constructed an iteration series {Xk} such that the series {fk} = {f(Xk)} is mono- 
tonically decreasing, but it appears that an ideal trust region method should allow 
increase in the function value at some steps, while retaining global convergence. 
This paper is the first to propose a trust region method which combines the 
curvilinear path and allows the sequence {fk} to be nonmonotone. 

The paper is organized as follows. In Section 2, a nonmonotone trust region method 
with curvilinear path(NTRCP) is described. We discuss its convergence properties 
in Section 3. Under certain conditions, we prove the convergence results, which are 
similar to those of usual trust region method with curvilinear path(UTRCP), though 
the algorithm allows the sequence {fk} to be nonmonotone. In Section 4, the 
NTRCP method and the UTRCP method are compared by the numerical experi- 
ments. The numerical results show that the nonmonotone trust region method with 
curvilinear path is superior to the usual trust region method with curvilinear path 
according to both the numbers of gradient evaluations and function evaluations. 
The vector norm used in this paper is an arbitrary norm of R n, and the norm of a 
matrix is one which is consistent with the vector norm. 

2. General NTRCP Algorithm 

Let Vf(x) and V2f(x) represent the gradient and the Hessian matrix of f ,  9k E R" be 
an approximation to Vf(Xk), and Bk ~ R"'" be some symmetric matrix. Define a curve 
~o~:  [0, oo) ~ R", 70~B~(0) = 0, F(gk, Bk) be the closure of the image set of 7o~B~" For  
the sake of simplicity, F k and 7 k will denote respectively the set F(Ok, Bk) and the 
function 7OkB~" 

For  easy reference, let us recall UTRCP methods first. The UTRCP methods are 
based on a local quadratic model o f f  about the k-th iteration Xk. 

qkk(W) = fk + 9 r w  + wTBkw/2 (2.1) 

and a curve 7OkB~, where w = x -- x k. 

The following is a specific algorithm of the UTRCP methods. 

Algorithm 2.1(UTRCP) 

Data: x o e R", 0 < A e  R 1, # e (0, 1), t /e  (0,#), 0 < 71 < 1 < 72, 0 < A 0 ~ 7, ~3 > 0. 

Step 1. Set k = 0, compute fo = f(xo).  

Step 2. Compute 9k = 9(Xk). If [[Okl[ < e, stop and set x* = Xk; otherwise, compute 
Bk, andlet  * sup{llTk(t)][}, 6 k min{Ak, Akmax}. ZJ l r lax  ~ 

Step 3. Find an approximate solution s, ~ F k to the problem 

(SP) min{cbk(W): w ~ F*, [[w]] < 6 k} (2.2) 

where ~bk(w ) is defined by (2.1). 
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Step 4. Compute fk+l = f(Xk "IF Sk) and 

aredk = fk -- f k+l ,  predk = fk -- q~k(Sk) (2.3) 

aredk (2.4) 
Pk -- predk 

Step 5. If Pk > #, then set Xk+l = Xk + Sk, go to Step 6; else if 0 < # -- Pk < ~1, 
then set 6 k E [716k, 6k), go to Step 3; else i f#  -- Pk > ~1, then set ~k E (O, vl6k), go to 
Step 3. 

Step 6. Update A k+~ such that 

6 k <_ A k+~ <_ min{~26k,2} (2.5) 

set k = k + 1, go to Step 2. 

Remark 2.1. In the above algorithm the approximate solution s k to the subproblem 
(2.2) is acceptable if and only if Pk > #. Therefore the algorithm guarantees a certain 
decrease of the objective function value after every iteration. So the sequence {fk} 
is monotonically decreasing. 

Relaxing the acceptability condition on Sk, a nonmonotone trust region method 
with curvilinear path(NTRCP) is obtained. 

Algorithm 2.2(NTRCP) 

Data: xo ~ R", O < A s R~, p e (O, 1), ~l ~ (O,#), O < 7~ < l < 72, 0 < A ~  
> 0, and a nonnegative integer M. 

Step 1. Set k = O, re(k) = O, compute fo  = f (xo) .  

