
Computing 55, 355-378 (1995) ~ 1 ~

�9 Springer-Verlag 1995
Printed in Austria

Tetrahedra l Grid R e f i n e m e n t

J. Bey, Tfibingen

Received December 15, 1994; revised April 28, 1995

Abstract-- Zusammenfassung

Tetrahedral Grid Refinement. We present a refinement algorithm for unstructured tetrahedral grids
which generates possibly highly non-uniform but nevertheless consistent (closed) and stable
triangulations. Therefore we first define some local regular and irregular refinement rules that are
applied to single elements. The global refinement algorithm then describes how these local rules can
be combined and rearranged in order to ensure consistency as well as stability. It is given in a rather
general form and includes also grid coarsening.

AMS Subject Classifications: 65N50, 65N55

Key words." Tetrahedral grid refinement, stable refinements, consistent triangulations, green closure,
grid coarsening.

Verfeinerung von Tetraeder-Gittern. Es wird ein Verfeinerungsalgorithmus ffir unstrukturierte
Tetraeder-Gitter vorgestellt, der m~Sglicherweise stark nicht-uniforme aber dennoch konsistente
(d.h. geschlossene) und stabile Triangulierungen liefert. Dazu definieren wir zun~ichst einige lokale
regul~ire bzw. irregulfire Verfeinerungsregeln fiir einzelne Elemente. Der gIobale
Verfeinerungsalgorithmus beschreibt dann, wie diese lokalen Regeln kombiniert und umgeordnet
werden k6nnen, so dab sowohl Konsistenz als auch Stabilitfit garantielt sind. Die Formulierung des
globalen Algorithmus ist sehr allgemein gehalten und erlaubt auch Gitter-Vergr6berungen.

1. Introduction

The numerical treatment of partial differential equations includes the solution
of large systems of equations. For three-dimensional problems, several millions
of unknowns are no rarity, and - although computational power has grown
exponentially during the last decades - many interesting real life problems
could not be solved today, had not the development of efficient algorithms been
similarly successful.

Modern applications make use of adaptive techniques to optimize the number of
unknowns by fitting the corresponding discretization to the present approximate
solution. For this purpose, the underlying discretization mesh is refined locally
in regions where improved accuracy is needed, for example, near singularities,
internal or boundary layers, re-entrant corners, etc. Those regions where the
solution is expected to be smooth are not refined or can even be coarsened.

Multigrid or multi-level methods have been proven to be of optimal or nearly
optimal complexity for the solution of discrete systems arising from a wide range

356 J. Bey

of partial differential equations, in particular the elliptic ones. Because these
methods are based on discretization hierarchies obtained from successively
refined meshes, they can be embedded especially well in an adaptive framework.
This fact is also represented by recent multigrid convergence proofs (see [9] or
[18]), which no longer require the underlying meshes to be quasi-uniform, in
contrast to the early theory, e.g. in [12].

In industrial practice, however, at least in the three-dimensional case, adaptive
and/or multi-level methods are rarely applied, because possible users are often
deterred from the necessity to generate and manage hierarchies of possible
highly non-uniform meshes. In particular the refinement of tetrahedral grids
requires special care to avoid degenerated elements which may lead to deteri-
orating convergence rates.

In the present paper we want to show that tetrahedral grid refinement can be
realized in a very efficient way. Our algorithm includes adaptive refinement as
well as partial coarsening, and the resulting triangulations are consistent and
stable. Therefore the algorithm may be useful also in other applications, for
example in the area of computer graphics for the approximation of smooth
surfaces.

We start from the following assumptions. Let O c R 3 be a polyhedral domain,
and assume that an initial triangulation J0 of O is given, that is, a set of
non-degenerated tetrahedral elements which cover ~ and are of mutually
disjoint interior. Usually such initial triangulations should be as coarse as
possible, just fine enough to resolve the shape of ~ and the coefficient jumps of
the problem under consideration. Note that in engineering practice the genera-
tion of useful initial triangulations is a complex and expensive task, but this is no
subject of the present paper. Here we are concerned with successive refinements
of J00, that is, we want to generate sequences J0, ~ , ~ , . . . of triangulations
of g2, which satisfy the following conditions:

(C1) Nestedness: Each element T ~ , k > 0 is covered by exactly one element
T' ~ _ 1, and any comer of T is either a comer or an edge midpoint of T'. T'
is called the father element of T, and T is a son of T'.

(C2) Consistency: Each triangulation ~ is consistent, which means that the
intersection of any two tetrahedra in ~ is either empty, a common face, a
c o m m o n edge o r a c o m m o n c o m e r .

(C3) Stability: The sequence Yoo, 4 , . . . , ~ is stable in the sense that the interior
angles of all elements are uniformly bounded away from zero.

The consistency condition prevents so called hanging nodes which for different
reasons are undesired in many applications. In numerical algorithms, for exam-
ple, hanging nodes do not represent degrees of freedom and are somewhat
difficult to handle, because the local correlation pattern of the stiffness matrix is
disturbed. On the other hand, the asymptotic convergence properties of multi-
grid or other iterative methods are not essentially affected by the existence of

Tetrahedral Grid Refinement 357

some isolated hanging nodes. For reasons that will become clear later, consis-
tent triangulations are also called closed.

The stability condition, (C3), is equivalent to the requirement that some measure
of degeneracy, 6(T), is uniformly botmded for all elements T. Such measures
6(T) can be defined in various ways. We prefer to set 6(T) = h(T) /p(T) , where
h(T) is the length of the longest edge and p(T) is the diameter of the biggest
inscribed ball of T. This 6(T) enters directly into approximation estimates for
finite element spaces (see [10]), and therefore also into the convergence theory
of multi-level methods. Thus - in contrast to (C2) - stability is essential with
respect to applicability of the triangulations in numerical algorithms.

Unfortunately, adaptivity, consistency, and stability are not compatible with each
other, because locally refined grids require elements of higher degeneracy to be
closed. Therefore our refinement algorithm is constructed in three steps. We
first define a basic strategy for the subdivision of a single tetrahedron into eight
subtetrahedra of equal volume in such a way that successive refinement of any
initial element T produces stable and consistent triangulations of T. Refine-
ment strategies of this type are called regular. Then we choose a set of irregular
refinement rules for elements that are not refined regularly but share a refined
edge or side of another element. These irregular refinements are only used for
the closure, i.e. to satisfy the consistency condition.

Both regular and irregular refinement rules are local I in the sense that they are
applied to single elements. In contrast, the third and final step consists in a
superior global refinement algorithm that describes how the local rules can be
combined and rearranged in order to ensure consistency and stability at the
same time. For this purpose, we introduce some additional global conditions.
Before studying the local and global strategies in detail, we briefly discuss some
well known methods for the 2D case and the difficulties arising in three
dimensions.

