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Abstract - -  Zusammenfassung 

Fourier Mode Analysis of the Muitigrid Waveform Relaxation and Time-Parallel Multigrid Methods. 
The advent of parallel computers has led to the development of new solution algorithms for 
time-dependent partial differential equations. Two recently developed methods, multigrid waveform 
relaxation and time-parallel multigrid, have been designed to solve parabolic partial differential 
equations on many time-levels simultaneously. This paper compares the convergence properties of 
these methods, based on the results of an exponential Fourier mode analysis for a model problem. 

AMS Subject Classifications: 65M06, 65M55, 65Y05 

Key words: Parabolic partial differential equation, multigrid, parallel computing. 

Fourier-Analyse der Mehrgitter-Wellenformrelaxationsmethode und der zeitparallelen Mehr- 
gittermethode. Die Erscheinung yon Parallelrechnern hat zur Entwicklung neuer L6sungsverfahren 
for zeitabhfingige partielle Differentialgleichungen gefiihrt. Zwei der in letzter Zeit entwickelten 
Verfahren - -  die Mehrgitter-Wellenformrelaxations-Methode und die zeitparallele Mehrgitter- 
methode - -  haben zum Ziel, die L6sung zu vielen verschiedenen diskreten Zeitpunkten simultan zu 
berechnen. In dieser Arbeit wird anhand der Ergebnisse einer Fourier-Analyse fiir ein Modell- 
problem das Konvergenzverhalten beider Methoden verglichen. 

1. Introduction 

Time-dependent partial differential equations (PDEs) are usually solved as a 
sequence of boundary value problems defined on successive time-levels. The 
sequential nature of this procedure imposes serious limitations on the obtain- 
able performance of implementations of time-stepping methods on parallel 
processors or multicomputers. This observation has led to the development of 
new algorithms that compute the solution on many time-levels, possibly hun- 
dreds or thousands, simultaneously. Two such algorithms for solving parabolic 
partial differential equations have appeared recently in the literature: the 
multigrid waveform relaxation method and the time-parallel multigrid method. 

The multigrid waveform relaxation method was developed by Lubich and 
Ostermann in [13]. It is based on waveform relaxation, a continuous-in-time 
iterative method for solving large systems of ordinary differential equations. 
Lubich and Ostermann showed that the basic waveform relaxation process can 
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be accelerated by using the multigrid idea. In [13] they illustrate their theoretical 
results by computations with a model problem, the heat equation. Later, on the 
method has been applied successfully to a variety of more complex parabolic 
problems, like a nonlinear heat-conduction and a chemical reaction-diffusion 
problem ([16]), and the incompressible Navier-Stokes equations ([14]). A theo- 
retical convergence analysis of multigrid waveform relaxation for parabolic 
initial boundary value problems with spatial finite element discretization is given 
in [11,12]. The extension of the method to time-periodic differential equations 
was the subject of [18]. The multigrid waveform relaxation method has been 
analyzed for its parallel performance, and timing results obtained on various 
multicomputers are reported in [17, 19]. Its use on a massively parallel machine 
of SIMD type is discussed in [10]. 

The time-parallel multigrid method was developed in a paper by Hackbusch, [5], 
where it is called parabolic multigrid method with parallel smoothing. An 
analysis of the method for the one-dimensional heat equation appeared in [3]. 
The method has been applied to various time-dependent problems, among 
which are the incompressible Navier-Stokes equations ([4, 6, 7]). Results with a 
parallel implementation were first reported in [1]. Later on the method was 
combined with extrapolation which led to a further increase in both accuracy 
and parallelism ([8]). The results of experiments on multicomputers with large 
numbers of processors appeared in [6, 7]. 

It can be shown that both methods, although having been developed indepen- 
dently, are intimately related as multigrid methods on space-time grids. As will 
be explained in w they basically differ only in the choice of the smoother. In 
this paper we will compare the convergence properties of both algorithms, based 
on an exponential Fourier mode analysis for the one-dimensional heat equation. 
The Fourier results are presented in w They will allow us to investigate the 
robustness of the methods with respect to the following mesh aspect ratio: 
A t / ( A x )  2, with At the time-increment and Ax the spatial mesh size. The 
analysis will assist in understanding some observations reported in earlier 
papers. In particular, we shall demonstrate that the use of the time-parallel 
method is restricted to meshes with a large aspect ratio; we shall elucidate the 
dependence of the multigrid waveform convergence factor on the mesh size, and 
we shall explain the dependence of the convergence of both methods on the 
choice of the time-discretization method. In w we report results of some 
numerical experiments. We end in w where we point out a recent research 
direction, based on the insights obtained in the current study. 