Step 2. Compute Ok = 9(Xk). If 1lOk][ < e, stop and set x* = Xk; otherwise, compute 
B~, 

f l ( k ) = f ( X l ( k ) )  = m a x  {A-j} (2.6) 
O<_j<_m(k) 

and let k Amax = sup{ll~k(t)ll},6k min{Ak, Akmax}. 

Step 3. Find an approximate solution s k ~ F k to the problem 

(SP) min{~bk(W): w e F k, l[wl] < 6 k } (2.7) 

where q)k(W) is defined by (2.1). 

Step 4. Compute fk+l = f ( x g  + Sk) and 

aredk = fk -- fk+l ,  predk = fk (bk(Sk) (2.8) 

and 
~[(ft(k) -- f k ) -  76kllgkll]/(--predk), i fM > 0; 

Pk (2.9) 
i fM = O. 

#k = min{p, Pk} (2.10) 

ared k 
Pk predk (2.11 ) 
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Step 5. Ifpk > ilk, then set Xk+l = Xk + Sk, go to Step 6; else if0 < ik -- Pk < r/, then 
set 6 k ~ [716 k, 6k), go to Step 3; else ifik -- Pk > r/, then set 6 k ~ (0, Yl 6k), go to Step 3. 

Step 6. Update A T M  such that 

6 k <_ A k+l ~_ min{vz0k,,~} (2.12) 

set k = k + 1 and re(k) = min{m(k - 1) + 1,M}, go to Step 2. 

Remark 2.2. Comparing Algorithm 2.1 with Algorithm 2.2, it is easy to see that 
they are identical when M = 0 in Algorithm 2.2. So Algorithm 2.1 can be viewed 
as a special case of Algorithm 2.2. 

Remark 2.3. In Algorithm 2.2, {fg} may be not monotonically decreasing i fM r 0. 

In order to guarantee that Algorithm 2.2 is well defined, we give a set of assumptions 
that F(gk, Bk) satisfy 

A1, 70~B~(t) is continuous on (0 ,~ )  and differentiable at t = 0. Moreover 

aT ~ (0) r 0 if gk 0. 

A2. Ily0~B~(t)[I is strictly increasing with t. Either limt_~ ~ yg~B~(t) exists or l[ Tg~B~(t) [I 
~ a s t ~ .  

A3. ~k(3'g~B~(t)) is strictly decreasing with t. 

Theorem 2.1. Under the assumptions A1, A2, and A3, Algorithm 2.2 is well defined. 

Proof. This proof is similar to that of Theorem 2.3 in [1]. The detail is omitted. 
Q.E.D. 

3. Convergence Analysis 

We first give some other assumptions that the a r c  I'(gk, Bk) and sk must partially or 
completely satisfy in order to achieve convergence properties when it is implemented 
with Algorithm 2.2. These conditions are similar to those used for the UTRCP 
method. 

A4. Let l =  sup{llw[l: w EF(gk, Bk)}. Moreover, if B k is positive definite, l <  

Ilg~ll Iln~ -111- 

A5. There exist two constants Cl, c2 > 0, independent of gk and Bk, such that, for 
all 6k _> 0. 

fk -- min{ffk(w): w ~ F k, Ilwll -< ~k} 

~clllgkll min{min{~5k, c211gkll}, Ilgkll/llBkll}, ifBk ~ 0; > (3.1) 
-- (Cl Ilgkll min{6 k, c211gkll}, ifBk = O. 

A6. There exists a positive scalar c 3, such that 

Ilskll -< c311gkll, k = 1, 2 . . . .  (3.2) 
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A7. There exists a positive scalar 31, such that 

Ilnkll < ~ra, k = 1, 2 , . . .  (3.3) 

AS. There exists a positive scalar c4, such that 

fk -- (~k(Sk) > C4(--21(Bk))(6k) 2 (3.4) 

Assumptions A4, A5, A6 and A7 yield global convergence to critical points. Assump- 
tion A5 is a suffucient decrease condition. Assumption A6 is a particular condition 
for NTRCP method. We think that it is reasonable since it holds for the UTRCP 
method. Assumption A8 ensure convergence to critical points satisfying the second 
order necessary condition for a minimum. 

First we will give some Lemmas. Following [1], we get the following lemma. 