1.1 Local Refinements in 2D

For two-dimensional triangular grids, refinement methods satisfying (C1-3) are
well known. Perhaps the most popular one is the combination of red (regular)
and green (irregular) refinements which has been proposed by R. E. Bank et al.
in [3] and then implemented into the well known multigrid code PLTMG [2]. A
red refinement subdivides a given triangle into four congruent ones by connect-
ing the midpoints of its edges. Green refinements are only used to close
triangulations and consist of simple bisections connecting one edge midpoint
and the opposite comer.

1These should not be confused with usual local refinements in the sense of adaptivity.

358 J. Bey

A second major class of 2D refinement methods is based on bisections only.
These bisection methods can be distinguished by their way of preserving
stability. M. C. Rivara, for example, uses the longest edge for bisection [17].
Although the number of generated congruence classes may be infinite, her
method can be shown to be stable. In contrast, the algorithm of W. F. Mitchell
produced triangles of at most four congruence classes by dividing the edge in
opposition to the newest vertex ([16]).

Note that two successive newest-vertex-bisections - provided the second step is
applied to both sons - divide a given element into four subtriangles of equal
volume and thus can be interpreted as one step of a regular 2D refinement
method, since (C1-3) are also satisfied.

The stable refinement of tetrahedral grids is more complex. In contrast to the
2D case, there is obviously no way to divide any given tetrahedron into eight
congruent ones. Nevertheless, it is possible to extend both of the regular
refinement strategies to three dimensions. For this purpose algorithms have
been developed by several authors during the last years. Three-dimensional
bisection methods have been presented, e.g. by E. Baensch [1], and J. M. L.
Maubach [15], whereas the 3D analogon of Bank's red refinement strategy was
introduced independently by S. Zhang, in [19] and the author in [5].

The second strategy forms the basis of this paper. It is marked by the fact that
for any initial tetrahedron it produces elements of at most three congruence
classes, no matter how many successive refinement steps are performed. Note
that the N-dimensional generalization of this method was proposed already in
1942 by H. Freudenthal [11].

1.2 Global Refinement Algorithm

The global algorithm describes how the local rules can be combined in order to
generate stable sequences of consistent triangulations. It is based on the
following two restrictions:

(C4) Irregular elements are never refined.
(C5) T ~ ~ U ~ + 1 implies T ~ ~ for all 1 > k, that is, if an element is not refined

passing from ~ to ~ +1, then it remains unrefined in any ~ , l > k.

Here irregular elements are those resulting from irregular refinements. All other
elements are called regular. Condition (C4) prevents the irregular refinements
from destroying the stability of the regular ones and induces smooth transitions
between regions of varying refinement depth. Condition (C5) does not really
restrict the set of possible triangulations but allows the unique reconstruction of
the complete sequence J0, . . . , ~ , if only J00 and ~ are known. Thus it makes
sense to assign to each element T a level index l which is given by l--
min{kLT e~kk}.

Tetrahedral Grid Refinement 359

There are mainly two reasons to require (C5). First, the size of any given
element can be estimated by the size of an ancestor using the corresponding
level distance, and thus (C5) is a usual requirement in the theory of multi-level
methods (cf. [18]). On the other hand, the representation of the global algorithm
is essentialy simplified, because it canbe formulated in terms of operations that
refer to all elements of a common level (see Section 3).

Conditions (C4,5) often lead to misunderstandings, which are caused by the
wide-spread assumption that every refinement step is applied to the momentary
finest triangulation ,~ to produce the next finer triangulation ~ + 1 in such a
way that J00,... ,3~k and ~ + 1 satisfy (C1-5). An algorithm of this type would be
less useful because, first, it does not take into consideration partial coarsening,
and second, (CA, 5) prohibit supplementary refinements of temporarily unrefined
regions. Both will be necessary at least in time-dependent numerical applica-
tions.

Our view of a refinement algorithm is more general and not restricted to the
finest grid only. Given any input sequence J 0 , - - - , ~ , it produces another output
sequence J 0 ' , . . . , ~ ' that satisfies the above conditions but does not have to
contain any of the input triangulations with exception of Y0' =~0. In addition,
we do not require l = k + 1, but allow l ~ {k, k _+ 1} to catch also pure coarsen-
ing.

Under these circumstances, (C4) and (C5) lose their restrictive character. To
maintain (C4), irregular refinements can be substituted by regular ones if an
irregular element or one of its neighbors is assigned for further subdivision.
Temporarily unrefined elements can be refined in agreement with (C5) by
making sure that the sons are inserted at the correct level. These rearrange-
ments, as well as possible coarsenings, are also tasks of the global algorithm.

From this point on, the paper is organized as follows. In Section 2 we present
the basic regular refmement method for tetrahedral elements and add some
irregular rules for the closure. Some advantages of our method in comparison
with the bisection methods ([1], [15]) are discussed. In Section 3 we then describe
the global refinement algorithm. It is formulated independently of any specific
programming language and consequently does not use prescribed data struc-
tures as, for example, records or pointers. Instead, it operates on abstract
objects like elements, edges, and nodes. Finally, in the Appendix, the stability
proof for the regular refinement method from Section 2 is delivered subse-
quently.

2. Tetrahedron Refinement

In this section we present the local refinement strategies for single elements.
The basic regular refinements, as proposed in [5], [19], produce consistent and

360 J. Bey

stable triangulations of any given initial tetrahedron. Irregular refinement rules
are used for the closure only.

2.1 Regular Refinement

Let T be any given tetrahedron. We are looking for a subdivision of T into
eight subtetrahedra T 1 T 8 of equal volume, in such a way that each corner of a
son T i coincides with either a corner or an edge midpoint of T.

Therefore we first connect the edges of each face triangle of T in the same way
as in the two-dimensional regular refinement (Fig. 1). Then we cut off four
subtetrahedra at the corners which are congruent with T. In the interior of the
remaining octahedron there are three parallelograms, as shown in Fig. 2.
Cutting the octahedron along two of these parallelograms, we obtain four more
subtetrahedra. Each choice of two cut parallelograms corresponds to one of
three possible diagonals, as shown in Fig. 3.

Figure 1. Regular refinement
of the faces

Figure 2. Interior parallelograms

Figure 3. Interior diagonals

Note that the eight subtetrahedra are of equal volume, but the interior ones are
not congruent with T in general. Therefore the question arises, which of the
possible diagonals should be chosen in successive refinement steps. It has been
shown in [19] that the wrong choice may lead to degenerated elements. In [5],
however, we introduced a simple algorithm which for any initial element
generates subtetrahedra of at most three congruence classes, no matter how
many successive refinements are performed. Thus the stability of the generated
triangulations is preserved.