2. Multigrid Methods on Space-Time Grids 

2.1 The Model Problem and its Discretization 

We shall concentrate on the problem of numerically computing the solution to 
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the one-dimensional heat equation subject to given initial and boundary values, 

u t - A u = f ( x , t ) ,  x E ( O ,  1 ) , O < t < T ;  (1) 

u ( x , 0 ) = p ( x ) ,  x ~ ( 0 , 1 ) ;  (2) 

u ( O , t ) = q ( t ) ,  u ( 1 , t ) = r ( t ) ,  O < t < T .  (3) 

We discretize this problem on a rectangular space-time grid, with spatial mesh 
size Ax, and constant time-increment At. The discretization leads to a large 
linear system of equations in the unknowns u~,t, k = 1, . . . ,  n x - l ( n  = 1 l A x )  
and l = 1 , . . . , n t (n  t = T /A t ) ,  that approximate the PDE solution at the grid 
points (x k, h) with x k = k.  Ax and h = I. At. The grid will be denoted further by 
Oh, with h standing for the pair (Ax,  At). 

We shall use standard central differences to discretize the spatial operator, and 
we shall apply various formulae for the time-discretization: the backward Euler 
or first order backward differentiation method (BDF1), the second order back- 
ward differentiation method (BDF2), and the trapezoidal rule or Crank-Nicol- 
son method (CN). With the parameter A h defined as z~t / (Ax)  2, and with 
f~,l = f ( x >  Yl), we arrive at following formulae: 

BDFI:  --Ahuk_,, , + (2A h + 1)Uk, , -- A h uk+ U - Uk,,_ 1 = zitfk,t ; (4) 

BDF2: --AhUk_l, t + (2a h + 3/2)Uk, 1 -- AhU~+l, / -- 

2Uk,i_ 1 + 1/2Uk,t_ 2 = ktf<t; (5) 

CN: --Ah/2u~_l.  I + (A h + 1)u<l - ) t h / 2 U k + l ,  l - -  ~.h/2Uk_l.l_l + (6) 

(A h -- 1)U<,_ 1 -- ah/2Uk+u_ 1 = A t ( k , ,  + f < , -  1) /2.  

Parameter A h can be considered as a measure of the degree of anisotropy of the 
discrete operator. In the case of very small Ah, the equations are almost 
decoupled in space. When A h equals zero, they correspond to sets of linear 
recurrences, one per spatial grid point. In the case of a very large Ah, the sets of 
BDF1 and BDF2 equations are essentially decoupled in time, and correspond to 
sets of (almost) independent discrete boundary value problems. 

2.2 The Multigrid Methods 

The multigrid waveform relaxation method (in its discrete-time version, [13, p. 
227]) and the time-parallel multigrid method can both be considered as multi- 
grid methods operating on ~2 h. For a given fine grid, both methods solve the 
same set of equations at the same set of grid points. Both are multigrid 
algorithms that determine the discrete solution on the entire space-time grid, 
i.e. on all time-levels, simultaneously. They both use the natural discretization 
corresponding to (4), (5) and (6) on each level in the multigrid grid hierarchy. 
Note that, of course, the value of it h differs from one grid level to the next. The 
methods employ a semi-coarsening strategy, with coarsening only in the spatial 
dimension. The intergrid transfer operators are the standard ones used in 
combination with semi-coarsening. The linear prolongation (Iu h ) and full weight- 
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ing (Ih n) formulae, for example, have stencils whose non-zero values extend in 
the spatial dimension only. 

The methods differ in the choice of the smoothing operator. The standard 
smoother in the multigrid waveform relaxation method is a zebra Gauss-Seidel 
method, more precisely, a red/black line-relaxation method with lines parallel 
to the time-axis. The sequential implementation of this time-line solver is 
particularly simple as it only involves the forward evaluation of first or second 
order recurrence relations. The parallel implementation involves the use of 
substructuring and/or  cyclic reduction ([10, 19]). The time-parallel multigrid 
method applies a standard spatial smoother replicated on each time-level. 
Non-smoothed old values are used whenever values at grid points on previous 
time-levels are referenced. The time-parallel red/black smoother, for example, 
consists of one point-wise relaxation step on all red points at all time-levels 
concurrently, followed by a similar operation on all black points. Note that 
coloring is only w.r.t, the spatial dimension. 

