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Abstract - -  Zusammenfassung 

Interpolation by Conic Model for Unconstrained Optimization. This paper describes a method for 
unconstrained optimization that associates quasi-Newton methods with conic functions. The 
derivation is based upon the construction of a conic function so that a local nonquadratic model can 
interpolate two function and one gradient values of the objective function at the last two iterates as 
a natural extension of existing quasi-Newton methods. The new method is shown to have Q- 
superlinear rate of convergence under standard assumptions on the objective function, and to 
decrease the number of line searches for good choice of parameters. Numerical experiments verify 
that the new method is very successful. 

AMS Subject Classifications." 65K, 49M 

Key words: Conic model, quasi-Newton method, line search, superlinear convergence, unconstrained 
optimization. 

Konische Interpolation f'ur die unrestringierte Optimierung. Die Arbeit beschreibt eine Methode 
zur unrestringierten Optimierung, die konische Funktionen im quasi-Newton-Verfahren verwendet. 
Es wird dabei eine konische Funktion so konstruiert, dag das lokale Modell zwei Funktionswerte 
und einen Gradientenwert der Zielfunktion an den letzten zwei Iterierten interpoliert, was cine 
nattirliche Erweiterung bestehcnder Quasi-Newton-Veffahren darstellt. Unter Standardannahmen 
tiber die Zielfunktion wird eine Q-superlineare Konvergenzgeschwindigkeit gezeigt und eine 
Verminderung der Anzahl der "line searches" bei guter Parameterwahl. Numerische Experimente 
best~itigen die Effizienz des Verfahrens. 

1. Introduction 

Consider the minimization problem 

minimize f(x),  f :~--+~,  f ~ C2; (1.1) 

many methods solving (1,1) are iterative, i.e., the sequence {x k} generated by an 
iterative algorithm starting with an initial point x 0 converges to a local minimizer 
x* of f(x). One class of typical iterations is the quasi-Newton methods which 
simultaneously generate a sequence of points x k ~ Nn and matrices B k e R nxn 
such that 

Xk+ t =X k + AkS k, (1.2) 

* The project was supported by the National Natural Science Foundation of China. 
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where 

s k = - B ; l f ' ( x ~ ) .  

For stability reasons, it is usually required that the matrix B k be symmetric 
positive definite, so that the direction s k is a descent direction of f(x) and 
fOck+ 1) <f (x~)  for some A e ~ (0, 1]. Moreover, the B k is updated according to a 
formula of the form Bk+ 1 = Bk + Dk, where D k is a symmetric matrix of rank 2 
or rank 1 so that the quasi-Newton equation 

Bk+l(Xk+ 1 --Xk) =f'(Xk+l) --f'(Xk) 
holds and Bk+ 1 stays symmetric positive definite. Quasi-Newton methods are 
efficient in practical use, but how to rapidly find the line search step factor)~ k is 
still an open problem. 

Davidon [3] proposed conic approximations and collinear scaling which are 

f ' ( x ) r s  1 sTBs 
c ( x + s ) = f ( x ) +  1 - a ~  + 2 ( 1 - a r s )  2 (1.3) 

and 
Jw 

S ( w ) = x +  l + h r  ~ ,  l + h r w > 0 .  (1.4) 

Davidon made a thorough investigation of the interpolating and geometrical 
properties of the conic function (1.3) and collinear scaling (1.4). Oourgeon and 
Nocedal [7] described a conic algorithm based on the conic model (1.3) that 
minimizes a conic function f(x) in n steps. Their algorithm can be considered a 
generalization of conjugate gradient method and has similar orthogonality 
properties. Sorensen [13] first derived an algorithm using (1.3) and (1.4), explic- 
itly indicating the relationship to BFOS quasi-Newton methods. He  referred to 
his algorithm as collinear scaling algorithm and proved that this algorithm has 
locally Q-superlinear convergence. Ariyawansa [1], Xu and Sheng [14] extended 
Sorensen's results to Broyden family collinear scaling algorithms with different 
technique, respectively. Sheng (1993) indicated that the single parameter Broy- 
den collinear scaling class belongs to the Spedicato three-parameter family if 
exact collinear line search is devised. Unfortunately, according to our numerical 
experiments the collinear scaling methods are not better than the classical 
BFOS quasi-Newton method. 