To describe the algorithm we assume any tetrahedron T to be given by an
ordered sequence of its vertices: T = [x0,xl,x2,x3]. For 0 < i, j < 3, i ~ j, we

Tetrahedral Grid Refinement

denote by xo: = (x i - } - X j)//2 the edge midpoint x i
refinement algorithm can be formulated as follows:

Algorithm RegularRefinement (T)
C

divide T = [x 0,x 1,x 2 ,x 3] into the subtetrahedra Ti, 1 < i < 8, given by

T 1 := [Xo,xol,x02 , x03],
T 2 := [xol ,Xl ,x12 ,x13],

T 3 := [x02 ,x12 ,x 2 ,x23],

T 4 := [x03 ,x13 ,x23 ,x 3],

361

and xj. Then the regular

T 5 := [xol ,x02 ,x03 ,x13],

T 6 := [xol,x02 ,x12 ,Xl 3] '

T 7 := [x02 ,x03 ,x13 ,x23],

T 8 := Ix02 ,x12,x13,x23].

The subtetrahedra T1,...,T 4 are those from the corners which are congruent with
T, whereas Ts,. . . , T 8 originate from the remaining octahedron. The chosen
diagonal is given by the vertices x02 and x13 that are common to all interior sons.
Consequently the diagonal is implicitly characterized by the order of vertices,
and thus the latter one is essential for the algorithm. The maximum number of
generated congruence classes depends on the definition of congruence :

Definition. Two tetrahedra T1, T e are defined to be congruent, if they can be made
to coincide by a rigid motion and a positive or negative scaling, i.e., if there exists a
scaling factor c -r O, a translation vector x, and an orthogonal matrix Q such that

T 1 : x + cQT2: = {x + cQx'l x' ~ T2}.

Of course congruence represents an equivalence relation and therefore all
tetrahedral elements can be divided into congruence classes. In the following
theorem we state that for any initial tetrahedron the above algorithm produces
elements of at most three congruence classes, no matter how many successive
refinement steps are performed. This fact immediately implies stability.

Theorem 1. For any initial tetrahedron T, recursive application of algorithm
Regular-Refinement produces consistent and stable triangulations of T. Moreover, all
generated elements belong to one of at most three congruence classes.

Proof." We just sketch the proof at this point and refer to the Appendix for
details. It is based on the dissection of the unit cube into six tetrahedra passing
into each other by permutation of their co-ordinates. It turns out that applying
algorithm RegularRefinement to each of them yields the same triangulation as
when we first divide the cube into eight subcubes which again are subdivided
into six tetrahedra as indicated above. This process can be repeated, and the
assertion follows by induction and the usual affine transformation argument. []

362 J. Bey

Remark 1. Although the vertex numbering is given for generated elements per
definition, there is some freedom in choosing the vertex order of initial ele-
ments. In [19], S. Zhang has shown that the maximum measure of degeneracy of
the sons is minimized if the vertices of any initial tetrahedron T are numbered
in such a way that the diagonal between x02 and x13 is as short as possible.
Extending this idea, he investigates a second strategy that chooses always the
shortest diagonal for refinement. He could show that this shortest-interior-edge
strategy is equivalent to the method presented above, as long as it is applied to
initial elements with non-obtuse faces and suitable vertex order. Otherwise, for
elements with at least one obtuse triangle, shortest-interior-edge subdivision may
generate any number of congruence classes. In this case stability remains to be
proven.

Remark 2. In 1942, H. Freudenthal proposed a method for the stable refinement
of N-dimensional simplicial grids [11]. It turns out that the three-dimensional
case of his method is equivalent to the algorithm presented above. Bank's red
refinements correspond to the case N = 2. It can be shown that for general
N_>2 the number of generated congruence classes is given by N! /2 . In
addition, one can prove that this number is optimal in the sense that any other
regular refinement method based on (C1) produces at least N ! / 2 congruence
classes for almost all initial N-simplices, provided that sufficiently many re-
finement steps are performed (see [6]). Furthermore, the proof of Theorem 1 in
the Appendix - which also carries over to the N-dimensional case - indicates
that all generated elements of a certain congruence class can be made to
coincide just by translation and scaling. A rotation - as allowed by Definition 1
- is not necessary. These facts can be used to increase the efficiency of various
algorithms based on such grids. In finite-element or finite-volume applications,
for example, the assembling of local stiffness matrices represents one of the
most time-consuming tasks that can be considerably improved by calculating and
storing just once data that depend on the elements' level and congruence class
only.

Remark 3. The newest-vertex-bisection of Mitchell, [16], has been generalized to
N ___ 2 dimensions by J. M. L. Maubach [15]. It can be shown that this method
produces 2 N-2. N! congruence classes provided that N successive bisections
(each applied to all possible sons) are considered as one (regular) refinement
step. Moreover, these 2 N- 2. N! congruence classes contain those N ! / 2 classes
generated by Freudenthal's algorithm. Therefore - in comparison with 3D
newest-vertex-bisection - algorithm RegularRefinement produces only a quarter of
the number of congruence classes but at most the same maximum measure of
degeneracy.

A second advantage of our method is given by the symmetric subdivision of the
triangular faces 2, which allows regular refinement of adjacent elements without

2This argument applies to the case N = 3 only.

Tetrahedral Grid Refinement 363

consistency problems. In contrast, bisection methods may be also classified by
their way of maintaining consistency even in the case of non-adaptive, global
refinements (cf. [1, 15-17]). On the other hand, bisection methods are usually
preferred in combinatorial algorithms (e.g. for fixpoint approximation), where N
is very large and a refinement into 2 N sons per element makes no sense.

2.2 Irregular Refinements

As mentioned above, algorithm RegularRefinement can be applied to adjacent
elements without consistency problems. In the case of adaptive refinements,
however, only a subset of the given tetrahedra will be assigned for regular
subdivision, and thus triangulations have to be closed by further irregular
refinements in order to satisfy the consistency condition. We call this procedure
the green closure in analogy to Bank's algorithm for the two-dimensional case,
[3].

The 2D green closure can be realized by simple bisections if elements with two
or more subdivided edges are refined regularly. This strategy is also used in
PLTMG [2], but has the disadvantage that under certain circumstances regular
refinements can propagate as in a game of dominoes. This expansion of the
refined area can be prevented by providing a complete set of refinement rules,
that is, one for every possible edge refinement pattern. In 2D there are 23 = 8
different patterns for the three edges of a triangle. The full pattern corresponds
to a regular refinement and the empty pattern indicates no refinement at all.
The remaining six patterns can be divided into two types with one and two
refined edges, respectively. The latter case can be closed by connecting the
midpoints of these edges and then one of them to the opposite corner.

