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Abstract - -  Zusammenfassung 

Multilevel Gauss-SeideI-Algorithms for Full and Sparse Grid Problems. We present grid-oriented and 
newly developed point-oriented robust multilevel methods for full and sparse grid discretizations. 
Especially the point-oriented multilevel methods are very well suited for parallelization and behave 
robust for anisotropic model problems. They can be generalized easily to domain-oriented multilevel 
methods with the same properties. 

We report the results of numerical experiments regarding the reduction rates of these new algorithms. 
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Multilevel Gaufl-Seidel-Algorithmen fiir Voli- und Diinngitterprobleme. Wir stellen gitterorientierte und 
neu entwickelte punktorientierte robuste Multilevelverfahren fi.ir Voll- und Diinngitterdiskretisierungen 
vor. Besonders die punktorientierten Multilevelmethoden sind sehr gut zu parallelisieren und erweisen 
sich als robust f~ir anisotrope Modellprobleme. Sie erlauben eine einfache Erweiterung auf gebietsor- 
ientierte Multilevelmethoden mit denselben Eigenschaften. 

Wir berichten die Ergebnisse numerischer Experimente fiir die Reduktionszahlen dieser neuen 
Algorithmen. 

1. Introduction 

Recently, so-called sparse grid techniques for the solution of elliptic P D E s  on 
rectangular grids have been developed. There, in contrast  to s tandard methods,  
substantially fewer grid points are needed in the discretization process. Instead 
of O(h -d) grid points for the usual full grid on a domain  f2 ~d) c Ra, now only 
O(h- l . ( log  h-1)d-1) grid points are involved, where h denotes the employed mesh 
size. The obtained accuracy, however, is nearly as good  as in the full grid 
case. In  [2] it was shown that  the accuracy deteriorates only from O(h 2) to 
O(h2"(logh-~) a-~) with respect to the L2-norm and even remains O(h) with 
respect to the energy norm,  provided that  the solution u satisfies the smoothness  
requirement 
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~2d u ~O(~(d)). &,2..&2 

Using certain product type hierarchical basis functions (HB) for the associated 
sparse grid finite element space, the Galerkin process leads for linear PDEs to a 
linear system that has to be solved efficiently. Applying for example conjugate 
gradient (CG) or Gauss-Seidel (GS) iterations results basically in the HB-precondi- 
tioned CG or the HB-multigrid method. Crucial for the convergence, however, is 
the condition number of the sparse grid system that was shown in [16] to behave 
at least like O(2 ~/2) if k denotes the number of levels employed. Thus, CG or 
GS-iterations are quite slow and the resulting convergence rates depend exponen- 
tially on k. 

However, for simple model problems, special multilevel type methods for the sparse 
grid system had been developed (see [5], [6]) that show a convergence rate indepen- 
dent of the grid size. But a general, systematic approach for the construction of 
multilevel type algorithms for sparse grid problems was missing. 

In [4], a new concept for the development of multigrid and BPX-like multilevel 
algorithms for standard full grid problems has been presented. There, instead of a 
basis approach on the finest grid and the acceleration of the basic iteration by a 
MG-coarse grid correction or a BPX type preconditioner, a generating system was 
used to allow a non-unique level-wise decomposed representation of the solution. 
The degrees of freedom are associated to the nodal basis functions of all levels under 
consideration. Furthermore, the grids of the different levels are connected by stan- 
dard refinement techniques. With this non-unique multilevel decomposed represen- 
tation of a function, the Galerkin approach leads to a semidefinite linear system 
with unknowns on all levels. Its solution is non-unique but equivalent to the unique 
solution of the standard problem on the finest grid. 

Furthermore, it was shown that traditional iterative methods for the semidefinite 
system are equivalent to modern elaborated multilevel methods that exhibit optimal 
convergence properties. The conjugate gradient method (with appropriate diagonal 
scaling) for the semidefinite system is equivalent to the BPX-conjugate gradient 
method for the fine grid sytsem. Gauss-Seidel type iterations for the semidefinite 
system are equivalent to certain multigrid methods. For details, see [4]. 

Now, we generalize this concept beyond the standard refinement case and adopt it 
to the sparse grid application. This allows us to construct new multilevel algorithms 
that work for standard grid problems and sparse grid problems. 

First, we introduce an enlarged generating system for the non-unique representation 
of functions. This generating system contains the nodal basis functions of all possible 
levels of discretization. There, in contrast to [7], not only the coarser grids are 
contained that result from standard coarsening, but additionally all coarser grids 
are contained that can be gained by semi-coarsening with respect to each possible 
coordinate direction. In this sense, our approach is related to the work of Hackbusch 
[11, 12] and the ideas of Mulder [14] or Naik and van Rosendale [15]. 
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Then, the Galerkin approach results in a semidefinite linear system with non-unique 
solution. Here, we consider the full grid case and the sparse grid case. The arising 
system can be solved efficiently by Gauss-Seidel iterations. These methods are level- 
oriented and can be considered as a level-block technique. An outer iteration 
switches from level to level and an inner iteration operates on the specific grid. In 
this way, we obtain robust multigrid methods for the full grid problem that show 
convergence properties similar to the respective multilevel methods based on stan- 
dard coarsening only. Additionally, multigrid algorithms can be obtained easily for 
so called sparse grid problems. 

