
C o m p u t i n g 51 ,209-236(1993) C o [~ d r ~

�9 Springer-Verlag 1993
Printed in Austria

A Pa r a l l e l Shoo t ing T e c h n i q u e for Solv ing D i s s i p a t i v e O D E ' s

P. Chat t ier* , St Quen t in Yvelines, and B. Philippe, Rennes

Received November 16, 1992; revised July 30, 1993

Abstract -- Zusammenfassung

A Parallel Shooting Technique for Solving Dissipative ODE's. In this paper, we study different modifica-
tions of a class of parallel algorithms, initially designed by A. Bellen and M. Zennaro for difference
equations and called "across the steps" methods by their authors, for the purpose of solving initial value
problems in ordinary differential equations (ODE's) on a massively parallel computer. Restriction to
dissipative problems is discussed which allow these problems to be solved efficiently, as shown by the
simulations.

AMS Subject Classification: 65L05, 65W05, 65Q05

Key words: Massively parallel, "across the steps" methods, ordinary differential equations, dissipative
problems.

Eine parallele "shooting" Technik zur Liisung dissipativer gewiihnlicher Differentialgleichungen. In diesem
Artikel studieren wir verschiedene Versionen einer Klasse paralleler Algorithmen, die urspriinglich yon
A. Bellen und M. Zennaro Rir Differenzengleichungen konzipiert und yon ihnen ~ the steps"
Methode genannt worden ist. Die Autoren verfolgten den Zweck, Anfangswertprobleme bei gew6hn-
lichen Differentialgleichungen anhand eines massiv parallelen Rechner zu 16sen. Wir behandeln die
Anwendung auf dissipative Systeme und erreichen eine effiziente L6sung dieser Probleme. Dies wird in
einigen Simulationen illustriert.

Part 1: Theoretical Analysis

1. Introduction

Paral le l a lgor i thms for solving ini t ial value p rob lems (IVP's) for differential equa-
t ions have received only marg ina l a t t en t ion in the l i te ra ture c o m p a r e d to the
e n o r m o u s work devo ted to para l le l a lgor i thms for l inear algebra. I t is indeed
general ly admi t t ed tha t the in tegra t ion of a system of o rd ina ry differential equa t ions
in a s tep-by-s tep process is inherent ly sequential . However , a few solut ions to
c i rcumvent this bar r ie r have been proposed . A ra ther obvious way to paral le l ize is
to d is t r ibute the componen t s of the r igh t -hand-s ide of the system amongs t the
avai lab le processors . This technique, called "across the p rob l em" by G e a r (see [7])
is ra ther effective for large systems. Para l le l i sm "across the me thod" exploi ts the

* Supported in part by the ONERA and by the DRET under grant n o 89.34.401.00.470.75.01

21o P. Chartier and B. Philippe

parallelism available within the method itself. This idea has led to various methods
such as block methods (see [3, 5, 6, 14, 15]) or "parallel iterated Runge-Kutta
methods" (see [16]). However, the accelerations obtained are generally kept below
ten.

Still another approach, that we will focus on here, has been considered by A. Bellen
and M. Zennaro. In [2], the authors present a class of parallel algorithms for initial
value problems for difference equations, that result in considerable savings in
computing time. These algorithms are directly connected to initial value problems
for ordinary differential equations, since the numerical solution of ODE's by a
one-step method gives rise to a difference equation. They propose a Steffensen
iterative method which transforms the difference equation into a linear recurrence.
All computations involved in obtaining the coefficients of the recurrence can be
performed in parallel, provided there are enough processors. In a second paper [1]
exclusively dedicated to ODE's, they improved their algorithm by introducing
step-size control. However, it has been shown that their strategy was not well-suited
for message passing machines, owing to the considerable amount of time spent in
communication (see [17]).

In this paper, we propose a new approach designed for a restricted class of ODE's
where the right-hand side function is dissipative. In particular, this assumption helps
considerably to improve load-balancing.

In [2], the authors study the fixed-point problem arisen from the application of a
step-by-step method to a system of ODE's. In Section 2, we adopt a similar
approach. However, our formulation is based on the exact solution of the differential
system with no reference to any numerical step-by-step method. In the sequel, this
new formulation is used to determine what kind of IVP's should be considered.

A very simple algorithm aimed at solving the fixed-point problem is introduced in
Section 3, and its convergence is studied in terms of the logarithmic norm of the
right-hand-side. This algorithm already emphasizes the necessity of dealing only
with a restricted class of problems.

Newton's method is then considered in Section 4. We first make a non-restrictive
assumption on the IVP to derive the usual "local quadratic convergence" of
Newton's method for our problem. The main result of the paper, establishing
sufficient conditions for 9tobaI convergence, is then presented. The class of dissipative
problems is shown to be particularly appropriate.

Section 5 presents numerical experiments aimed at verifying the theoretical conver-
gence results for the proposed algorithm.

In Section 6 of Part 2, we will study the discrete-time version of the algorithm.
Especially the influence of the perturbations arisen from the introduction of approx-
imations will be analysed.

A Parallel Shooting Technique Ior ~olvmg Dxssipative ODE's 211

Finally, Sections 7 and 8 of Part 2 will be devoted to the implementation on a
hypercube as well as the evaluation of the performance on that architecture. Simula-
tions will be presented that prove our technique is competitive in situations where
it is not possible to parallelize "across the system".

2. The Fixed-Point Problem

In this contribution, we are interested in obtaining a numerical solution of the
initial-value problem for the m-dimensional system of ODE's

y'(x) = f(x, y(x)), (1)

y(xo) = Yo, (2)

on the interval of ~, [x o, X]. We make the usual assumption that f is continuous
and satisfies a Lipschitz condition on the region [Xo, X] x ~". We also need the
stronger assumption that f is continuously differentiable on the same region. Now,
let Xo, xl x N = X be a subdivision of [xo ,X]. We define y(x, xo,Yo) to be the
exact solution of (1) at the point x with initial condition y(xo) = Yo.

Definition 1. For i = 1 N, let ~0i(u) represent the value of y(xi, x~-l, u). q~ is the
map:

~oi: [~m ~ ~m
(3)

u ~ q~(u) = y(x i , x i - 1 , u)

Remark 1. The functions ~p~'s are well-defined owing to the existence and uniqueness
of the solution of (1) on any sub-interval of Ix o, X] and for any initial condition.

Remark 2. I f (1) is autonomous and the grid is regular, then all the q~i's are equal.

Definition 2. q5 is defined to be:

~: ~m• __+ ~m•

(4)
u = r r ~ (U) (yro,~O~(Uo)T, ~ON(UN_~)r) r (Uo, u l u~) ~ ~

Let us illustrate the definitions on a very simple example:

Example 1. For the Prothero-Robinson problem (see [131):

y'(x) = --A(y(x) - ~(x)) + 7t'(x)

y(xo) = gt(Xo),X ~ [xo,X] (5)

where A is a symmetric positive definite m • m real matrix, we have:

q)i(u) = ~-I(Xi) ~- e-atx'-x'-l)(U -- ~(Xi-1)) (6)

Hence the following bound holds:

lidos(u)- ~U(x311 _< p l l u - ~(x~-a)tl (7)

where p = lie -Atx ' - )ll < 1 for a suitable choice of the norm I111. This property
motivates the algorithms considered in the sequel.