In three dimensions there are 26 = 64 possible edge refinement patterns. Using
symmetry arguments, the 62 irregular cases can be divided into 9 different types.
For practical reasons we do not specify a complete set of irregular rules for
these 9 types - which indeed is possible - but restrict ourselves to the four types
shown in Fig. 4.

| | | |
Figure 4. Irregular refinements for the green closure in 3D

These four types are considered also in [8]. Type (1) is applied if one neigh-
boring element is refined regularly but no other edge is subdivided. Type (2)

364 J. Bey

corresponds to elements with exactly one refined edge, and types (3) and (4)
apply to two refined edges on a common face and in opposition, respectively.
The remaining cases are handled according to the following instruction:

(C6) I f three or more edges are refined and do not belong to a common face, then
the element is refined regularly.

Remark 4. Note that type (3) refinements require special care in order to
preserve consistency even over the critical side with two refined edges. There-
fore it is necessary to coordinate the refinements of both elements sharing this
side.

Remark 5. In consequence of (C6), a domino effect may also occur in certain
situations. In practice, however, we observed that the expansion of regularly
refined regions caused by (C4) is rather dominating.

3. Global Refinement Algorithm

The global refinement algorithm describes how the local rules from Section 2
can be combined and rearranged in order to generate stable sequences of
consistent triangulations. It is formulated independently of any specific pro-
gramming language and consequently does not use prescribed data structures as,
for example, records or pointers. For these, we refer to [7], [14], and the
references therein. Instead, our algorithm operates on some basic abstract
objects.

3.1 Abstract Data Structures

The basic objects we are dealing with are elements, nodes, and edges. These are
distributed over the grids G k of level k = 0,..., kma x in the following way: G O
contains the elements, nodes, and edges of triangulation J0, whereas G~, k > 0
consists of those elements in ~ which do not already belong to ~ _ 1, as well as
their edges and nodes. The objects of grid G k are said to be of level k.
Condition (C5) implies that the elements of level k contain those of level k + 1.

For any level k node N belonging to at least one refined level k element, there
is a succeeding node N ' with equal co-ordinates on level k + 1, which in this
case is called the son of N. Two nodes of the same level k are defined to be
neighbors, if they are endnodes of a common level k edge. Two elements of the
same level are neighbors, if they share a common triangular face.

The basic objects are now connected by specifying some required references
between them. These are summarized in the following list. Given any element,

Tetrahedral Grid Refinement 365

for example, we assume to have access to its nodes, edges, neighbors, and sons.
The (maximum) number of references to objects of a special type is given in
parentheses. (< n) items indicate that some or all of these references may be
missing. Unrefined elements, for example, have no sons. Note that the number
of edges starting from a given node is not restricted a priori but of course is
bounded due to stability.

R e f e r e n c e l ist:

. E l e m e n t

. E d g e

. N o d e

Nodes (4), Edges (6), Sons (< 8), Neighbors (< 4).
Endnodes (2), Midnode (< 1).
Edges (~), Son (< 1).

For a simple representation of the refinement algorithm, we describe the
current state of an element T by some self-explaining, symbolic constants. For
example, "T is refined-regularly" means that T has been refined by algorithm
RegularRefinement. Otherwise T is either refined-irregularly or unrefined. Unre-
fined elements are called leaf elements.

On .the other hand, each element is marked for a certain refinement rule that
may or may not coincide with its actual refinement. Let R be one of the local
refinement rules of Section 2, then "T is marked-for-refinement-by-R" indicates
that T shall be refined according to R. Mostly, it will be sufficient to know
whether R is regular or irregular. In this case, we say that T is marked-for-regu-
lar-refinement and marked-for-irregular-refinement, respectively. In addition, T
may be marked-for-no-refinement or even marked-for-coarsening. In the latter
case, T is allowed to be removed. Finally, T is marked-according-to-refinement, if
mark and actual refinement rule of T coincide. This is just the state that all
elements are expected to have after termination of the global algorithm.

In a similar way, we describe the state of an edge E of T. If T is marked-for-
refinement-by-R where R is a rule that is going to refine E, then we say that E is
marked-for-refinement-by-T. E is just marked-for-refinement, if there is at least
one element T with edge E such that E is marked-for-refinement-by-T.

Remark 6. Given any edge E, we assume to be able to decide immediately -
without looking at the elements around it - whether E is marked-for-refinement
or not. In practice, this requirement can be efficiently satisfied by associating to
E a counter N(E) which is updated each time the mark of an element T around
E is changed.

3.2 The Algorithm

We start the presentation of the global refinement algorithm by specifying the
expected input, action, and output .

366 J. Bey

Input: We assume that the global algorithm is applied to a sequence Go,...,Gkmox
of grids, which - in the way indicated above - correspond to triangulations that
satisfy conditions (C1-5). Each leaf element is either marked-for-regular-refine-
ment, marked-for-no-refinement, or marked-for-coarsening. These leaf element
marks are usually determined by application of an error estimator. All other
elements are assumed to be marked-according-to-refinement.

Action: The action of the algorithm is determined by the leaf element marks.
These are evaluated in the following way: Regular leaf elements that are
marked-for-regular-refinement are refined regularly. Irregular elements marked-
for-regular-refinement are substituted by regular elements. Other marks of irregu-
lar elements are ignored. Regularly refined elements are marked-for-no-refine-
ment if all sons are marked-for-coarsening. Finally, the green closure is per-
formed on conditions (C4-6).

Output: The output sequence Gb,..., G),;ox, k~,x >__ 0 with G b = G O and k'~a x
{k,~a~, kma ~ + 1} is required to satisfy the input specification, but in addition we
expect all leaf elements to be marked-for-no-refinement. Consequently, applying
the global algorithm to the output sequence again will be of no effect.

The basic structure of the global refinement algorithm is shown in Fig. 5. It
mainly consists of two phases: In Phase I, i.e. loop (1), the different grid levels
are visited in a top-down manner. The leaf element marks are evaluated (2) and
the closure of the next finer level is computed between the regular elements (3).
In Phase II, (4), the grids are visited in reverse order (bottom-up). The closure is
completed (5), unused objects are removed (6), and new objects are generated
(7). Finally, the number of output levels is determined by updating the maximum
level number kma x (8), (9).