In this paper, we shall describe conic model algorithms based on (1.3). Our idea 
is that, if we can find a symmetric positive definite matrix B and choose an 
appropriate vector a ~ ~n at the current iteration x such that the conic function 
c(x + s) satisfies some interpolating conditions and 1 - aTs _> 1, then - B -  l f ' (x)  
is a descent direction at x and (1 - aTs) -1 is a predictive value of the line search 
step factor A in (1.2). Thus it is possible to decrease the number of line searches 
and increase the efficiency of the conic model algorithms. 

The outline of this paper is as follows. In Section 2 we state the conic model 
interpolation theory which is an extension of the classical quasi-Newton method, 
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and present three algorithms in Section 3. The local and Q-superlinear conver- 
gence for these algorithms are proved in Section 4. The results of numerical 
experiments are presented in Section 5. Finally, in Section 6 we give some 
concluding remarks. 

In all cases, I['ll denotes the 12-norm on ~n or the induced operator norm on 
R nxn. Frobenius norms and weighted norms are also used and denoted by II'IIF 
and I1" IIA, respectively. Throughout this paper, fk ,  gk denote f ( x  k) and f ' ( X k ) .  
Sometimes, x c and x_ denote the current point x k and the previous point x k _ 1, 
respectively. 

2. Interpolation by Conic Model 

The conic model 

grcS 1 srB~s 

C ( X c + S )  = f ~ +  1 - a ~  + 2 ( 1 - a r ~ )  2 '  (2.1) 

where a and B c are an undetermined vector and matrix respectively, is a local 
approximation of the objective function f(x~ + s), and has the properties 

C(Xc) =L, 

=gc. 

Furthermore, if B~ is positive definite, (2.1) has a unique minimizer (see [10]) 

B c l g c  
Sc = 1 - a r B [  lg c " (2.2) 

In order to determine the vector a and the matrix Bc ,  we introduce the 
following conditions into (2.1). 

(1) Interpolating condition 

or equivalently, 

c ( x _ )  = f _ ,  

gr~s_ 1 sr_Bcs_ 

Y - = f ~  1 + a T s _  + 2 (1 + a T s _ )  2 '  (2.3) 

where s_ = x c - x_ .  

(2) Quasi-Newton condition 

B c s _ =  a y _  , 

where y _  = gc - g - ,  and o~ > 0 is an undetermined parameter. 

(2.4) 
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(3) Parameter vector condition 

a =tg c 
o r  

a=tg_ ,  

where t is an undetermined real parameter. 

(2.5a) 

(2.5b) 

Before choosing the parameters a and t, we note that the unique minimizer 
(2.2) should be a descent direction at xc, which can be guaranteed by positive 
definite B c and 1 - arB~lgc > 0. Further, if B_ is symmetric positive definite 
and B c is updated by B using (2.4), then B c is symmetric positive defnite if 
and only if asr_y_ = a(grs_-gr_s_)  > 0 (see Lemma 9.2.1 in [5]). On the other 
hand, in order to decrease the number of line search, we hope that 1 - aTB~-lgc 
> 1. Therefore, from (2.5) we obtain 

tgrB?lgc < 0 (2.6a) 
o r  

tgrB[~g~ < 0 (2.6b) 

Lemma 2.1. Let the symmetric positive definite matrix B~ satisfy (2.4) and a > O. 
Then gr Bj- lg~ > 0 is guaranteed by any line search method. 

Proof." From (2.4) we have 

gfs_= agr~B~-l(gc-g_ ). 
Hence 

1 
gr B ~ lgc _~ g fB  c Xg c _ _ grcs_. 

Ol 

Now, if g )__<  0, then clearly grB21g ~ > 0. If g ) _ >  0, then since g ) _ =  0 in 
the exact line search, we can let (1/oz) grcS_ be very small using any inexact line 
search method such that grB-lg~ > O. 

Remark 2.1. In the numerical experiments, we restrict -tgr__B[lg c E[0, L]. 
Therefore, we do not care about the sign of gr_B~igc in the line search. 

According to Lemma 2.1 and (2.6), the parameter t should be nonpositive. 