212 P. Chattier and B. Philippe

The above definition of ~ shows that it is possible to formulate the prob lem (1, 2)
as a fixed-point problem. As a mat te r of fact, finding the exact solution of (1, 2) is
equivalent to finding a fixed-point of ~. Existence and uniqueness of such a point
U* follows f rom the fact that (bN+I(U) ---- U* for any U, where q~N+I(U) denotes the
(N + 1) th appl icat ion of ~. Hence an iterative me thod will be suitable for obta ining
the fixed point of 4~.

3. Solving the Fixed-Point Problem

It is easily seen that we get an exact value for an addi t ional componen t of U with
each new appl icat ion of 45. This leads us to the naive algorithm:

Algorithm 1.
�9 U o T T = (Yo, Yo Yor) r
�9 repeat [*** compute (U k+l = cb(uk)) ***]

Uo k+l = Yo
f o r / = 1 . . . N ,

U k + l = (p(Uk_l)

end
until II uk+l - - u k l l ~ •

where e is a pa ramete r that should be defined by the user. U k will converge to the
exact solution of (1,2) within N iterations. However , in order to achieve any
speed-up in solving (1, 2), it is necessary to reach a global convergence in m a n y fewer
than N iterations.

For convenience, we recall two classical results of the theory of ordinary differential
equat ions and the definition of the logar i thmic no rm (see [8]). In the sequel,]I'll
will denote both a vector no rm on Nm and the associated matr ix norm.

Theorem 1. Suppose that v is an approximate solution o f the system o f differential
equations (1, 2), where f is L-Lipschitz , satisfying:

1. IlV(Xo) - y(xo)H -< p
2. Vx e [xo ,X] , [Iv'(x) - f (x , v (x)) l l <_

where p is the initial error and e the defect o f the approximate solution v. Then, f o r
x >_ Xo we have the error estimate:

e (eUX_xo 1) (8) Ily(x) - v(x)ll < pe L(x-x~ + ~ ,

Definition 3. Let Q = (qi,j)l <_i,j<_, be a real n x n matrix and let]l" 11 be a norm on

R "• associated with a vector norm. We call:

III + hO[t - 1
#(Q) = lim (9)

h~O h

the logarithmic norm o f Q.

A Parallel Shooting Technique for Solving Dissipative ODE's 213

The logarithmic norm can be estimated as follows:

�9 For the Euclidean norm

�9 For the c~-norm

#(Q)=max{z/det(12(Q) } + Qr)_ 21 =0 .

#(Q)=maxk(qku + Y, lqk,

�9 For the 1-norm

#(Q)= maxi(qu + k~i~2 Iqk~l) �9
Example 2. Consider the two-body system in two dimensions

"y i (x) = y~(x)

#yl(x)
y'2(x) = (y l (x) 2 -I- y3(x)2)3/2

y'a(x) = Y4(X)

#Y3(x)
y~(x) = (yt(x) 2 q- y3(x)2)3/2 .

Computation of the dacobian matrix leads to:

2 ay + ~ y)

#(2y2, _y2)
0 I/2-+ 2(y2+y~)S/2 0

I/2 -{- #(2y2 "y2) 3pYlY3
2(y2 + y~)S/2 0 2(y2 + yZ)m2

0 3#YlY3 0
2(y2 + y2)5/2

2 2 3#Yl Y3 #(Yl -- 2y3)
2(y~ + y~)5/2 0 1/2 2(yZ + y~)S/:

1/2

whose eigenvalues are (r = ~ + y2):

3#Yl Y3
2(y2 + y~)S/2

0

#(y~ - 2 y 2)

2(yl 2 + y~)m2

0

(10)

(11)

(12)

(13)

(14

(15)

(16)

214 P, Chartier and B. Philippe

of
thus the logarithmic norm of ~y for the Euclidean norm is simply:

"yy y

R e m a r k 3. For Example 1, we have straightforwardly,

where ~ is the smallest eigenvalue of A.

Theorem 2. Let us assume that there exist two real functions I and 6, and a positive
number p such that:

Vx ~ [x o , X] , Vq ~ [y(x) ,v (x)] , I ~ (~ (x , q)) < I(x), (19)

g e [x o, X] , 11 v'(x) - f (x , v(x))l[-< 6(x), (20)

liV(Xo) - y(xo)lt < p- (21)

As in Theorem 1, p is called the initial error and 6 the defect o f the approximate
solution v. Then for x > x o we have:

(;) Ily(x) - v(x)ll < e L~x) p + e-L(s~6(s)ds (22)
o

with L(x) = ~o l(s) ds.

Returning to our problem, we now introduce a new no rm in which convergence
results can be obtained.

Definition 4. Let us assume that there exists l e L t ([xo , X]) (i.e. summable over
[-Xo, X]) such that:

Vx e [x o, X] , Vy e W ~, # (x, y) <_ l(x). (23)

Let q~ >_ e [A: , l(x)dx, i = 1 N, 2 ~] O, 1 [and let D denote the block-diagonal matrix:

D = diag(d o 1 dN lm) (24)

where do 1 and d i 2di-1 i 1 N. Then for any vector U T T T = - , = = (U o u N)
qi

~,,x(N+l) we define the weighted norm [l' lID to be one of the following:

N

]lUll, = HD" Ulll = Y, dil]uillz (25)
i = 0

HUN. = HD" Ult2 = 5 ~ d~lIu~[l~ (26)
i = 0

A Parallel Shooting Technique for Solving Dissipative ODE's 215

HUllo = l I D - U I [~ = m a x d i [tu i [l~ (27)
O<_i<<_N

depending on the norm defining #.

To prove convergence results, we will need the following lemma:

L e m m a 1. Let us assume that there exists l E Ll([Xo, X]) such that (23) is satisfied.
Then for any chosen norm in Em we have

Vi @ 1-1, N -] , ~ (u , v) ~ []~m X []~m, II~oi(u) - ~oi(v)ll _< qillu - vii (2 8)

Proof." F r o m Theo rem 2, we have:

Ily(xz, x~_l,U) - y (x . x z_ l , v) J I < eY::-,z(x)aXllu - vii

which is exactly the desired result. []

Theorem 3. Let us assume that there exists l ~ L l ([x o, X]) such that (23) is satisfied.
Then q5 is a contraction map with respect to the weighted norm.

Proof." Consider the case where the o r -norm is used. Then we have:

[l r - 4 , (V) [l~ = max di[lcpi(ui_l) - ~p~(vi-1)ll~ (29)
i=l N

_< max diqi[[ui_l - vi_l][~ '(30)
i=1 N

= 2 max d~l lu i - v~l[~o
i=O N - 1

_< ,:~ll u - V/l~

(30) is induced by (29) as a simple appl icat ion of the previous lemma. []

This theorem establishes in a general context the cont rac t ion proper ty of q5 a l ready
observed for the P ro the ro -Rob inson p rob lem (see Example 1).

