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Abstract --  Zusammenfassung 

A Parallel Shooting Technique for Solving Dissipative ODE's. In this paper, we study different modifica- 
tions of a class of parallel algorithms, initially designed by A. Bellen and M. Zennaro for difference 
equations and called "across the steps" methods by their authors, for the purpose of solving initial value 
problems in ordinary differential equations (ODE's) on a massively parallel computer. Restriction to 
dissipative problems is discussed which allow these problems to be solved efficiently, as shown by the 
simulations. 
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Eine parallele "shooting" Technik zur Liisung dissipativer gewiihnlicher Differentialgleichungen. In diesem 
Artikel studieren wir verschiedene Versionen einer Klasse paralleler Algorithmen, die urspriinglich yon 
A. Bellen und M. Zennaro Rir Differenzengleichungen konzipiert und yon ihnen ~ the steps" 
Methode genannt worden ist. Die Autoren verfolgten den Zweck, Anfangswertprobleme bei gew6hn- 
lichen Differentialgleichungen anhand eines massiv parallelen Rechner zu 16sen. Wir behandeln die 
Anwendung auf dissipative Systeme und erreichen eine effiziente L6sung dieser Probleme. Dies wird in 
einigen Simulationen illustriert. 

Part 1: Theoretical Analysis 

1. Introduction 

Paral le l  a lgor i thms  for solving ini t ial  value p rob lems  (IVP's)  for differential  equa-  
t ions have received only marg ina l  a t t en t ion  in the l i te ra ture  c o m p a r e d  to the 
e n o r m o u s  work  devo ted  to para l le l  a lgor i thms  for l inear  algebra.  I t  is indeed 
general ly  admi t t ed  tha t  the in tegra t ion  of a system of o rd ina ry  differential  equa t ions  
in a s tep-by-s tep  process  is inherent ly  sequential .  However ,  a few solut ions  to 
c i rcumvent  this bar r ie r  have been proposed .  A ra ther  obvious  way  to paral le l ize  is 
to d is t r ibute  the componen t s  of the r igh t -hand-s ide  of the system amongs t  the 
avai lab le  processors .  This  technique,  called "across  the p rob l em"  by  G e a r  (see [7])  
is ra ther  effective for large systems. Para l le l i sm "across  the me thod"  exploi ts  the 
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parallelism available within the method itself. This idea has led to various methods 
such as block methods (see [3, 5, 6, 14, 15]) or "parallel iterated Runge-Kutta 
methods" (see [16]). However, the accelerations obtained are generally kept below 
ten. 

Still another approach, that we will focus on here, has been considered by A. Bellen 
and M. Zennaro. In [2], the authors present a class of parallel algorithms for initial 
value problems for difference equations, that result in considerable savings in 
computing time. These algorithms are directly connected to initial value problems 
for ordinary differential equations, since the numerical solution of ODE's by a 
one-step method gives rise to a difference equation. They propose a Steffensen 
iterative method which transforms the difference equation into a linear recurrence. 
All computations involved in obtaining the coefficients of the recurrence can be 
performed in parallel, provided there are enough processors. In a second paper [1] 
exclusively dedicated to ODE's, they improved their algorithm by introducing 
step-size control. However, it has been shown that their strategy was not well-suited 
for message passing machines, owing to the considerable amount of time spent in 
communication (see [17]). 

In this paper, we propose a new approach designed for a restricted class of ODE's 
where the right-hand side function is dissipative. In particular, this assumption helps 
considerably to improve load-balancing. 

In [2], the authors study the fixed-point problem arisen from the application of a 
step-by-step method to a system of ODE's. In Section 2, we adopt a similar 
approach. However, our formulation is based on the exact solution of the differential 
system with no reference to any numerical step-by-step method. In the sequel, this 
new formulation is used to determine what kind of IVP's should be considered. 

A very simple algorithm aimed at solving the fixed-point problem is introduced in 
Section 3, and its convergence is studied in terms of the logarithmic norm of the 
right-hand-side. This algorithm already emphasizes the necessity of dealing only 
with a restricted class of problems. 

Newton's method is then considered in Section 4. We first make a non-restrictive 
assumption on the IVP to derive the usual "local quadratic convergence" of 
Newton's method for our problem. The main result of the paper, establishing 
sufficient conditions for 9tobaI convergence, is then presented. The class of dissipative 
problems is shown to be particularly appropriate. 

Section 5 presents numerical experiments aimed at verifying the theoretical conver- 
gence results for the proposed algorithm. 

In Section 6 of Part 2, we will study the discrete-time version of the algorithm. 
Especially the influence of the perturbations arisen from the introduction of approx- 
imations will be analysed. 
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Finally, Sections 7 and 8 of Part  2 will be devoted to the implementation on a 
hypercube as well as the evaluation of the performance on that architecture. Simula- 
tions will be presented that prove our technique is competitive in situations where 
it is not possible to parallelize "across the system". 

2. The Fixed-Point  Problem 

In this contribution, we are interested in obtaining a numerical solution of the 
initial-value problem for the m-dimensional system of ODE's  

y'(x) = f(x,  y(x)), (1) 

y(xo) = Yo, (2) 

on the interval of ~, [x o, X]. We make the usual assumption that f is continuous 
and satisfies a Lipschitz condition on the region [Xo, X]  x ~". We also need the 
stronger assumption that f is continuously differentiable on the same region. Now, 
let Xo, xl . . . . .  x N = X be a subdivision of [xo ,X ]. We define y(x, xo,Yo) to be the 
exact solution of (1) at the point x with initial condition y(xo) = Yo. 

Definition 1. For  i = 1 . . . . .  N, let ~0i(u ) represent the value of y(xi, x~-l, u). q~ is the 
map: 

~oi: [~m ~ ~m 
(3) 

u ~ q~(u) = y(x i ,  x i - 1 ,  u) 

Remark 1. The functions ~p~'s are well-defined owing to the existence and uniqueness 
of the solution of (1) on any sub-interval of Ix o, X]  and for any initial condition. 

Remark 2. I f  (1) is autonomous and the grid is regular, then all the q~i's are equal. 

Definition 2. q5 is defined to be: 

~:  ~m• __+ ~m• 

(4) 
u =  r r ~ ( U )  (yro,~O~(Uo)T, ~ON(UN_~)r) r (Uo, u l  . . . . .  u~ )  ~ ~ . . . . .  

