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Abstract-- Zusammenfassung 

Tetrahedral Grid Refinement. We present a refinement algorithm for unstructured tetrahedral grids 
which generates possibly highly non-uniform but nevertheless consistent (closed) and stable 
triangulations. Therefore we first define some local regular and irregular refinement rules that are 
applied to single elements. The global refinement algorithm then describes how these local rules can 
be combined and rearranged in order to ensure consistency as well as stability. It is given in a rather 
general form and includes also grid coarsening. 

AMS Subject Classifications: 65N50, 65N55 

Key words." Tetrahedral grid refinement, stable refinements, consistent triangulations, green closure, 
grid coarsening. 

Verfeinerung von Tetraeder-Gittern. Es wird ein Verfeinerungsalgorithmus ffir unstrukturierte 
Tetraeder-Gitter vorgestellt, der m~Sglicherweise stark nicht-uniforme aber dennoch konsistente 
(d.h. geschlossene) und stabile Triangulierungen liefert. Dazu definieren wir zun~ichst einige lokale 
regul~ire bzw. irregulfire Verfeinerungsregeln fiir einzelne Elemente. Der gIobale 
Verfeinerungsalgorithmus beschreibt dann, wie diese lokalen Regeln kombiniert und umgeordnet 
werden k6nnen, so dab sowohl Konsistenz als auch Stabilitfit garantielt sind. Die Formulierung des 
globalen Algorithmus ist sehr allgemein gehalten und erlaubt auch Gitter-Vergr6berungen. 

1. Introduction 

The numerical treatment of partial differential equations includes the solution 
of large systems of equations. For three-dimensional problems, several millions 
of unknowns are no rarity, and - although computational power has grown 
exponentially during the last decades - many interesting real life problems 
could not be solved today, had not the development of efficient algorithms been 
similarly successful. 

Modern applications make use of adaptive techniques to optimize the number of 
unknowns by fitting the corresponding discretization to the present approximate 
solution. For this purpose, the underlying discretization mesh is refined locally 
in regions where improved accuracy is needed, for example, near singularities, 
internal or boundary layers, re-entrant corners, etc. Those regions where the 
solution is expected to be smooth are not refined or can even be coarsened. 

Multigrid or multi-level methods have been proven to be of optimal or nearly 
optimal complexity for the solution of discrete systems arising from a wide range 
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of partial differential equations, in particular the elliptic ones. Because these 
methods are based on discretization hierarchies obtained from successively 
refined meshes, they can be embedded especially well in an adaptive framework. 
This fact is also represented by recent multigrid convergence proofs (see [9] or 
[18]), which no longer require the underlying meshes to be quasi-uniform, in 
contrast to the early theory, e.g. in [12]. 

In industrial practice, however, at least in the three-dimensional case, adaptive 
and/or  multi-level methods are rarely applied, because possible users are often 
deterred from the necessity to generate and manage hierarchies of possible 
highly non-uniform meshes. In particular the refinement of tetrahedral grids 
requires special care to avoid degenerated elements which may lead to deteri- 
orating convergence rates. 

In the present paper we want to show that tetrahedral grid refinement can be 
realized in a very efficient way. Our algorithm includes adaptive refinement as 
well as partial coarsening, and the resulting triangulations are consistent and 
stable. Therefore the algorithm may be useful also in other applications, for 
example in the area of computer graphics for the approximation of smooth 
surfaces. 

We start from the following assumptions. Let O c R 3 be a polyhedral domain, 
and assume that an initial triangulation J0 of O is given, that is, a set of 
non-degenerated tetrahedral elements which cover ~ and are of mutually 
disjoint interior. Usually such initial triangulations should be as coarse as 
possible, just fine enough to resolve the shape of ~ and the coefficient jumps of 
the problem under consideration. Note that in engineering practice the genera- 
tion of useful initial triangulations is a complex and expensive task, but this is no 
subject of the present paper. Here we are concerned with successive refinements 
of J00, that is, we want to generate sequences J0, ~ . . . .  , ~ , . . .  of triangulations 
of g2, which satisfy the following conditions: 

(C1) Nestedness: Each element T ~ ,  k >  0 is covered by exactly one element 
T' ~ _  1, and any comer of T is either a comer or an edge midpoint of T'. T' 
is called the father element of T, and T is a son of T'. 

(C2) Consistency: Each triangulation ~ is consistent, which means that the 
intersection of any two tetrahedra in ~ is either empty, a common face, a 
c o m m o n  edge  o r  a c o m m o n  c o m e r .  

(C3) Stability: The sequence Yoo, 4 , . . .  , ~  . . . .  is stable in the sense that the interior 
angles of all elements are uniformly bounded away from zero. 

The consistency condition prevents so called hanging nodes which for different 
reasons are undesired in many applications. In numerical algorithms, for exam- 
ple, hanging nodes do not represent degrees of freedom and are somewhat 
difficult to handle, because the local correlation pattern of the stiffness matrix is 
disturbed. On the other hand, the asymptotic convergence properties of multi- 
grid or other iterative methods are not essentially affected by the existence of 
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some isolated hanging nodes. For reasons that will become clear later, consis- 
tent triangulations are also called closed. 

The stability condition, (C3), is equivalent to the requirement that some measure 
of degeneracy, 6(T), is uniformly botmded for all elements T. Such measures 
6(T) can be defined in various ways. We prefer to set 6(T) = h(T) /p(T) ,  where 
h(T) is the length of the longest edge and p(T) is the diameter of the biggest 
inscribed ball of T. This 6(T) enters directly into approximation estimates for 
finite element spaces (see [10]), and therefore also into the convergence theory 
of multi-level methods. Thus - in contrast to (C2) - stability is essential with 
respect to applicability of the triangulations in numerical algorithms. 

Unfortunately, adaptivity, consistency, and stability are not compatible with each 
other, because locally refined grids require elements of higher degeneracy to be 
closed. Therefore our refinement algorithm is constructed in three steps. We 
first define a basic strategy for the subdivision of a single tetrahedron into eight 
subtetrahedra of equal volume in such a way that successive refinement of any 
initial element T produces stable and consistent triangulations of T. Refine- 
ment strategies of this type are called regular. Then we choose a set of irregular 
refinement rules for elements that are not refined regularly but share a refined 
edge or side of another element. These irregular refinements are only used for 
the closure, i.e. to satisfy the consistency condition. 