Definition 5. An initial value problem (1, 2) is said to be dissipative iff

V X �9 E x o , X] , V y �9 ~ m # (x , y) < l(x) < 0. (31)

For dissipative problems, we now have the following more convenient result:

Corol lary 1. Let us assume that condition (31) is satisfied. Then the conclusion of
Theorem 3 remains true for D = I, i.e. with the norms II U [[= [I U [ll, I[U]1 = [[U [I 2 and
II u II = I[u I]oo.

Proof." The proof is just as in Theorem 3, except that we now must set:

2 = q = max eI~i,tIx/ds< 1 (32)
i=1 N

and set all the q~'s equal to q. []

216 P. Chartier and B. Philippe

4. Convergence Results for Newton's Algorithm

The above theorem shows that global convergence can be achieved using a non-
uniform norm. It guarantees that Algorithm 1 is robust, but does not ensure
computational efficiency. Considering the convergence in the weighted norm II" lID
is only relevant ifD is close to the identity (i.e. H" lid close to a uniform norm). Hence,
the rate of convergence is determined by the highest qi of Definition 4. In order to
accelerate the convergence, it therefore seems natural to use Newton's algorithm.
Let us define the frame of Newton's method:

Theorem 4. �9 is continuously differentiable o n ~mx(N+l) and cb' is a (N + 1) x
(N + 1) block bidiagonal matrix with block size m o f the form

Ii] o; o) 0
VU e N,.• cb'(U) = (p;(ul) (33)

. . . @}(b/N_i) 0

Proof.' Since the partial derivative of f with respect to y exists and is continuous,
the solution y(x, x . , u) of (1) on I x . , x~] is differentiable with respect to u (see,
for example, [8] p. 97). Hence, by definition of ~o~, it is easily seen that r =

Oy(xi, Xi_ l , U) []

#u

We may now write down Newton's algorithm for our problem:

Algorithm 2.
�9 U 0 T T T T = (Y0, Yo Yo)
�9 repeat [*** solve U k+l = U k -- (I - qb ' (uk)) - l (U k - cb(uk)) ***]

u~ +1 = Yo
for i = 1 ... N,

u ? 1 = ~0i(u~_l)+ ~0;(u~_l)(u~-+~ - u ~ _ l)
end

until II u k+~ - u k]] <-- e

According to the theory of Newton's method, we have the convergence result given
below in Theorem 5, whose proof can be found in [12]. The following lemma ensures
that its hypotheses are satisfied:

Lemma 2. Let us further assume that ~ satisfies a Lipschitz condition with Lipschitz

constant Lo. Then there exists a real ~ > 0 such that:

v u e ~,.• I I ~ ' (u) - q~ ' (g*) l t _< c~ll u - U*ll (34)

where U* denotes the f ixed-point o f ~.

Proof'. The proof is standard and can be found in [4]. []

A Parallel Shooting Technique for Solving Dissipative ODE's 217

Finally we sum up the hypotheses and get the promised result:

Theorem 5. Let us assume that f is continuously differentiable on N = [Xo, X] x N"

and satisfies a Lipschitz condition on ~ , and that ~y satisfies a Lipschitz condition on

the same region ~. Then, U* is a point of attraction of Algorithm 2 and the iteration
is locally quadratically convergent.

Proof: It is easily seen that F = I - q5 satisfies the hypotheses of the "Newton
Attraction Theorem" (see [12] p. 312): F is continuously differentiable on N,.xCN+~
and F'(U*) nonsingular, F(U*)= 0, and for all U E N,,• I [(l - q~ ') (U)-
(I - q s ') (U *)] l _< (c~ + t)llU - U * l l . []

Now it is well known that Newton's iteration is highly efficient in a neighbourhood
of the solution, but behaves very badly elsewhere. The smaller the first and second
derivative of F (when they exist), the larger the neighbourhood and the faster the
convergence. However, these quantities are known as soon as f is given. Since we
do not have any information on the exact solution (except the initial condition), it
is difficult to get a better estimate than the constant solution over the whole
integration interval. One way to overcome this difficulty is to choose a grid fine
enough to make the constant solution a good approximation, at least for the first
elements of the grid (see [2]). Nevertheless this technique was shown to be inefficient
when implemented on a hypercube (see [17]) due to very poor load-balancing.
Moreover, step-size control is by no means obvious, which makes this technique
too complex for a message-passing machine. In Fig. 1 (Oxy-plane) we present the
first two iterations of Algorithm 2 when applied to the following problem:

y' = cos(x) sin(y2), (35)
y(xo) = 1,x e [0, 30]

2.5

2

1.5

1

0.5

0
0

?
. f : :i

, ;a t : : a : , ' , ,

10 15 2o

Figure L Algorithm 2 applied to the non-dissipative problem (35)

30

218 P. Chartier and B. Philippe

with a coarse grid. The exact solution is plotted in solid line, the numerical solution
after one iteration in dashed line and after two iterations in dotted line. We can
observe the disastrous second iteration that completely overshadows the first one,
from which we might have expected fast convergence. This phenomenon should be
attributed to the well-known instability of Newton's algorithm, when the initial
guess does not belong to a suitable neighbourhood of the solution. The same
phenomenon may be observed on Example 2: whereas Algorithm 2 is robust, the
norm 11"]tD in which convergence results are derived is dramatically far from uni-
form. Let us suppose for example that the solution of (13) is a circulant movement
of speed co. We have in that c a s e]l/r 3 = 0) 2, SO that

= 1 /2+

Hence, the q,'s of Definition 4 are very large as soon as co is large and the decrease
of 11 g kll is not of practical interest. This example emphasizes the crucial importance
of I1" [ID, which is directly connected to the function l(x) involved in (23). Large
positive functions l(x) prevent Algorithm 2 to be efficient. Therefore, it does not
seem possible to handle all problems with this algorithm, whereas it seems natural
to restrict ourselves to ODE problems which have a dissipative function f. We have
indeed the following global convergence result, and its corollary for dissipative
right-hand side which gives the main result of the paper:

Theorem 6. Suppose that (23) is satisfied. I f we have either 2 < 1/3 or (N + 1) <
ln(32 - 1) - ln(1 + 2)

then the map defined by the iteration of Algorithm 2 is a
ln(2)

contraction with respect to the weighted norm.

We will need first the following lemma:

Lemma 3. For any matrix-norm on R re• we have

Vi E [1, N] , V u ~ m , II~0/(u)ll -< q,. (36)

Proof: By definition of r we have:

@(xi, xi-1, u)
r - c~u - R(xi, xi-1, u) (37)

where R is the solution of the differential system:

= c~y (x, y(x, xi_ 1, u))R(x, Xi_l, U) (38)

L R(Xi - l ' Xi - l ' u) = I

Since R - 0 is also a solution, it follows as simple consequence of Theorem 2 that:

IL e (x , xe_ t, u) ll < el:,-. I(s)dSll I 1[(39)

i.e. }lq/(u)ll < qi, since IIIII = 1. []

A Parallel Shooting Technique for Solving Dissipative ODE's 219

P r o o f o f T h e o r e m 6 : F o r k ~ N we have U T M = U k - (I - c b ' (u k)) - ~ (U k - vb(uk)) .