From (2.3), (2.4), (2.5a) or (2.5b) we obtain, respectively, 

_ _  T 2 - 2 ( f _ - f c )  grcS_+_ ~/ (gcs_)  + 2a ( f_ - f c )S r_y  -_ 
t=  

2( f_  -fc)grcs_ 
and 

We set 

t = 
T 2 - 2 ( f _ - f ~ ) - g r c S  ++_ v/(gcs ) + 2 a ( f _ - f c ) s r _ y _  

2( f_  - f ~ ) g r s  

asr_y_ - 2gfs_ - 2( f_  - fc) = - ~ (g rs - )z .  

(2.7a) 

(2.7b) 
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Then we get 

(a) ~=  0, ee = 2 ( f _ - f ~  +g~s_)/s~_y_, (2.8a) 
(b) ~=  1, c~ = [ 2 ( f _ - f ~  +gSs_) + (g~cS_)2]/s[y_. (2.8b) 

Now, we can determine the parameter  t as follows: 
(I). ~ = O. 
If 2(f_-fc)+g~s>_ 0 then we take the positive root in (2.7), otherwise the 
negative root. In this case, t = O. 

(n). if= i. 
(1) a = t g  c.weuse 

t= I 
T 2 

- 2 ( f _ - f c  ) -gr~s_+ r + 2a(f_-fc)Sr_y_ 
2(f_-f~)JcS_ 

_ T 2 -2 ( f_ - fc  ) -grcS_ v/(g~s_) + 2a(f_-fc)Sr_y_ 
2( f_  -fc)g~c s_ 

if g[s_ < 0, 

if grcS_ > O. 

With (2.8b) we get 

t= 

g~s_/[2(f__fc ) + grs_+ r ) +g~s_)  2 + 2(f__fc)(gcS_)r 2 ] 

if g~c s_ <_ 0, 

~s [-2(f_-f~)-g~c s_ -g~ _ /  
T 2 + r  ) -}-gTcs)2-[- 2(f_-fc)(gcs_ ) ] if grs_ > O. 

(2.9) 

(2) a = tg_. We always put 

t= [-2(f_-f~)-g~cS +r 2a(f_-f~)s[y_] /2(f_-fc)g[s_. 

Using (2.8b) we have 

t= 
T 2 (gcS_) 

T 2 J_s [2(f_-fc )+g~s_+r ) +2(f_-fc)(gZcS ) el 
(2.10) 

Remark 2.2. From the above discussion, we only ensure t < 0. The value of 
will be controlled by the algorithm such that o~ > 0. 



88 S. Sheng 

3. Hybrid Algorithms 

In Section 2 we discussed the choices of the parameter  a and t. As long as oE is 
chosen, t is uniquely determined. Then B~ -1 is updated by B Sa with the 
extension of inverse BFGS method by means of (2.4). So that the descent s c at 
Xc can be given by (2.2). Unfortunately, o~ _< 0, which can destroy the algorithms, 
may appear in the beginning of the iterations. On the other hand, very small or 
large values of a can disturb the stability of the method. Thus we must regulate 
the region of a. Let 

0 < p l < l < p  2. 

If oe ~ [ &, P2] then we force oz = 1 and t = 0. In this case, the current iteration 
is the classical BFGS method. 

Because the size of t only affects the predictive step factor (1 - arB[lgc)-l, we 
don't hope that Itl is too large. Thus if Itl > T then set t = - T .  Here  T > 0 is 
fixed. This restriction will simplify the proof of local convergence in Section 4. 

Now, we can outline the following three hybrid algorithms by means of the 
alternate choices of o~ and t. 

Algorithm 3.1 

(1) Given the initial x, the symmetric positive definite H, El,0o2,0o3, T and 
O<& <l <p>k=O. 

(2) Compute 

f = f ( x ) ,  g=f ' (x ) ,  
, = - I - I g / ( 1  - n ) ,  

where ~7 = 0 or ~ = - ]l g I[, and H denotes B -  1. 

(3) Line search. Find a A > 0 such that 

2 = x + A s  and f = f ( s  
satisfy 

f--f>__ -- 0OlASTg. 

(4) Test convergence. If IIf'(2)ll ~ 0o 2 or 

(5) Choose a and t. 
Compute a using (2.8b) 
If a ff [ &, P2] then set o~ = 1, t = 0 and go to (6) 
Compute t using (2.9) 
I f t < - T t h e n t  = - T .  