Lemma 3.1. Let  Assumptions A2 and A3 hold, and 6 k be determined by Algorithm 
2.2, then the problem 

min{~bk(W): w ~ F k, IIwll -< 6 ~ } 

has a unique solution Sk ~ F k, which is defined by 

Iis~ll = sup(l[Tg~B~(t)[l: llTgkBk(t)[I < 6 k} (3.5) 

Moreover, IIs~ll = 6k. 

Furthermore, if  A5 holds, then 

fk - ~k(Sk) > ffcxllg~l] min{min{6k,  c2llgk[[}, [Igkll/llnkll}, ifBk V ~ 0; (3.6) 
- (c~ Ilgkll min{6k, c21lg~ll}, i f B  k = O. 

Lemma 3.2. Let  t2 o = {x: f ( x )  <_ f(xo)}, and assume that A5 holds, {Xk} is generated 
by Algorithm 2.2, then {Xk} c I2 o. 

Proof. We prove the lemma by induction. Assume that Xk ~ f20 when k < m, let 
k = m +  l, 

(1) if M # 0, then we have 

fm+l  <-- fl(m) - -  ~mllg, . l l  (3.7) 

(2) else if M = 0, then we have either 

fm -- f,,+X >- ktC~ Ilgml[ min{min{6m, c211gmll}, Ilgmll/llnJ} (3.8) 

or  

fm -- fm+l ~ #Cl Ilgmll min{6 m, c2 Ilgmll} (3.9) 

thus Xm+l e t2o since Xm e f2o and l(m) < m. Q.E.D. 

Lemma 3.3. Assume that A5 holds and f2 o is compact, then {f~(k)} is nonincreasing 
and convergent, where {fl(k)} is determined by (2.6.). 
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Proof. First we prove that {f~(k)} is nonincreasing. 

f(X,(k+l) ) = max [f~+l- i ]  --< max [ fk+l - j ]  = max{f(x~(k)),f~+l} 
0 <_j<~m(k+l) 0 <j<<_m(k)+l 

from (3.7), (3.8) and (3.9), we have 

f ( X k + l )  ~ f(xt(k)) 

thus 

f(x,(k+l)) < f(Xt(k)) 

From Lemma 3.2, since I2 o is compact,  so that {fl(k)} is convergent. Q.E.D. 

L e m m a  3.4. Let f (x)  be twice continuously differentiable and [2 o = {x: f (x)  < f (xo)  } 
be compact. Assume that A1 through A7 hold. Then 

lim [Isgll IIg~ll = 0 (3.10) 
k ~ o o  

and 
lim IIs~ll = 0 (3.11) 
k"* oo 

Proof. According to (3.7), (3.8) and (3.9) respectively, we have 

f(xt(k)) < f ( X t ( k ) - i  ) - -  IdCl [Igt(k)-x II min {min {6 z(k)-~, c2 [[gt(k)-i l] }, tlgZ(k)-i II/11Bt(k)-~ [I } 
(3.12) 

o r  

o r  

f(xttk)) < f(xl(k)-l) -- #Cl IIg.k)-i II min{6 l(k)-l, c2 Ilg.k)-i II } (3.13) 

f(Xl(k)) <-- f(Xz(k)-l) -- 76 z(k)-I [[gt(k)-i II (3.14) 

for all k > M. It follows from (3.12), (3.13) and (3.14) by Lemma 3.3 that 

lim 6 t(k)-I [[gz(k)-i II = 0 (3.15) 
k"-~ ao 

thus 

and 

lim liSt(k)-1 II IIg.k>-i II = 0 (3.16) 
k-~oo 

lim [[Sl(k)-i I[ = 0 
k-"* oo 

since []sz(k)-i [[ = 6 z(k)-I and A6 holds. 

N o w  we prove that limk_~ ~ []Sk] [ ][gk[[ = 0, let 

~(k) = l(k + M + 2) > k + 2 

First we show, by induction, that  for any g ivenj  >_ 1, 

lim 6i(k)-Jl[ggtk)_j[ [ = 0 
k--+oo 

(3.17) 

(3.18) 
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and 

lim f(Xi(k)_j) = lim f(Xt(k) ) (3.19) 
k---~ oo k---~ ~o 

I f j  >_ 1, f rom (3.15), it is obvious that  (3.18) is true. F r o m  (3.17), we know that  
[[Xf(k) -- X~(k)-i [[ --* 0 is true. So that  (3.19) holds, since f ( x )  is uniformly cont inuous 
on O o. 