I1 BDF1 BDF2 CN 

Waveform ~-~ 
Relaxation ~ - ~  ,, 

Time-parallel ~ - e  
Multigrid ~ ~ 

Figure 1. Smoothing strategy of multigrid waveform relaxation and time-parallel multigrid 

The implementation of the red/black smoothers is illustrated in Fig. 1. De- 
picted are the discretization molecules of the BDF1, BDF2, and CN methods. 
The pictures show what values are used at neighboring grid points when 
updating the approximation at a 'black' grid point. A " O"  indicates a non- 
smoothed value. The symbol " @  corresponds to a value calculated in the 
'red'-step. Finally, a " 0 "  indicates a value that is to be updated in the current 
'black' phase. Two different strategies exist when using the time-parallel CN 
formula. They depend on whether the updated red values are communicated 
between time-levels only after the combined 'red/black' step (strategy A: left 
picture), or immediately after the 'red' step (strategy B: right picture). Further 
inspection reveals an interesting relation between the smoothers of both multi- 
grid methods. While the red/black waveform smoother solves the system of 
equations at a time-line exactly, the time-parallel red/black smoother solves 
them approximately, by doing one Jacobi relaxation step. 

Note also that, in the limiting case of n t -- 1, both algorithms are identical, and. 
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correspond to a standard multigrid method within a standard implicit time-step- 
ping scheme. 

2.3 The Two-Grid Iteration Matrix 

In this section we shall consider the two-grid variants of the methods presented 
above. The two-grid method makes use of one additional grid, OH, derived from 
O h by doubling the mesh size in the space dimension. The convergence of the 
method is characterized by the two-grid iteration matrix. This matrix, of dimen- 
sion (n x - 1)n,  is given by 

Mff  = S~ 2 ( I  h - IhnL~llnnLh)S,71 , (7) 

where S h is the smoothing operator on Oh; V 1 and v 2 are the numbers of pre- 
and post-smoothing iterations: Ih, Ihn, In n, are the identity, prolongation, and 
restriction operators. L n and L h a r e  discretized differential operators on O n 
and 12 h. It can be shown that the entries of Mnn depend on A h only, and not on 
the particular values of Ax and At. 

Assume that the unknown solution vector is ordered as 

/A1,1, b/2,1,"', Unx-1,1, b/l,2, U2,2,"', lgnx_ l,2 ,"" , bll,nt, bl2,nt,'", blnx_ l,nt) T. 

It is then found for both algorithms that Mnn is a lower triangular block-Toeplitz 
matrix, 

f M~  1 

M~,2 MhH1 

mh H =  Mnn,3 M~, 2 MhH,1 (8) 

Its blocks are of dimension n x - 1. The Toeplitz nature follows from the fact 
"(~- ~) l < m in the same that ,,(~) the v'th iterate on time-level m, depends on ~;t , W;m, 

way as u!,~ ) ,  depends on ~;l"(~-1), l _< n. The exact form of the matrices M Hh,J is not 
important for the present study, except for the matrix Mt~ ~. By considering the 
limiting case of nt --- 1, it is clear that M~z equals the classical two-grid iteration 
matrix encountered in a standard implicit time-stepping scheme. As such, the 
block-diagonal of the waveform relaxation iteration matrix equals the block-di- 
agonal of the time-parallel iteration matrix. Hence, the spectral radii of the two 
iteration matrices are identical. Both methods will converge whenever the 
two-grid method in the standard implicit time-stepping scheme converges. 

Actual computations do show a very different convergence behaviour for both 
methods, see e.g. w Obviously, the spectral radius analysis does not explain 
these differences. This has to do with the strong non-normality of the iteration 
matrices. An alternative would be to look for norm estimates. However, tight 
bounds for the norms of the Mnn-matrices have not yet been found. Here, we 
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shall use a classical Fourier mode analysis instead. This extremely simple tool 
will provide insight into the observed convergence behaviour. 