Furthermore, we consider the semidefinite system from a different point of view. 
We group all unknowns together that are associated to the same grid point. This 
results in point-oriented methods and can be considered as a point-block technique. 
Now, an outer iteration switches from grid point to grid point. The local system that 
belongs to all basis functions of different levels centered in the same grid point can 
be solved either directly or by an inner iteration that runs over all levels that are 
associated to the grid point under consideration. Furthermore, grid points can be 
grouped together to form subdomains. In this sense, we get some sort of simple 
domain decomposition method that exhibits MG type convergence properties. 

Our experiments show that the reduction rate is independent of the mesh size. 
However, a rigorous convergence analysis of these point-oriented methods is not 
yet complete. Note that the efficient implementation of the point-oriented algo- 
rithms is not as straightforward as for the conventional multigrid methods. But 
since the point-oriented method allows directly an interpretation in terms of domain 
decomposition, its paralMization is straightforward. In contrast to the paralMiza- 
tion of a multilevel method where communication between subdomains has to take 
place on all levels to maintain good convergence rates, our point-block approach 
needs substantially less communication, i.e. only one communication per iteration 
step between different subdomains. This also results in a simpler program structure 
for complicated domains. In this sense, our new method is superior to other parallel 
multigrid and multilevel methods and we believe that its future will be bright. 

Throughout this paper, we consider the full and the sparse grid case. It turns out 
that we obtain convergence rates and efficiencies for the new grid- and point- 
oriented approaches that are similar to the standard coarsening case as reported in 
[7]. However, due to the underlying semi-coarsening aspect with respect to each 
possible coordinate direction, we gain more robust algorithms, especially in the case 
of anisotropic operators. 

We report the results of numerical experiments regarding the convergence rates of 
these new algorithms. 

2. The Semidefinite System for the Multiple Refined Grid Case 

Consider a partial differential equation in two dimensions with a linear, second 
order operator in the domain s = (0, 1) 2, 
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Lu = f in g2, (1) 

with appropriate boundary conditions and solution u. For reasons of simplicity we 
restrict ourselves to homogeneous Dirichlet boundary conditions. 

Given an appropriate function space V, the corresponding variational problem is 
to find a function u e V with 

a(u, v) = (f, v) Vv e V. (2) 

(In the case of homogeneous Dirichlet boundary conditions, V is the Sobolev space 
Hol(g2).) Here, a: V x V--* ~ is a bounded, V-elliptic, symmetric bilinear form, and 
( . , -)  is the usual linear form for the right hand side. Let I[" I[a := x / ~ ' ,  ") denote 
the induced energy norm. The Lax-Milgram lemma guarantees the existence and 
uniqueness of the solution of (2). If we consider directly the functional E(u) = 
1/2a(u, u) -- (f,  u), the problem can be stated alternatively as minimization of E(u) 
in V. 

2.1 Splitting of Finite Element Spaces by Multiple Refined Grids 

Assume now that for the discretization of the problem a tableau of grids (2,,,, 

~ 1 , 1  ff~1,2 ~"~ 1,3  ~"~ 1 ,4  " ' "  Sr'~ 1, k 

~e'~2,1 ff~2,2 ~ 2 , 3  ~ 2 , 4  " ' '  ~r k 

~e'~3, 1 ~t'~3, 2 ~r'~3, 3 ~'~3,4 " ' "  ~r 3, k 

~,1 ~,2 ~,3 ~,4 . . .  ~ , ~  

. . .  

(3) 

functions 

Vl,1 ~ Vl ,2  c Vl ,3  c Vl ,4  c . . .  c Vl,~ c " '"  

V2, 1 c:: [72, 2 c :  V2,3  = V2,4 " c :  - . .  c :  V2, k = . . .  

(-~ fh  (3 0 0 

V3,1 = [73,2 = V3,3  = V3, 4 c :  . . .  c:: V3, k c :  . . .  

Vk, 1 = Vk, 2 c :  Vk, 3 c :  V L 4  c :  " "  = Vk, k c :  . "  

(4) 

is given on g2 with mesh sizes h,, = 2 -m, m = 1, . . . ,  k and h, = 2-", n = 1 . . . . .  k in the 
x- and y-direction. Associated to it is the tableau of spaces of piecewise bilinear 
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with dimensions  

Arm,. := dim(V..,.) = (2 m - 1) x (2" - 1), m, n = 1, . . . ,  k. (5) 

Here,  1 denotes  the coarsest  and k the finest level of discretization with respect to 
each direction. Note  that  the space V,.,. is a subspace of V,.+I,., V,.,.+I and V.,+~,.+ i. 
However ,  for example,  the spaces Vm+I,.-1 and V,._1,.+1 are not  nested. Fur ther -  
more,  consider the sets of  grid points  {xl . . . .  , xNm,.} in Or.,., m, n = 1 . . . . .  k, not  lying 
on the boundary .  

The  s tandard  finite e lement  basis that  spans Vm, . on the grid •,.,. is denoted by B.,,.. 
I t  contains  the nodal  basis functions ~b} m'"), i = 1 . . . . .  Nm, ., that  are defined by 

(b}"'")(xj) = 6i4, xj ~ Ore,." (6) 

No te  that  we use rectangular  grids. Therefore,  the 2D basis functions can be writ ten 
as the p roduc t  of  two 1D basis functions with, in general, different suppor t  for the 
different coordinate  directions. 