Both regular and irregular refinement rules are local I in the sense that they are 
applied to single elements. In contrast, the third and final step consists in a 
superior global refinement algorithm that describes how the local rules can be 
combined and rearranged in order to ensure consistency and stability at the 
same time. For this purpose, we introduce some additional global conditions. 
Before studying the local and global strategies in detail, we briefly discuss some 
well known methods for the 2D case and the difficulties arising in three 
dimensions. 

1.1 Local Refinements in 2D 

For two-dimensional triangular grids, refinement methods satisfying (C1-3) are 
well known. Perhaps the most popular one is the combination of red (regular) 
and green (irregular) refinements which has been proposed by R. E. Bank et al. 
in [3] and then implemented into the well known multigrid code PLTMG [2]. A 
red refinement subdivides a given triangle into four congruent ones by connect- 
ing the midpoints of its edges. Green refinements are only used to close 
triangulations and consist of simple bisections connecting one edge midpoint 
and the opposite comer. 

1These should not be confused with usual local refinements in the sense of adaptivity. 
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A second major class of 2D refinement methods is based on bisections only. 
These bisection methods can be distinguished by their way of preserving 
stability. M. C. Rivara, for example, uses the longest edge for bisection [17]. 
Although the number of generated congruence classes may be infinite, her 
method can be shown to be stable. In contrast, the algorithm of W. F. Mitchell 
produced triangles of at most four congruence classes by dividing the edge in 
opposition to the newest vertex ([16]). 

Note that two successive newest-vertex-bisections - provided the second step is 
applied to both sons - divide a given element into four subtriangles of equal 
volume and thus can be interpreted as one step of a regular 2D refinement 
method, since (C1-3) are also satisfied. 

The stable refinement of tetrahedral grids is more complex. In contrast to the 
2D case, there is obviously no way to divide any given tetrahedron into eight 
congruent ones. Nevertheless, it is possible to extend both of the regular 
refinement strategies to three dimensions. For this purpose algorithms have 
been developed by several authors during the last years. Three-dimensional 
bisection methods have been presented, e.g. by E. Baensch [1], and J. M. L. 
Maubach [15], whereas the 3D analogon of Bank's red refinement strategy was 
introduced independently by S. Zhang, in [19] and the author in [5]. 

The second strategy forms the basis of this paper. It is marked by the fact that 
for any initial tetrahedron it produces elements of at most three congruence 
classes, no matter how many successive refinement steps are performed. Note 
that the N-dimensional generalization of this method was proposed already in 
1942 by H. Freudenthal [11]. 

1.2 Global Refinement Algorithm 

The global algorithm describes how the local rules can be combined in order to 
generate stable sequences of consistent triangulations. It is based on the 
following two restrictions: 

(C4) Irregular elements are never refined. 
(C5) T ~ ~ U ~ + 1 implies T ~ ~ for all 1 > k, that is, if an element is not refined 

passing from ~ to ~ +1, then it remains unrefined in any ~ ,  l > k. 

Here irregular elements are those resulting from irregular refinements. All other 
elements are called regular. Condition (C4) prevents the irregular refinements 
from destroying the stability of the regular ones and induces smooth transitions 
between regions of varying refinement depth. Condition (C5) does not really 
restrict the set of possible triangulations but allows the unique reconstruction of 
the complete sequence J0, . . .  , ~ ,  if only J00 and ~ are known. Thus it makes 
sense to assign to each element T a level index l which is given by l-- 
min{kLT e~kk}. 
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There are mainly two reasons to require (C5). First, the size of any given 
element can be estimated by the size of an ancestor using the corresponding 
level distance, and thus (C5) is a usual requirement in the theory of multi-level 
methods (cf. [18]). On the other hand, the representation of the global algorithm 
is essentialy simplified, because it canbe formulated in terms of operations that 
refer to all elements of a common level (see Section 3). 

Conditions (C4,5) often lead to misunderstandings, which are caused by the 
wide-spread assumption that every refinement step is applied to the momentary 
finest triangulation ,~  to produce the next finer triangulation ~ + 1  in such a 
way that J00,... ,3~k and ~ +  1 satisfy (C1-5). An algorithm of this type would be 
less useful because, first, it does not take into consideration partial coarsening, 
and second, (CA, 5) prohibit supplementary refinements of temporarily unrefined 
regions. Both will be necessary at least in time-dependent numerical applica- 
tions. 

Our view of a refinement algorithm is more general and not restricted to the 
finest grid only. Given any input sequence J 0 , - - - , ~ ,  it produces another output 
sequence J 0 ' , . . . , ~ '  that satisfies the above conditions but does not have to 
contain any of the input triangulations with exception of Y0' =~0. In addition, 
we do not require l = k + 1, but allow l ~ {k, k _+ 1} to catch also pure coarsen- 
ing. 

Under these circumstances, (C4) and (C5) lose their restrictive character. To 
maintain (C4), irregular refinements can be substituted by regular ones if an 
irregular element or one of its neighbors is assigned for further subdivision. 
Temporarily unrefined elements can be refined in agreement with (C5) by 
making sure that the sons are inserted at the correct level. These rearrange- 
ments, as well as possible coarsenings, are also tasks of the global algorithm. 

From this point on, the paper is organized as follows. In Section 2 we present 
the basic regular refmement method for tetrahedral elements and add some 
irregular rules for the closure. Some advantages of our method in comparison 
with the bisection methods ([1], [15]) are discussed. In Section 3 we then describe 
the global refinement algorithm. It is formulated independently of any specific 
programming language and consequently does not use prescribed data struc- 
tures as, for example, records or pointers. Instead, it operates on abstract 
objects like elements, edges, and nodes. Finally, in the Appendix, the stability 
proof for the regular refinement method from Section 2 is delivered subse- 
quently. 

2. Tetrahedron Refinement 

In this section we present the local refinement strategies for single elements. 
The basic regular refinements, as proposed in [5], [19], produce consistent and 
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stable triangulations of any given initial tetrahedron. Irregular refinement rules 
are used for the closure only. 

2.1 Regular Refinement 

Let T be any given tetrahedron. We are looking for a subdivision of T into 
eight subtetrahedra T 1 ..... T 8 of equal volume, in such a way that each corner of a 
son T i coincides with either a corner or an edge midpoint of T. 

Therefore we first connect the edges of each face triangle of T in the same way 
as in the two-dimensional regular refinement (Fig. 1). Then we cut off four 
subtetrahedra at the corners which are congruent with T. In the interior of the 
remaining octahedron there are three parallelograms, as shown in Fig. 2. 
Cutting the octahedron along two of these parallelograms, we obtain four more 
subtetrahedra. Each choice of two cut parallelograms corresponds to one of 
three possible diagonals, as shown in Fig. 3. 