3. Two-Grid Fourier Mode Analysis 

3.1 Introduction 

The properties of Mff are often determined in the frequency domain, by an 
exponential Fourier mode analyis ([2]). This analysis can be regarded as an 
analysis for special model problems, namely those with periodic boundary 
conditions or those on infinite domains. This analysis shows that for these 
problems multiplication with matrix Mff leaves certain linear spaces of expo- 
nential Fourier modes invariant. More precisely, it can be shown that in the 
present case Mff is equivalent to a block-diagonal matrix, whose diagonal blocks 
are matrices of rank at most two. The general expression for the diagonal blocks 
is called the Fourier mode symbol of the two-grid operator. It is known to be 

~li(O)=S;2(o)(~-f~(o)L~l(o)~"(o)Lh(o))L: '(o),  (9) 

where Sh(O), ~, [if(O), [~(0), s and Lu(O) denote the symbols of the 
smoother, the identity, the restriction, the prolongation, and the fine and coarse 
grid PDE operators. 

The quality of a smoother is expressed by its smoothing factor, see e.g. [21, p. 
149], 

/x= max{K(Q(0)Sh(0)):  0~  O~}. (10) 

Here, K(.) stands for the matrix spectral radius. Matrix Q(O) is a projection 
matrix, expressing projection onto the space of 'high' frequencies. Set O 7 is a set 
of frequencies; it will be made more specific in w The convergence of the 
entire two-grid cycle is characterized by the Fourier mode spectral radius and 
spectral norm, 

p = m a x { K ( M i ( 0 ) ) :  0~O~}, o-=max{I]/l~ff(O)ll2: 0~O~}. (11) 

II'tl2 is the Euclidean matrix norm. The value of p usually shows good agree- 
ment with actual two-grid convergence factors obtained on O h. It corresponds 
to the asymptotic value of the two-grid convergence factor. The spectral norm is 
a non-asymptotic bound, 

3.2 Fourier Analysis Formulae 

Our Fourier analysis will follow a slightly different track than the classical 
analysis explained in [2,15]. Rather than using the definitions (for O 7 in 
particular), which aim at the limit of small mesh size, we follow the guidelines 
laid out in [21, Ch. 7]. The latter gives exact results for model problems with 
periodic boundaries, and, more importantly, it dearly brings out the dependence 
of the convergence on the values of Ax and At. 
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The exponential Fourier mode $h(O) with frequency 0 ~ O h is given by its 
components Ohj(O)= e 4~ where "." denotes the usual R 2 inner-product; i is 
the imaginary unit, and j ranges over the index set J. With c~ standing for x or 
t, sets J and Oh are given by 

J =  {(ix,Jr): J~ = O, 1 . . . .  , n ~ -  1}, (12) 

Oh = {(0x, 0t): 0~ = 2 r r k J n ~ ,  k~ = - n  J 2 +  1, - n  J 2  + 2 , . . . , n  J 2 ) ,  (13) 

where nx and ny are assumed to be even. In the case of semi-coarsening in 
space, the set of 'low' frequencies, O,, corresponding to 'smooth' Fourier modes, 
and the set of 'high' frequencies, Or, corresponding to 'rough' Fourier modes, 
are given by 

O ~ = O h C ~ ( ( - ~ r / Z , ~ r / 2 ) •  and O r = O h \ O  s, (14) 

We do not include (~r/2, 07) and ( -~ - /2 ,  0t) in the set of low frequencies, 
following [21, p. 109] and the rationale given in [20, p. 107]. The closely related 
set O~ is defined as 

O~= O h A ( [ -  ~r/2, ~r/2) • ( - ~-,~1). (15) 

To any frequency 0 ~ O~ there corresponds a unique 0 ~ O h \  O~ given by 
0 =  0-(sign(0~)Tr,0). It can be verified that the space spanned by Oh(0) and 
Oh(0) is left invariant by any of the multigrid operators. The associated transfor- 
mation matrices are the Fourier mode symbols of these operators. The projec- 
tion matrix Q(O), in (10), is a two by two matrix of the form diag(8(0),l) with 
6(0) = 1 if 0=  - 7r/2, and 6(0) = 0 otherwise. 