Let us consider the matr ix L k = (I - c b ' (u k)) -1. We have

U T M - - U * = U k - - U * - L k (U k - U *) + Lk(q~(U k) - - 6b(U*)). (40)

Mult iplying by D and taking the norm, we get:

IID(U ~+1 - U*)ll _ IID(I - Lk)D-~ll �9 IID(U s - U*)ll

+ [IOLkO- l l l �9 I/D(~(U ~) - ~ (u*)) l l . (41)

We have

D L k D - * = D (I - - (/)')-ID-1 = I t - D q b ' D - 1] -1 .

Now, let T = [D60 'D-I] . Since qs' is ni lpotent we can write:

N
[I - T] * = I + Z T i

i=1

so that:

N
IIDLkD-~I[~ 1 + ~ IITII i

i=1

We can compute T explicitly and obta in

T =

Om ' ' '

oz ~ Om

Om

Om

d~ --~ok O~
dN-1

(42)

(43)

(44)

(45)

(dl
'~ 2 , , ,

d o / ~ l q) l 0m " 0m

o,. (el~'~ ~ ~o~*

0 m �9 0 m 0 m

(46) T T * =

According to the previous lemma, II~p;ll ~< qi, and it is easily seen that I] TI[1 --< 2 and
that [JT]I~ < 2. As for the euclidian norm, we have IITI]2 = ~ where:

220 P. Chartier and B. Philippe

Hence, it follows that:

p (T T *) = max p q~iq~i j < (47)
i = l N q//

and we get the same relation II Tll 2 ~ ~ as for the 1 and ~ norms. In all cases, this
leads us to the estimate:

1 - 2 N+I
IIDLkD-11I < 1 ~ (48)

We obtain similarly:

_ 2 1 - 2 N
I I I - DL~D-Itl < 1 -- 2

Furthermore, according to Theorem 3 we can write:

I1D((b(U k) - q0(U*))ll < 2-[ID(U k - U*)ll.

This finally gives us the estimate:

][D(U k+~ - u*)ll <_ f l ltO(U k - U*)II

where:

(49)

(50)

(51)

1 - s 1 - - s

fl = ~ . ~ - + 2 1 - - 2 (52)

Hence the map defined by the iteration is a contraction if fl < 1, which leads to the
result. []

Corollary 2. Let us assume that condition (31) is satisfied. Then the conclusion o f
Theorem 6 remains true for D = I, with the norms II UII = H UII1, It UII = II UII2 and
IIull = ILuL~.

It should be emphasized that some mechanical systems whose energy is scattering
are dissipative (see Example 3 below), in addition to others which are not (see
Example 2). However, a large class of problems for which condition (31) is satisfied
originates from the discretization of diffusion phenomena.

Remark 4. I t should be noted that in the context o f the above corollary, lengthening
the intervals [xi-1, xi], i = 1 N favours both the convergence and the computa-
tions/communications ratio. This is the reason why we consider dissipative functions.

Example 3. Let us consider a mass (m) suspended to a spring (k) and hanging in a
viscous liquid (leading to a force proportional (h) to the speed o f the mass). Its
movement is governed by the equation:

d2X ~ t d X
m ' ~ - + h" "~[- + k ' X = 0

which can be decomposed into a f irs t order system:

A Parallel Shooting Technique for Solving Dissipative ODE's 221

f X'I = X2

X'2 -h'x2"IX21-k'Xl"m

Let A = diag(k,m). The system is dissipative with respect to the norm IIVII2 =
VrAV.

Example 4. "The Brusselator", which modelizes a multi-molecular chemical reaction,
is described in [11]. It leads to the system

3U OU 2
0X = A + b/Zv - - (B --[- 1)u -I- 0~ 0w ~

Ov . ~v 2
Ux = Bu - u~v + C~ ~w 2

with w ~ [0, 1], A = 1, B = 3, and boundary conditions:

u(O,x) = u(1,x) = 1, v(O,t) = v(1,t) = 3,

u(w, 0) = 1 + sin(2~zw), v(w, O) = 3.

By replacin9 the second spatial derivatives by finite differences on a 9rid of points
we 9et a dissipative system provided ~ is sufficiently large (see next section).

5. Numerical Results

We now demonstra te the convergence of Algorithm 2 on the following examples.
The functions q)i are not known exactly (neither are their derivative), so that they
have to be approximated by using a s tandard ODE-solver (and their derivative by
finite differences). We postpone the analysis of the discrete-time version of Algo-
r i thm 2 to Par t 2.1 The aim of this Section is to get first numerical results confirming
the relevance of the presented theoretical results. In order to measure the speed of
convergence, we have plotted the maximum relative error over all points of the

llY(Xl) Z-u~l!'] and for subdivision with respect to the i teration number maxl<i_< N I[y(x~)ll J

several local tolerances (TOL) given as input to the ODE-solver . 2

Example 5.

y'(x) = cos(y)sin(y) -- 2y + e-X/l~176 + ln(1 + x)cos(x) y(O) = 1 (53)

on [Xo, X] = [0, 100]. The solution is drawn on Fio. 2 for x ~ [0, 20]. Condi t ion

(~ . .) < - 1 so that the convergence is very fast (see Fig. 3). (31) is satisfied with
\ u y /

1 For the moment, we admit that the behaviour of Algorithm 2 is well approximated as far as we use
sufficiently stringent tolerances.

2 Any code can be used here, since we are only interested by the convergence of Algorithm 2.

222 P. Chartier and B. Philippe

I . D ' I ~ ~ ! , ~ ~ [. !

i i i i i i i i i
1 i i i i i i i i i

0 . 5

0

-0.5

-1

-1.5

0 2 4 6 8 10 12 14 16 18 20

Figure 2. Solution of Example 5

Example 1
10

E x a m p l e 6.

I

0.I

0.01

0.001

0.0001

le-05

le-06

le-07

le-08

�9 i i J i

["TOL=I -D-8" -e--- ~ "~oL:I_D-~" -+--
r ~ ~ '~OL=I_D-4" -n---

~ ~. ~ x

"'~B- . 4~ . • .

. i
! | I I

1 2 3 4
Number of iterations

Figure 3. Convergence of Algorithm 2 for Example 5 (64 segments)

f
YI(X) = --Y2 -- 0 .3y 3 + cos (3x)

Y2(x)=yl +y3+x~/5

ln(1 + X)
Y3(x) = --Y2 -- O-Oly3 + sin(x)"] ~ _ x Z

y l (0) = 0

y2(0)= 1

y3(0)=2

(54)

A Parallel Shooting Technique for Solving Dissipative ODE's 223

2.5

2

1.5

1

0.5

0

-0.5

-I

-1.5

-2

-2._ ~
0

~'..//

I

\\\ !

n i 1 i �9

1 ; 3 4 ~ 6 7 i 9 ~0

Figure 4. Components of the solution of Example 6

on [Xo, X] = [0, 100]. The components of the solution are drawn on Fig. 4. In this

case, the matrix 1 / 2 (~ f + has three different eigenvalues: - 0 . 9 y 2, 0 and
key Oy /

- 0 . 0 1 . T h o u g h condit ion (31) is not "strictly" satisfied, convergence is not affected
(see Fig. 5).