(6) Correct H. 
Compute ~ = f ' ( 2 )  and 

syrH + Hys T 
H = H -  

--~-< 0o3 then out put 2, f .  Stop. 

l/Uy 1 ) 
(3.1) 
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where s = 2 - x and y = ~ - g. 
(7) Produce the new descent direction 

rt = tgr I-lgg. 

s = -/-/~g/(1 - r/). 

x=Yc, g=g, f= f ,  k = k + l .  

Go to (3). 

89 

Algorithm 3.2 

"Compute t using (2.9)" at step (5) and %1 = t~,z/4~ '' at step (7) in the Algorithm 
3.1 are respectively replaced by the following 

Compute t using (2.10) 

and 

, =  t f I ~ g .  

Algorithm 3.3 

Step (5) in the Algorithm 3.1 is replaced by 

Compute a using (2.8a). 

If a ~ [ Pl,P2] then set ol = 1. 

t = 0 .  

Remark 3.1. If p~ = P2 = 1 then Algorithms 3.1, 3.2 and 3.3 are the classical 
BFGS algorithms. 

4. Local Convergence Analysis 

In this section we analyse the local convergence of Algorithms 3.1-3.3 with the 
direct prediction method, i.e., A--1 in the line search. Our approach is only an 
application of the theory of quasi-Newton methods given in [2], [4]. 

In order to avoid restating hypotheses many times, we shall specify one standard 
assumption here. 

Basic Assumption: f :Rn-~  R is twice continuously diffferentiable on an open 
convex set D, where D contains a strong local minimizer x*, and there is a 
neighborhood N of x* such that 

IIf" (x)  - f "  (2)II -< K[Ix -Eli (4.1) 
for all x, E ~ N. 

From Lemma 3.1 given in [2], or Lemmata 4.1.15 and 4.1.16 given in [5], we 
obtain 
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Lemma 4.1. Let f satisfy the Basic Assumption. Then, for any u, v, ~ D, 
K 

I[f ' (u)  - f ' ( v )  - f " ( x * ) ( u - v ) [ l _ <  ~-o ' (u ,  v ) l l v -  ull, (4.2) 

where o'(u, v) = max{ Ilu - x* II,II v - x* II }. Furthermore, there exist ~ > O, [31 > 0 
and ~2 > 0 such that if ~r (u, v) < ~ then u, v ~ D, and 

1 
- -  <[[f"(x)[[_<[31, V x ~ g ( x * , s )  (4.3) 
[31 

I l u  - v i i  
- -  <l l f ' (u)  -f'(v)ll<[3211u-vl[, Vu,v~N(x*,~). (4.4) 

[32 

Lemma 4.2. Let f satisfy the Basic Assumption. Then there is a neighborhood N( x*, 
~ ) and a constant p > 0 such that 

- 1 < p o - ( x _ ,  xc)  (4.5) 

for all x _, Xc ~ N(x*, ~) and x _ # x c, where a is defined by (2.8). 

Proof." At the first, the inequality 

1 T 1i g 3 I f - - [ f c + ( X - - x c ) r g c + g ( x - - x c )  f (Xc) (X- -Xc)] l<gl lx - -Xc l ]  (4.6) 

holds (for example, see Lemma 4.1.14 given in [5]). With estimates (4.3) and (4.1) 
we have 

T 
[ ( x - - x c )  ( g c - g - ) l  

= ( x ~ - x _ ) 7 [ f o l ( f l ' ( x _ + O ( x ~ - x  ) ) - f " ( x  ) )dO+f"(x_)]  (x c - x _ )  I 

> I(Xc -x_)rf"(x_)(x~ - x _ ) l -  fo 1 I[f" (x_ + O(Xc - x ) )  

) -f"(x_)l[dO[[Xc-X_l[2>__ -KIIx~-x_ll IIxc-x_l[ 2. 