Assume that  (3.18) and (3.19) hold for a given j. Then  we get 

f(x~(k)-j) <_ f(x~d(k)-~i+~))) 

- -  ] A C l  Ilaetk~-~§ min{min {6 itk)-(J+l), c2 II~k)-~§ }, II~(k)-~§247 
(3.20) 

o r  

o r  

f(X~(k)-)) < f(xzd(k)-~i+l))) - #cl  IIg~tk)-u+x)ll min{ ~(k)-0+l), c2 IIg~(k)-U§ (3.21) 

f ( X i(k)- j) < f ( x,i(k)-ti + l )) ) - ~'~ Z<k)-~ § ~ ) ll g~<k)-(j§ l ) ll 

By (3.19), we have 

thus 

and 

Moreove r  this implies that  

(3.22) 

^ 

lim j,k)-(j+l)llg~tk)_(j+l)ll = 0 (3.23) 
k ~ o o  

lim IIs~tk)_U+~)[I Ilag(k)-(j+~)ll = 0 (3.24) 
k-*ao 

l im IIs~(k)-~+l)ll = 0 (3.25) 
k ~ o o  

So that  

IlXg(k)-j - -  X~tk~-(~§ ~ 0 (3.26) 

By cont inui ty  of f ,  we get 

lim f(Xi(k)-tj+l)) = lira f(X~(k)_j) = lim f(Xz(k) ) (3.27) 
k ~ a o  , k ~ 0 o  k ~ o o  

thus we conclude that  (3.18) and (3.19) hold for any given j > O. 

N o w  for any k, 
l ( k ) - ( k + l )  

Xk+l = Xltk) - -  2 Sltk)-J (3.28) j=l 

F r o m  (3.18) and (3.28), since ~(k) - (k + 1) = l(k + M + 2) - (k + 1) < M + 1, 
(3.27) implies 

lim [[Xk+ 1 -- X~(k) H = 0 (3.29) 
k"*oo 
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l im f ( xk )  = l im f ( x i ( k ) )=  l im f(xz(k)) 
k---~ oo k--rot2 k--r m 

F rom  (3.12), (3.13) and (3.14) and using (3.30), we obtain 

lim ~kllgkll = 0 
k---~ co 

So that  (3.10) and (3.11) are true. 

Lem ma  3.5. Le t  the hypotheses o f  L e m m a  3.4 hold, and assume that 

lim Iiskll = 0 implies lim IIIZT(Xk) -- gkll = 0 
k--* oo k ~ o e  

then 

(3.30) 

(3.31) 

Q.E.D. 

(3.32) 

lim II ~f(Xk) -- VT(Xk + ~kS~)ll = 0 (3.39) 
k--+ co 

Thus when k is large enough,  we have 

IPk -- II < [llVf(xe) - gkll + IlVf(xk) -- Vf(xk + ~kSk)ll + ~llISklI/2]/(Cleo) (3.40) 

Therefore  

lim Pk = 1 (3.41) 
k"* oo 

and 

lim inf Ilgkll = 0 (3.33) 
k---~ oo 

Proof.  We prove that  {llgkll} is not  bounded  away from zero by contradiction.  
Assume that  there is an So > 0 and a K > M, such that  

Ilgkll >- ~o (3.34) 

for all k > K. F r o m  the proof  of Lemma  3.4, we get 

lim 6 k = 0 (3.35) 
k"* oo 

Thus when k is large enough,  from Lemma  3.1, we have 

predk = fk -- q~k(Sk) > Cl eo 6k (3.36) 

On the otherhand,  

laredk -- predkl = I--A+1 + ~)k(Sk)l 

= I - - (Vf (xk  + ~gSk))TSk + grSk + �89 

= l - [ V f ( X k )  -- gk]rSk + [Vf(Xk) -- Vf(Xk + CkSk)]rSk + �89 

_< IIVf(x~) - gkll llskll + IltZ/(xk) - Vf(Xk + ~sk)ll Ilskll + l~lllskll2 
(3.37) 

where Ck ~ (0, 1). F rom the assumptions of lemma, we also have 

lim II Vf(xk)  - gkll = 0 (3.38) 
k--~ oo 
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So according to the structure of Algorithm 2.2, there exists a k0 > 0, such that 