Let us illustrate the definitions on a very simple example: 

Example 1. For the Prothero-Robinson problem (see [131): 

y'(x) = --A(y(x) - ~(x)) + 7t'(x) 

y(xo) = gt(Xo),X ~ [xo,X]  (5) 

where A is a symmetric positive definite m • m real matrix, we have: 

q)i(u) = ~-I(Xi) ~- e-atx'-x'-l)(U -- ~(Xi-1)) (6) 

Hence the following bound holds: 

lidos(u)- ~U(x311 _< p l l u -  ~(x~-a)tl (7) 

where p = lie -Atx ' -  . . . .  )ll < 1 for a suitable choice of the norm I111. This property 
motivates the algorithms considered in the sequel. 
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The above definition of ~ shows that  it is possible to formulate  the prob lem (1, 2) 
as a fixed-point problem.  As a mat te r  of fact, finding the exact solution of (1, 2) is 
equivalent  to finding a fixed-point of ~.  Existence and uniqueness of such a point  
U* follows f rom the fact that  (bN+I(U) ---- U* for any U, where q~N+I(U) denotes the 
(N + 1) th appl icat ion of ~.  Hence an iterative me thod  will be suitable for obta ining 
the fixed point  of  4~. 

3. Solving the Fixed-Point  Problem 

It  is easily seen that  we get an exact value for an addi t ional  componen t  of U with 
each new appl icat ion of 45. This leads us to the naive algorithm: 

Algorithm 1. 
�9 U o T T = (Yo, Yo . . . . .  Yor) r 
�9 repeat  [*** compute (U k+l = cb(uk)) ***] 

Uo k+l = Yo 
f o r / =  1 . . . N ,  

U k + l  = (p(Uk_l)  

end 
until II uk+l - -  u k l l  ~ • 

where e is a pa ramete r  that  should be defined by the user. U k will converge to the 
exact solution of (1,2) within N iterations. However ,  in order  to achieve any 
speed-up in solving (1, 2), it is necessary to reach a global convergence in m a n y  fewer 
than N iterations. 

For  convenience, we recall two classical results of the theory of ordinary  differential 
equat ions and the definition of the logar i thmic no rm (see [8]). In the sequel, ]I'll 
will denote  both  a vector  no rm on Nm and the associated matr ix  norm. 

Theorem 1. Suppose that v is an approximate solution o f  the system o f  differential 
equations (1, 2), where f is L-Lipschitz ,  satisfying: 

1. IlV(Xo) - y(xo)H -< p 
2. Vx e [ xo ,X] ,  [Iv'(x) - f ( x , v ( x ) ) l l  <_ 

where p is the initial error and e the defect o f  the approximate solution v. Then, f o r  
x >_ Xo we have the error estimate: 

e (eUX_xo 1) (8) Ily(x) - v(x)ll < pe L(x-x~ + ~ ,  

Definition 3. Let  Q = (qi,j)l <_i,j<_, be a real n x n matrix  and let ]l" 11 be a norm on 

R "• associated with a vector norm. We call: 

III + hO[t - 1 
#(Q) = lim (9) 

h~O h 

the logarithmic norm o f  Q. 
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The logarithmic norm can be estimated as follows: 

�9 For the Euclidean norm 

�9 For the c~-norm 

#(Q)=max{z/det(12(Q ) } + Qr)_  21 =0 . 

#(Q)=maxk(qku + Y, lqk, 

�9 For the 1-norm 

#(Q)= maxi(qu + k~i~2 Iqk~l) �9 
Example 2. Consider the two-body system in two dimensions 

"y i (x )  = y~(x) 

#yl(x) 
y'2(x) = ( y l ( x )  2 -I- y3(x)2)3/2 

y'a(x) = Y4(X) 

#Y3(x) 
y~(x) = (yt(x) 2 q- y3(x)2)3/2 . 

Computation of the dacobian matrix leads to: 

2 ay + ~ y )  

#(2y2, _y2) 
0 I/2-+ 2(y2+y~)S/2 0 

I/2 -{- #(2y2 "y2) 3pYlY3 
2(y2 + y~)S/2 0 2(y2 + yZ)m2 

0 3#YlY3 0 
2(y2 + y2)5/2 

2 2 3#Yl Y3 #(Yl -- 2y3) 
2(y~ + y~)5/2 0 1/2 2(yZ + y~)S/: 

1/2 

whose eigenvalues are (r = ~ + y2): 

3#Yl Y3 
2(y2 + y~)S/2 

0 

#(y~ - 2 y  2) 

2(yl 2 + y~)m2 

0 

(10) 

(11) 

(12) 

(13) 

(14 

(15) 

(16) 
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of 
thus the logarithmic norm of  ~y for  the Euclidean norm is simply: 

"yy y 

R e m a r k  3. For Example 1, we have straightforwardly, 

where ~ is the smallest eigenvalue of  A. 

Theorem 2. Let  us assume that there exist two real functions I and 6, and a positive 
number p such that: 

Vx ~ [ x o , X ] ,  Vq ~ [y(x) ,v (x)] ,  I ~ ( ~ ( x , q ) )  < I(x), (19) 

g e [x o, X ] ,  11 v'(x) - f ( x ,  v(x))l[ -< 6(x), (20) 

liV(Xo) - y(xo)lt < p- (21) 

As in Theorem 1, p is called the initial error and 6 the defect o f  the approximate 
solution v. Then for  x > x o we have: 

( ;  ) Ily(x) - v(x)ll < e L~x) p + e-L(s~6(s)ds (22) 
o 

with L(x) = ~o l(s) ds. 

Returning to our  problem,  we now introduce a new no rm in which convergence 
results can be obtained.  

Definition 4. Let  us assume that there exists l e L t ( [xo ,  X ] )  (i.e. summable over 
[-Xo, X ] )  such that: 

Vx e [x o, X ] ,  Vy e W ~, # (x, y) <_ l(x). (23) 

Let  q~ >_ e [A: , l(x)dx, i = 1 . . . . .  N,  2 ~ ] O, 1 [ and let D denote the block-diagonal matrix: 

D = diag(d o 1 . . . . . .  dN lm) (24) 

where do 1 and d i 2di-1 i 1 . . . . .  N. Then for  any vector U T T T = - , = = ( U o  . . . . .  u N )  
qi 

~,,x(N+l) we define the weighted norm [l' lID to be one of  the following: 

N 

]lUll, = HD" Ulll = Y, dil]uillz (25) 
i = 0  

HUN. = HD" Ult2 = 5 ~  d~lIu~[l~ (26) 
i = 0  
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HUllo = l I D - U I [ ~  = m a x  d i [ tu i [ l~  (27) 
O<_i<<_N 

depending on the norm defining #. 

To prove  convergence results, we will need the following lemma: 

L e m m a  1. Let  us assume that there exists l E Ll([Xo, X] )  such that (23) is satisfied. 
Then for  any chosen norm in Em we have 

Vi @ 1-1, N - ] ,  ~ ( u ,  v) ~ []~m X []~m, II~oi(u) - ~oi(v)ll _< qillu - vii ( 2 8 )  

Proof." F r o m  Theo rem 2, we have: 

Ily(xz, x~_l,U) - y ( x . x z_ l , v ) J I  < eY::-,z(x)aXllu - vii 

which is exactly the desired result. [ ]  

Theorem 3. Let  us assume that there exists l ~ L l ( [ x  o, X] )  such that (23) is satisfied. 
Then q5 is a contraction map with respect to the weighted norm. 