Thus, if e > 0 is small enough such that 

1 1 

[31 gllxc -x_l l  > 2131 

then we get 

1 
[(Xc-X )r(gc-g_)l>-~-~lJrXc-X_l[2, Vx ,xc c N ( x * , e  ). (4.7) 

If a is defined by (2.8a), then using (4.6), (4.7), (4.1) and I[xc -x_ll < 2,~(x~, x )  
we have 

[o~ - iI = 12( f_ -  fc) + (x  c - x _  ) r& + (xc - x_) rg_l/l(x~ - x _  ) 7"(gc_g_)l 

= t[ I - S c  - ( x _ -  x~)~g~ - ~ ( x _ -  x~)'I , , (  x~)( x _ -  Xc)] 
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1 T . -[f~-f_-(x~-x_)~g_-~(Xc-X_) s (x)(Xc-X_)] 
PP X + y(x  - - x ) T [ f " ( X c )  - - f  ( _)](X~ --X_)III(Xc --x_)r(g~ g_)l  

(K K K ) 2 / 3 1  
_< -g Ilxc -x_113 + -ff IIx_-xclf  + -~ Ilxc -x_l l  3 IIx~ -x_ll  z 

= 5 g/31[[Xc -x_[[  < ~gq g/3~o-(xc, x_). (4.8) 

Similarly, if a is defined by (2.8b), then using (4.8), (4.7) and (4.4) we have 

-x_)  gc) _ 1 + I,~ - i t  = -  2( f_ - f~  + (x~ z (x~ r 

-~-) (gc-g-) (x~-x_) (g~-g_) X c T T 

K/3111x~ - x A  + 2/31/3~llXc -x*l l  2 <<-5 

< 2/31(~-K+/32)~r(Xc,X_), (4.9) 

where 

g * = f ' ( x * ) = O  and o - ( x c , x _ ) < 2 e < l .  

Now, let p = 4/31(~-K+/32). From (4.8) and (4.9) we have 

I ~ -  11 ___ �89 

Furthermore, let e be small enough such that 

1 -  x_) >~ .  
Then we obtain 

I i - a l  1 (xc,x_)  
~po" < po'(X c X_) 

- 1 =  ~ i  < P - ' 
1 -  -~o'(Xc,X_ ) 

for all x_,x~ ~N(x*,e) .  

With the above preliminary results it will be possible to give certain bounds of 
the rate of possible growth of the matrices {Hk}. 

Lemma 4.3. Let f satisfy the Basic Assumption. Then there exists a neighborhood 
N(x*,e) of x* and constants oq > O, % > O, such that 

ILH-A-1I[A < (1 + % o ( x , 2 ) ) l l H - A - l [ l a  + % o ( x , 2 ) ,  (4.10) 

where I IE I IA  = IIA~EA}IIF, H, H and A denote Ilk, Hk_ 1 and i f (x*) ,  respec- 
tively. 

Proof." Due to (3.1) we have 

H =  I -  7-~y H I -  sry l + s--~y + - 1  s---~ 

_ ( 1 ) s s r  
=HRFoS + - - - - 1  , sty 
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where s = ~ - x ,  y = g - g ,  and HBFGS is the classical BFGS update formula. Let 
be small enough such that Lemma 4.1 and Lemma 4.2 hold. Now, using the 

estimate of Broyden, Dennis, and Mot6 given in [2], for any x, ~ ~ N(x*, s) we 
obtain 

I]HBFGS --A-111A ~ (1 -k &lo-(x ,2))NH-A-1IIA + &zO-(X,2), (4.11) 

where 3a > 0, &z > 0 are constants. 

On the other hand, from (4.3) and (4.7) we have 

SS~y ~ 1 1 
= }-~y]IIA1/2ssTA1/2[[ F = [~y]l[A1/2s[[ 2 <_ 2fl(.  (4.12) 

With (4.11), (4.12) and (4.5) we obtain 

[IH--A- ' l lA _< (1 + a,̂  ~r(x, 2))[[H-A-1l lA + &2 ~ ( x , 2 )  + 1 - 1[ IIssrl}Alsry I 

< (1 + 0/10"(X,f)) [ IH--A-I[IA + ~ o (X ,X) ,  

where aa =- al ,  0/2 = (~2 "~" 2P/3 2" 

Now we analyse the local convergence of Algorithms 3.1-3.3. 

Theorem 4.4. Let f satisfy the Basic Assumption, and let the sequence {x k } be 
derived byAlgorithm 3.1, Algorithm 3.2, or Algorithm 3.3, 

Xk+ 1 =X k - -  O~Hkg k, k = 0,1 . . . .  , 

where H k is updated by 

O k 

brmula (3.1), and O k is given by 

1 

1 r - tkgkHkg k 
1 

in Algorithm 3.1, 

in Algorithm 3.2, 
1 - tkgk v_ 1Hkgk 

1 in Algorithm 3.3. 