I000

100

I0

I

0.I

0.0]

0.001

0. 0001

le 05

Ie-06

le-07

le-08

Example 2

i i : i

'TOL=I . D-8'
,TOL=I . D-6 ~ -+---
"TOL=I .D-4 ' -B--
"TOL=I .D-2 ' -~4-"-

I I I I I I

1 2 3 4 5 6
Number of iterations

Figure 5. Convergence of Algorithm 2 for Example 6 (32 segments)

224 P. Chartier and B. Philippe

Example 7. We consider once more the Brusselator (see Example 4 of Section 4) in
one spatial variable w with 0 < w < 1, A = 1, B = 3, ~ = 1/40. The second spatial

82u 02v
derivatives ~w 2 and ~?w2 are discretized by f ini te differences on a grid of M points

i
Vi ~ [1, M] , wi - M + ~ ' (55)

1
We denote Aw - and f inally obtain the ODE system:

M + I

U; = 1 -I- U2Vi q- ~ (U i _ 1 -- 2U i q- Ui+l)

Vi ~ I-1, M-I, tzJw) (56)

Lv; 3ui - uZvi + ~ (v i _ l - 2vi + vi+l)
tzJw)

with

Uo(X) = uM+dx) = 1 (57)

Vo(X) = vu+I(x) = 3 (58)

and the initial conditions

Vie [1, M] ~ui(O) = 1 + sin(2rcwi) (59)
' (vi(O) 3 .

The solution is drawn for M = 40 on Fig. 6. Some easy computat ions leads to the

following expression for Q = ~ \~yy +
by /

(diag(2ulv~- 4) �89 + diag(3 - 2u~vl))t Q
\�89 + diag(3 - 2u~v~)) d i ag (-u~) /

+ (~ w) 2 (K K 0) (60,

1 4 1 C

Figure 6. Component u(w, x) of the Brusselator with M = 40

A Parallel Shooting Technique for Solving Dissipative ODE's 225

i00

I0

I

1

0.I

0.01

0.001

0. 0001

le-05

le-06

le-07

le-08

The Brusselator
t l

I I

2 4

, B

'TOL=I .D-8"
'TOL=I .D-6" -+--.
'TOL:I. D-4 ' -B--
'TOL=I .D-2 ' "~--

iii!
6 8 1 0 12

Number of iterations

Figure 7. Convergence of Algorithm 2 for the Brusselator with M = 10 (32 segments)

14

where K is the usual matrix

- 2 1

1 - 2

1

whose eigenvalues are known to be

1]
�9 - 2 1

1 2

/ . ~k "~2
2k : - 4 / s t n 2 ~ - ~ - ~ ! \ / ,

(61)

k = 1 . . . M . (62)

Since both matrices of (60) are symmetric, the first matrix can be considered as a
small perturbation, provided e is sufficiently large�9 With this restriction, condition
(31) is satisfied�9

Part 2: Numerical Implementation

6. Convergence of the Actual Newton's Algorithm

In a real implementation of Algorithm 2, one has to approximate the function q~
and its first derivative by some way or another. We consequently modify Algorithm
2 by replacing ~0i by an approximation ~ computed by an ODE-solver and by
replacing q0[by a standard finite differences approximation ~[, i.e.

226 P. Chartier and B. Philippe

0[(u) = (~bi(u + ~/el) -- q3t(u)) ,~(qSi(u + qer,) -- q3i(U)) (63)

where r/is a small parameter and (e 1 e,,) the canonical basis of I/~ m. However,
the theory developed in Sections 3 and 4 is no longer applicable and a study of the
convergence of the resulting algorithm, that we will call Algorithm 2', has to be
developed. For this analysis, we will restrict ourselves to the case of dissipative
systems, which have been previously shown to be particularly appropriate. Now, if
y(x) denotes the exact solution of (1, 2) over Ix o, X] , there exists a sufficiently large
c~ > 0 such that the compact set K~ = {(x,y) ~ [xo ,X] x R", IJy - y(x)]J < c5} con-
tains the "initial guess" (that can be assumed for example to be the constant solution
over [xo,X]). Due to the dissipativity of the problem, (xi,(oi(u)) will lie in K6
provided (x i - l ,u) lies in Ka. If a fib-order numerical ODE-method is used to
approximate the function ~o i, and if hi is the maximum stepsize considered over
[xi-1, xl], then the following estimate

[](oi(u) - q~i(u)l[-< C (x i - xi_l)hy (64)

holds for all u such that (xi-1, u) belongs to K~ and for all sufficiently small h i. C
depends a-priori on the fib-order derivatives of the function f, i f f is assumed to be
smooth enough, but can be bounded for example on K2~. Now, ifhl is small enough,
the numerical solution remains in K2~ and (64) holds uniformly for all (xi-1, u) in
Ka and all hl < H, where H is independent of/. Using this estimate, we can now give:

Lemma 4. Let us assume that (1, 2) satisfies (31) and let q = maxi= 1 N ~i-~ l(X) dx
and Ax = maxi= 1 N (Xi -- Xi-~). Suppose in addition that the function q~i are approx-
imated by using a fin-order numerical ODE-method. I f U = (U~,Ur~,...,U~)T~
~m• is such that for all i = 0 N, (xi, u~) belongs to Ka, then we have;

II~(U) - ~b(U*)[I _< CAxh p + qlIU - U*ll, (65)

where ~ is defined by the (oi's and where h = maxi=l Nhr

Lemma 5. For some i ~ {1,... , N}, let u e ~" be such that (xi-1, u) belongs to the
interior I(~ of K~. In addition to previous hypotheses, we assume that the derivatives
of the q~i's are approximated by using formula (63) and that h~' = (9(r/2). Then there
exists qo such that

IIq~[(u)- ~o[(u)ll = 0(~/) (66)

for ~ < qo.

Proof" Let (q~[).,j be t h e f h column-vector of the Jacobian matrix ~p/' and let (~/').,j
be the j th column-vector of matrix ~'. By considering the 1-norm, it comes:

I I (~ ; (u)) . , j - (~;(u)),~l[1 = ~((oi(u

2CAxh p

+ ~/ej) - qSi(u)) - (qg~'(u)).,j 1 (67)

+ ~(q~,(u + q e ;) - 09i(u)) - (qg/(u)).,j 1" (68)

Now, if f is smooth enough, the functions (Pi are smooth also, and we can bound
the second term of (68) uniformly on K~ and for I,/sufficiently small by a constant

A Parallel Shooting Technique for Solving Dissipative ODE's 227

times q. F rom h~ = ~0(r/2), we consequently get:

[[((~[(u))..j -- (~0"(u))..j][1 = (9(r/) (69)

and the result follows in an obvious way. []

Remark 5. It is worth emphasizing the necessity of the condition hip = (9 (/ / 2) for the
finite differences approximation (63) to be accurate.