Proof." Consider  the case where the o r -norm is used. Then  we have: 

[ l r  - 4 , (V) [ l~  = max  di[lcpi(ui_l) - ~p~(vi-1)ll~ (29)  
i=l . . . . .  N 

_< max  diqi[[ui_l - vi_l][ ~ '(30) 
i=1 . . . . .  N 

= 2 max  d~l lu i -  v~l[~o 
i=O . . . . .  N - 1  

_< ,:~ll u - V/l~ 

(30) is induced by (29) as a simple appl icat ion of the previous lemma.  [ ]  

This theorem establishes in a general context  the cont rac t ion  proper ty  of q5 a l ready 
observed for the P ro the ro -Rob inson  p rob lem (see Example  1). 

Definition 5. An initial value problem (1, 2) is said to be dissipative iff 

V X  �9 E x o , X ] ,  V y  �9 ~ m  # ( x , y )  < l(x) < 0. (31) 

For  dissipative problems,  we now have the following more  convenient  result: 

Corol lary 1. Let  us assume that condition (31) is satisfied. Then the conclusion of  
Theorem 3 remains true for  D = I, i.e. with the norms II U [[ = [I U [ll, I[ U ]1 = [[ U [I 2 and 
II u II = I[ u I]oo. 

Proof." The proof  is just  as in Theorem 3, except that  we now must  set: 

2 = q =  max  eI~i,tIx/ds< 1 (32) 
i=1 . . . . .  N 

and set all the q~'s equal  to q. [ ]  
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4. Convergence Results for Newton's Algorithm 

The above theorem shows that global convergence can be achieved using a non- 
uniform norm. It guarantees that Algorithm 1 is robust, but does not ensure 
computational efficiency. Considering the convergence in the weighted norm II" lID 
is only relevant ifD is close to the identity (i.e. H" lid close to a uniform norm). Hence, 
the rate of convergence is determined by the highest qi of Definition 4. In order to 
accelerate the convergence, it therefore seems natural to use Newton's algorithm. 
Let us define the frame of Newton's method: 

Theorem 4. �9 is continuously differentiable o n  ~mx(N+l) and cb' is a (N + 1) x 
(N + 1) block bidiagonal matrix with block size m o f  the form 

Ii ] o; o) 0 
VU e N,.• cb'(U) = (p;(ul) (33) 

. . .  @}(b/N_i)  0 

Proof.' Since the partial derivative of f with respect to y exists and is continuous, 
the solution y(x, x . ,  u) of (1) on I x . ,  x~] is differentiable with respect to u (see, 
for example, [8] p. 97). Hence, by definition of ~o~, it is easily seen that r  = 

Oy(xi, Xi_ l ,  U) [ ]  

#u 

We may now write down Newton's algorithm for our problem: 

Algorithm 2. 
�9 U 0 T T T T  = (Y0, Yo . . . . .  Yo ) 
�9 repeat [*** solve U k+l = U k -- (I - qb ' (uk)) - l (U k - cb(uk)) ***] 

u~ +1 = Yo 
for i = 1 ... N, 

u ?  1 = ~0i(u~_l)+ ~0;(u~_l)(u~-+~ - u ~ _ l )  
end 

until II u k+~ - u k ] ]  <-- e 

According to the theory of Newton's method, we have the convergence result given 
below in Theorem 5, whose proof can be found in [12]. The following lemma ensures 
that its hypotheses are satisfied: 

Lemma 2. Let  us further assume that ~ satisfies a Lipschitz condition with Lipschitz 

constant Lo. Then there exists a real ~ > 0 such that: 

v u e  ~,.• I I ~ ' ( u )  - q~ ' (g* ) l t  _< c~ll u - U*ll (34) 

where U* denotes the f ixed-point o f  ~.  

Proof'. The proof is standard and can be found in [4]. [] 
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Finally we sum up the hypotheses and get the promised result: 

Theorem 5. Let us assume that f is continuously differentiable on N = [Xo, X] x N" 

and satisfies a Lipschitz condition on ~ ,  and that ~y satisfies a Lipschitz condition on 

the same region ~.  Then, U* is a point of attraction of Algorithm 2 and the iteration 
is locally quadratically convergent. 

Proof: It is easily seen that F = I - q5 satisfies the hypotheses of the "Newton 
Attraction Theorem" (see [12] p. 312): F is continuously differentiable on N,.xCN+~ 
and F'(U*) nonsingular, F(U*)= 0, and for all U E N,,• I [ ( l -  q~ ' ) (U)-  
( I  - q s ' ) ( U * ) ] l  _< (c~ + t)llU - U * l l .  [] 

Now it is well known that Newton's iteration is highly efficient in a neighbourhood 
of the solution, but behaves very badly elsewhere. The smaller the first and second 
derivative of F (when they exist), the larger the neighbourhood and the faster the 
convergence. However, these quantities are known as soon as f is given. Since we 
do not have any information on the exact solution (except the initial condition), it 
is difficult to get a better estimate than the constant solution over the whole 
integration interval. One way to overcome this difficulty is to choose a grid fine 
enough to make the constant solution a good approximation, at least for the first 
elements of the grid (see [2]). Nevertheless this technique was shown to be inefficient 
when implemented on a hypercube (see [17]) due to very poor load-balancing. 
Moreover, step-size control is by no means obvious, which makes this technique 
too complex for a message-passing machine. In Fig. 1 (Oxy-plane) we present the 
first two iterations of Algorithm 2 when applied to the following problem: 

y'  = cos(x) sin(y2), (35) 
y(xo) = 1,x e [0, 30] 

2.5 

2 

1.5 

1 

0.5 

0 
0 

? 
. f  : :i 

, ;a t : : a : , ' ,  , 

10 15 2o  

Figure L Algorithm 2 applied to the non-dissipative problem (35) 

30 
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with a coarse grid. The exact solution is plotted in solid line, the numerical solution 
after one iteration in dashed line and after two iterations in dotted line. We can 
observe the disastrous second iteration that completely overshadows the first one, 
from which we might have expected fast convergence. This phenomenon should be 
attributed to the well-known instability of Newton's algorithm, when the initial 
guess does not belong to a suitable neighbourhood of the solution. The same 
phenomenon may be observed on Example 2: whereas Algorithm 2 is robust, the 
norm 11" ]tD in which convergence results are derived is dramatically far from uni- 
form. Let us suppose for example that the solution of (13) is a circulant movement 
of speed co. We have in that c a s e  ]l/r 3 = 0) 2, SO that 

# = 1 /2+  

Hence, the q,'s of Definition 4 are very large as soon as co is large and the decrease 
of 11 g kll is not of practical interest. This example emphasizes the crucial importance 
of I1" [ID, which is directly connected to the function l(x) involved in (23). Large 
positive functions l(x) prevent Algorithm 2 to be efficient. Therefore, it does not 
seem possible to handle all problems with this algorithm, whereas it seems natural 
to restrict ourselves to ODE problems which have a dissipative function f.  We have 
indeed the following global convergence result, and its corollary for dissipative 
right-hand side which gives the main result of the paper: 

Theorem 6. Suppose that (23) is satisfied. I f  we have either 2 < 1/3 or (N + 1) < 
ln(32 - 1) - ln(1 + 2) 

then the map defined by the iteration of  Algorithm 2 is a 
ln(2) 

contraction with respect to the weighted norm. 