Algorithm GlobalRefmement (G O Gk,., x)
{

for k := kma x down to 0 do (1)
{

EvaluateMarks (Gk); (2)
CloseGrid (G~); (3)

For k := 0 to k,~a~ do if (Gk ~ 0) then (4)
{

i f (k > O) CloseGrid (Gk); (5)
Unrefine Grid (G k); (6)
RefineGrid (G k); (7)

}
if (Gk, ~ = O)then k,~x : = k m a x - 1; (8)
else if (Gk 1 r ~1) then km~ := km~ + 1 (9)

}
Figure 5. Global refinement algorithm

Tetrahedral Grid Refinement 367

In Phase II, the execution of (5) for k = 0 is omitted because level 0 elements
are regular per definition. Since only leaf elements can be removed, G k = ~ in
line (4) is possible for k = kma x only. In this case, loop (4) is prematurely
terminated and kma x is decremented by one (8). Otherwise, kma ~ is incremented
if there are new elements of level km~ ~ + 1 (9).

The two phase top-down/bottom-up structure of algorithm GlobalRefinement
goes back to P. Bastian, who implemented a two-dimensional version for his UG
code [4]. The structure of the subroutines, however, is different. These are
explained in the following subsection.

3.3 The Subroutines

Algorithm GlobalRefinement works element-based in the sense that all subrou-
tines step over the elements of a given level. Function EvaluateMarks is
responsible for evaluation and manipulation of the element marks according to
the above specified action of the algorithm. To satisfy (C4), irregularly refined
elements are marked-for-regular-refinement if at least one son has an edge that is
marked-for-refinement (6). This includes the case that the son itself is marked-
for-regular-refinement.

Function EvaluateMarks(G~):
{

for all elements T ~ G~: (1)
{

if (T is refined-regularly and all sons of T are marked-for-coarsening) (2)
then T is marked-for-no-refinement; (3)

if (T is refined-irregularly) then (4)
if (at least one edge E of a son of T is marked-for-refinement) (5)

then T is marked-for-regular-refinement; (6)
else T is marked-for-no-refinement; (7)

}
}

After termination of EvaluateMarks, all marks for irregular refinements have
been removed (in either (6) or (7)). If not substituted by a regular one, any
irregular refinement must be confirmed by the following closure that is com-
puted in function CloseGrid.

Function CloseGrid(Gk):
{

let Q be the set of all regular elements T ~ G~ having at least one edge E
that is marked-for-refnement but not marked-for-refinement-by-T;

(i)

368 J. Bey

while (Q 4~ O) (2)
{

choose an element T ~ Q; (3)
Q: = O \ {T}; (4)
CloseElement (T); (5)

}

In function CloseGrid, the candidates for the closure are stored in a set Q (1).
Candidates are all regular elements T with an edge E that is marked-for-re-
finement by another element but not by T. Thus, elements marked-for-regular-re-
finement cannot be candidates. As long as Q is non-empty, an arbitrary element
is poped out of Q and passed to function CIoseElement to determine a suitable
refinement rule.

Function CloseElement (T):
{

Search for a refinement rule R refining exactly those edges E of T (1)
that are marked-for-refinement;

if (JR is found) then (2)
(

if (R is of type (3) and T' ~ Q for the critical neighbor T' ofT) (3)
then fit R to the mark of T' ; (4)

T is marked-for-refinement-by-R; (5)
}
else
(

for all edges E of T that are not marked-for-refinement:
Q: = Q u {T' r TIE is an edge ofT'};

T is marked-for-regular-refinement;

(6)
(7)
(8)

If a suitable R cannot be found, rule (C6) is applied and T is marked-for-
regular-refinement (9). In this case, all elements around those edges of T that
previously have not been marked-for-refinement are now new candidates for the
closure and hence added to Q (7). Note that the definition of Q as a set implies
that every element occurs in Q not more than once.

Given any element T, function CIoseElement at first looks for a (regular or
irregular) refinement rule R with an edge refinement pattern matching exactly
the edges o f T that are marked-for-refinement (1). If such an R exists, T is
marked-for-refinement-by-R (5). Special care is necessary if R is of type (3) (cf.
Remark 4 in Section 2.2). In this case, R must be fitted to the mark of the
critical neighbor sharing both of the edges that are marked-for-refinement (4),
provided this neighbor does not belong to Q and thus is also marked for a type
(3) refinement.

Tetrahedral Grid Refinement 369

Remark 7. In statement (7) of CloseElement, we refer to all elements T' sharing
a given edge E. Of course, it is not necessary to store with each edge a list of
surrounding elements. Since one of them, T, is known, we can make use of the
element neighborhood relations to determine the others, provided that edges at
the boundary belong to exactly two triangular boundary faces 3.

CloseGrid is called twice for every grid level. In Phase I, the closure of level
k + 1 is computed between the present regular elements of level k. Irregular
level k elements that would be candidates for the closure are recognized during
the following execution of function EvaluateMarks at level k - 1 (statement (5)).
In this case, their fathers are marked-for-regular-refinement in EvaluateMarks,
(6), and thus, these irregular elements are substituted by regular ones in Phase
II, function RefineGrid, just before CloseGrid is called a second time at level k.

Here the computation of the level k + 1 closure is extended to the additional
regular elements of level k, which are initially marked-for-no-refinement (see
RefineGrid, (6)). To prove consistency (Theorem 3), we will show later on that in
this second phase (C6) is never applied, which means that no further edges are
marked-for-refinement. Therefore, consideration of these new elements for the
closure is sufficient.

Remark 8. EvaluateMarks and CloseGfid only manipulate the marks of elements
in G k but do not change their actual refinements, i.e. do not create or remove
any objects in Gk+ 1. This is done in UnrefineGrid and RefineGrid, respectively.

UnrefineGrid removes unused elements, nodes, and edges from the following
level (7). For this purpose, the remaining objects are marked-for-re-use (5). Of
course, we assume that these marks do not effect the refinement marks of
elements or edges. Re-used objects are all sons of elements that are marked-
according-to-refnement, as well as their edges and nodes. At the beginning of
function UnrefineGrid, a possible new grid level G~,~x+ 1 is initialized (1) and the
re-use marks of all level k + 1 objects are reset (2), (3).

Function UnrefineGrid (Gk):
{

if (k = kma x) then Gk+ 1: = 0; (1)
for all objects O ~ G~+I: (2)

0 is not marked-for-re-use; (3)
for all refined elements T ~ G k that are marked-according-to-refinement: (4)

all sons of T, their edges and nodes are marked-for-re-use; (5)
for all objects 0 ~ G~+ 1 that are not marked-for-re-use: (6)

remove O from Gk + 1; (7)
}

3In fact this is a condition on YL

370 J. Bey

In function RefineGrid, the computed refinements are actually realized. At first,
in (2), any remaining marks for coarsening are switched into marks for no
refinement in order to let the concerned (leaf) elements be marked-according-
to-refinement.