A k+l > min(A k~ 2)  (3.42) 

for all k > k o. On the otherhand, 

6 k = min{Akmax, A k} 

By A4 either Akmax = +oe ifB k = 0orA~a x > [Igkl[ IlBk]] -1 > eo/~rl,forallk > K. Let 
kl = max{ko, K}, for all k > ka, we have 

~k = min(Akmax, Ak} > min(eo/crt,A k} > min(~o/a~,Ako,~} (3.43) 

This contradicts to (3.35). So that 

lira inf ]Igk[] = 0 Q.E.D. 
k~ao 

We will discuss the first and second order necessary conditions and the convergence 
of the point sequence (Xk} by the following theorems. 

Theorem 3.1. Let the hypotheses of Lemma 3.5 hold, then 

lim I[gkll = 0 (3.44) 
k~co 

Theorem 3.2. Let the hypotheses of Lemma 3.4 hold, gk = Vf(Xk), Bk = V2f(xk), and 
V2f(x) be uniformly continuous on (2 o. The sequence {Xk} is generated by Algorithm 
2.2. 

(a) Let x* be a limit point of the sequence {Xk}, then Vf(x*) = O. I f  A8 holds and 
VZf(x *) is nonsingular, then V2f(x *) is positive definite and the whole sequence 
converges-to x*. 

(b) I f  x* is an isolated limit point of the sequence {x*} and A8 holds, then Vf(x*) = 0 
and V2f(x *) is positive semi-definite. 

Remark 3.1. Theorems 3.1 and 3.2 show that any limit point of the sequence {Xk}, 
generated by Algorithm 2.2, satisfies the first and second order necessary conditions 
for the problem (P). 

Theorem 3.3. Let the hypotheses of Lemma 3.4 be satisfied, and gk = Vf(Xk)" The 
sequence {Xk} is generated by Algorithm 2.2. I f  the number of the stationary points 
o f f (x )  in s o is finite, then the sequence {Xk} converges. 

Theorem 3.4. Let the hypotheses of Theorem 3.1 hold, then no any limit point of {xk} 
is a local maximum off(x) .  

The proofs of Theorems 3.1, 3.2, 3.3 and 3.4 are standard and thus omitted. 

4. Numerical Experiments 

In this section, we give the numerical results of NTRCP algorithm, and compare 
with that of UTR CP algorithm. We first give a special curvilinear path: the path of 
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conjugate gradients. By applying a truncated conjugate direction algorithm to the 
quadratic model (2.1), we generate a sequence of conjugate directions p~ . . . . .  p~n+~ 
(pl = - - g e )  which satisfy 

p~+l __,4i+1 i i (4.1) 
~ -  t~k "-}- flkPk, i = 1 , . . . ,  m 

i i (4.2) r~ +1 = r~ + ~kPk,  i = 1, . . . ,  m 

(pik)rBkP~ > O, i = 1 , . . . ,  m (4.3) 

where 

and 

dlk = gk ( 4 . 4 )  

di+i " (4.5) k = B~r] ,  +1 + gk 

f l~  ~ .  i + l  T i i T i (d k ) BkPk/(Pk) Bkp k > 0 (4.6) 

i i T i i T  i 
~k = - - (dk)  Pk/(Pk) Bkpk > 0 

[ i + l h T l ~  i+1 The procedure stops either because d~ +1 0 or ~Pk J ~kPk < 0 1-18]. 

Define the path of conjugate gradients by the following formula 

7OkBk (t) = , ak(t)pk --  a~ '+l( t )p~ +1 
i=1 

and 

0 j where ~ j= l  ~k = 0. 

a~(t) = min a~, max O, t - ~ 
j= l  

(4.7) 

(4.8) 

(4.9) 

We can prove that the path of conjugate gradients defined by (4.8) satisfies Assump- 
tions A1 to A6. 