We will need first the following lemma: 

Lemma 3. For any matrix-norm on R re• we have 

Vi E [1, N] ,  V u ~  m , II~0/(u)ll -< q,. (36) 

Proof: By definition of r we have: 

@(xi, xi-1, u) 
r - c~u - R(xi,  xi-1, u) (37) 

where R is the solution of the differential system: 

= c~y (x, y(x, xi_ 1, u))R(x, Xi_l, U) (38) 

L R(Xi - l '  Xi - l '  u) = I 

Since R - 0 is also a solution, it follows as simple consequence of Theorem 2 that: 

IL e (x ,  xe_ t, u) ll < el:,-. I(s)dSll I 1[ (39) 

i.e. }lq/(u)ll < qi, since IIIII = 1. []  
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P r o o f  o f  T h e o r e m 6 :  F o r k  ~ N we have U T M  = U k - (I  - c b ' ( u k ) ) - ~ ( U  k - vb(uk) ) .  

Let us consider the matr ix  L k = ( I  - c b ' ( u k ) )  -1. We have 

U T M  - -  U *  = U k - -  U *  - L k ( U  k - U * )  + Lk(q~(U k) - -  6b(U*)). (40) 

Mult iplying by D and taking the norm,  we get: 

IID(U ~+1 - U*)ll _ IID(I - Lk)D-~ll �9 IID(U s - U*)ll 

+ [ IOLkO- l l l  �9 I/D(~(U ~) - ~ (u*) ) l l .  (41) 

We have 

D L k  D - *  = D ( I  - -  (/)')-ID-1 = I t  - D q b ' D - 1 ]  -1 . 

Now,  let T = [D60 'D-I ] .  Since qs' is ni lpotent  we can write: 

N 
[ I -  T] * = I +  Z T i  

i=1 

so that: 

N 
IIDLkD-~I[ ~ 1 + ~ IITII i 

i=1 

We can compute  T explicitly and  obta in  

T =  

Om ' ' '  

oz ~ Om 

Om 

Om 

d~ --~ok O~ 
dN-1 

(42) 

(43) 

(44) 

(45) 

(dl 
'~ 2 , , ,  

d o /  ~ l q ) l  0m " . . . . .  0m 

o,. (el~'~ ~ ~o~* 

0 m �9 . . . . .  0 m 0 m 

(46) T T *  = 

According to the previous lemma,  II~p;ll ~< qi, and it is easily seen that  I] TI[ 1 --< 2 and 
that  [JT]I~ < 2. As for the euclidian norm,  we have IITI]2 = ~ where: 
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Hence, it follows that: 

p ( T T * ) =  max p q~iq~i j <  (47) 
i = l  . . . . .  N q// 

and we get the same relation II Tll 2 ~ ~ as for the 1 and ~ norms. In all cases, this 
leads us to the estimate: 

1 - 2 N+I 
IIDLkD-11I < 1 ~  (48) 

We obtain similarly: 

_ 2 1  - 2  N 
I I I -  DL~D-Itl < 1 -- 2 

Furthermore, according to Theorem 3 we can write: 

I1D((b(U k) - q0(U*))ll < 2-[ID(U k - U*)ll. 

This finally gives us the estimate: 

][D(U k+~ - u*)ll <_ f l  ltO(U k - U*)II 

where: 

(49) 

(50) 

(51) 

1 - s  1 - -  s  

fl = ~ . ~ -  + 2 1 - - 2  (52) 

Hence the map defined by the iteration is a contraction if fl < 1, which leads to the 
result. [] 

Corollary 2. Let  us assume that condition (31) is satisfied. Then the conclusion o f  
Theorem 6 remains true for  D = I, with the norms II UII = H UII1, It UII = II UII2 and 
IIull = ILuL~. 

It should be emphasized that some mechanical systems whose energy is scattering 
are dissipative (see Example 3 below), in addition to others which are not (see 
Example 2). However, a large class of problems for which condition (31) is satisfied 
originates from the discretization of diffusion phenomena. 

Remark 4. I t  should be noted that in the context  o f  the above corollary, lengthening 
the intervals [xi-1, xi], i = 1 . . . . .  N favours both the convergence and the computa- 
tions/communications ratio. This is the reason why we consider dissipative functions. 

Example 3. Let  us consider a mass (m) suspended to a spring (k) and hanging in a 
viscous liquid (leading to a force proportional (h) to the speed o f  the mass).  Its 
movement is governed by the equation: 

d2X ~ t  d X  
m ' ~ - +  h" "~[- + k ' X = 0  

which can be decomposed into a f irs t  order system: 
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f X'I = X2 

X'2 -h'x2"IX21-k'Xl"m 

Let A = diag(k,m). The system is dissipative with respect to the norm IIVII2 = 
VrAV. 

Example 4. "The Brusselator", which modelizes a multi-molecular chemical reaction, 
is described in [11]. It  leads to the system 

3U OU 2 
0X = A + b/Zv - -  (B  --[- 1)u -I- 0~ 0w  ~ 

Ov . ~v 2 
Ux = Bu - u~v + C~ ~w 2 

with w ~ [0, 1], A = 1, B = 3, and boundary conditions: 

u(O,x) = u(1,x) = 1, v(O,t) = v(1,t) = 3, 

u(w, 0) = 1 + sin(2~zw), v(w, O) = 3. 

By replacin9 the second spatial derivatives by finite differences on a 9rid of points 
we 9et a dissipative system provided ~ is sufficiently large (see next section). 

5. Numerical Results 

We now demonstra te  the convergence of Algorithm 2 on the following examples. 
The functions q)i are not  known exactly (neither are their derivative), so that  they 
have to be approximated  by using a s tandard ODE-solver  (and their derivative by 
finite differences). We postpone the analysis of the discrete-time version of Algo- 
r i thm 2 to Par t  2.1 The aim of this Section is to get first numerical results confirming 
the relevance of the presented theoretical results. In order  to measure the speed of 
convergence, we have plotted the maximum relative error  over all points of the 

llY(Xl) Z-u~l!'] and for subdivision with respect to the i teration number  maxl<i_< N I[y(x~)ll J 

several local tolerances (TOL) given as input to the ODE-solver .  2 

Example 5. 

y'(x) = cos(y)sin(y) -- 2y + e-X/l~176 + ln(1 + x)cos(x) y(O) = 1 (53) 

on [Xo, X]  = [0, 100]. The solution is drawn on Fio. 2 for x ~ [0, 20]. Condi t ion 

# ( ~ . . )  < - 1  so that  the convergence is very fast (see Fig. 3). (31) is satisfied with 
\ u y /  

1 For the moment,  we admit  that the behaviour of  Algorithm 2 is well approximated as far as we use 
sufficiently stringent tolerances. 