Figure 1. Regular refinement 
of the faces 

Figure 2. Interior parallelograms 

Figure 3. Interior diagonals 

Note that the eight subtetrahedra are of equal volume, but the interior ones are 
not congruent with T in general. Therefore the question arises, which of the 
possible diagonals should be chosen in successive refinement steps. It has been 
shown in [19] that the wrong choice may lead to degenerated elements. In [5], 
however, we introduced a simple algorithm which for any initial element 
generates subtetrahedra of at most three congruence classes, no matter how 
many successive refinements are performed. Thus the stability of the generated 
triangulations is preserved. 

To describe the algorithm we assume any tetrahedron T to be given by an 
ordered sequence of its vertices: T = [x0,xl,x2,x3]. For 0 < i, j < 3, i ~ j, we 
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denote by xo: = ( x i - } - X  j)//2 the edge midpoint x i 
refinement algorithm can be formulated as follows: 

Algorithm RegularRefinement (T) 
C 

divide T = [x 0,x 1,x 2 ,x 3 ] into the subtetrahedra Ti, 1 < i < 8, given by 

T 1 := [Xo,xol,x02 , x03], 
T 2 := [xol ,Xl ,x12 ,x13 ], 

T 3 := [x02 ,x12 ,x 2 ,x23 ], 

T 4 := [x03 ,x13 ,x23 ,x 3 ], 
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and xj. Then the regular 

T 5 := [xol ,x02 ,x03 ,x13 ], 

T 6 := [xol,x02 ,x12 ,Xl 3 ] '  

T 7 := [x02 ,x03 ,x13 ,x23 ], 

T 8 := Ix02 ,x12,x13,x23 ]. 

The subtetrahedra T1,...,T 4 are those from the corners which are congruent with 
T, whereas Ts,. . .  , T 8 originate from the remaining octahedron. The chosen 
diagonal is given by the vertices x02 and x13 that are common to all interior sons. 
Consequently the diagonal is implicitly characterized by the order of vertices, 
and thus the latter one is essential for the algorithm. The maximum number of 
generated congruence classes depends on the definition of congruence : 

Definition. Two tetrahedra T1, T e are defined to be congruent, if they can be made 
to coincide by a rigid motion and a positive or negative scaling, i.e., if there exists a 
scaling factor c -r O, a translation vector x, and an orthogonal matrix Q such that 

T 1 : x  + cQT2: = {x + cQx'l x' ~ T2}. 

Of course congruence represents an equivalence relation and therefore all 
tetrahedral elements can be divided into congruence classes. In the following 
theorem we state that for any initial tetrahedron the above algorithm produces 
elements of at most three congruence classes, no matter how many successive 
refinement steps are performed. This fact immediately implies stability. 

Theorem 1. For any initial tetrahedron T, recursive application of algorithm 
Regular-Refinement produces consistent and stable triangulations of T. Moreover, all 
generated elements belong to one of at most three congruence classes. 

Proof." We just sketch the proof at this point and refer to the Appendix for 
details. It is based on the dissection of the unit cube into six tetrahedra passing 
into each other by permutation of their co-ordinates. It turns out that applying 
algorithm RegularRefinement to each of them yields the same triangulation as 
when we first divide the cube into eight subcubes which again are subdivided 
into six tetrahedra as indicated above. This process can be repeated, and the 
assertion follows by induction and the usual affine transformation argument. [] 
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Remark 1. Although the vertex numbering is given for generated elements per 
definition, there is some freedom in choosing the vertex order of initial ele- 
ments. In [19], S. Zhang has shown that the maximum measure of degeneracy of 
the sons is minimized if the vertices of any initial tetrahedron T are numbered 
in such a way that the diagonal between x02 and x13 is as short as possible. 
Extending this idea, he investigates a second strategy that chooses always the 
shortest diagonal for refinement. He could show that this shortest-interior-edge 
strategy is equivalent to the method presented above, as long as it is applied to 
initial elements with non-obtuse faces and suitable vertex order. Otherwise, for 
elements with at least one obtuse triangle, shortest-interior-edge subdivision may 
generate any number of congruence classes. In this case stability remains to be 
proven. 

Remark 2. In 1942, H. Freudenthal proposed a method for the stable refinement 
of N-dimensional simplicial grids [11]. It turns out that the three-dimensional 
case of his method is equivalent to the algorithm presented above. Bank's red 
refinements correspond to the case N = 2. It can be shown that for general 
N_>2 the number of generated congruence classes is given by N! /2 .  In 
addition, one can prove that this number is optimal in the sense that any other 
regular refinement method based on (C1) produces at least N ! / 2  congruence 
classes for almost all initial N-simplices, provided that sufficiently many re- 
finement steps are performed (see [6]). Furthermore, the proof of Theorem 1 in 
the Appendix - which also carries over to the N-dimensional case - indicates 
that all generated elements of a certain congruence class can be made to 
coincide just by translation and scaling. A rotation - as allowed by Definition 1 
- is not necessary. These facts can be used to increase the efficiency of various 
algorithms based on such grids. In finite-element or finite-volume applications, 
for example, the assembling of local stiffness matrices represents one of the 
most time-consuming tasks that can be considerably improved by calculating and 
storing just once data that depend on the elements' level and congruence class 
only. 

Remark 3. The newest-vertex-bisection of Mitchell, [16], has been generalized to 
N ___ 2 dimensions by J. M. L. Maubach [15]. It can be shown that this method 
produces 2 N-2. N! congruence classes provided that N successive bisections 
(each applied to all possible sons) are considered as one (regular) refinement 
step. Moreover, these 2 N- 2. N! congruence classes contain those N ! / 2  classes 
generated by Freudenthal's algorithm. Therefore - in comparison with 3D 
newest-vertex-bisection - algorithm RegularRefinement produces only a quarter of 
the number of congruence classes but at most the same maximum measure of 
degeneracy. 

A second advantage of our method is given by the symmetric subdivision of the 
triangular faces 2, which allows regular refinement of adjacent elements without 

2This argument applies to the case N = 3 only. 
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consistency problems. In contrast, bisection methods may be also classified by 
their way of maintaining consistency even in the case of non-adaptive, global 
refinements (cf. [1, 15-17]). On the other hand, bisection methods are usually 
preferred in combinatorial algorithms (e.g. for fixpoint approximation), where N 
is very large and a refinement into 2 N sons per element makes no sense. 