Now,  the s tandard  full grid space on Ok, k can be decomposed  by 

k k k k Nm,n 

Vk:= Vk, k =  ~ ~ Vm,.= ~ ~ E V,. . . . .  ,, (7) 
m = l  n = l  m = l  n = l  i=1  

with I'm ... . .  := span{r see Fig. 1. Fol lowing [18], the sparse grid can be defined 
by 

n = l  n = 2  n = 3  

m = l  

m = 2  

m = 3  

ITTTTTTTI 

llliIil~ 
II~YYII 
IYYYYII 
I I I I I I I  
I I I I I l I  

Figure 1. The quadratic scheme of grids fl .... 1 _< m, n _< k, contained in the full grid, k = 3 

k k + l  - m  

Ua ,. 
m = l  n = l  

(see Fig. 2), with the cor responding  finite element space 

(8) 
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m = l  

r a = 2  

m = 3  
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n = l  n = 2  n = 3  

llJJlll Illlllll 

Figure 2. The triangular scheme of grids g2,,,,,, m + n < k + 1, contained in the sparse grid, k = 3 

k k + l - m  k k + l - m  Nm,. 
v s:=E E Vm, n----E L Evm . . . .  ,. (9) 

m=l n= l  m=l  n= l  i=1 

Using the sparse grid space Vk s instead of the full grid space Vk, the dimension is 
reduced substantial ly f rom dim V k = O(h;  2) to dim Vk s = O(h; l" log(h;1)), while for 
sufficiently smoo th  functions the order  of the t runcat ion  error  remains O(hk) with 
respect to the energy no rm and is only slightly deter iorated f rom O(h~) to 
O(h 2" log(h~-l)) with respect to the L2-norm.  F o r  further discussions and details on 
the sparse grid app roach  see I-2], [6], [9] and [18]. 

While any  function u �9 V k can be expressed uniquely by 

Z (lo) 
~eBk,k 

with the vector  uff B = (uo)~n,, ,  of nodal  values on the finest grid for some given 
ordering of the functions of Bk, k, the sparse grid space Vk s does not  possess such a 
nodal  basis, since there exists no finest grid in the t r iangular  scheme. Instead,  
following [18], a p roduc t  type hierarchical basis for Vk s can be constructed by 
collecting for each grid t2,.,, those basis functions f rom B,.,. where the center point  
is not  conta ined  in any  coarser  grid. We  define 

I B1,1 f o r m  = n = 1, 

/~,.. := " ~(qk~"'i)eB,,,,l:xiq~g2,._l,1} f o r m >  1, n = 1, (11) 

' | (~[1,n} �9 Bl,.: x, ~ I2, , ._l  } for m = 1, n > 1, 
/ 
L(qk~'n'")eB,.,.:Xiq~12,,,_i,.Ul2.,,._l} f o r m >  1, n >  1 

and  obtain  the hierarchical  basis for Vk s by 
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k k + l  - m  

HS:= U U /~,n,,,. (12) 
m=l  n = l  

Then, the hierarchical basis representation for a function u ~ K s is denoted by 

u =  ~ u~S.qk (13) 

with the vector u~ s := (u~S)~ ~ n~ of hierarchical coefficients for some given ordering 
o f H  s. 

The use of this type of basis is not restricted to the sparse grid case. We introduce 
the hierarchical basis 

k k 

Hk := U U /~m,. (14) 
m=l  n = l  

for the full grid case. The corresponding hierarchical representation of a function 
u e Vk is now denoted by 

' . '=  E (15) 
~EH~ 

with the vector Uk n := (U~)r of hierarchical coefficients for some given ordering 
ofnk.  

The use of a basis has the advantage that any function can be expressed uniquely. 
However, with respect to the fast solution of the variational problem, the use of a 
basis can even be an obstacle. For example, the linear system resulting from the 
nodal basis Bk,k is not well conditioned and algorithms for its solution have to be 
accelerated, for example, in the multigrid context by coarse grid correction. There- 
fore, in the following, we allow, analogously to 1-43, a non-unique representation of 
functions by using a generating system instead. 

To this end, we define the set of functions 

k k 

gk  = U U Bra,n ( 1 6 )  
m=l  n = l  

for the full grid case. This corresponds to the decomposition of Vk by (7), see also 
Fig. 1. Clearly, as E k contains now linearly dependent functions, it is no longer a 
basis for Vk but merely a generating system. A function u ~ Vk is represented non- 
uniquely in terms of the generating system Ek by 

E (17) 
SeEk 

e (u~)~/~k for some given ordering of Ek. The length of u[ is with the vector Uk := 

k k 

Nff := Z Z N.,,., (18) 
m=l  n = l  

which is less than four times the length Nk, k of the vector for the basis representation 
(10). This is due to the geometric progression of the number of grid points from level 
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(m, n) to the levels (m - 1, n) and (m, n - 1) that decreases approximately by the 
factor 1/2. So, the finest grid contains more than one quarter of all grid points in the 
quadratic scheme (Fig. 1). 