Theorem 7. Suppose that (1,2) satisfies (31) with either q < 1/3 or (N + 1) <

ln(3q - 1) - ln(1 + q) and that the functions (p~ are approximated by using a pth-order
ln(q)

ODE-solver and their first derivative (p[by using formula (63). I f the maximum stepsize
h used by the ODE-solver is such that h p = (9012), then for all sufficiently small values
of r/, there exist two constants 0 < fi < 1 and F > 0 such that

Vk >_ l , IIV ~ - V*ll < flkJlU~ - v*[I + Fh p (70)

Proof'. From Lemmas 3 and 5, we can assert the existence of two positive constants
r/o and M, such that:

Vi �9 { 1 , . . . , N}, Vt/_< r/o, Vu �9 ~m,
(71)

((xi_,,u) �9 IgG) ~(IFr - q + Mr/).

We now proceed as in the proof of Theorem 6:

Vk �9 ~ , U k+l - - U * = (I - - L , k) (U k - - U *) + L , k (~ (U k) - - q~(U*)) (72)

where L'k = (I -- ~ ' (uk)) - I and with obvious notations for ~ ' (uk). Using the nil-
potency of ~'(Uk), we get the estimates:

1 - i N + 1 2 1 - i N
I[Lkll < I l l - Lkll < (73)

- 1 - i ' 1 - ~ '

where ,~ = q + M r / < 1 for all sufficiently small r/. Taking into account the estimate
(65) of Lemma 4 leads to

]l gg+l -- g*l[_< f i l lg ~ - g*ll + ffCAxh p, (74)

1 - 2 N + 1 ~ I - i N 1 - , ~ N + I
where fl = q 1 ~ + z and ~ - Since fl tends to fl as r / tends

-- 1 - - ,~ 1 --~, "
to zero, it follows from the hypotheses that/~ < 1 for all sufficiently small values of
r/. This implies in part icular that the successive iterates U k remain in K~ provided

h < (b (1 - fi)'~l/e. Finally, a straightforward recursion gives:
- \ f, Cax /

k - -1

Vk _> 1, flU ~ - U*ll < fi~llU ~ - U*ll + Y, fl~fCdxh p (75)
i=O

~CAxh p
- - f i~ l [g ~ g*ll + - (76)

1 - / ~

228 P. Chartier and B. Philippe

Remark 6. Theorem 7 does not ensure the convergence of Algorithm 2': it asserts
the existence of a h-neighbourhood of the exact solution in which U k will enter and
remain. The convergence of Algorithm 2' is however ensured within N iterations
owing to the additional accurate component of U automatically gained at each
iteration.

Remark 7. Due to the use of finite differences approximations for q~', the theoretical
quadratic convergence of Algorithm 2 is lost. This was the main motivation in [2]
for considering Steffensen's method. However, Figs. 3, 5 and 7 from Section 5 of
Part I show that, from a practical point of view, the error decreases superlinearIy
as soon as the computed solution is sufficiently close to the exact solution.

7. Practical Implementation

We now propose a slightly modified and somewhat simplified version of Bellen's
Algorithm dedicated to problems where f is dissipative. We emphasize the following
differences: on the one hand, we choose Newton's method instead of Steffensen's
because the latter involves two sequential computations of ~ compared to one for
Newton, which offers an accelerations up to two. On the other hand, we gave up
the part of the error control process that was aimed at reinitialising those values
that are not sufficiently accurate to be reiterated, since Theorem 7 ensures reason-
able behaviour of U given reasonable conditions on l(x). For the accepted values,
we adopt the same strategy as in [2] based on the following theorem:

Theorem 8. Let us assume that (1) satisfies (31). I f the iteration error is defined to
be: gk = ~ (U k) _ U k, then, we have the following bound on E k = U* - uk:

1
[lUll -< (ll~kll + CAxh p) (77)

1 - q

where q = max~ 1 Ne~i t(x)dx < 1.
= , _ . . ,

Proof." The proof is obvious and therefore omitted. []

Hence, in order to reduce the size of the recurrence involved in Algorithm 2', at each
iteration we shall accept as good approximations the n first components of U that
pass the test maxj<, Ilzjll -< e, where e is to be defined by the user and represents the
tolerance on the iteration error. Finally, we sketch the algorithm below and denote
dopar the parallel loops and doseq the sequential ones:

Algorithm 2".
*** Initialization phase ***
set n = 0, set k = 0
d o p a r i = n + 1 N,

set u/~ = u ~
end
*** Integration phase: the (gi's are computed by an ODE-solver ***

A Parallel Shooting Technique for Solving Dissipative ODE's 229

dopar i = n + 1 , . . . , N,
c o m p u t e v/k+l = (oi(u~_l)
doparj = 1 , . . . , m,

*** ej is the f h vector of the canonical basis of Nm+l, and q = 1 0 - ' ***

�9 ~+1 = (o i (u~- i + ~ e j) c o m p u t e Wi . j

end
end
*** Compute the error of the iterative process ***
d o p a r i = n + 1 N,

c o m p u t e ~/k+l = vk+l - - U/k

c o m p u t e] [f (+l [I

end
*** Assemble the Jacobian matrices (computed by finite differences) of the (oi's ***
d o p a r i = n + 1 N ,

doparj = 1 m,
. k + l _ v k + l

a s s e m b l e C~ +.1 - wi,j - -L ,J

end
end
d o p a r i = n + 1 N,

c o m p u t e A k+l F c k + l C k+l]
- - i = L i , 1 ~ ' ' ' ~ - - i , m J

end
*** Recurrence phase ***
se t k+l k bl n ~ U n

se t O = 0

se t p = n

d o s e q i = n + 1 N ,

c o m p u t e O = m a x (O , f ~ + l)

i f O < e t h e n se t p = i
= . A~+I~. k+l _ u~- l) c o m p u t e u~ +1 v/k+l "Jr" ~ i t " i - 1

end
if p = N then

STOP
else

se t n = p

endif

se t k = k + 1

goto Integration phase

R e m a r k 8. In our experiments, we have used the code DOPRI8 of E. Hairer and
al. (see [8]) , which is based on the explicit 8th-order Runge-Kutta method of Prince
and Dormand. Since our test problems are only middly stiff and since our main
concern here was the results obtained for stringent tolerances (they indeed require
the largest amount of computations), an explicit code is still appropriate. In other
situations, codes based on implicit methods (such as RADA U5 of E. Hairer and al.
(see [9]) or LSODE of A. Hindmarsh (see [1 0])) are strongly recommended.

230 P. Chartier and B. Philippe

Table 1. One iteration of Algorithm 2" on "hypercube number i"

Step Computa t ions /Communica t ions

1 Broadcast u~_ 1 from Pi, o to Pi, 1 P,,m.

Compute ?j/k+l on Pi, o and w ~ -1 w~+~ 1 on Pi., Pi,~.

Compute f/k+1 and I[?~ +1 l[on Pi.o.