2.2 Irregular Refinements 

As mentioned above, algorithm RegularRefinement can be applied to adjacent 
elements without consistency problems. In the case of adaptive refinements, 
however, only a subset of the given tetrahedra will be assigned for regular 
subdivision, and thus triangulations have to be closed by further irregular 
refinements in order to satisfy the consistency condition. We call this procedure 
the green closure in analogy to Bank's algorithm for the two-dimensional case, 
[3]. 

The 2D green closure can be realized by simple bisections if elements with two 
or more subdivided edges are refined regularly. This strategy is also used in 
PLTMG [2], but has the disadvantage that under certain circumstances regular 
refinements can propagate as in a game of dominoes. This expansion of the 
refined area can be prevented by providing a complete set of refinement rules, 
that is, one for every possible edge refinement pattern. In 2D there are 23 = 8 
different patterns for the three edges of a triangle. The full pattern corresponds 
to a regular refinement and the empty pattern indicates no refinement at all. 
The remaining six patterns can be divided into two types with one and two 
refined edges, respectively. The latter case can be closed by connecting the 
midpoints of these edges and then one of them to the opposite corner. 

In three dimensions there are 26 = 64 possible edge refinement patterns. Using 
symmetry arguments, the 62 irregular cases can be divided into 9 different types. 
For practical reasons we do not specify a complete set of irregular rules for 
these 9 types - which indeed is possible - but restrict ourselves to the four types 
shown in Fig. 4. 

| | | | 
Figure 4. Irregular refinements for the green closure in 3D 

These four types are considered also in [8]. Type (1) is applied if one neigh- 
boring element is refined regularly but no other edge is subdivided. Type (2) 
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corresponds to elements with exactly one refined edge, and types (3) and (4) 
apply to two refined edges on a common face and in opposition, respectively. 
The remaining cases are handled according to the following instruction: 

(C6) I f  three or more edges are refined and do not belong to a common face, then 
the element is refined regularly. 

Remark 4. Note that type (3) refinements require special care in order to 
preserve consistency even over the critical side with two refined edges. There- 
fore it is necessary to coordinate the refinements of both elements sharing this 
side. 

Remark 5. In consequence of (C6), a domino effect may also occur in certain 
situations. In practice, however, we observed that the expansion of regularly 
refined regions caused by (C4) is rather dominating. 

3. Global Refinement Algorithm 

The global refinement algorithm describes how the local rules from Section 2 
can be combined and rearranged in order to generate stable sequences of 
consistent triangulations. It is formulated independently of any specific pro- 
gramming language and consequently does not use prescribed data structures as, 
for example, records or pointers. For these, we refer to [7], [14], and the 
references therein. Instead, our algorithm operates on some basic abstract 
objects. 

3.1 Abstract Data Structures 

The basic objects we are dealing with are elements, nodes, and edges. These are 
distributed over the grids G k of level k = 0,..., kma x in the following way: G O 
contains the elements, nodes, and edges of triangulation J0, whereas G~, k > 0 
consists of those elements in ~ which do not already belong to ~ _  1, as well as 
their edges and nodes. The objects of grid G k are said to be of level k. 
Condition (C5) implies that the elements of level k contain those of level k + 1. 

For any level k node N belonging to at least one refined level k element, there 
is a succeeding node N '  with equal co-ordinates on level k + 1, which in this 
case is called the son of N. Two nodes of the same level k are defined to be 
neighbors, if they are endnodes of a common level k edge. Two elements of the 
same level are neighbors, if they share a common triangular face. 

The basic objects are now connected by specifying some required references 
between them. These are summarized in the following list. Given any element, 
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for example, we assume to have access to its nodes, edges, neighbors, and sons. 
The (maximum) number of references to objects of a special type is given in 
parentheses. ( <  n) items indicate that some or all of these references may be 
missing. Unrefined elements, for example, have no sons. Note that the number 
of edges starting from a given node is not restricted a priori but of course is 
bounded due to stability. 

R e f e r e n c e  l ist:  

. E l e m e n t  

. E d g e  

. N o d e  

Nodes (4), Edges (6), Sons (<  8), Neighbors ( <  4). 
Endnodes (2), Midnode ( <  1). 
Edges (~), Son ( <  1). 

For a simple representation of the refinement algorithm, we describe the 
current state of an element T by some self-explaining, symbolic constants. For  
example, "T is refined-regularly" means that T has been refined by algorithm 
RegularRefinement. Otherwise T is either refined-irregularly or unrefined. Unre- 
fined elements are called leaf elements. 

On .the other hand, each element is marked for a certain refinement rule that 
may or may not coincide with its actual refinement. Let R be one of the local 
refinement rules of Section 2, then "T is marked-for-refinement-by-R" indicates 
that T shall be refined according to R. Mostly, it will be sufficient to know 
whether R is regular or irregular. In this case, we say that T is marked-for-regu- 
lar-refinement and marked-for-irregular-refinement, respectively. In addition, T 
may be marked-for-no-refinement or even marked-for-coarsening. In the latter 
case, T is allowed to be removed. Finally, T is marked-according-to-refinement, if 
mark and actual refinement rule of T coincide. This is just the state that all 
elements are expected to have after termination of the global algorithm. 

In a similar way, we describe the state of an edge E of T. If T is marked-for- 
refinement-by-R where R is a rule that is going to refine E, then we say that E is 
marked-for-refinement-by-T. E is just marked-for-refinement, if there is at least 
one element T with edge E such that E is marked-for-refinement-by-T. 

Remark 6. Given any edge E, we assume to be able to decide immediately - 
without looking at the elements around it - whether E is marked-for-refinement 
or not. In practice, this requirement can be efficiently satisfied by associating to 
E a counter N(E) which is updated each time the mark of an element T around 
E is changed. 

3.2 The Algorithm 

We start the presentation of the global refinement algorithm by specifying the 
expected input, action, and output .  
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Input: We assume that the global algorithm is applied to a sequence Go,...,Gkmox 
of grids, which - in the way indicated above - correspond to triangulations that 
satisfy conditions (C1-5). Each leaf element is either marked-for-regular-refine- 
ment, marked-for-no-refinement, or marked-for-coarsening. These leaf element 
marks are usually determined by application of an error estimator. All other 
elements are assumed to be marked-according-to-refinement. 