For the sparse grid case, we define analogously the set of functions 

k k + l  - m  

ES = U U Bm, n" (19) 
m = l  n = l  

This corresponds to the splitting (9) of the sparse grid space, see also Fig. 2. As 
above, E s contains linearly dependent functions and is no longer a basis for Vk s but 
merely a generating system. A sparse grid function u ~ Vk s is represented non- 
uniquely by 

u = Z u~S'~ (20) 

with the vector u~ s := (u~S)~E~ for some given ordering ofE s. The length ofu~ s is 

k k + l  - m  

N~ s:= E Z N,n.., (21) 
m = l  n = l  

which is again less than four times the length of the corresponding basis representa- 
tion (13). This is due to the inequality 

IBm,,[ < 4. I/3..,.I (22) 

that holds for every grid s .. 

Note that for a given representation u( ofu in Ek or u( s in E s we can easily compute 
its representation u~ or u~ s with respect to Bk,k or H s. This involves the bilinear 
interpolation which can be expressed and implemented by MG-prolongation opera- 
tors with respect to standard- and semi-coarsening. 

2.2 Galerkin Approach and Linear Systems 

Using the nodal basis Bk, k, the Galerkin-approach results in the discrete variational 
problem for u ~ Vk 

V(ki ~ Bk,k: a(u, ~bi) = f(~i), (23) 

and the equivalent linear system of equations for the vector of nodal values 

B B Lk Uk = fB,  (24) 

where 
(Lkn)i,j := a(~b~k'k),~[k'k)), 1 < i,j <__ Nk, k 

(25) 
(AB), := (f, ~,~)) ,  1 _ i _< N~,~. 

For the generating system Ek, the Galerkin-approach leads to the variational 
problem 

V(~ i e Ek: a(u, ~bi) = f(~bi), (26) 
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and, with representation (17), to the linear system 

E E LkUk = f ~ ,  

where 

E (Lk)i,.i := a(~bj, ~bi) , 

( f ( ) i  := (f, ~bl), 

(27) 

01, Oj ~ E k  
(28) 

(/h e E k 

with an appropriate numbering of Ek (see below). 

The system ~ E L k u k = f ~  has the following properties: The matrix Lf  is semidefinite. 
It has the same rank as the matrix Lf  that arises from the Galerkin approach by 
using the standard basis Bk, k only. Thus, N~ - N , , ,  eigenvalues are zero. The system 
is solvable because the right hand side is constructed in a consistent manner. It has 
not one unique, but numerous, different solutions. However, the evaluation of two 
different solutions u(  and v[ with respect to their representation in Bk,k by means 
of multigrid-prolongation operators results in the unique solution of(24). Therefore, 
it is sufficient to compute just one solution of the enlarged semidefinite system (27) 
to obtain, via interpolation and summation, the unique solution (24). 

Note that the enlarged matrix Lf  contains the matrix Lf  as a submatrix. The same 
is true for the right hand sides. The system that stems from the hierarchical basis 

H H 
L k U k = fk  H (29) 

where 

H (Lk ) i j  := a((bj, (b,), (hi, (bj 6 Ilk 

( f2 ) ,  := (f,  4,), Oi e n , ,  
(30) 

is also contained. 

Now, in the sparse grid case the systems for the generating system and the hierarchi- 
cal basis are defined analogously. We obtain, using the generating system E s, the 
linear system 

LEs. Es k Uk = fk gs, (31) 

with 

ES (Lk)i ,~ := a(~bj, ~b,), ~bi, ~bj e E s 
(32) 

(fy), : =  ( f ,  e e s 

and, using the hierarchical basis H s, we obtain the subsystem of (31) 

LnS. us = fknS k Uk 

with 

HS .__ (Lk )i.j .-- a(~j, dpi), 0,, (bj ~ H s 

(fk"S)i := (f, ~bl), ~bl e H s. 

(33) 

(34) 
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Analogously to the full grid case, the unique solution of (33) can easily be computed 
from any solution of the semidefinite system (31). 

3. Gauss-Seidel and Block Gauss-Seidel Methods 

Now, we use the semidefinite systems (27) and (31) to construct efficient solvers for 
the full and sparse grid problems, respectively. Here, we will focus on the Gauss- 
Seidel (GS) and the block Gauss-Seidel (BGS) methods. For BPX-type precondi- 
tioned conjugate gradient methods, that can be constructed analogously, see [10]. 
We will show that different orderings of the generating systems and different 
partitions of the unknowns into blocks of coefficients result in a variety of relaxation 
schemes including multilevel methods and certain domain decomposition methods. 

As usual, we decompose the semidefinite matrix Lk E 

Lf  = F[  + G~ + (G~) r, (35) 

where F~ and Gff denote the diagonal and strictly lower diagonal parts of Lf, 
respectively. Thenr the Gauss-Seidel iteration can be expressed by 

WkE[ E, i t + l _ _  uE, it) [ E  E, it tu k = fk E (36) - -  ~t_, k U k 

with 

Wk E := Fff + G~. (37) 

Note that, despite of the semidefiniteness of Lf, its lower diagonal part Wk E is definite 
and thus invertible. This can be seen more clearly from the variational formulation 
(41) below. 