The main loop (3) is now executed for each element T ~ Gk that is not
marked-according-to-refinement. When entering the loop, the state of T is
unrefined - because all sons have been removed in function UnrefineGrid - and
therefore T must be marked for either regular or irregular refinement. Now T
is refined according to this mark which means that the corresponding son
elements are created (4). All sons are marked-for-no-refinement (6) and added to
Gk+ 1 (7). Missing nodes and edges of level k + 1 must be created (9) in addition
to those which have been marked-for-re-use in function UnrefineGrid. Finally, in
(10), the existing neighbors of all sons are determined to update the neighbor-
hood graph of level k + 1.

Function RefineGrid (Gk):
{

for all elements T ~ G k that are marked-for-coarsening: (1)
T is marked-for-no-refinement; (2)

for all elements T ~ G k that are not marked-according-to-refinement: (3)
{

refine T according to the rule that T is marked for; (4)
for all sons T' of T: (5)
{

T' is marked-for-no-refinement; (6)
Gk+l: = Gk+ 1 U {T'}; (7)
find existing nodes and edges of T' in Gk + 1; (8)
create missing nodes and edges of T' and add them to Gk + 1; (9)
find existing neighbors of T' in Gk+ 1; (10)

}
}

}

When function RefineGrid is finished, all elements of level k are marked-accord-
ing-to-refinement and thus one requirement of the output specification is satis-
fied. (C1-5) are established with Theorem 3 in the following subsection. To
prove, the optimal complexity of algorithm GlobalRefinement, we have to be
aware that the amount of work for (8) and (10) is bounded by a constant (i.e.
o(1)):

Remark 9. Since we have access to the existing son nodes and edge midnodes of
T, we can find the nodes of T' in (8) with constant amount of work. The same is
also true for the edges of T' because we know all edges starting at a given node.
In (10), the neighbors of T' can be found in O(1) operations between the sons
of T and the sons of neighbors of T. Here it is sufficient to consider those
neighbors of T which are already marked-according-to-refinement.

Tetrahedral Grid Refinement 371

3.4 Complexity and Correctness

Theorem 2. The amount of work of algorithm GlobalRefinement is proportional to
the number n*ut of leaf elements in the output sequence G'o,...,G'k-ax.

Proof." Let n k be the number of elements of level k and n = no + ... + nkmo x be
the total number of elements of the input sequence. Taking into account
Remarks 6 and 9, it is clear that each of the functions EvaluateMarks, Unre-
fineGrid, and RefineGrid performs a limited number of operations for every
element and thus the amount of work for these functions on level k is of order
O(nk). The same is also true for function CloseGrid, because every element can
be added to Q no more than six times - once for every edge - in statement (7)
of function CloseElement. Therefore the complexity of algorithm GlobalRefine-
ment is of order O(n).

Let now ni* ~ be the number of leaf elements of the input sequence. Then the
geometric growth of the number of leaf elements with increasing refinement
depth implies n < 2n~. The local refinement and coarsening rules imply
1/8nin* -< nou t* _< ~nin.~ * In combination with the O(n) result, these inequalities
complete the proof. []

If we consider the corresponding triangulations ~ ' instead of the grids G)~, then
the leaf elements of the output sequence are just the elements of the finest
triangulation 3~k.x. It follows that the amount of work of algorithm GlobalRe-
finement is even proportional to the number of nodes of ~ ' , x , provided the
generated triangulations are stable. The following theorem ensures stability as
well as consistency.

Theorem 3. Let Joo be a consistent initial triangulation of the polyhedral domain O.
Then recursive application of algorithm GlobalRefinement - in alternation with any
given strategy for the generation of the leaf element marks - produces sequences of
triangulations that satisfy conditions (C1-5).

Proof: Of course, (C1) follows from the definition of the local refinement rules
in Section 2. (C4,5) are satisfied by construction of the algorithm. Stability (C3)
follows from the stability of the regular refinements (Theorem 1) in combination
with (C4).

Still, consistency remains to be proven. This is done by induction over the grid
levels k. The consistency of J00' =Y00 is given by assumption. Let now ~ ' be
consistent for a fixed 0 < k < kma x. After application of function CloseGrid in
Phase I, the already existing regular elements of G k are marked for consistent
refinement. In Phase II, CloseGrid operates on those additional regular ele-
ments - generated by the preceding RefineGrid call - which have an edge that
is marked-for-refinement.

372 J. Bey

We now have to show that it is sufficient to consider these new elements.
Therefore let E be any edge of level k that is marked-for-refinement. The
consistency of ~ ' implies that - at least inside ~2 - E is completely surrounded
by level k elements. Moreover, these elements are regular due to statement (6)
of function EvaluateMarks. Thus the second call to CloseGrid yields a consistent
triangulation ~'+1 of S2, provided that no additional edges are refined by
applying (C6) in CloseElement, (8).

To see that this cannot be the case, assume that (C6) is applied to a just created
regular element T of level k. Then there are at least three edges of T that are
marked-for-refinement but do not belong to a common face. Without loss of
generality we may assume that (C6) is applied the first time on this level.
Therefore the three edges of T did exist and have been marked-for-refinement
already in Phase I. It follows that at this time also the father element 3-' of T
has had at least three refined edges on more than one face. Thus T' was a
regularly refined element, in contradiction to the assumption that T is a new
regular element. Consequently (C6) is never applied in Phase II, which proves
consistency. [:1

3.5 The Adaptive Grid Manager AGM 3 D

The AGM ~ D code contains our actual implementation of the algorithm pre-
sented above. This Adaptive Grid Manager provides a set of problem indepen-
dent tools for the adaptive numerical solution of PDE's in three space dimen-
sions. It originates from an early three-dimensional version of Bastian's 2D code
UG (Unstructured Grids, cf. [4]). Many of the basic concepts of UG also entered
into ~U~GM ~ D, in particular the two phase top-down/bottom-up structure of the
global refinement algorithm.

The AGM 3~ code is written in ANSI C, and the basic data structures are
especially designed for the application of multigrid and multi-level algorithms.
The refinement procedure of AGM 3 D is somewhat more advanced than the
algorithm described in this paper. In particular, it includes the approximation of
curved boundaries by projection of boundary edge midnodes. Graphical repre-
sentation of generated grids is also possible. For this purpose, the multi-level
structure is used for an efficient solution of the hidden-elements problem. For a
more detailed description of AGM 3 e and in particular the refinement routines,
we refer to the manual ([7]). Both code and manual can be obtained from the
author.