Action: The action of the algorithm is determined by the leaf element marks. 
These are evaluated in the following way: Regular leaf elements that are 
marked-for-regular-refinement are refined regularly. Irregular elements marked- 
for-regular-refinement are substituted by regular elements. Other marks of irregu- 
lar elements are ignored. Regularly refined elements are marked-for-no-refine- 
ment if all sons are marked-for-coarsening. Finally, the green closure is per- 
formed on conditions (C4-6). 

Output: The output sequence Gb,..., G),;ox, k~,x >__ 0 with G b = G O and k'~a x 
{k,~a~, kma ~ + 1} is required to satisfy the input specification, but in addition we 
expect all leaf elements to be marked-for-no-refinement. Consequently, applying 
the global algorithm to the output sequence again will be of no effect. 

The basic structure of the global refinement algorithm is shown in Fig. 5. It 
mainly consists of two phases: In Phase I, i.e. loop (1), the different grid levels 
are visited in a top-down manner. The leaf element marks are evaluated (2) and 
the closure of the next finer level is computed between the regular elements (3). 
In Phase II, (4), the grids are visited in reverse order (bottom-up). The closure is 
completed (5), unused objects are removed (6), and new objects are generated 
(7). Finally, the number of output levels is determined by updating the maximum 
level number kma x (8), (9). 

Algorithm GlobalRefmement (G O . . . . .  Gk,., x) 
{ 

for k := kma x down to 0 do (1) 
{ 

EvaluateMarks (Gk ); (2) 
CloseGrid (G~ ); (3) 

For k := 0 to k,~a~ do if  (Gk ~ 0) then (4) 
{ 

i f  (k > O) CloseGrid (Gk); (5) 
Unrefine Grid (G k ); (6) 
RefineGrid (G k ); (7) 

} 
if  (Gk, ~ = O)then k,~x : =  k m a  x - 1; (8) 
else if  (Gk . . . .  1 r ~1) then km~ := km~ + 1 (9) 

} 
Figure 5. Global refinement algorithm 
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In Phase II, the execution of (5) for k = 0 is omitted because level 0 elements 
are regular per definition. Since only leaf elements can be removed, G k = ~ in 
line (4) is possible for k = kma x only. In this case, loop (4) is prematurely 
terminated and kma x is decremented by one (8). Otherwise, kma ~ is incremented 
if there are new elements of level km~ ~ + 1 (9). 

The two phase top-down/bottom-up structure of algorithm GlobalRefinement 
goes back to P. Bastian, who implemented a two-dimensional version for his UG 
code [4]. The structure of the subroutines, however, is different. These are 
explained in the following subsection. 

3.3 The Subroutines 

Algorithm GlobalRefinement works element-based in the sense that all subrou- 
tines step over the elements of a given level. Function EvaluateMarks is 
responsible for evaluation and manipulation of the element marks according to 
the above specified action of the algorithm. To satisfy (C4), irregularly refined 
elements are marked-for-regular-refinement if at least one son has an edge that is 
marked-for-refinement (6). This includes the case that the son itself is marked- 
for-regular-refinement. 

Function EvaluateMarks(G~): 
{ 

for all elements T ~ G~: (1) 
{ 

if (T is refined-regularly and all sons of T are marked-for-coarsening) (2) 
then T is marked-for-no-refinement; (3) 

if (T is refined-irregularly) then (4) 
if (at least one edge E of a son of T is marked-for-refinement) (5) 

then T is marked-for-regular-refinement; (6) 
else T is marked-for-no-refinement; (7) 

} 
} 

After termination of EvaluateMarks, all marks for irregular refinements have 
been removed (in either (6) or (7)). If not substituted by a regular one, any 
irregular refinement must be confirmed by the following closure that is com- 
puted  in function CloseGrid. 

Function CloseGrid(Gk): 
{ 

let Q be the set of all regular elements T ~ G~ having at least one edge E 
that is marked-for-refnement but not marked-for-refinement-by-T; 

(i) 
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while (Q 4~ O) (2) 
{ 

choose an element T ~ Q; (3) 
Q: = O \ {T}; (4) 
CloseElement (T); (5) 

} 

In function CloseGrid, the candidates for the closure are stored in a set Q (1). 
Candidates are all regular elements T with an edge E that is marked-for-re- 
finement by another element but not by T. Thus, elements marked-for-regular-re- 
finement cannot be candidates. As long as Q is non-empty, an arbitrary element 
is poped out of Q and passed to function CIoseElement to determine a suitable 
refinement rule. 

Function CloseElement (T): 
{ 

Search for a refinement rule R refining exactly those edges E of T (1) 
that are marked-for-refinement; 

if (JR is found) then (2) 
( 

if (R is of type (3) and T' ~ Q for the critical neighbor T' ofT) (3) 
then fit R to the mark of T' ; (4) 

T is marked-for-refinement-by-R; (5) 
} 
else 
( 

for all edges E of T that are not marked-for-refinement: 
Q: = Q u {T' r TIE is an edge ofT'}; 

T is marked-for-regular-refinement; 

(6) 
(7) 
(8) 

If a suitable R cannot be found, rule (C6) is applied and T is marked-for- 
regular-refinement (9). In this case, all elements around those edges of T that 
previously have not been marked-for-refinement are now new candidates for the 
closure and hence added to Q (7). Note that the definition of Q as a set implies 
that every element occurs in Q not more than once. 

Given any element T, function CIoseElement at first looks for a (regular or 
irregular) refinement rule R with an edge refinement pattern matching exactly 
the edges o f  T that are marked-for-refinement (1). If such an R exists, T is 
marked-for-refinement-by-R (5). Special care is necessary if R is of type (3) (cf. 
Remark 4 in Section 2.2). In this case, R must be fitted to the mark of the 
critical neighbor sharing both of the edges that are marked-for-refinement (4), 
provided this neighbor does not belong to Q and thus is also marked for a type 
(3) refinement. 
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Remark 7. In statement (7) of CloseElement, we refer to all elements T' sharing 
a given edge E. Of course, it is not necessary to store with each edge a list of 
surrounding elements. Since one of them, T, is known, we can make use of the 
element neighborhood relations to determine the others, provided that edges at 
the boundary belong to exactly two triangular boundary faces 3. 

CloseGrid is called twice for every grid level. In Phase I, the closure of level 
k + 1 is computed between the present regular elements of level k. Irregular 
level k elements that would be candidates for the closure are recognized during 
the following execution of function EvaluateMarks at level k - 1 (statement (5)). 
In this case, their fathers are marked-for-regular-refinement in EvaluateMarks, 
(6), and thus, these irregular elements are substituted by regular ones in Phase 
II, function RefineGrid, just before CloseGrid is called a second time at level k. 