2 Any code can be used here, since we are only interested by the convergence of Algorithm 2. 
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Figure 2. Solution of Example 5 
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Figure 3. Convergence of Algorithm 2 for Example 5 (64 segments) 

f 
YI(X) = --Y2 -- 0 .3y 3 + cos (3x)  

Y2( x)=yl +y3+x~/5 

ln(1 + X) 
Y3(x) = --Y2 --  O-Oly3 + sin(x)" ] ~ _  x Z  

y l ( 0 ) = 0  

y2(0)= 1 

y3(0)=2  

(54) 



A Parallel Shooting Technique for Solving Dissipative ODE's 223 

2.5 

2 

1.5 

1 

0.5 

0 

-0.5 

-I 

-1.5 

-2 

-2._ ~ 
0 

~'..// 

I 

\\\  ! 

n i 1 i �9 

1 ; 3 4 ~ 6 7 i 9 ~0 

Figure 4. Components of the solution of Example 6 

on [Xo, X]  = [0, 100]. The components of  the solution are drawn on Fig. 4. In this 

case, the matrix 1 / 2 ( ~  f + has three different eigenvalues: - 0 . 9 y  2, 0 and 
key Oy / 

- 0 . 0 1 .  T h o u g h  condit ion (31) is not  "strictly" satisfied, convergence is not  affected 
(see Fig. 5). 
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Figure 5. Convergence of Algorithm 2 for Example 6 (32 segments) 
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Example 7. We consider once more the Brusselator (see Example 4 of  Section 4) in 
one spatial variable w with 0 < w < 1, A = 1, B = 3, ~ = 1/40. The second spatial 

82u 02v 
derivatives ~w 2 and ~?w2 are discretized by f ini te  differences on a grid of  M points 

i 
Vi ~ [1, M ] ,  wi - M + ~ '  (55) 

1 
We denote Aw - and f inally  obtain the ODE system: 

M + I  

U; = 1 -I- U2Vi q- ~ ( U i _  1 -- 2U i q- Ui+l) 

Vi ~ I-1, M-I, tzJw) (56) 

Lv;  3ui - uZvi + ~ ( v i _ l  - 2vi + vi+l) 
tzJw) 

with 

Uo(X ) = uM+dx ) = 1 (57) 

Vo(X) = vu+I(x) = 3 (58) 

and the initial conditions 

Vie [1, M]  ~ui(O ) = 1 + sin(2rcwi) (59) 
' (vi(O) 3 .  

The solution is drawn for  M = 40 on Fig. 6. Some easy computat ions  leads to the 

following expression for Q = ~ \~yy + 
by / 

( diag(2ulv~- 4) �89 + diag(3 - 2u~vl))t Q 
\�89 + diag(3 - 2u~v~)) d i ag ( -u~ )  / 

+ ( ~ w ) 2 (  K K 0 )  (60, 

1 4 1 C  

Figure 6. Component u(w, x) of the Brusselator with M = 40 
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Figure 7. Convergence of Algorithm 2 for the Brusselator with M = 10 (32 segments) 

14 

where K is the usual matrix 

- 2  1 

1 - 2  

1 

whose eigenvalues are known to be 

1] 
�9 - 2  1 

1 2 

/ .  ~k "~2 
2k : - 4 / s t n 2 ~ - ~ - ~ ! \  / , 

(61) 

k = 1 . . .  M .  (62) 

Since both matrices of (60) are symmetric, the first matrix can be considered as a 
small perturbation, provided e is sufficiently large�9 With this restriction, condition 
(31) is satisfied�9 

Part 2: Numerical Implementation 

6. Convergence of the Actual Newton's Algorithm 

In a real implementation of Algorithm 2, one has to approximate the function q~ 
and its first derivative by some way or another. We consequently modify Algorithm 
2 by replacing ~0i by an approximation ~ computed by an ODE-solver and by 
replacing q0[ by a standard finite differences approximation ~[, i.e. 
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0[(u) = (~bi(u + ~/el) -- q3t(u)) . . . .  ,~(qSi(u + qer,) -- q3i(U)) (63) 

where r/is a small parameter and (e 1 . . . . .  e,,) the canonical basis of I/~ m. However, 
the theory developed in Sections 3 and 4 is no longer applicable and a study of the 
convergence of the resulting algorithm, that we will call Algorithm 2', has to be 
developed. For  this analysis, we will restrict ourselves to the case of dissipative 
systems, which have been previously shown to be particularly appropriate. Now, if 
y(x) denotes the exact solution of (1, 2) over Ix  o, X] ,  there exists a sufficiently large 
c~ > 0 such that the compact set K~ = {(x,y) ~ [xo ,X]  x R", IJy - y(x)]J < c5} con- 
tains the "initial guess" (that can be assumed for example to be the constant solution 
over [xo,X]).  Due to the dissipativity of the problem, (xi,(oi(u)) will lie in K6 
provided (x i - l ,u)  lies in Ka. If a fib-order numerical ODE-method is used to 
approximate the function ~o i, and if hi is the maximum stepsize considered over 
[xi-1, xl], then the following estimate 

[](oi(u) - q~i(u)l[ -< C ( x i -  xi_l)hy (64) 

holds for all u such that (xi-1, u) belongs to K~ and for all sufficiently small h i. C 
depends a-priori on the fib-order derivatives of the function f,  i f f  is assumed to be 
smooth enough, but can be bounded for example on K2~. Now, ifhl is small enough, 
the numerical solution remains in K2~ and (64) holds uniformly for all (xi-1, u) in 
Ka and all hl < H, where H is independent of/. Using this estimate, we can now give: 

Lemma 4. Let  us assume that (1, 2) satisfies (31) and let q = maxi= 1 ..... N ~i-~ l(X) dx 
and Ax = maxi= 1 ..... N (Xi -- Xi-~ ). Suppose in addition that the function q~i are approx- 
imated by using a fin-order numerical ODE-method. I f  U = (U~,Ur~,...,U~)T~ 
~m• is such that for all i = 0 . . . . .  N, (xi, u~) belongs to Ka, then we have; 

II~(U) - ~b(U*)[I _< CAxh p + qlIU - U*ll, (65) 

where ~ is defined by the (oi's and where h = maxi=l ..... Nhr 

Lemma 5. For some i ~ {1,... ,  N}, let u e ~"  be such that (xi-1, u) belongs to the 
interior I(~ of  K~. In addition to previous hypotheses, we assume that the derivatives 
of  the q~i's are approximated by using formula (63) and that h~' = (9(r/2). Then there 
exists qo such that 

IIq~[(u)- ~o[(u)ll = 0(~/) (66) 

for ~ < qo. 