In order to derive the symbol of the smoother, we rewrite (4), (5) and (6) as 

E SmU(k,,)+m = At f~,,. (16) 
m~i 

Set I is a set of pairs of integers, corresponding to the non-zero coefficients in 
the equations. Let I be partitioned into three sets: I0, I1/2 and /1. I 0 is the 
subset corresponding to the "O"-values in Fig. 1; I1/2 and 11 correspond to the 
"@"-values and "@"-values respectively. For the time-parallel BDF1 method, 
for example, we have I 0 = {(0, - 1)}, I1/2 = {(-  1, 0), (1, 0)}, and I t = {(0, 0)}. It is 
readily verified that the red/black operators map ~h(0) into a(O)~h(O) at the 
'red' points, and into /3(0)Oh(0) at the 'black' points, with 

E Smeim, 0 
meE[oUI1/2 

o e ( 0 ) = -  Z Sm elm'~ ' 
m E11 

E Sm eim'O + E a(O)s.,  elm+ 

13( o )  = - " (17) 
E Sm eim'O 

mEI 1 
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A short calculation leads to the smoother symbol, 

1 (oz(O) + / 3 ( 0 )  o~(0) - / 3 ( 0 )  ) (18) 
" 

It can be shown that any Oh(O) is an eigenvector of Lh, whose symbol is given by 

Lh(O ) = d i a g ( L h ( O ) , L h ( O ) )  with Lh(O ) = E ~ x  s,~e ira~ (19) 

The symbol of the coarse grid operator L/r is a scalar, similar to Lh(O), but with 
A h replaced by A n, and with 0 =  (0~, 0 t) replaced by (20~, Or). Finally, the 
symbols of the full weighting restriction operator and of the linear interpolation 
operator are given by 

~ H ( 0 ) = � 8 9  I - c o S ( 0 x )  ) and (2o) 

3.3 Results 

We have calculated the Fourier mode smoothing factor, and the two-grid 
Fourier mode spectral radius and spectral norm for both multigrid methods 
considered in this paper. Spectral radius and spectral norm are calculated for 
1~1 = P2 = 1. Throughout the calculations we have used n x = n  t = 128. The 
results are graphically depicted as functions of A h in Fig. 2. Of course, in an 
actual computation with an implicit time-discretization scheme one is mainly 
interested in the large A t / ( a x )  2 case. Meshes with small a t / ( A x )  2 do arise 
however on the coarser levels in the multigrid algorithm. 

3.3.1 The Time-Parallel Two-grid Method 

For large values of A h, the equations derived with the BDFI method and with 
the BDF2 method are almost decoupled in time. They represent a set of discrete 
elliptic problems, one on each time-level. Hence,/z,  O and o- reflect well-known 
values for the one-dimensional Poisson equation. In particular, the smoothing 
factor is 0.125; both p and o- are zero since the multigrid method is an exact 
solver. This argument, however, does not hold for the CN method. Instead, it 
can be shown that any mode Oh(O) with 0 t = ~- becomes an eigenfunction of the 
smoother, with eigenvalue 1, when A h goes to infinity. Moreover, in strategy A a 
maximum of 5 / 4  is obtained for K(Q(O)Sh(O)) at 0 = (7r/3,0), when A h = w. 

The time-parallel smoother fails completely for small values of A h. In the case of 
the BDF1 or CN discretization the equations satisfied by the error e~, l = uk, t - 
gk,~, with Uk, ~ the exact discrete solution and ~k,t the current approximation, are 
of the form ek, l = ek, t_ 1 q- /~h ( ' ' " ) ,  where the expression inside the parentheses 
involves the errors at nearby grid points. Therefore, for very small Ah, the 
smoother merely shifts any error forward in time. Fourier mode Oh(O) with 
0 t = 7r becomes an eigenfunction with eigenvalue - 1, when A h = 0. It can be 
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Figure 2. Smoothing factor (/z), two-grid spectral radius (p) ,  and two-grid spectral no rm (o-) of  
multigrid waveform relaxation method  (left) and time-parallel multigrid method  (right). Solid line: 
BDF1 method,  dotted line: BDF2 method,  dashed line: CN method (time-parallel method:  strategy 

A: short  dashed line, strategy B: long dashed line) 

verif ied in a s imilar  way that ,  for  A h = 0, any Oh(O) with 0 t = ~" is an e igenfunc-  
t ion of  the  B D F 2  smoother ,  with e igenvalue  - 5 / 3 .  
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Finally, the time-parallel results have been recomputed with n x = n t = 512. No 
significant difference was found with the results for the nx = n t = 128 case. 