(4.13) 

Let N(x*, s) be a neighborhood of x* such that Lemmas 4.1-4.3 hold for all 
x, ~ N ( x * , e ) ,  and A=f"(x*) .  Then, given any r~(0 ,1) ,  there are positive 
constants ~ = s(r), 6 = 6(r) such that if 

[[x0-x*ll < e, IIHo-A-11rA<~, 

the sequence {x k } is well-defined, converges to x*, and 

IIx~+l-x* II<_rllxk-x*ll, k=0,1... 
Moreover, the quantities IlHk[], ]rHkll] are uniformly bounded for all k. 

Proof." Let r ~ (0, 1) be given. Due to (4.3) we have ][AH </31 and ][A-all < fly 
We remind ourselves that for fixed A the equivalence of matrix norms implies 
the existence of a constant 7/> 0 such that 

[JE[[ _< ~[[EI]A, for all E ~ ~"• 
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Now choose 8 > 0 and 8 > 0 such that 

(a) �89 + 8(2(1 + 8)'0 + [31)[32 < r, 
(b) (2641 + % ) 8 < ( I - r ) &  
(c) 2"01313 < r, 
(d) T"0(~/-ff + 28)(1 + 8 ) [3~  2 < 3. 

Suppose IJx 0 -x*[[  < ~ and IIH o --A-111A < 8. Because 00 is an arbitrary posi- 
tive constant in the algorithms, without loss of generality we choose 00 > 0 such 
that l1 - 00l < 8. Then IIH 0 -A-111 < ~/3 < 2"08 and 

Ilxl -x*l l  = IIx0 - x *  - Oonogoll 

= II[xo-X* - A - l ( g o - g * ) ]  + O o ( Z - ~ - n o ) ( g o - g  *) 

+ (1 - Oo)A-l(go - g * ) l l  

-< IIZ-lll IIg0 - g *  - Z ( x o - X * ) l l  + 0ollZ -1 -n011 Ilgo-g*ll  

+ I1 -  0ol IIA-111 Ilgo-g*ll,  

where g* = f ' ( x * )  = 0. Therefore, due to (4.2) and (4.4), 

Ilxl -x*ll--- �89 -x*l l  z + 2"08(1 + 8) [3211x0 -x*l l  + 6131 [3211x0 -x*l l  

< (�89 + 2(1 + 8)8"0/3 2 + 8[31 [32)llx o -x*l[  

-<rllx0-x*ll  from (a).  (4.14) 

The proof now proceeds by induction on k. Suppose that 

l ink- -A-I l IA<28,  liXk+l--X*ll<_rllxk--X*ll and [1 - -0k l<3  

for k = 0,1 . . . . .  m - 1. Then Lemma 4.3 implies that 

link+ 1 -A-~II,~ - I I n  k --A-1HA < %0"(Xk, xk+ l ) l l nk -Z-~ l lA  + o~2 o ' (x  k, xk+l) 

< 2418~r k + 828r k 

= (2341 + 82)~r k (4.15) 

for k = 0 , 1 , . . . , m - 1 .  Summing both sides of (4.15) from k = 0 , 1 , . . . ,  m - 1  
gives 

8 
Ilnm -A-*II,~ - I I n 0  - a - i l i a  -< T77_ r (24~1 + ~2) < 8 from (b).  

Thus [Inm - A - * l l a  < 28 and IIHmlla <_ IIA-111A + 28. Hence II/-/mll < "0(~- + 
28). The Banach perturbation lemma (for example, see w 2.3.2 in [9]) yields 

IIH~-11[</31/(1-r) ,  k =  0 ,1 , . . . ,  rn 

due to IIAII _< [31, link - A - i l l - <  "0link --A-111A --< 2"08 and (c). 

Using Itml < T, (4.4) and (d), it is easy to see that for Algorithm 3.1 

Itmgrmnmgml Itml Ilnmll Ilgml[ 2 
11 - O r a l ' <  < 

1 -ItmgTnmgml - -  1 -Itml IIHmll Ilgmll 2 
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TT/(v/n - + 2($)/32211x m -xl]  2 TV(v /n  + 2($)/322 r 2m 8 2 
< < 

1 - T n ( v g  + 2($)/3#11xm -x*[I  2 - 1 - Tn(v~- + 2a) /3~ r 2m e 2 

Tr/(fn- + 2($)/322 8 2 
< < 3 .  