Given a special path, we are in the position to compare the U T R C P  method 
(Algorithm 2.1) with the N T R C P  method (Algorithm 2.2). We only need to compare 
the results for the two cases: M = 0 or M > 0 in Algorithm 2.2 according to Remark 
2.2. In addition, we assume that 

Ok = Vf (Xk) ,  Bk = V2f (Xk)  

and the parameters are chosen as follows 

/~ = 0.7, ~/= 0.1, 71 = 0.75, 72 = 2, ~ = 10 -3, e = 10 -5 

All tested problems are quoted from the related literature. The numerical perfor- 
mance of the algorithm for different M value can be compared by the following 
numbers: 

ng-- the  number of gradient evaluations. 
n l - - t h e  number of function evaluations. 

The computations have been performed in double precision arithmetic on SGI 

4D25. 
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Problem 4.1. Maratos Function 

f ( x )  = x l  + z(x21 + x 2 - 1) 2 

X o = ( 1 . , 0 . 1 )  T 

x*  = ( -  1 ,0)  r 

f ( x * )  = - -  1 

The Maratos effect can very seriously affect the performance of UTRCP algorithm 
on this problem, but N T R C P  algorithm is also very good for this problem. The 
results are reported in Table 4.1. 

T a b l e  4.1. R e s u l t s  for  p r o b l e m  4.1 

102 1 

103 1 

104 1 

105 1 

106 1 

M = 0 ( U T R C P )  M = 1 0 ( N T R C P )  M = 2 0 ( N T R C P )  

n o = 41, n I = 74 ng = 31, n I = 48 ng = 29, ny = 41 

ng = 80, n 1- = 151 na = 47, n I = 58 n a = 47, n I = 52 

ng = 159, n I = 318 n 9 = 47, n s = 70 ng = 47, n s = 58 

n a = 317, ny = 636 ng = 102, n s = 175 ng = 101, n s = 119 

n o = 705, n I = 1432 ng = 151, n s = 263 n o = 86, ny = 100 

Problem 4.2. Scaled Sine-valley Function 

f ( x )  = c [ x 2  - sin(x0]  2 + 0.25x 2 

Xo = (3~,  _ 1)T 

x*  = (0, 0) r 

f ( x * )  = 0 

The scaled sine-valley function has a valley along the curve x2 = sin(x1). The results 
are reported in Table 4.2. 

C z~ 

10 2 1 

10 3 1 

10 4 1 

lO s 1 

10 6 1 

T a b l e  4.2. R e s u l t s  for  p r o b l e m  4.2 

M = 0 ( U T R C P )  M = 1 0 ( N T R C P )  M = 2 0 ( N T R C P )  

n o = 2 2 , n  s = 3 5  n a = 2 0 , n  s = 3 0  n o =  15, n y = 2 0  

n o = 44, n s = 84 ng = 31, n s = 53 ng = 28, n s = 47 

na = 90, nr = 162 n a = 60, nj. = 113 ng = 51, ny = 97 

n g =  176, ns  = 350 n g =  128, ns = 252  r i g =  l l 4 ,  ny = 227 

n o = 375, ny = 750 n a = 265, n I = 529 ng = 273, nr = 546 
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Problem 4.3. Scaled Exponent ia l -va l ley  F u n c t i o n  

f ( x )  = c [ x 2  - e x p ( x l ) ]  2 + 0.25x~ 

x o = (1, - 1) r 

x* -- (0, 1) r 

f ( x * )  = 0 

The scaled exponent ia l -va l ley  funct ion has a valley a long  the curve x 2 = exp(x 0.  
The results  are  r epor t ed  in Table  4.3. 

C 

10 2 1 

10 3 1 

10 4 1 

10 5 1 

10 6 1 

10 7 1 

10 8 1 

10 2 2 

10 a 2 

10 4 2 

10 5 2 

10 6 2 

107 2 

108 2 

Table 4.3. R e s u l t s  fo r  p r o b l e m  4.3 

M = 0 ( U T R C P )  M = 1 0 ( N T R C P )  