Proof" Let (q~[).,j be t h e f  h column-vector of the Jacobian matrix ~p/' and let (~/').,j 
be the j  th column-vector of matrix ~'.  By considering the 1-norm, it comes: 

I I ( ~ ; ( u ) ) . , j  - (~;(u)),~l[1 = ~((oi(u 

2CAxh p 

+ ~/ej) - qSi(u)) - (qg~'(u)).,j 1 (67) 

+ ~(q~,(u + q e ; ) -  09i(u) ) - (qg/(u)).,j 1" (68) 

Now, if f is smooth enough, the functions (Pi are smooth also, and we can bound 
the second term of (68) uniformly on K~ and for I,/sufficiently small by a constant 
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times q. F rom h~ = ~0(r/2), we consequently get: 

[[((~[(u))..j -- (~0"(u))..j][1 = (9(r/) (69) 

and the result follows in an obvious way. [ ]  

Remark  5. It is worth emphasizing the necessity of the condition hip = ( 9 ( / / 2 )  for the 
finite differences approximation (63) to be accurate. 

Theorem 7. Suppose that (1,2) satisfies (31) with either q < 1/3 or (N + 1 ) <  

ln(3q - 1) - ln(1 + q) and that the functions (p~ are approximated by using a pth-order 
ln(q) 

ODE-solver and their first derivative (p[ by using formula (63). I f  the maximum stepsize 
h used by the ODE-solver is such that h p = (9012), then for all sufficiently small values 
of r/, there exist two constants 0 < fi < 1 and F > 0 such that 

Vk >_ l ,  IIV ~ - V*ll < flkJlU~ - v*[I + Fh p (70) 

Proof'. From Lemmas 3 and 5, we can assert the existence of two positive constants 
r/o and M, such that: 

Vi �9 { 1 , . . . ,  N}, Vt/_< r/o, Vu �9 ~m, 
(71) 

((xi_,,u) �9 IgG) ~(IFr - q + Mr/). 

We now proceed as in the proof  of Theorem 6: 

Vk �9 ~ ,  U k+l  - -  U *  = ( I  - -  L , k ) ( U  k - -  U * )  + L , k ( ~ ( U  k) - -  q~(U*)) (72) 

where L'k = (I -- ~ ' (uk) )  - I  and with obvious notations for ~ ' (uk).  Using the nil- 
potency of ~'(Uk), we get the estimates: 

1 - i N + 1  2 1 - i N  
I[Lkll < I l l -  Lkll < (73) 

- 1 - i '  1 - ~ '  

where ,~ = q + M r / <  1 for all sufficiently small r/. Taking into account  the estimate 
(65) of Lemma 4 leads to 

]l gg+l -- g*l[ _< f i l lg  ~ - g*ll + ffCAxh p, (74) 

1 - 2 N + 1  ~ I - i N  1 - , ~ N + I  
where fl = q 1 ~  + z and ~ - Since fl tends to fl as r / tends 

-- 1 - - ,~  1 --~,  " 
to zero, it follows from the hypotheses that/~ < 1 for all sufficiently small values of 
r/. This implies in part icular  that the successive iterates U k remain in K~ provided 

h < (b (1  - fi)'~l/e. Finally, a straightforward recursion gives: 
- \  f, Cax / 

k - -1  

Vk _> 1, flU ~ - U*ll < fi~llU ~ - U*ll + Y, fl~fCdxh p (75) 
i=O 

~CAxh p 
- - f i~ l [g  ~  g*ll + -  (76) 

1 - / ~  
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Remark 6. Theorem 7 does not ensure the convergence of Algorithm 2': it asserts 
the existence of  a h-neighbourhood of the exact solution in which U k will enter and 
remain. The convergence of Algorithm 2' is however ensured within N iterations 
owing to the additional accurate component of U automatically gained at each 
iteration. 

Remark 7. Due to the use of  finite differences approximations for q~', the theoretical 
quadratic convergence of  Algorithm 2 is lost. This was the main motivation in [2] 
for considering Steffensen's method. However, Figs. 3, 5 and 7 from Section 5 of 
Part I show that, from a practical point of view, the error decreases superlinearIy 
as soon as the computed solution is sufficiently close to the exact solution. 

7. Practical Implementation 

We now propose a slightly modified and somewhat simplified version of Bellen's 
Algorithm dedicated to problems where f is dissipative. We emphasize the following 
differences: on the one hand, we choose Newton's method instead of Steffensen's 
because the latter involves two sequential computations of ~ compared to one for 
Newton, which offers an accelerations up to two. On the other hand, we gave up 
the part  of the error control process that was aimed at reinitialising those values 
that are not sufficiently accurate to be reiterated, since Theorem 7 ensures reason- 
able behaviour of U given reasonable conditions on l(x). For  the accepted values, 
we adopt  the same strategy as in [2] based on the following theorem: 

Theorem 8. Let us assume that (1) satisfies (31). I f  the iteration error is defined to 
be: gk = ~ ( U  k) _ U k, then, we have the following bound on E k = U* - uk: 

1 
[lUll -< (ll~kll + CAxh p) (77) 

1 - q  

where q = max~ 1 Ne~i t(x)dx < 1. 
= , _ . . ,  

Proof." The proof is obvious and therefore omitted. [] 

Hence, in order to reduce the size of the recurrence involved in Algorithm 2', at each 
iteration we shall accept as good approximations the n first components of U that 
pass the test maxj<, Ilzjll -< e, where e is to be defined by the user and represents the 
tolerance on the iteration error. Finally, we sketch the algorithm below and denote 
dopar the parallel loops and doseq the sequential ones: 

Algorithm 2". 
*** Initialization phase *** 
set n = 0, set k = 0 
d o p a r i = n +  1 . . . . .  N, 

set u/~ = u ~ 
end 
*** Integration phase: the (gi's are computed by an ODE-solver *** 
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dopar i = n + 1 , . . . ,  N, 
c o m p u t e  v/k+l = (oi(u~_l) 
doparj = 1 , . . . ,  m, 