4 Broadcast D/k+l from Pi, o to P~, 1 P~,,. .

5 Compute C~t 1 C ~ ' (columns of A~ +1) on Pi, t Pi.m.

6 Global send of C~+11 cik+.: from Pi,1 Pi, m to P~, o"

7 Assemble zl~ +! = [C ~ t C/k+~ 1] on P~.o

Receive u~_+: and O from Pi-l.o-
Compute u~ +1 and O on Pf, o-
Send u~ +~ and (9 to P~+I.o-

Hypercube number

..... ~ ~~X
Frompl~wuu~ -.- , t node
node of the ring - _ .~ _ - - " - " - of the ring

Processors of the ring

Figure 8. Model of architecture for rn = 3

In order to explain the algori thm more clearly, we now present it for a specific
architecture. In this model, processors are organized as a ring of N clusters of(m + 1)
processors (see Fig. 8), where the (m + 1) processors of a cluster make up a small
hypercube. In fact, each hypercube has to be of dimension log2(m + 1) where
denotes the ceiling function. This architectural model is relevant since it can be
easily mapped onto a hypercube in a dynamical fashion: provided there are enough
processors, the role of each node can be determined once N and m are known. We
do not claim this model is optimal. However, it has the advantage to keep the
communica t ion cost at a reasonable level.

Now, in order to estimate the computa t ion and communica t ion costs, and to
evaluate the speed-up factor, we introduce the following parameters:

A Parallel Shooting Technique for Solving Dissipative ODE's 231

�9 C: the number of floating point operations necessary to approximate the solution
of (1) on [Xo, X] with a given numerical solver.

�9 k*: the number of iterations necessary to get an accurate approximation.
�9 To: the average time necessary to transfer a word from one processor to a

neighbour.
�9 fl: the start-up time of a communication.
�9 Zop: the time necessary to execute one floating point operation.

Using these parameters and making the assumption that the complexity on every
interval [xi_ 1,xi], i = 1 N is constant (this hypothesis will be discussed in
Section 8.1), we can compute the times spent for each step:

1. At = (fl + mzc)log2(m + 1)
2. At = (C/N)zop
3. At = (2m-- 1)Zop
4. At = log2(m + 1)(fl + mL)
5. At = 2mZop
6. At = fllog2(m + 1) + m(m + 1)zc
7. A t = O
8. At = p(k)[m(2m + 1)Zop] + (p(k) - 1)[fl + (m + 1)L] where p(k)represents the

length of the recurrence involved in the k th iteration.

If we neglect the initialization (step 1 of Algorithm 2"), then we get the "parallel
time" Tp:

Tp = k*[(C/N)zop + (4m - 1)'Cop -k- m(m + 1)zc

+ 21ogz(m + 1)zc + 31Ogz(m + 1)fl] (78)

+ (~ l P (k)) [m (2 m + 1) Z o p] + (~ l p (k) - k *) [f l + (r n + l)L] (79)

The sequential time is,

T~ = C'Co~, (80)

by definition of C.

Now we can estimate p(k) in three different ways:

�9 (P) A very pessimistic approach is to consider that the Algorithm reaches the
desired accuracy at the last iteration on all intervals [xi_l, x/I, i = 1 N. This
hypothesis obviously leads to an over-estimation of Tp, since it is known that at
least one new exact value is obtained at each iteration. Nevertheless, it shall give
us a lower bound of the speed-up factor. We have, in this case,

k*
Z p(k) = k*N. (81)

k=l
�9 (O) On the contrary, we may assume that the algorithm converges at the first

iteration on all intervals except the last (k* - 1). This leads us to the following
estimates ofp(k): p(1) = N and Vk ~ [2,k*], p(k) -= k* + 1 - k. Thus, in that case
we have:

232 P. Chartier and B. Philippe

k* k*(k* -- 1)
p(k) = S + (82)

k = l 2

�9 (M) Finally, a perhaps more realistic assumption is that the algori thm converges
regularly, that is to say that the number of intervals [• xi] for which u~ is
sufficiently accurate increases as a mono tone function of k. Thus we have p(k) =

N ,
N - (k - 1)k~ so that:

k* (k* + 1)
p (k) - N (83)

k = l 2 "

Finally, we get the speed-up factor:

T~ CN
S -- rip Co + C1N + C2N2 , (84)

where the constants C o, C1 and C2 are given in Table 2. We, of course, have:

N
Sp < sM <- So < ~ . (85)

Hypotheses

P

O

M

Table 2. Values of the constants for the different hypotheses

C o

k*Czop

k*C%p

C1

k*(4m- 1)top
+ k*[2mlnz(m+ 1)+(m+ 1)(m- 1)]zc

+ k* [- 1 + 3 ln2(m + 1)] fl

k*(7/2m-m 2 + 1~2ink* - 1 +m2k*)Zop
+k*[2mln2(m+ l)+m 2 +(k- 1)(m+ 1)/2-1]z~

+k*[3 ln2(m + 1)+ 1/2(k* -3)]fl

k'Crop k*(4m- l)zop
+k*[2mln2(m+ 1)+(m+ 1)(m- 1)]zc

+ k* [3 ln2(m + 1)-- 1] fl

C2

k*m(2m + 1)%p
+k*(m+ 1)z,+k*fl

m(2m+ 1)%,
+(rn+ 1)zc+ fi

re(m+ 1/2)(k* + l)%p
+ [1/2(k* + l)(m + 1)3 re

+ 1/2(k* + 1)/~

Remark 9. The hypothesis (P) allows us to derive a lower bound of the optimal
speed-up with respect to N that is proportional to the number o ~ r a t i o n s k*, as
well as an estimate o f the optimal number o f intervals Nopt = ~/ Co/C2.

8. Results

8.1. Adequacy of the Model

In order to evaluate the correctness of our performance model we performed a
simulation of Algori thm 2' on the Intel IPSC-860 hypercube of the O N E R A with
128 processors. Based on Benchmarks on the IPSC-860, we took fl/zop = 693 and

A Parallel Shooting Technique for Solving Dissipative ODE's

Table 3. Values of C for different tolerances

Example e = 10 -4 e = 10 .6 e = 10 8

5 2.3 105 3.5 105 6.8 10 s

6 4.9 105 4.9 l0 s 6.4 105

233

rc/rop = 5.5. The remaining parameters involved in the determination of the speed-
up by formulas (82), (83) and (84) were determined as follows:

�9 the cost of integration (C) was computed via the output "NFCN" (number of
right-hand side evaluations) of the ODE-solver DOPRI8 from [8].

�9 the number of iterations (k*) was determined by simulations of Algorithm 2' on
a sequential machine (see Section 5).

The informations collected were then used to compute the speed-up in two different
ways. On the one hand, we applied the formulas given above for the three different
hypotheses ("P", "M" and "O"). On the other hand, we simply measured the
execution time of Algorithm 2' on N • (m + 1) processors and the execution time
of "DOPRI8" on one processor.