Here the computation of the level k + 1 closure is extended to the additional 
regular elements of level k, which are initially marked-for-no-refinement (see 
RefineGrid, (6)). To prove consistency (Theorem 3), we will show later on that in 
this second phase (C6) is never applied, which means that no further edges are 
marked-for-refinement. Therefore, consideration of these new elements for the 
closure is sufficient. 

Remark 8. EvaluateMarks and CloseGfid only manipulate the marks of elements 
in G k but do not change their actual refinements, i.e. do not create or remove 
any objects in Gk+ 1. This is done in UnrefineGrid and RefineGrid, respectively. 

UnrefineGrid removes unused elements, nodes, and edges from the following 
level (7). For this purpose, the remaining objects are marked-for-re-use (5). Of 
course, we assume that these marks do not effect the refinement marks of 
elements or edges. Re-used objects are all sons of elements that are marked- 
according-to-refnement, as well as their edges and nodes. At the beginning of 
function UnrefineGrid, a possible new grid level G~,~x+ 1 is initialized (1) and the 
re-use marks of all level k + 1 objects are reset (2), (3). 

Function UnrefineGrid (Gk): 
{ 

if (k = kma x) then Gk+ 1: = 0; (1) 
for all objects O ~ G~+I: (2) 

0 is not marked-for-re-use; (3) 
for all refined elements T ~ G k that are marked-according-to-refinement: (4) 

all sons of  T, their edges and nodes are marked-for-re-use; (5) 
for all objects 0 ~ G~+ 1 that are not marked-for-re-use: (6) 

remove O from Gk + 1; (7) 
} 

3In fact this is a condition on YL 
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In function RefineGrid, the computed refinements are actually realized. At first, 
in (2), any remaining marks for coarsening are switched into marks for no 
refinement in order to let the concerned (leaf) elements be marked-according- 
to-refinement. 

The main loop (3) is now executed for each element T ~ Gk that is not 
marked-according-to-refinement. When entering the loop, the state of T is 
unrefined - because all sons have been removed in function UnrefineGrid - and 
therefore T must be marked for either regular or irregular refinement. Now T 
is refined according to this mark which means that the corresponding son 
elements are created (4). All sons are marked-for-no-refinement (6) and added to 
Gk+ 1 (7). Missing nodes and edges of level k + 1 must be created (9) in addition 
to those which have been marked-for-re-use in function UnrefineGrid. Finally, in 
(10), the existing neighbors of all sons are determined to update the neighbor- 
hood graph of level k + 1. 

Function RefineGrid (Gk): 
{ 

for all elements T ~ G k that are marked-for-coarsening: (1) 
T is marked-for-no-refinement; (2) 

for all elements T ~ G k that are not marked-according-to-refinement: (3) 
{ 

refine T according to the rule that T is marked for; (4) 
for all sons T' of T: (5) 
{ 

T' is marked-for-no-refinement; (6) 
Gk+l: = Gk+ 1 U {T'}; (7) 
find existing nodes and edges of T' in Gk + 1; (8) 
create missing nodes and edges of T' and add them to Gk + 1; (9) 
find existing neighbors of T' in Gk+ 1; (10) 

} 
} 

} 

When function RefineGrid is finished, all elements of level k are marked-accord- 
ing-to-refinement and thus one requirement of the output specification is satis- 
fied. (C1-5) are established with Theorem 3 in the following subsection. To 
prove, the optimal complexity of algorithm GlobalRefinement, we have to be 
aware that the amount of work for (8) and (10) is bounded by a constant (i.e. 
o(1)): 

Remark 9. Since we have access to the existing son nodes and edge midnodes of 
T, we can find the nodes of T' in (8) with constant amount of work. The same is 
also true for the edges of T' because we know all edges starting at a given node. 
In (10), the neighbors of T' can be found in O(1) operations between the sons 
of T and the sons of neighbors of T. Here  it is sufficient to consider those 
neighbors of T which are already marked-according-to-refinement. 
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3.4 Complexity and Correctness 

Theorem 2. The amount of work of  algorithm GlobalRefinement is proportional to 
the number n*ut of leaf elements in the output sequence G'o,...,G'k-ax. 

Proof." Let n k be the number of elements of level k and n = no + ... + nkmo x be 
the total number of elements of the input sequence. Taking into account 
Remarks 6 and 9, it is clear that each of the functions EvaluateMarks, Unre- 
fineGrid, and RefineGrid performs a limited number of operations for every 
element and thus the amount of work for these functions on level k is of order 
O(nk). The same is also true for function CloseGrid, because every element can 
be added to Q no more than six times - once for every edge - in statement (7) 
of function CloseElement. Therefore the complexity of algorithm GlobalRefine- 
ment is of order O(n). 

Let now ni* ~ be the number of leaf elements of the input sequence. Then the 
geometric growth of the number of leaf elements with increasing refinement 
depth implies n < 2n~. The local refinement and coarsening rules imply 
1/8nin* -< nou t*  _< ~nin.~ * In combination with the O(n) result, these inequalities 
complete the proof. [] 

If we consider the corresponding triangulations ~ '  instead of the grids G)~, then 
the leaf elements of the output sequence are just the elements of the finest 
triangulation 3~k.x. It follows that the amount of work of algorithm GlobalRe- 
finement is even proportional to the number of nodes of ~ ' , x ,  provided the 
generated triangulations are stable. The following theorem ensures stability as 
well as consistency. 

Theorem 3. Let Joo be a consistent initial triangulation of the polyhedral domain O. 
Then recursive application of algorithm GlobalRefinement - in alternation with any 
given strategy for the generation of  the leaf element marks - produces sequences of 
triangulations that satisfy conditions (C1-5). 

Proof: Of course, (C1) follows from the definition of the local refinement rules 
in Section 2. (C4,5) are satisfied by construction of the algorithm. Stability (C3) 
follows from the stability of the regular refinements (Theorem 1) in combination 
with (C4). 