1 -  T~/(fn + 2($)/322 82 

Similarly, for Algorithm 3.2 we have 

T Tr/(~-  26)/3~rZm- 18 e [tmgm_lHmgm] + 
I1 - 0ml< 

- 1 It,~g~_lH,~gml < -- 1 -- Tr/(V~- + 2($)/32r2m-18 2 < ($ 

For Algorithm 3.3, it is obvious that ]1 - Oral < ($ for any ($ > 0. 

Also, since ][H m --A-11[A < 2v($, J1 - GI < ($, it follows that 

IIx.,+ 1-x*l l_< (�89 + 2(1 + ($)v/32 ($ +/31 & ($)lJXm -x*l l  

<rllXm - x ' l [  from (a),  

exactly as in (4.14)with x m in place of xo, Xm+ 1 in place of xp This completes 
the induction and we have 

IIHkll-< v ( v ~  + 2($), Ilg~-Xll _</31/(1 - r) 

as above for all k > 0. 

Corollary 4.5. Let the hypotheses of Theorem 4.4 hold. Then 

lim O k = 1, 
k - - +  oo 

where O k is defined by (4.13). 

Proof." According to Theorem 4.4, the sequence {x k} converges with a Q-linear 
rate to a strong local minimizer x*. Therefore, the sequence {f'(xk)} converges 
to f ' ( x * )  = 0 by the continuity of f'(x). It is clear that 

lira O k = 1 
k---~ o~ 

due to IIHkll uniformly bounded for all k. 

Note that during the above discussion we always put hk--=l, where A k was the 
step length of the line search. Now let us regard O k as a new step length of the 
line search. Then due to Corollary 4.5, the Q-superlinear convergence of 
Algorithms 3.1-3.3 is only a corollary of Theorem 8.9 of Dennis and Mor6 given 
in [4]. We state it as follows. 

Theorem 4.6. Let the hypotheses of Theorem 4.4 hold and consider O k defined 
by (4.13) as a step length of the line search such that {O k} converges to unity. If 
the sequence {x k} is generated by Algorithm 3.1, 3.2 or 3.3, then {x k} converges 
Q-superlinearly to x*. 
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5. Numerical Experiments 

Because the O k defined by (4.13) may be very small at the beginning of the 
iterations, this fact can increase the number of line searches. So in the 
implementation of Algorithms 3.1 and 3.2 the restricted condition t k ~ [ -  T, 0] 
is changed into 0 h ~ [/x, 1]. Here /x > 0 is a fixed constant. 

We have tested 17 functions that have been used extensively to test uncon- 
strained optimization algorithms. These functions are all described in [9]. All the 
starting values are the standard starting points. It would be of interest that when 
[ 01, P2] -- [0.7,1.3] the numerical results of Algorithms 3.1-3.3 and the classical 
BFGS algorithm (i.e., Pl = P2--1) are about the same for the most part of 
testing functions. The examples are Beale, Helical valley, Biggs EXP6, Gaussian, 
Box three-dimensional (m--4,5) ,  Variably dimensioned (n = 2,5,10), Watson 
(n = 9,12), Penalty I (n = 10), Brown badly scaled, Brown and Dennis, Trigono- 
metric (n = 2, 5,10), Rosenbrock (n -- 2) and Chebyquad (n = 8) functions. So we 
omit to tabulate their results. The other numerical results are given in Table 1. 

In the implementation we put e 1 = 10 -4, 002 = 10 -8, e 3 = 10 -1~ and /x = 0.125. 
Our algorithms use only a bisection search. All tests were done on a microcom- 
puter 386/33 in double precision arithmitic. 

In Table 1 the following notation is used: 

NIT -- number of iterations, 
NFE = number of function evaluations, 
NLS = number of line searches. 

6. Final Remarks 

In this paper, we only proved that the conic model interpolation with BFGS 
update has local and superlinear convergence. It is obvious that one can prove 
that the conic model interpolation with Broyden convex family update 

H - -  0HBFQSq-(1-- 0)HDFP, 0 ~ [0,1] 

also has local and superlinear convergence using the technique of Broyden, 
Dennis and Mor~ given in [2]. 