For the block Gauss-Seidel iteration, we use the splitting 

L f  = + + (38) 

where ~ E  is a block diagonal matrix and ffff is a strictly lower diagonal block matrix 
with respect to a given partition of the unknowns associated to E k. We obtain the 
iteration 

~/~kEt E, it+l E, it~ I E E, it 
tUk - -  Uk ~ = f k  E - -  ~ k  Uk (39) 

with 

~ e  := ~ + (~.  (40) 

Note that ~Kk ~ is positive semidefinite and can be singular, depending on the 
respective block partitions. But, like Eq. (27), the Eq. (39) is solvable, because the 
right hand sides are constructed in a consistent manner, see also the variational 
formulation (42). Furthermore, all solutions of (39) have the same basis representa- 
tion with respect to Bk. a. 

Alternatively, we can interpret the GS relaxation on the semidefinite system as a 
subspace correction method [17], where we relax a function u (") ~ Vk with respect 
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to a ~b �9 E k by 

u (~+1) := u t~) + 2"r with a(u ("+1), ~b) = f(~b), (41) 

compare also the P M G  method in [13]. 

The BGS relaxation corresponds to the simultaneous relaxation of a set �9 c E k by 

u (~+1) := u (u) + ~' 2~-r with Vq~ �9 ~:  a(u (u+l), ~b) = f(~b), (42) 

which is equivalent to the solution of the variational problem for the error 
e (m := u - u (") 

Vr �9 Vk: a(e (u), r = f(~b) - a(u (~), 6), (43) 

restricted to the subspace V~ := span(~). 

Now, the GS method with respect to the generating system is the cyclic application 
of (41) for all r �9 Ek in a given order, while the BGS method applies (42) to all sets 
of a disjoint decomposition E k = U q)k in some fixed order. 

More generally, we allow to restrict the relaxation to some subset E~ s c E k and the 
multiple relaxation of some ~b �9 E~ s in one iteration step or, for BGS, a decomposi- 
tion E~ s = U ~k with intersecting subsets. These iterations are convergent if and 
only if E~ s is a generating system for Vk. 

Regarding the sparse grid case (31), just the generating system E k for the full grid 
has to be exchanged by its sparse grid counterpart Ek s and the above definitions and 
constructions can be repeated analogously. 

Note, that it is not necessary to assemble the matrices Lk E or L~ s explicitly because 
it is possible to use a certain product type representation of Lk E or L~ s analogously 
to I-4] to implement the matrix-vector multiplication and the Gauss-Seidel iteration 
in O(N[)  and O(Nk Es) operations. However, the Gauss-Seidel method is still tricky 
to implement. A detailed description of implementation details will be given else- 
where. The basic approach follows the idea in [2] and [18]. We use binary trees (of 
binary trees) to implement the full and sparse grid. Altogether, the required storage 
and the number of operations to perform one iteration is proportional to the 
number of grid points employed. 

We will report the results of numerical experiments for the model problem 

e 2" uxx + uy r = f (x ,  y), (x, y) �9 (2 = (0, 1)2, 
(44) 

u(x, y) = O, (x, y) �9 t3f2. 

The tables contain the observed reduction factor p of the error in one iteration step 
and the number of iterations 

- 1 0  
it := - - -  (45) 

log p 

needed to reduce an arbitrary initial error by the factor 10 -1~ . 
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3.1 Hierarchical Bases Method 

If we iterate only the unknowns of the semidefinite system that are associated to 
the functions of the hierarchical basis, i.e. if we only use the subset E~ s := Hk in the 
relaxation (41), we obtain the hierarchical basis method from [2]. Note that this is 
a GS iteration for the definite system n ~ Lk Uk = fk , that differs from the usual GS 
iteration ~ B for Lk Uk = fk/~ only by the use of the hierarchical basis instead of the nodal 
basis on the fnest  grid. Note further that in contrast to the HB-MG method in [1] 
our hierarchical basis contains basis functions with in general distorted rectangular 
support. It is also suitable for the sparse grid case (with Gs. s E k .-~ H~), see [2] for 
details�9 

Ordering the hierarchical basis level-wise 

/71,1, 

k3,,, 

�9 �9 �9 /~l,k* 

�9 " " / ~ 2 , k ~  

�9 �9 " B 3 , k ~  

�9 �9 ' / ~ k , k ,  

(46) 

we traverse the unknowns associated to H k according to Fig. 3. Note that each/~i,j 
contains only basis functions with disjoint supports, hence the sequence of relax- 
ations inside each block/3i,j is arbitrary and can be done parallel�9 

T I TTTT 
I 

1 I 

T [ Y I V I 

Figure 3. Sequence of relaxations for the hierarchical basis method. The dashed lines mark  the short  
cuts for the sparse grid case 
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We obtain  the algori thm 
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Hierarchical basis method 
f o r m =  1 . . . k  

for n = 1. . .  k (full grid) or  n = 1. . .  k + 1 - m (sparse grid) 

for ~b ~/~m,n 
relax ~b according to (41). 

Table 1 shows the reduct ion rates of  the hierarchical bases method  for the full and 
sparse grid case. The number  it of iterations seems to  grow like O(2 k) for the full 
grid case and like 0(2 k/2) for the sparse grid case. 