To finish the representation of the global algorithm, we show two pictures of
adaptively refined triangulations that have been generated by AGM 3D. A
refinement of the unit cube arising during the solution of a convection-diffusion
problem is shown in Fig. 6. For an improved three-dimensional impression, the

Tetrahedral Grid Refinement 373

cube has been cut open along its main diagonal. Here the smooth transitions
between regions of varying refinement depth caused by (C4) can be observed
especially well. Figure 7 shows the lower half of a refined torus. To approximate
its curved boundary, every generated midnode of a boundary edge has been
projected to the boundary. Note that projection to a concave part of the
boundary may destroy stability if the initial triangulation J0 is not suitably
chosen.

Figure 6. Triangulation of the unit cube F igure 7. Triangulation of a toms

Appendix

It remains to complete the proof of Theorem 1 in Section 2. Its leading part can
be found implicitly in the early paper of H. Freudenthal, [11], who investigated
the stable refinement of N-dimensional simplicial grids. At the beginning, we
recall the assertion of Theorem 1:

Theorem 1. For any initial tetrahedron T, recursive application of algorithm
RegularRefinement produces consistent and stable triangulations of T. Moreover, all
generated elements belong to at most three congruence classes.

Proof." Of course, stability follows from the last statement. The proof of Theo-
rem 1 is based on the dissection of the unit cube C = [0,1] 3 into six tetrahedra
passing into each other by permutation of their co-ordinates. For any permuta-
tion ~ ~ $3, the tetrahedron T,~= 0 i 2 3 [x,~,x~.,x,~,x,~] is defined to be the closed
convex hull of the corners

0 _ (0 , 0 , 0) r , i _ i - l +e~(i) ' i 1,2,3, (1) X~r - - X~r - - X~r =

where e 7 denotes the j th standard unit vector in ~3. The definition of the
convex hull implies the representation

T,~={x ~ C]0<x~(3)<x~(2)_<x~(1)<I), ~ ~ S 3. (2)

374 J. Bey

Clearly J00 =~00(C): = {T~.lrr ~ S 3} is a triangulation of C. Moreover, one may
easily verify that for ~r @ 7r' the intersection of T~ and T./ is a common lower
dimensional subsimplex, and thus Y00 is consistent. According to [13], J0 is called
the K u h n - t r i a n g u l a t i o n of C. It is shown in Fig. 8.

(o,o,o)
Figure 8, Kuhn-triangulation of the unit cube

Another triangulation ~ of C can be defined in the following way: Let 2 be
the canonic subdivision of C into eight subcubes of edge length 1//2, that is

1 3
2 : = {Cx[x ~ {0,g} }, (3)

where Cx, x ~ {0,1/2} 3 is given by

1 . { x + 1 ' C x : = x + ~ C . = yx x (4)

The Kuhn-triangulation of any subcube C x is given by the tetrahedra Tx,,~: = x +
1 /2 T=, ~- ~ S 3. Consequently,

(rx,=ix 3, s3} (5)
is a triangulation of C. The consistency of 4 follows from the consistency of ~00
and the fact that Kuhn-triangulations of adjacent subcubes Cx, C x, induce a
unique 2D-triangulation of the common face.

We now show that ~ is a refinement of J0 in the sense of condition (C1).
Given any x ~ {0,1/2} 3 and ~r ~ $3, we are looking for a permutation
rr* = ~r*(x,~-) such that T,~ c T~r*. Therefore let 0 < k < 3 be the number of
entries x i of x with xi = 1/2. It follows that there are k unique indices i l , . . . , i k

{1,2,3} satisfying

1 1 _< il < ... < i~ _< 3, x~(il) x~(i~) = 3, (6)

whereas the remaining 3 - k indices i~+l, . . . , i 3 ~ {1,2,3} can be ordered such
that

1 < ik+ 1 < "'" < i3 N 3, X'rr(ilc+ 1) x=(i3) = 0 (7)

Tetrahedral Grid Refinement 375

Here and in the following, for the case k = 0 and k = 3 we skip over those parts
of the corresponding (in)equalities that make no sense. We now define ~- by
z-*(j) = ~-(ij), 1 < j < 3. From the right hand sides of (6) and (7), we conclude
that

1
x,~,O) X~,(k) = ~, X~,(k+l) X,~,(3) = 0. (8)

Further, for any f = (~1 ,~2,~3)T E 1/2 T,~ we have 0 < G(3) < ~,(2) < ~(1) < 1/2.
Using the left hand sides of (6) and (7), we obtain

1
0 < ~,*(k> --< "'" < G*O) < �89 0 < ~*(3) < "'" < ~:,,*(k+ 1) < Y. (9)

Combining (8), (9) with (2) proves Tx, ~ c T,~,. Of course, by construction, any
corner of T,~ corresponds to either a comer or an edge midpoint of T~, and
thus ~ is in fact a refinement of J00 in the sense of (C1).

At this point, we have shown the existence of a refinement method for the
elements of the Kuhn-triangulation Y00 of C. This method yields the same
triangulation ~ that is obtained if we first subdivide C into the eight subcubes
C x ~ 2 and these again by Kuhn-triangulation. Figure 9 illustrates these equiva-
lent ways of generating ~ .

I
U

To

B

f

Figure 9. Two ways of generating

We now want to show that ~ is exactly the triangulation which is generated if
algorithm RegularRefinement is applied to all elements T,~ ~ J00, provided their
vertices are numbered according to (1). Therefore we first consider the reference
element To: = T,~d = T(t,2,3 ~ with corners (0,0,0) 7", (1,0,0) r, (1,1,0) r and (1,1,1) r.

376 J. Bey

Using algorithm RegularRef inement to refine To, it is easily verified that the
generated sons To,i,1 _< i < 8 can be represented by

1 T o , i = x i + y r 5, x i ~ {0,�89 $ 3 , 1 _ < i < 8 . (10)

If the subsequent order of sons To, i corresponds to the formulation of the
refinement algorithm in Section 2, the start vertices x~ and permutations ~ri,
1N i N 8 are given by

xl = (0 , 0 , 0) r,

(L ! ~ T
X 3 = X 7 = X 8 = ~2~2~ ~]

and

= , , , = o) 2

(1 1 l ' lT
X 4 = \2~2~2] (11)

77"1 = "~'g2 = 5"1"3 = "~'4 = 7 r i d ~

77" 5 = (2 , 3, 1) , "/7" 6 = (2 , 1, 3) , "B" 7 ~ (3 , 1, 2) , '~'8(1, 3, 2) , (12)

respectively. Representation (10) implies To, i ~ ~ for 1 < i < 8. For i # j ,
(11) resp. (12) show that either x~ ~ x] or ~r i ~s ~rj is true. Therefore, To,i, To, j
correspond to different elements T x ,~i, Tx.~ ~ ~ , which are known to have
mutually disjoint interior. Furthermore, we'c~nclude from (10) that the volumes
of all sons sum up to the volume of To, and thus the convexity of T o implies that
the generated refinement of T O coincides with the one induced by ~ .