*** ej is the f h vector of the canonical basis of Nm+l, and q = 1 0 - '  ***  

�9 ~+1 = (o i (u~- i  + ~ e j )  c o m p u t e  Wi .  j 

end 
end 
*** Compute the error of the iterative process *** 
d o p a r i = n +  1 . . . . .  N, 

c o m p u t e  ~/k+l = vk+l - -  U/k 

c o m p u t e  ] [ f (+l  [I 

end 
*** Assemble the Jacobian matrices (computed by finite differences) of the (oi's *** 
d o p a r i = n +  1 . . . . .  N ,  

doparj = 1 . . . . .  m, 
. k + l  _ v k + l  

a s s e m b l e  C~ +.1 - wi,j - -L ,J  

end 
end 
d o p a r i = n +  1 . . . . .  N, 

c o m p u t e  A k+l F c k + l  C k+l ] 
- - i  = L i , 1  ~ ' ' ' ~ - - i , m  J 

end 
*** Recurrence phase *** 
se t  k+l k bl n ~ U n 

se t  O = 0 

se t  p = n 

d o s e q i = n +  1 . . . . .  N ,  

c o m p u t e  O = m a x ( O ,  f ~ + l )  

i f O  < e t h e n  se t  p = i 
= . A~+I~. k+l _ u~- l )  c o m p u t e  u~ +1 v/k+l "Jr" ~ i  t " i - 1  

end 
if p = N then 

STOP 
else 

se t  n = p 

endif 

se t  k = k + 1 

goto Integration phase 

R e m a r k  8. In our experiments, we have used the code DOPRI8 of E. Hairer and 
al. (see [ 8 ]  ) ,  which is based on the explicit 8th-order Runge-Kutta method of Prince 
and Dormand. Since our test problems are only middly stiff and since our main 
concern here was the results obtained for stringent tolerances (they indeed require 
the largest amount of computations), an explicit code is still appropriate. In other 
situations, codes based on implicit methods (such as RADA U5 of E. Hairer and al. 
(see [ 9 ]  ) or LSODE of A. Hindmarsh (see [ 1 0 ]  ) )  are strongly recommended. 
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Table 1. One iteration of Algorithm 2" on "hypercube number i" 

Step Computa t ions /Communica t ions  

1 Broadcast u~_ 1 from Pi, o to Pi, 1 . . . . .  P,,m. 

Compute ?j/k+l on Pi, o and w ~  -1 . . . . .  w~+~ 1 on Pi., . . . . .  Pi,~. 

Compute f/k+1 and I[?~ +1 l[ on Pi.o. 

4 Broadcast D/k+l from Pi, o to P~, 1 . . . . .  P~,,. .  

5 Compute C~t 1 . . . . .  C ~ '  (columns of A~ +1) on Pi, t . . . . .  Pi.m. 

6 Global send of C~+11 . . . . .  cik+.: from Pi,1 . . . . .  Pi, m to P~, o" 

7 Assemble zl~ +! = [ C ~  t . . . . .  C/k+~ 1 ] on P~.o 

Receive u~_+: and O from Pi-l.o- 
Compute u~ +1 and O on Pf, o- 
Send u~ +~ and (9 to P~+I.o- 

Hypercube number  

..... ~ ~~X 
Frompl~wuu~ -.- , t node 
node of the ring - _  .~ _ -  - " - " - of the ring 

Processors of the ring 

Figure 8. Model of architecture for rn = 3 

In order to explain the algori thm more  clearly, we now present it for a specific 
architecture. In this model, processors are organized as a ring of N clusters of(m + 1) 
processors (see Fig. 8), where the (m + 1) processors of a cluster make up a small 
hypercube. In fact, each hypercube has to be of  dimension log2(m + 1) where 
denotes the ceiling function. This architectural model  is relevant since it can be 
easily mapped  onto  a hypercube in a dynamical  fashion: provided there are enough 
processors, the role of  each node can be determined once N and m are known. We 
do not  claim this model  is optimal. However,  it has the advantage to keep the 
communica t ion  cost at a reasonable level. 

Now, in order to estimate the computa t ion  and communica t ion  costs, and to 
evaluate the speed-up factor, we introduce the following parameters: 
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�9 C: the number of floating point operations necessary to approximate the solution 
of (1) on [Xo, X] with a given numerical solver. 

�9 k*: the number of iterations necessary to get an accurate approximation. 
�9 To: the average time necessary to transfer a word from one processor to a 

neighbour. 
�9 fl: the start-up time of a communication. 
�9 Zop: the time necessary to execute one floating point operation. 

Using these parameters and making the assumption that the complexity on every 
interval [xi_ 1,xi], i =  1 . . . . .  N is constant (this hypothesis will be discussed in 
Section 8.1), we can compute the times spent for each step: 

1. At = (fl + mzc)log2(m + 1) 
2. At = (C/N)zop 
3. At = (2m-- 1)Zop 
4. At = log2(m + 1)(fl + mL) 
5. At = 2mZop 
6. At = fllog2(m + 1) + m(m + 1)zc 
7. A t = O  
8. At = p(k)[m(2m + 1)Zop ] + (p(k) - 1)[fl + (m + 1)L ] where p(k)represents the 

length of the recurrence involved in the k th iteration. 

If we neglect the initialization (step 1 of Algorithm 2"), then we get the "parallel 
time" Tp: 

Tp = k*[ (C/N)zop  + (4m - 1)'Cop -k- m(m + 1)zc 

+ 21ogz(m + 1)zc + 31Ogz(m + 1)fl] (78) 

+ ( ~ l P ( k ) ) [ m ( 2 m +  1 ) Z o p ] + ( ~ l p ( k ) - k * ) [ f l + ( r n +  l )L  ] (79) 

The sequential time is, 

T~ = C'Co~, (80) 

by definition of C. 

Now we can estimate p(k) in three different ways: 

�9 (P) A very pessimistic approach is to consider that the Algorithm reaches the 
desired accuracy at the last iteration on all intervals [xi_l, x/I, i = 1 . . . . .  N. This 
hypothesis obviously leads to an over-estimation of Tp, since it is known that at 
least one new exact value is obtained at each iteration. Nevertheless, it shall give 
us a lower bound of the speed-up factor. We have, in this case, 

k* 
Z p(k) = k*N.  (81) 

k=l 
�9 (O) On the contrary, we may assume that the algorithm converges at the first 

iteration on all intervals except the last (k* - 1). This leads us to the following 
estimates ofp(k): p(1) = N and Vk ~ [2,k*], p(k) -= k* + 1 - k. Thus, in that case 
we have: 
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k* k*(k* -- 1) 
p(k) = S + (82) 

k = l  2 

�9 (M) Finally, a perhaps more realistic assumption is that  the algori thm converges 
regularly, that  is to say that the number  of intervals [• xi] for which u~ is 
sufficiently accurate increases as a mono tone  function of k. Thus  we have p(k) = 

N ,  
N - (k - 1)k~ so that: 

k* (k* + 1) 
p ( k ) -  N (83) 

k = l  2 " 

Finally, we get the speed-up factor: 

T~ CN 
S -- rip Co + C1N + C2N2 , (84) 

where the constants C o, C1 and C2 are given in Table 2. We, of course, have: 

N 
Sp < sM <- So < ~ .  (85) 

Hypotheses 

P 

O 

M 

Table 2. Values of the constants for the different hypotheses 

C o 

k*Czop 

k*C%p 

C1 

k*(4m- 1)top 
+ k*[2mlnz(m+ 1)+(m+ 1)(m- 1)]zc 

+ k* [ -  1 + 3 ln2(m + 1)] fl 

k*(7/2m-m 2 + 1~2ink* - 1 +m2k*)Zop 
+k*[2mln2(m+ l)+m 2 +(k-  1)(m+ 1)/2-1]z~ 

+k*[3 ln2(m + 1)+ 1/2(k* -3)]fl 

k'Crop k*(4m- l)zop 
+k*[2mln2(m+ 1)+(m+ 1)(m- 1)]zc 

+ k* [3 ln2(m + 1)-- 1] fl 

C2 

k*m(2m + 1)%p 
+k*(m+ 1)z,+k*fl 

m(2m+ 1)%, 
+(rn+ 1)zc+ fi 

re(m+ 1/2)(k* + l)%p 
+ [1/2(k* + l)(m + 1)3 re 

+ 1/2(k* + 1)/~ 

Remark  9. The hypothesis ( P )  allows us to derive a lower bound of  the optimal 
speed-up with respect to N that is proportional to the number o ~ r a t i o n s  k*, as 
well as an estimate o f  the optimal number o f  intervals Nopt = ~/ Co/C2. 