Results are listed in Table 4. Let us first notice that estimates for Example 6 are the
same for the first two tolerances. This is due to the unstable behaviour of the code
DOPRI8. For low tolerances, the computational cost is indeed almost constant.
Secondly, our hypotheses seem to lead to an over-estimation of the speed-up for
Example 6. In fact, the difference between the lowest estimate and the observed
speed-up decreases for small tolerances. This behaviour can be easily explained by
the presence of an important transient phase in the solution of Example 6. This
transient phase partly modifies the load-balancing so that the computational work
is no longer strictly independent of the segment under consideration. For small
tolerances however, this phenomenon vanishes. Now, as far as the transient phase
is not too important (see Example 5), our estimates are in good agreement with the
observed speed-up the our model is relevant. Those remarks show that Algorithm

Example

Table 4. Speed-up's for Exam

Speed-up

Real Speed-up
Estimate P
Estimate M
Estimate O

Real Speed-up
Estimate P
Estimate M
Estimate O

e = 10 -4

3.0
2.3
3.0
4.2

1.4
1.7
2.3
3.0

)les 5 and 6

e = 10 -6

5.0
3.4
4.3
6.0

1.6
1.7
2.3
3.0

e = 10 -8

8.0
6.0
7.5
9.9

1.9
2.0
2.6
3.3

234 P. Chartier and B. Philippe

2' should be applied to specific problems. Generally speaking, the problem to be
solved should possess the following characteristics:

�9 dissipativity of the right-hand side (see Section 4)
�9 long interval of integration (see Remark 4)
�9 high computational cost per step (this is a general requirement for parallel

methods).

8.2. Attainable Speed-up

When applied to a m-dimensional system with N segments, Algorithm 2' (imple-
mented according to our description) requires N • (m + 1) processors. Since the

1
speed-up is limited by N/k*, the efficiency is severely bounded by k* x (m + 1)" This

bound emphasizes the redundancy of computations involved in Algorithm 2', whose
necessity comes from the sequential nature of the numerical integration process.
However Algorithm 2' can provide a large speed-up when a large number of
processors is available. Extrapolation of the speed-up curves (see Fig. 9) by mean
of formula (83) indeed shows that an acceleration of 15 is ~ttainable for Example 5
with TOL --- 10 -1~ The same curve for Example 6 seems less convincing. Neverthe-
less, one should keep in mind the fundamental influence of the ratios fi/Zop and zc/'rop
on the efficiency of the algorithm. Much better results would have been obtained for
instance by considering the values observed on the Intel IPSC-2 machine (fl/'rop =
69.3 and re/top = 0.3): the 'M'-estimate for Example 6 with TOL = 10 -1~ gives a
speed-up of 11 for 400 processors. Finally, let us notice that whatever the values of
these ratios are, a high computational cost per step or a long interval of integration

!
1 4

1 2

.[,o
~.m 8

6

4

E x a m p l e 5 : T O L - = I . E - 1 0
1 6 4 . 5

4 t

3 5 . -

E x a m p l e 6 : T O L = I . E - 1 0

3

2 . 5

2

2 1 .5
0 1 O0 2 0 0 3 O 0 4 0 0 O 1 0 0 2 0 0 3 0 0 4 0 0

N u m b e r o f p r o c e s s o r s N u m b e r o f p r o c e s s o r s

Figure 9. Speed-up estimates for Examples 5 (Number of processors = 2 x N) and 6 (Number of
processors = 4 x N)

A Parallel Shooting Technique for Solving Dissipative ODE's 235

will lead to a good computation cost/communication cost ratio and consequently to
a high acceleration on a massively parallel computer .

9. Conclusion

A parallel a lgori thm based on an idea of A. Bellen and M. Zennaro for the
integration of ordinary differential equat ion with dissipative functions is proposed.
Global convergence is shown for dissipative problems and for reasonable condit ions
on the number of segments. This enables us to give up par t of the error control
process of the original algori thm and consequently to reduce the communica t ion
cost. Compute r simulations have been carried out on an architectural model that
can be easily mapped onto a grid. We proved that significant speed-up can be
achieved with this model using an analysis that takes communica t ion delays into
account. In addit ion to this, real experiments were reported that confirm the interest
of the method for specific problems.

The use of the algori thm is obviously restricted. However, further investigations
could reveal that the larger class of problems where the solution is bounded and
for an appropr ia te choice of the length of segments has similar properties. Our
next step is to examine real problems so as to analyse the behaviour of the algori thm
in cases where the complexity varies from one subdivision to another.

Acknowledgements

We would like to thank Professor M. Crouzeix for his advices. We are also grateful to P. Leca for allowing
us access to the lntel IPSC-860 at ONERA.

References

[1] Bellen, A., Vermiglio, R., Zennaro, M.: Parallel ODE-solvers with step-size control. J. Comp. Appl.
Math. 31,277-293 (1990).

[2] Bellen, A., Zennaro, M.: Parallel algorithms for initial value problems. J. Comp. Appl. Math. 25,
341-350 (1989).

[3] Birta, L., Abou-Rabia, O.: Parallel block predictor-corrector methods for ODE's. IEEE Transac-
tions on Computers C-36, 299-311 (1987).

[4] Chartier, P.: Application of Bellen's method to ODE's with dissipative right-hand side. Research
Report 593, IRISA, Campus de Beaulieu, Rennes, France, 1991.

[5] Chartier, P.: L-stable parallel one-block methods for ordinary differential equations. SIAM J.
Numer. Anal. (1993) (to appear).

[6] Franklin, M.: Parallel solution of ordinary differential equations. IEEE Transactions on Com-
puters C-27, 413-420 (1978).

[7] Gear, C.: Parallel methods for ordinary differential equations. Research R-87-1369, University of
Illinois, Urbana, IL, 1986.

[8] Halter, E., Norsett, S., Wanner, G.: Solving ordinary differential equations I. Nonstiff problems,
vol. 1. Berlin, Heidelberg: Springer 1987.

[9] Hairer, E., Wanner, G.: Solving ordinary differential equations II. Stiff and differential-algebraic
problems, vol. 2. Berlin, Heidelberg, New York, Tokyo: Springer 1991.

[10] Hindmarsh, A.: LSODE and LSODI, two new initial value ordinary equation solvers. ACM/
SIGNUM Newsletter 15, 10-11 (1980).

236 P. Chartier and B. Philippe: A Parallel Shooting Technique for ODE's

[11] Lefever, R., Nicolis, G.: Chemical instabilities and sustained oscillations. J. Theor. Biol. 30 267-284
(1971).

[12] Ortega, J., Rheinbolt, W.: Iterative solution of nonlinear equations in several variables. New York,
San Francisco, London: Academic Press, 1970.

[13] Prothero, A, Robinson, A.: On the stability and accuracy of one-step methods for solving stiff
systems of ordinary differential equations. Math. Comput. 28, 145-162 (1974).

[14] Shampine, L., Watts, H.: A-stable implicit one-step methods. BIT 12, 252-266 (1972).
[15] Sommeijer, B., Couzy, W., Houwen, P. van der: A-stable parallel block methods for ordinary and

integro-differential equations. PhD thesis, Universiteit van Amsterdam, CWI, Amsterdam, 1992.
[16] Houwen, P. van der; Sommeijer, B.: Iterated Runge-Kutta methods on parallel computers. SIAM

J. Sci. Statist. Comput. 12, 1000-1028 (1991).
[17] Vermiglio, R.: Parallel step methods for difference and differential equations. Teeh. Rep., C.N.R.

Progetto Finaizzato "Sistemi Informatici e Calcolo Parallelo", 1989.

P. Chattier B. Philippe
SIMULOG IRISA/INRIA
1 rue James Joule Campus de Beaulieu
F-78182 St Quentin Yvelines Cedex F-35042 Rennes Cedex
France France