Still, consistency remains to be proven. This is done by induction over the grid 
levels k. The consistency of J00' =Y00 is given by assumption. Let now ~ '  be 
consistent for a fixed 0 < k < kma x. After application of function CloseGrid in 
Phase I, the already existing regular elements of G k are marked for consistent 
refinement. In Phase II, CloseGrid operates on those additional regular ele- 
ments - generated by the preceding RefineGrid call - which have an edge that 
is marked-for-refinement. 
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We now have to show that it is sufficient to consider these new elements. 
Therefore let E be any edge of level k that is marked-for-refinement. The 
consistency of ~ '  implies that - at least inside ~2 - E is completely surrounded 
by level k elements. Moreover, these elements are regular due to statement (6) 
of function EvaluateMarks. Thus the second call to CloseGrid yields a consistent 
triangulation ~'+1 of S2, provided that no additional edges are refined by 
applying (C6) in CloseElement, (8). 

To see that this cannot be the case, assume that (C6) is applied to a just created 
regular element T of level k. Then there are at least three edges of T that are 
marked-for-refinement but do not belong to a common face. Without loss of 
generality we may assume that (C6) is applied the first time on this level. 
Therefore the three edges of T did exist and have been marked-for-refinement 
already in Phase I. It follows that at this time also the father element 3-' of T 
has had at least three refined edges on more than one face. Thus T' was a 
regularly refined element, in contradiction to the assumption that T is a new 
regular element. Consequently (C6) is never applied in Phase II, which proves 
consistency. [:1 

3.5 The Adaptive Grid Manager AGM 3 D 

The AGM ~ D code contains our actual implementation of the algorithm pre- 
sented above. This Adaptive Grid Manager provides a set of problem indepen- 
dent tools for the adaptive numerical solution of PDE's in three space dimen- 
sions. It originates from an early three-dimensional version of Bastian's 2D code 
UG (Unstructured Grids, cf. [4]). Many of the basic concepts of UG also entered 
into ~U~GM ~ D, in particular the two phase top-down/bottom-up structure of the 
global refinement algorithm. 

The AGM 3~ code is written in ANSI C, and the basic data structures are 
especially designed for the application of multigrid and multi-level algorithms. 
The refinement procedure of AGM 3 D is somewhat more advanced than the 
algorithm described in this paper. In particular, it includes the approximation of 
curved boundaries by projection of boundary edge midnodes. Graphical repre- 
sentation of generated grids is also possible. For this purpose, the multi-level 
structure is used for an efficient solution of the hidden-elements problem. For a 
more detailed description of AGM 3 e and in particular the refinement routines, 
we refer to the manual ([7]). Both code and manual can be obtained from the 
author. 

To finish the representation of the global algorithm, we show two pictures of 
adaptively refined triangulations that have been generated by AGM 3D. A 
refinement of the unit cube arising during the solution of a convection-diffusion 
problem is shown in Fig. 6. For an improved three-dimensional impression, the 
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cube has been cut open along its main diagonal. Here the smooth transitions 
between regions of varying refinement depth caused by (C4) can be observed 
especially well. Figure 7 shows the lower half of a refined torus. To approximate 
its curved boundary, every generated midnode of a boundary edge has been 
projected to the boundary. Note that projection to a concave part of the 
boundary may destroy stability if the initial triangulation J0 is not suitably 
chosen. 

Figure  6. Triangulation of the unit cube F igure  7. Triangulation of a toms 

Appendix 

It remains to complete the proof of Theorem 1 in Section 2. Its leading part can 
be found implicitly in the early paper of H. Freudenthal, [11], who investigated 
the stable refinement of N-dimensional simplicial grids. At the beginning, we 
recall the assertion of Theorem 1: 

Theorem 1. For any initial tetrahedron T, recursive application of  algorithm 
RegularRefinement produces consistent and stable triangulations of  T. Moreover, all 
generated elements belong to at most three congruence classes. 

Proof." Of course, stability follows from the last statement. The proof of Theo- 
rem 1 is based on the dissection of the unit cube C = [0,1] 3 into six tetrahedra 
passing into each other by permutation of their co-ordinates. For any permuta- 
tion ~ ~ $3, the tetrahedron T,~= 0 i 2 3 [x,~,x~.,x,~,x,~] is defined to be the closed 
convex hull of the corners 

0 _ ( 0 , 0 , 0 ) r ,  i _  i - l  +e~(i) ' i 1,2,3, (1) X~r - -  X~r - -  X~r = 

where e 7 denotes the j th  standard unit vector in ~3. The definition of the 
convex hull implies the representation 

T,~={x ~ C]0<x~(3)<x~(2)_<x~(1)<I), ~ ~ S 3. (2) 
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Clearly J00 =~00(C): = {T~.lrr ~ S 3} is a triangulation of C. Moreover, one may 
easily verify that for ~r @ 7r' the intersection of T~ and T./ is a common lower 
dimensional subsimplex, and thus Y00 is consistent. According to [13], J0 is called 
the K u h n - t r i a n g u l a t i o n  of C. It is shown in Fig. 8. 

(o,o,o) 
Figure 8, Kuhn-triangulation of the unit cube 

Another triangulation ~ of C can be defined in the following way: Let 2 be 
the canonic subdivision of C into eight subcubes of edge length 1//2, that is 

1 3 
2 : =  {Cx[x ~ {0,g} }, (3) 

where Cx, x ~ {0,1/2} 3 is given by 

1 . { x +  1 ' C x : = x + ~ C . =  yx x (4) 

The Kuhn-triangulation of any subcube C x is given by the tetrahedra Tx,,~: = x + 
1 /2  T=, ~- ~ S 3. Consequently, 

(rx,=ix 3, s3} (5) 
is a triangulation of C. The consistency of 4 follows from the consistency of ~00 
and the fact that Kuhn-triangulations of adjacent subcubes Cx, C x, induce a 
unique 2D-triangulation of the common face. 