3.3.2 The Two-Grid Waveform Relaxation Method 

The waveform BDF results for large hh are similar to the time-parallel BDF 
results. Since the problems are nearly decoupled in time, the typical /z-, p-, and 
o--values for the corresponding elliptic problem are found. No problems are 
experienced with the CN method, and small hh-values do not seem to hinder 
convergence. All high frequency or oscillatory error components are satisfac- 
torily damped by the red /b lack  time-line smoother. 

Contrary to the case of the time-parallel method, the waveform curves do 
depend strongly on the values of n x and n t. This is shown for /x  and p in Fig. 3. 
(The diagrams for o- are similar to the ones for p). This is due to the nature of 
the functions that are maximized in (10) and (11). For the CN method, 
K ( Q ( O ) S h ( O ) )  has a maximum of 1 / 4  at 0 = (0, _+ 2arctan(/h)). The maximum is 
smooth as a function of Ox, but very sharp as a function of 0 t. For small and 
large values of h h the maximum is very close to Or= 0 or 0 t =  _+~r, and 
therefore 'missed' on grids with a moderate value of n t. A similar maximum is 
found very close to 0 t = 0 for small hh-Values in the BDF1 and the BDF2 
methods. 

~ I t  - f o., " 0.2 , . ' . '7. '7"'"-, ._ , / /  0.2 " 

o.o7,, , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,  7,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,Fo.o 
--16.0 -8.0 0.0 8.0 16.0 --16.0 --8.0 0.0 8.0 16.0 

log~ Ah log 2 Ah 

P 0 . 2  _ _ . : . . ,  0 . 2  0 

0.0 l l l l l ] ' i l l l l i J l l l l t l l i i l ~ l l l l L l i i  l l i l  i i ' i  ~ i l l  i l i l r  ~ l l  I l l  J ~ i  ~ JJ l i - i  0.0 
-16.0 -8.0 0.0 8.0 16.0 -16.0 -8 .0  0.0 8.0 16.0 

log2 )~h log 2 ,kh 

Figure 3. Smoothing factor (/z) and spectral radius ( p )  of two-grid waveform method with BDF1 
(left) or CN discretization (right). Dependence on (nx, nt); solid line: (128,128), dotted line: 

(256, 256), short dashed line: (512, 512), long dashed line: (1024,1024) 

3.3.3 Conclusion 

The waveform relaxation two-grid cycle is robust for the three discretization 
schemes considered. The smoothing factor, spectral radius and spectral norm 
are bounded well below one, for every value of h h. Their actual values depends 
in a non-trivial way on the meshsize. The time-parallel two-grid method, on the 
contrary, lacks robustness. Its convergence is satisfactory only with the BDF 
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methods, and even then only in the case of large A h. This is consistent with 
numerical experiments reported in the literature, see e.g. [7], and with an 
analysis for the BDF1 method in [5]. There it was already pointed out that the 
time-parallel BDF1 method should work well only for large A h. 

Finally, recall that the Fourier analysis is an exact analysis when the boundary 
and initial condition are replaced by space- and time-periodicity conditions. 
Hence, the Fourier results match the analytical convergence formulae presented 
for the discrete-time time-periodic two-grid waveform relaxation method in [18]. 
There, it was shown that the spectral radius of the latter method is bounded by a 
constant, smaller than one, independent of Ax and At (Cor. 4.3 and Cor. 4.5). 
This constant was given to be 0.162, which is exactly the height of the plateau in 
the p-curves of Fig. 3. 

4. A Numerical Experiment 

We discretized (1) with homogeneous Dirichlet boundary conditions and a zero 
initial condition. A random initial approximation to the solution was chosen so 
as to excite all possible error components. We shall report convergence factors 
based on monitoring the two-norm of the residual. The convergence factors are 
averaged over the first 30 iterations, or, in the case of fast convergence, over 
iteration one up to the iteration where the initial residual is reduced in norm by 
a factor 10 -1~ This average was found to be a good measure of convergence 
speed. Yet, one should bear in mind that the actual iteration to iteration 
convergence factors may differ significantly from the averaged ones, especially in 
the initial iterations and in the last few iterations before convergence. 