To obtain the same result for the other elements in Y0, we associate to each ~-
S 3 the corresponding permutation matrix P,~ w h i c h is given by P~ =

(6i,~j))i3j= 1. We then have T ~ = P ~ T o and in particular for the corners x ~ =
P~x~d, 0 _<j < 3. Applying algorithm RegularRef inement to T~ yields the sons
T~, i =P~,To,i, 1 < i < 8. Denoting by ~- o 7r i the composition of ~-, ~i within S 3,
and using the fact that the associated permutation matrix is given by P~o~ =
P ~ P ~ , the analogon to (10) is established by

(13) T,~,i = P~T0, i = P,~x i + ~ T,~o,~ .

Now P,~x i ~ {0,1/2} 3 implies T~, i ~ ~ for each 1 _< i _< 8, ~r ~ S 3. Using the
argumentation from above, it follows that the generated refinement of T~
coincides with the one induced by ~ . Since this is true for any 7r E $3, ~ is in
fact the triangulation generated from Y00 by algorithm RegularRefinement .

In addition to (10), i.e. To, i = x i + 1 /2 T~, we observe that the vertex numbering
assigned to To, i by the refinement algorithm coincides with the one induced by
T~, i.e. the j th corner of To, i is given by x i + 1 /2 x~. This property is preserved
under permutation and remains valid for any element of ~ . If now algorithm
RegularRef inement is recursively applied to the elements of 3~1, it follows by
induction that the generated triangulations ~ , k > 0 of C are given by

~ = { T ~ , r ~ {0,1.2 ~ , . . . , (2k-1) .2 -~) 3, z - E $3} , (14)

Tetrahedral Grid Refinement 377

and thus can also be obtained by first dividing C into 8 k subcubes of edge length
2 -k, which then are subdivided by Kuhn-triangulation.

To finish the proof, let T = [x~ 3] be any non-degenerated tetrahedron,
and let F: T O --+ T be the affme transformation that maps T O one-to-one on T
and in particular x ~ d to x j for 0 < j < 3. F maps edges and edge midpoints of T O
to the corresponding edges and midpoints of T. Therefore recursive application
of algorithm RegularRefinernent to T yields triangulations

~ (T) = { F (7 ~) I 7 ~ e ~ (C) , 7 ~ cZ0}, k=O,1,2,... (15)

The consistency o f ~ (C) implies the consistency of ~ (T) for all k > 0.
Moreover, any T e ~9~(C) of any level of k > 0 can be represented by
7 ~ = i + 2-~T, with suitable ~ ~ ~3, ~. ~ $3" It follows that

F(T) = F~ - 2-kx ~ + 2 -~F(T ,) (16)

is congruent with F(T,). We further observe that for any pair ~r, ~-' e S 3
satisfying ~-'(j) = ~r(4 - j) , j = 1,2,3 we have

- r ~ , = - (1,1,1) r + T~, (17)

implying that F(T~,) is congruent with F(T~). Thus the elements of all triangula-
tions ~ (T) , k > 0 belong to at most three congruence classes. These arguments
complete the proof. []

References

[1] Baensch, E.: Local mesh refinement in 2 and 3, dimensions. Impact Comput. Sci. Eng. 3,
181-191 (1991).

[2] Bank, R.E.: PLTMG: A software package for solving elliptic partial differential equations,
Users' Guide 6.0. Philadelphia: SIAM, 1990.

[3] Bank, R.E., Sherman, A.H., Weiser, A.: Refinement algorithms and data structures for regular
local mesh refinement, In: Scientific computing (Stepleman, R., ed.) pp. 3-17 Amsterdam:
IMACS/North-Holland, 1983.

[4] Bastian, P.: Parallele adaptive Mehrgitterveffahren. PhD thesis, Univ. Heidelberg, 1994.
[5] Bey, J.: Analyse und Simulation eines Konjugierte-Gradienten-Verfahrens mit einem Multilevel

Pr/ikonditionierer zur Lfsung dreidimensionaler eifiptischer Randwertprobleme fiir massiv
parallele Rechner. Master's thesis, Institut fiir Geometrie und Praktische Mathematik, RWTH
Aachen, 1991.

[6] Bey, J.: A robust multigrid method for 3d convection-diffusion equations. PhD thesis, Univ.
Tiibingen (in preparation).

[7] -3D Bey, J.: AGM Manual. Tech. Rep., Univ. Tiibingen, 1994.
[8] Bornemann, F.A., Erdmann, B., Kornhuber, R.: Adaptive multilevel methods in three space

dimensions. Int. J. Numer. Mete Eng. 36, 3187-3203 (1993).
[9] Bramble, J.H., Pasciak, J.E., Wang, J., Xu, J.: Convergence estimates for multigrid algorithms

without regularity assumptions. Math. Comp. 57, 23-45 (1991).
[10] Ciarlet, P.G.: The finite element method for elliptic problems. Amsterdam: North-Holland,

(1978).
[11] Freudenthal, H.: Simplizialzerlegnngen von beschriinkter Flachheit. Ann. Math. 43, 580-582

(1992).
[12] Hackbusch, W.: Mnltigrid methods and applications. Berlin Heidelberg New York Tokyo:

Springer, 1985.
[13] Kuhn, H.W.: Some combinatorial lemmas in topology. IBM J. Res. Dev. 45, 518-524 (1960).

378 J. Bey: Tetrahedral Grid Refinement

[14] Leinen, P.: Data structures and concepts for adaptive finite element methods. Computing 55,
325-354 (1995).

[15] Manbach, J.M.L.: Local bisection refinement for N-simplicial grids generated by reflection.
SIAM J. Sci. Comput. 16, 210-227 (1995).

[16] Mitchell, W.F.: Adaptive refinement for arbitrary finite-element spaces with hierarchical basis.
J. Comput. Appl. Math. 36, 65-78 (1991).

[17] Rivara, M.C.: Design and data structure of a fully adaptive multigrid finite element software.
ACM Trans. Math. Software 10, 242-264 (1989).

[18] Yserentant, H.: Old and new convergence proofs of multigrid methods. Acta Numer. 285-326
(1993).

[19] Zhang, S.: Multi-level iterative techniques. PhD thesis, Research Report no. 88020, Dept. of
Math., Pennstate Univ., 1988.

J. Bey
Mathematisches Institut
Universtit/it Tiibingen
Auf der Morgenstelle 10
D-72076 Tfibingen
Federal Republic of Germany
e-mail: bey@na.uni-tuebingen.de