Table 1, Reduction rates and numbers of iterations for the HB-Gauss-Seidel, ~ = 1 

k 3 4 5 6 7 8 9 I0 

Full grid p 0.77 0.88 0 .905 0 ,964  0 .971 0 ,984  0 ,992  0.996 
it 88 180 230 630 780 1400 2900 5700 

Sparse grid p 0.56 0.68 0.77 0.83 0.88 0 .913 0 ,938 0.955 
it 40 60 88 120 180 250 360 500 

3.2 Grid-Oriented Methods 

Instead of the functions B,,,, as for the hierarchical basis method,  we now take into 
account  the complete nodal  bases B,,,, on  the grids f2m,.. This approach  results in 
a multilevel-style iteration with an outer  loop running over the different grids and 
inner loops relaxing the unknowns  associated to the basis functions on the respec- 

tive grid. 

The traversal ordering for the grids is described in Fig. 4. In  contrast  to the 
hierarchical basis method,  the ordering of  the unknowns  of each grid is no  longer 
arbitrary,  since the supports  of  the associated functions overlap. Here, a lexico- 
graphical  or  a four-color  ordering is sufficient. Altogether, we obtain  the algori thm 

Multilevel method 
f o r m = l . , . k  

for n = 1 . . .  k (full grid) or  n = 1. . .  k + 1 - m (sparse grid) 
perform v times a Gauss-Seidel i teration on (2m, .. 

No te  the close relation of  our  a lgori thm to the methods  of  Mulder  [14], Na ik  and 
van Rosendale [15] or  Hackbusch  [11, 12]. 
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Figure 4. Sequence of relaxations for the multilevel method (outer loop). Again the dashed lines mark 

the short cuts for the sparse grid case 

With respect to the semidefinite system this corresponds to a level-wise partition of 
the coefficient vector uff by 

U k  E ' L  := (Urn'")1 _<m,. _<k, where u m ' "  " s .= (u~)~s,., (47) 

denotes the coefficients belonging to B,,,,. In the sparse grid case, we obtain the 
levelwise partitioned coefficient vector 

U~ S'L 2= (Urn' n)l < m <k, 1 Nn <k+l-m" (48) 

If we apply only one GS sweep on every grid, we obtain the standard GS method 
(36)-(37) for the semidefinite system with associated level-wise ordering of the 
unknowns. 

Note that various traversal orderings for the different levels are possible beside the 
one described in Fig. 4. For example, a symmetric version of this method is obtained 
by a sweep as described in Fig. 4 followed by s sweep in reverse ordering of the 
unknowns, i.e. by the application of the symmetric Gauss-Seidel iteration with 
respect to the vector partition (47). 

However, in numerical experiments with different traversal orderings, we obtained 
no particular difference in the observed reduction rates. Therefore, we restrict 
ourselves to the traversal ordering of Fig. 4. 

Table 2 shows the results for the full grid case. Here, a four color Gauss-Seidel 
relaxation is applied v times on each grid. Table 3 shows the analogous results for 
the sparse grid case. Additionally, we present the results for the case of an exact 
solution of the subproblems arising on each level of the sparse grid discretization 
for E s. This is the block Gauss-Seidel iteration (39)-(40) with the level-wise decom- 
position (48) of the coefficient vector and the simultaneous relaxation of all un- 
knowns belonging to the same grid. Hence, the diagonal blocks of ~- contain 
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Table 2. Reduction rates and numbers  of iterations for the multilevel Gauss-Seidel on the 
full grid, e = 1 

k 3 4 5 6 7 8 9 10 

v = 1 p 0.087 0.092 0.093 0.093 0.092 0.093 0.093 0.093 
i t  9.4 9.7 9.7 9.7 9.7 9.7 9.7 9.7 

v = 2 p 0.021 0.024 0.025 0.026 0.026 0.026 0.026 0.026 
it 6.0 6.2 6.2 6.3 6.3 6.3 6.3 6.3 
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Table 3. Reduction rates and numbers  of iterations for the multilevel Gauss-Seidel on the sparse 
grid, e = 1 

k 3 4 5 6 7 8 9 10 

v = 1 p 0.066 0.10 0.18 0.22 0.27 0.32 0.33 0.34 
it 8.5 10 13 15 18 20 21 21 

v = 2 p 0.036 0.098 0.054 0.11 0.054 0.11 0.080 0.11 
it 6.9 9.9 7.9 10.4 7.9 10.4 9.1 10.4 

BGS p 0.0026 0.0036 0.0058 0.0046 0.0058 0.0052 0.0058 
i t  3.9 4.1 4.5 4.3 4.5 4.4 4.5 

the matrices arising from the discretization of the problem on the corresponding 
grids. 

For  the full grid case, such a BGS method makes no sense. It would converge in 
one step, since the space ~k,k associated to the finest grid contains the spaces Vm,,, 
1 < m, n < k associated to all other grids. Therefore, the relaxation with respect to 
Vk,k would cause the residual to vanish on all other grids. 

Both, in the sparse and in the full grid case, it can be seen dearly that the reduction 
rates and the number of iterations are independent of k. 

In Table 4, the case of the anisotropic operator is shown for fixed k = 8 and varying 
values ofe. We see that although the reduction factors get worse for e ~ 0 and ~ ~ ~ ,  
they are still bounded. This demonstrates the robustness of our level-oriented 
method. Compare also the discussion in [12] and [15]. 