In Table i we present results obtained with a two-grid (1,1)-cycle, i.e., a two-grid 
cycle with one pre-smoothing step and one post-smoothing step, on a 128 by 128 
grid. The Fourier analysis of the previous section does not strictly apply to the 
initial boundary value problem we consider here. Yet, it does appear to predict 
the convergence rather well. The results in Table 1 are qualitatively very similar 
to the ones plotted in Fig. 2. Apparently, the difference w.r.t, robustness is not 
restricted to problems with periodic boundary and initial conditions. 

Table 1. Convergence factors for two-grid (1,1)-cycle ( n  x - n t = 128) 

Mulfigfid waveformrelax~ion Time-par~lelmukigfid 

logz(kh) - 6  -3 0 3 6 9 -6  -3  0 3 6 9 

BDF1 .02 .11 .08 .04 .01 .00 .92 .60 .09 .04 .00 .00 

BDF2 .02 .12 .12 .05 .01 .00 2.6 1.9 .44 .08 .01 .00 

CN .02 .12 .15 .14 .09 .04 .92 .58 .15 .58 .84 .88 
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For parallel computing purposes, the use of a V-cycle is particularly interesting, 
since it often combines good parallel and numerical efficiencies. We report 
V(1, D-cycle results in Table 2. (Note that the averaged V-cycle convergence 
factors are sometimes smaller than the corresponding two-grid ones. This is due 
to the variability of the convergence factors over different iterations). The 
waveform V-cycles perform very well for the three time-discretization methods 
considered, and they are robust across A h. The time-paralM V-cycles perform 
poorly, indicating that the use of an F-cycle or W-cycle may be more appropri- 
ate. 

Table 2. Convergence factors for V(1,1)-cycle (n x = n t = 128) 

Multigrid waveform relaxation Time-parallel multigfid 

log2(kh) -6 -3 0 3 6 ~5 -3 0 3 6 9 

BDF1 .02 .10 .09 .09 .09 .72 .47 .43 .38 .14 

BDF2 .02 .11 .11 .11 .10 3.2 .84 .58 .52 .23 

CN .02 .11 .13 .14 .14 .71 .41 .63 .83 .89 

9 

.07 .89 

.08 4.3 

.12 .88 

Finally, in Table 3 we present V(f, 1)-cycle results for a mesh with n x = 128 and 
n t = 8. While the peformance of the V-cycle time-parallel methods is unsatisfac- 
tory on meshes with large numbers of time-levels, these methods do appear to 
work rather well when the number of time-levels is small. Apparently, the actual 
convergence factor behaves like the spectral radius of (8), i.e. p ( M ~ l ) ,  the 
spectral radius of the two-grid iteration operator for the elliptic problem with 
operator 1~At  u -- Au. 

Table 3. Convergence factors for V(1,1)-cycle (n x = 128, n t = 8) 

Multigrid waveform relaxation Time-paralM multigrid 

log2(kh) -6 -3 0 3 6 -6 -3 0 3 6 9 

BDF1 .00 .02 .07 .09 .09 .05 .08 .14 .14 .11 

BDF2 .00 .01 .07 .09 .09 .04 .09 .15 .17 .15 

CN .00 .01 .08 .10 .10 

9 

.07 .02 

.08 .01 

. 10  .01 .03 .08 .15 .14 .10 
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5. Concluding Remarks 

The small difference in the algorithms - -  the use of an exact time-line smoother 
versus the use of an approximate time-line smoother - -  has a dramatic effect on 
their convergence properties. In particular, robustness with respect to A h is 
strongly affected. This robustness is important, since the value of A h changes 
considerably over the multigrid levels. 

The time-parallel method was introduced for reason of its superior parallel 
complexity, enabling a very efficient parallelization across time. For this, numer- 
ical robustness was sacrificed. Based on the insights obtained in the current 
study, different strategies could be put forward to address the problem of poor 
convergence of the time-parallel method for small values of A h. These methods 
could be based on the use of more efficient smoothers, different coarsening 
strategies, or the use of other discretization methods. The possible combinations 
are numerous, and most remain to be investigated. The analysis has led the 
authors to develop another space-time multigrid method for parabolic problems 
([9]). The algorithm uses a pointwise red/black smoother, and it coarsens the 
grid in both space and time. It retains the superior parallel efficiency of the 
time-parallel multigrid method, and partially recovers the robustness of the 
waveform relaxation method. 
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