We now show that ~ is a refinement of J0 in the sense of condition (C1). 
Given any x ~ {0,1/2} 3 and ~r ~ $3, we are looking for a permutation 
rr* = ~r*(x,~-) such that T,~ c T~r*. Therefore let 0 < k < 3 be the number of 
entries x i of x with xi = 1/2. It follows that there are k unique indices i l , . . . , i  k 

{1,2,3} satisfying 

1 1 _< il < ... < i~ _< 3, x~(il ) . . . . .  x~(i~) = 3, (6) 

whereas the remaining 3 -  k indices i~+l, . . . , i  3 ~ {1,2,3} can be ordered such 
that 

1 < ik+ 1 < "'" < i3 N 3, X'rr(ilc+ 1) . . . . .  x=(i3 ) = 0 (7) 
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Here and in the following, for the case k = 0 and k = 3 we skip over those parts 
of the corresponding (in)equalities that make no sense. We now define ~- by 
z-*(j) = ~-(ij), 1 < j  < 3. From the right hand sides of (6) and (7), we conclude 
that 

1 
x,~,O) . . . . .  X~,(k ) = ~, X~,(k+l ) . . . . .  X,~,(3 ) = 0. (8) 

Further, for any f =  (~1 ,~2,~3)T E 1/2  T,~ we have 0 < G(3) < ~,(2) < ~(1) < 1/2. 
Using the left hand sides of (6) and (7), we obtain 

1 
0 < ~,*(k> --< "'" < G*O) < �89 0 < ~*(3) < "'" < ~:,,*(k+ 1) < Y. (9) 

Combining (8), (9) with (2) proves Tx, ~ c T,~,. Of course, by construction, any 
corner of T,~ corresponds to either a comer or an edge midpoint of T~, and 
thus ~ is in fact a refinement of J00 in the sense of (C1). 

At this point, we have shown the existence of a refinement method for the 
elements of the Kuhn-triangulation Y00 of C. This method yields the same 
triangulation ~ that is obtained if we first subdivide C into the eight subcubes 
C x ~ 2  and these again by Kuhn-triangulation. Figure 9 illustrates these equiva- 
lent ways of generating ~ .  

I 
U 

To 

B 

f 

Figure 9. Two ways of generating 

We now want to show that ~ is exactly the triangulation which is generated if 
algorithm RegularRefinement is applied to all elements T,~ ~ J00, provided their 
vertices are numbered according to (1). Therefore we first consider the reference 
element To: = T,~d = T(t,2,3 ~ with corners (0,0,0) 7", (1,0,0) r, (1,1,0) r and (1,1,1) r. 
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Using algorithm RegularRef inement  to refine To, it is easily verified that the 
generated sons To,i,1 _< i < 8 can be represented by 

1 T o , i = x i + y r  5,  x i ~  {0,�89 $ 3 , 1 _ < i < 8 .  (10) 

If the subsequent order of sons To, i corresponds to the formulation of the 
refinement algorithm in Section 2, the start vertices x~ and permutations ~ri, 
1N i N 8 are given by 

xl = ( 0 , 0 , 0 )  r, 

(L ! ~ T  
X 3 = X 7 = X 8 =  ~2~2~ ~] 

and 

= , , ,  = o ) 2  

(1  1 l ' lT  
X 4 =  \2~2~2] (11) 

77"1 = "~'g2 = 5"1"3 = "~'4 = 7 r i d ~  

77" 5 = (2 ,  3, 1) ,  "/7" 6 = (2 ,  1, 3 ) ,  "B" 7 ~ (3 ,  1, 2 ) ,  '~'8(1, 3, 2 ) ,  (12)  

respectively. Representation (10) implies To, i ~ ~ for 1 < i < 8. For i # j ,  
(11) resp. (12) show that either x~ ~ x] or ~r i ~s ~rj is true. Therefore, To,i, To, j 
correspond to different elements T x ,~i, Tx.~ ~ ~ ,  which are known to have 
mutually disjoint interior. Furthermore, we'c~nclude from (10) that the volumes 
of all sons sum up to the volume of To, and thus the convexity of T o implies that 
the generated refinement of T O coincides with the one induced by ~ .  

To obtain the same result for the other elements in Y0, we associate to each ~- 
S 3 the corresponding permutation matrix P,~ w h i c h  is given by P~ = 

(6i,~j))i3j= 1. We then have T ~ = P ~ T  o and in particular for the corners x ~ =  
P~x~d, 0 _<j < 3. Applying algorithm RegularRef inement  to T~ yields the sons 
T~, i =P~,To,i, 1 < i < 8. Denoting by ~- o 7r i the composition of ~-, ~i within S 3, 
and using the fact that the associated permutation matrix is given by P~o~ = 
P ~ P ~ ,  the analogon to (10) is established by 

(13) T,~,i = P~T0, i = P,~x i + ~ T,~o,~ . 

Now P,~x i ~ {0,1/2} 3 implies T~, i ~ ~ for each 1 _< i _< 8, ~r ~ S 3. Using the 
argumentation from above, it follows that the generated refinement of T~ 
coincides with the one induced by ~ .  Since this is true for any 7r E $3, ~ is in 
fact the triangulation generated from Y00 by algorithm RegularRefinement .  

In addition to (10), i.e. To, i = x i + 1 /2  T~, we observe that the vertex numbering 
assigned to To, i by the refinement algorithm coincides with the one induced by 
T~, i.e. the j th  corner of To, i is given by x i + 1 /2  x~.  This property is preserved 
under permutation and remains valid for any element of ~ .  If now algorithm 
RegularRef inement  is recursively applied to the elements of 3~1, it follows by 
induction that the generated triangulations ~ , k  > 0 of C are given by 

~ = { T ~ , r  ~ {0,1.2 ~ , . . . , (2k-1) .2 -~)  3, z - E  $3} , (14) 
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and thus can also be obtained by first dividing C into 8 k subcubes of edge length 
2 -k, which then are subdivided by Kuhn-triangulation. 

To finish the proof, let T = [x~ 3] be any non-degenerated tetrahedron, 
and let F: T O --+ T be the affme transformation that maps T O one-to-one on T 
and in particular x ~  d to x j for 0 < j  < 3. F maps edges and edge midpoints of T O 
to the corresponding edges and midpoints of T. Therefore recursive application 
of algorithm RegularRefinernent to T yields triangulations 

~ ( T ) = { F ( 7 ~ ) I 7  ~ e ~ ( C ) , 7  ~ cZ0},  k=O,1,2,... (15) 

The consistency o f  ~ ( C )  implies the consistency of ~ ( T )  for all k > 0. 
Moreover, any T e ~9~(C) of any level of k > 0 can be represented by 
7 ~ = i + 2-~T,  with suitable ~ ~ ~3, ~. ~ $3" It follows that 

F(T)  = F~ - 2-kx ~ + 2 -~F(T , )  (16) 

is congruent with F(T,). We further observe that for any pair ~r, ~-' e S 3 
satisfying ~-'(j) = ~r(4 - j ) ,  j = 1,2,3 we have 

- r ~ ,  = - (1,1,1) r + T~, (17) 

implying that F(T~,) is congruent with F(T~). Thus the elements of all triangula- 
tions ~ ( T ) ,  k > 0 belong to at most three congruence classes. These arguments 
complete the proof. [] 
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