Full grid p 
it 

Sparse grid p 
it 

Table 4. Multilevel Gauss-Seidel in the anisotropic case, k = 8, v = 1 

0.0001 0.01 0.1 0.5 0.7 1 1.4 2 10 100 10000 

0.37 0.37 0.36 0.12 0.12 0.093 0.12 0.18 0.36 0.37 0.37 
23.2 23.2 22.5 10.9 10.9 9.7 10.9 13.4 22.5 23.2 23.2 

0.37 0.37 0.36 0.33 0.33 0.32 0.33 0.33 0.36 0.37 0.37 
23.2 23.2 22.5 20.8 20.8 20.2 20.8 20.8 22.5 23.2 23.2 
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3.3 Poin t -Or ien ted  M e t h o d s  

Now, we partition the semidefinite system into groups of unknowns where the 
associated generating functions are centered in the same grid point. Then, we 
perform a block Gauss-Seidel iteration on the associated block partitioned system. 
Thus, as blocks in the iteration (39)-(40), we consider the unknowns that belong to 
the functions 

Bx := {~b ~ Ek: ~(x) ----- 1} (49) 

that are centered in the same grid point x ~ f2k, k. This corresponds to a point- 
oriented decomposition 

v~= Z y. v~ .... (50) 
x e  I2k, k m , n  <_k: 

xG: ~ r n ,  rt 

of the space V k. Note that in comparison to the level-wise decomposition (7) just 
the summations are exchanged. According to the decomposition of V k, the coeffi- 
cient vector Uk ~ is partitioned as 

E u (  'e := (uX)~ ~2~.~, where u ~ := (uo)~B �9 (51) 

For the sparse grid case, we define analogously 

B~ := {r ~ e~: r = 1}. 

This corresponds to the decomposition 

v ; = Z  2 v=.,.x 
x e  1"2~ m + n  _ < k + l :  

X ~ ~Qm,n 

and the partition 

uEs, l,. (uS,X)x ~'~' 

For an illustrating example, see Fig. 5. 

ES where u s'x := (u~)~B~. 

(52) 

(53) 

(54) 
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Figure 5. Supports of the generating functions s (right) for k = 3 B~1/2,1/2~ (left) and B~ v2,1/2) 
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N o w  we can step th rough  the sets of grid points f2k, k or ~s ,  respectively, and relax 
simultaneously the unknowns  that  belong to the same point. The relaxations (42) 
result in systems of linear equations for every grid point  x e (2,,,,\(f2,,_ t, .  u ~'~m, n-1 ) 

with I B x l = ( k + l - m ) ( k + l - n )  or I B S l = ( k + 2 - m - n ) ( k + 3 - m - n ) / 2  
unknowns,  respectively. The coupling between the point  blocks is described by the 
off-diagonal blockmatrices of fr or, for the formulat ion as subspace corrections, 
by the evaluat ion of a(u", ~) in (42). It  is easy to see that  information is exchanged 
by this coupling on all respective levels of discretization simultaneously. 

In  practice, however,  not  all traversal orderings th rough  the set of  grid points are 
advisable. We restrict ourselves to the traversal ordering already in t roduced for the 
hierarchical basis me thod  (see also Fig. 3), and obtain the following algori thm 

Point-block method 
form = 1 . . . k  

for n = 1. . .  k (full grid) or  n = 1. . .  k + 1 - m (sparse grid) 
for x s f2m,,\(f2,,_a, . w f2,,,,_1) 

relax Bx or  B s, respectively, according to (42). 

No te  that  it is often not  necessary to compute  the exact solution for each point-block 
problem. Then, a few GS relaxations on the respective point-block systems are 
sufficient. In  the extreme case of one step only, we obtain the GS iteration for the 
semidefinite system with just a special point-oriented traversal ordering (51) or  (54). 

Table 5 shows the results for the full grid case with v = 1 and v = 2 GS iterations 
per point-block and with exact solution of  the point-block systems (BGS). 

Table 5. Reduction rates and numbers of iterations for the point-wise GS (full grid), e = 1 

k 3 4 5 6 7 8 9 10 

v = 1 p 0.17 0.t8 0.22 0.24 027 0.28 0.29 0.32 
it 13.0 13,4 15.2 16.1 17.6 18.1 18.6 20.2 

v = 2 p 0.069 0.089 0.092 0.093 0.10 0.13 0.17 0.21 
it 8.6 9.5 9.7 9.7 10.0 11.3 13.0 13.8 

BGS p 0 .0022  0.0077 0.015 0.018 0.022 0.024 0.025 0.026 
it 3.8 4.7 5.5 5.7 6.0 6.2 6.2 6.3 

Table 6 shows the analogous  results for the sparse grid case. In  bo th  cases, the 
numbers  for the BGS relaxations indicate that  the reduct ion rates are bounded  
independently of k. 

In  Table 7, the case of  the anisotropic  opera tor  is shown for fixed k = 8 and varying 
values ofe. We see that  the reduct ion factors do not  deteriorate for e -+ 0 and e ~ o% 
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i.e. for strong anisotropic problems. In contrast to the results for the analogous 
grid-oriented methods (cf. Table 4), we even see a slight improvement of p for 
extreme values of e. Thus, the worst reduction factor is obtained for the Poisson 
problem. This demonstrates the robustness of our point-oriented method. 