n g = l l ,  n s = 1 5  n o = 6 ,  n s = 7  

n o = 1 6 ,  n y = 2 9  n o = 5 , n y = 6  

n o = 27, n s = 54 no = 5, ny = 6 

n o = 51, n s = 105 n o = 5, n s = 6 

n o = 100, n r  = 210  no = 5, n s = 6 

n o = 207, n I = 425  no = 5, n I = 6 

n o = 504, n s = 1024 no = 5, n s = 6 

n o = 1 5 ,  n s = 2 7  n o = 6 ,  n y = 7  

n~ = 26, ny = 50 no = 5, ny = 6 

no = 54, ny = 105 n o = 4, n r  = 5 

n o = 107, nj- = 220  no = 4, nj- = 5 

no = 209,  ny = 431 n o = 4, ny = 5 

n o = 503,  ny = 1036 n o = 4, n f  = 5 

n o > 10001 nj. > 2 0 0 0  no = 4, n I = 5 

Problem 4.4. Scaled Rosenbrock  F u n c t i o n  

f ( x )  = c ( x  2 - -  x 2 )  2 + (1 --  x l )  2 

Xo = ( -  1.2, 1) r 

x* = (1, l)  r 

f ( x * )  = 0 

Table  4.4 gives the results. They  show tha t  the usefulness of  the N T R C P  a lgor i thm 
for the i l l -condi t ioned problem.  
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Table 4.4. R e s u l t s  fo r  p r o b l e m  4 .4  

C z~ 

102 1 

103 1 

104 1 

l 0  s 1 

106 1 

M = 0 ( U T R C P )  M = 1 0 ( N T R C P )  

ng = 22, n s, = 38 ng = 11, n c = 13 

ng=40,  n f = 7 4  n o = 1 5 , n  I = 1 6  

ng= 84, n s- = 162 n o = 13, n.r = 16 

n o = 173, n~ = 348 ng = 13, n I = 16 

ng = 347, n l  = 703 ha= 11, n~- = 14 
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P r o b l e m  4.5. Scaled Power-valley F u n c t i o n  

f ( x )  = c(x  z - xg)  2 + (1 - x l )  z ,  p > 2 

x0 = ( -  1.2, 1) r 

x* = (1,1) r 

f ( x * )  = 0 

The scaled power-valley function has a valley a l o n g  the  curve x2 = x~ .  The resul ts  
are reported in Table 4.5. 

Table 4.5. Resu l t s  fo r  p r o b l e m  4.5 

c p 

102 2 1 

102 3 1 

102 4 1 

102 5 1 

102 6 1 

104 2 1 

104 3 1 

10 4 4 1 

104 5 1 

10 4 6 1 

M = 0 ( U T R C P )  M = 1 0 ( N T R C P )  

n o = 22, n I = 38 ng = 11, n I = 13 

n g = 2 5 ,  n f = 3 9  ng=11,  n I = 1 2  

n g = 3 6 ,  n I = 6 6  n g = 1 3 ,  n I = 1 4  

n g = 3 7 ,  n s = 6 5  n g = 1 3 ,  n s = 1 5  

ng = 45, n.r = 82 n o = 17, n I = 18 

n a = 84, n r  = 162 ng = 13, n I = 16 

n o = 1 0 1 , n y = 2 0 4  n o = 1 0 , n y = 1 1  

n o = 144, n r = 295 ng = 14, n s- = 15 

ng= 157, n 1- = 320 ng = 16, n l = 17 

ng= 185, n I = 380 % = 14, n s = 15 
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5. Concluding Remarks 

The  genera l  n o n m o n o t o n e  t rus t  r eg ion  a l g o r i t h m  descr ibed  in  this p a p e r  is able  to 
h a n d l e d  a grea t  n u m b e r  of  cu rv i l i nea r  paths.  I ts  conve rgence  p roper t i e s  s imi lar  to  
those  for u sua l  t rus t  r eg ion  m e t h o d  wi th  cu rv i l inea r  p a t h  have  been  proved.  I t  

p rov ides  a unif ied  f r ame wo rk  of  s t udy ing  conve rgence  proper t ies .  The  n u m e r i c a l  
resul ts  r epo r t ed  in  Sect ion  4 show tha t  the  N T R C P  m e t h o d  can  a l low a cons ide rab le  
c o m p u t a t i o n a l  saving,  especial ly for the p r o b l e m  wi th  n a r r o w  cu rv ing  valleys,  a n d  
can  p reven t  occur rence  of the  M a r a t o s  effect. 
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