8. Results 

8.1. Adequacy of  the Model  

In order to evaluate the correctness of our  performance model  we performed a 
simulation of Algori thm 2' on  the Intel IPSC-860 hypercube of the O N E R A  with 
128 processors. Based on Benchmarks  on the IPSC-860, we took  fl/zop = 693 and 
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Table 3. Values of C for different tolerances 

Example e = 10 -4 e = 10 .6 e = 10 8 

5 2.3 105 3.5 105 6.8 10 s 

6 4.9 105 4.9 l0 s 6.4 105 
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rc/rop = 5.5. The remaining parameters involved in the determination of the speed- 
up by formulas (82), (83) and (84) were determined as follows: 

�9 the cost of integration (C) was computed via the output "NFCN" (number of 
right-hand side evaluations) of the ODE-solver DOPRI8 from [8]. 

�9 the number of iterations (k*) was determined by simulations of Algorithm 2' on 
a sequential machine (see Section 5). 

The informations collected were then used to compute the speed-up in two different 
ways. On the one hand, we applied the formulas given above for the three different 
hypotheses ("P", "M" and "O"). On the other hand, we simply measured the 
execution time of Algorithm 2' on N • (m + 1) processors and the execution time 
of "DOPRI8"  on one processor. 

Results are listed in Table 4. Let us first notice that estimates for Example 6 are the 
same for the first two tolerances. This is due to the unstable behaviour of the code 
DOPRI8. For low tolerances, the computational cost is indeed almost constant. 
Secondly, our hypotheses seem to lead to an over-estimation of the speed-up for 
Example 6. In fact, the difference between the lowest estimate and the observed 
speed-up decreases for small tolerances. This behaviour can be easily explained by 
the presence of an important transient phase in the solution of Example 6. This 
transient phase partly modifies the load-balancing so that the computational work 
is no longer strictly independent of the segment under consideration. For  small 
tolerances however, this phenomenon vanishes. Now, as far as the transient phase 
is not too important (see Example 5), our estimates are in good agreement with the 
observed speed-up the our model is relevant. Those remarks show that Algorithm 

Example 

Table 4. Speed-up's for Exam 

Speed-up 

Real Speed-up 
Estimate P 
Estimate M 
Estimate O 

Real Speed-up 
Estimate P 
Estimate M 
Estimate O 

e = 10 -4 

3.0 
2.3 
3.0 
4.2 

1.4 
1.7 
2.3 
3.0 

)les 5 and 6 

e = 10 -6 

5.0 
3.4 
4.3 
6.0 

1.6 
1.7 
2.3 
3.0 

e = 10 -8 

8.0 
6.0 
7.5 
9.9 

1.9 
2.0 
2.6 
3.3 
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2' should be applied to specific problems. Generally speaking, the problem to be 
solved should possess the following characteristics: 

�9 dissipativity of the right-hand side (see Section 4) 
�9 long interval of integration (see Remark 4) 
�9 high computational cost per step (this is a general requirement for parallel 

methods). 

8.2. Attainable Speed-up 

When applied to a m-dimensional system with N segments, Algorithm 2' (imple- 
mented according to our description) requires N • (m + 1) processors. Since the 

1 
speed-up is limited by N/k*, the efficiency is severely bounded by k* x (m + 1)" This 

bound emphasizes the redundancy of computations involved in Algorithm 2', whose 
necessity comes from the sequential nature of the numerical integration process. 
However Algorithm 2' can provide a large speed-up when a large number of 
processors is available. Extrapolation of the speed-up curves (see Fig. 9) by mean 
of formula (83) indeed shows that an acceleration of 15 is ~ttainable for Example 5 
with TOL --- 10 -1~ The same curve for Example 6 seems less convincing. Neverthe- 
less, one should keep in mind the fundamental influence of the ratios fi/Zop and zc/'rop 
on the efficiency of the algorithm. Much better results would have been obtained for 
instance by considering the values observed on the Intel IPSC-2 machine (fl/'rop = 
69.3 and re/top = 0.3): the 'M'-estimate for Example 6 with TOL = 10 -1~ gives a 
speed-up of 11 for 400 processors. Finally, let us notice that whatever the values of 
these ratios are, a high computational cost per step or a long interval of integration 

! 
1 4  

1 2  

.[ ,o 
~.m 8 

6 

4 

E x a m p l e  5 : T O L - = I . E - 1 0  
1 6  4 . 5  

4 t .............. 

3 5  . - .............. 

E x a m p l e  6 : T O L = I . E - 1 0  

3 

2 . 5  

2 

2 1 .5  
0 1 O0  2 0 0  3 O 0  4 0 0  O 1 0 0  2 0 0  3 0 0  4 0 0  

N u m b e r  o f  p r o c e s s o r s  N u m b e r  o f  p r o c e s s o r s  

Figure 9. Speed-up estimates for Examples 5 (Number of processors = 2 x N) and 6 (Number of 
processors = 4 x N) 
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will lead to a good  computation cost/communication cost ratio and consequently to 
a high acceleration on a massively parallel computer .  

9. Conclusion 

A parallel a lgori thm based on an idea of  A. Bellen and M. Zennaro  for the 
integration of  ordinary differential equat ion with dissipative functions is proposed.  
Global  convergence is shown for dissipative problems and for reasonable condit ions 
on the number  of segments. This enables us to give up par t  of  the error  control  
process of  the original algori thm and consequently to reduce the communica t ion  
cost. Compute r  simulations have been carried out on an architectural model  that 
can be easily mapped  onto  a grid. We proved that  significant speed-up can be 
achieved with this model  using an analysis that  takes communica t ion  delays into 
account.  In addit ion to this, real experiments were reported that  confirm the interest 
of the method  for specific problems. 

The use of  the algori thm is obviously restricted. However,  further investigations 
could reveal that  the larger class of  problems where the solution is bounded  and 
for an appropr ia te  choice of the length of  segments has similar properties. Our  
next step is to examine real problems so as to analyse the behaviour  of  the algori thm 
in cases where the complexity varies from one subdivision to another. 
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