3.4 Domain-Oriented Methods 

The point-oriented approach can be easily generalized. We alow an arbitrary 
domain decomposition of 12 into K non-overlapping subdomains with associated 
decomposition 

K 

I2k, k = U D~, D i n  f2j = ~ f o r / ~  j (55) 
i=1  

of the grid points Ok, k" For the sparse grid Dk s, we consider an analogous decomposi- 
tion. Now, we group the unknowns of the semidefinite system together that are 
associated to functions of Ek or Ek s, respectively, where the center points are situated 
in the same t2 i, 

B a,:= U B~. (56) 
x~ O i 

The resulting BGS algorithm now switches from subdomain to subdomain in some 
prescribed order. For practical purposes, a nested dissection-like decomposition [3] 
of the grid points into subdomains is advisable. Compare also Fig. 6. Then, by using 
multigrid prolongation and restriction operators, the submatrices for the sub- 
domains have not to be assembled explicitly and one overall BGS iteration can be 
performed in O(IDk,k[ ) or O(IDkSl) operations, respectively. 

. 

3 * 

Figure 6. Nested dissection decomposition, full and sparse grid case, k = 3 

In contrast to the usual domain decomposition approach, where just the standard 
basis is used in the discretization, the matrices for the subdomains are now in general 
no longer invertible, since they can be semidefinite. However, the application of a 
(level-oriented) GS-iteration automatically results in a multigrid-like solver for the 
subdomain problem, that, due to the generating system approach, now produces a 
non-unique representation of the solution for the subdomain. This non-unique 
solution can be cast easily via interpolation operators and additions into its unique 
representation with respect to Bk, k or Hk s, respectively. 
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By using the generating system we have no longer to bother for the computat ion 
of the Schur complement. Instead, a semidefinite subsystem appears for each sub- 
domain. Furthermore, there is no more need to speed up convergence by means of 
global coarse grid transport  steps or by the use of overlapping domains like in 
standard domain decomposition methods. 

Now, consider for example the stripe-wise approach in Fig. 7. All functions of Ek 

associated to the grid points of different stripes with the same number  are mutually 
orthogonal with respect to a(.,  "), since they possess disjoint supports. Therefore, 
the stripe subproblems with the same numbers can be computed fully in parallel 
and we see directly a binary tree ordering for the parallel execution of our algorithm. 
Communicat ion has to take place only between father and son stripes, i.e. between 
next-neighbored stripes with successive numbers, and not on each level of discretiza- 
tion like in many  parallel multigrid algorithms. Compare  also Fig. 7. 

3- - - I  
3 

I,-, 

3 

Figure 7. Domain decomposition of the unit square: in each subdomain all basis functions belonging 
to the centerline are relaxed simultaneously 

Table 8 shows the resulting reduction rates for the line-wise BGS method. Once 
more, we see that in both cases the reduction rates are independent of k. However, 
in comparison to the point-oriented method (see Tables 5 and 6), we observe no 
significant improvement  of the reduction rates. Thus, the line-wise BGS method is 
surely less efficient than the associated point-oriented approach, since it involves 
the exact solution of the stripe subproblems. If we use an inexact solver instead, like 
for example a pointwise BGS sweep over the subproblems with an appropriate 
traversal ordering of the points in each stripe, then we obtain the point-block 
method again, compare Tables 5 and 6 (row BGS). If we substitute in a second step 
the accurate BGS steps for each point by e.g. one GS step for the point-block 
subsystem, we obtain just the plain GS method for the semidefinite system but with 
a special domain- and point-oriented traversal ordering, compare Tables 5 and 
6 (row v = 1). Now, the number of operations involved is comparable to the 

Table 8. Reduction rates and numbers of iterations for the line-wise BGS, e = 1 

k 3 4 5 6 7 8 9 10 

Full grid p 0.00094 0.0050 0.012 0.017 0.020 0.021 0.022 0.023 
it 3.3 4.3 5.2 5.7 5.9 6.0 6.0 6.1 

Sparse grid p 0.0010 0.0023 0.0053 0.013 0.016 0.018 0.020 0.021 
it 3.3 3.8 4.4 5.3 5.5 5.7 5.9 6.0 
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corresponding level-oriented methods. However, in contrast to the level-oriented 
approach, these methods have now the same parallelization possibilities as the 
domain-oriented methods. 

4. Concluding Remarks 

In this paper  we presented different multilevel algorithms based on the generating 
system approach. We studied level-oriented techniques where GS methods for the 
arising semidefinite system turn out to be either multigrid or hierarchical basis 
methods with semi-coarsening. Additionally, we presented point-oriented methods. 
There, as welt as in the generalized case of domain-oriented methods, GS and BGS 
iterations for the semidefinite system are obtained that exhibit a reduction rate 
independent of the grid size and number of levels like conventional M G  methods. 
These algorithms possess favorable properties with respect to parallelization. In 
contrast to the parallelization of a multigrid method, where communication has to 
take place on every level of discretization, our new algorithms have communication 
requirements like conventional domain decomposition methods. 

Unlike the grid- and point-oriented methods introduced in [7] that use standard- 
coarsening, the use of semi-coarsening allows the straightforward extension to the 
case of sparse grids. Additionally, the resulting algorithms are robust for anisotropic 
model problems. 

We showed that the use of the generating system approach is an excellent guideline 
for the construction of multigrid-like algorithms. Following [8] and [10], BPX-like 
additive variants can be constructed following the same principle. The extension to 
higher dimensional cases is straightforward. Note at last that an extension to the 
case of adaptive refinement is quite easy for the point-block methods. 
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