An important problem is about the choice of the region [ Pl, P2]" In our 
numerical experiments we only specified the following 7 regions in the infinite 
cases 

[0.05, 20], [0.1,10], [0.5,2], [0.1,1.9], [0.3,1.71, [0.5,1.5], [0.7,1.3]. 

In fact, the region [01, P2] can sensitively affect the number of function 
evaluations and the number of line search. As long as the good choice of region 
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Function Algori thm 

Powell 
badly 
scaled F. 
n = 2 m = 2  

Box three 
dimensional 
Function 
n = 3 m = 3  

Watson 
Function 
n = 6  
m = 3 1  

Penalty 
Function 1 
n = 4 m = 5 

Penalty 
Funct ion lI  
n = 4 m = 8 

Penalty 
Function II 
n = 1 0  
m = 2 0  

Wood 
Function 
n = 4 m =  6 

Extended 
Rosenbrock 
Fun~ ion  
n = 6 m =  6 

BFGS 

3.1 

3.2 

3.3 

BFGS 

3.1 

3.2 

3.3 

BFGS 

3.1 

3.2 

3.3 

BFGS 

3.1 

3.2 

3.3 

BFGS 

3.1 

3.2 

3.3 

BFGS 

3.1 

3.2 

3.3 

BFGS 

3.1 

3.2 

3.3 

BFGS 

3.1 

3.2 

3.3 

[ Pl, P2] 

[0.5, 2] 

[0.5, 21 

[0.5, 2] 

[o.1, 1.91 
[o.1, 1.91 
[o.1, 1.9] 

[0.1, 1.91 

[0.1, 1.9] 

[0.1, 1.9] 

[0.1, 10] 
[0.Ii 101 

[0.1, lOl 

[0.1, 10] 

[0.1, 10] 

[0.1, 10] 

[o.1, lO] 
[o.1, lO] 
[o.1, lO] 

[0.5, 2] 
[0.5, 2] 
[0.5, 21 

[0.5, 2] 

[0.5, 2] 

[o.5, 2] 

NIT 

161 

152 

150 

i55 

46 

44 

40 

24 

39 

38 

39 

39 

73 

61 

66 

91 

441 

363 

339 

372 

484 

472 

485 

461 

79 

83 

81 

83 

70 

74 

72 

73 

T a b l e  1 

NFE 

219 

190 

186 

199 

53 

49 

44 

26 

54 

46 

50 
51 

92 

63 

68 
96 

595 

399 

375 

410 

641 

464 

531 

503 

117 

115 

111 

111 

101 

92 

96 

105 

NLS 

57 

37 

35 

43 

14 

7 

10 

11 

18 

1 

1 

4 

153 

35 

35 

37 

156 

36 

45 

41 

37 

31 

29 

27 

30 

17 

23 

31 

Final f(x) 

.16899082 x 10 -27 

.10628152 x 10 -25 

.35401153 x 10 -28 

.48571718 X 10 -27 

.12138080 X 10 -18 

.20045003 X 10 -16 

.37296138 X 10 -as  

.37792434 X 10 -16 

.22876701X 10 -2  

.22876701X 10 -2 

.22876701X 10 -2 

.22876701X 10 -2 

.22499774 x 10 -4 

.22499774 x 10 -4 

.22499774x 10 -4 

.22499774 x 10 -4 

.93762931 x 10 -5 

.93762931 • 10 - s  

.93762931 x 10 -5 

.93762931 • 10 -5 

.29366063 x 10 -3 

Final Ilf'(x)ll 

.574671 x 10 -9  

.375959 X 10-8 

.329648 X 10-11 

.894584 X 10 -9  

.230009 x 10 -9  

.144546 x 10 - s  

.104173 x 10 -8  

.626614 x i0 -8  

.446088 x 10-7 

.334181 X 10 -6  

.493558 X 10-6 

.155835 x 10 -7  

.300199 • 10-  8 

.272200 • 10 - s  

.789259 x 10 -9  

.156513 x 10 - s  

.722961 • 10 - s  

.369483 • 10 - 7  

.115329 X 10 -6  

.492943 • 10-7 

.137356 x 10 -6  

.29366056 x 10 -3 .108975 x 10 -6  

.29366068 x 10 -3 .303931 x 10-6 

.29366060 x 10 -9 .100490 x 10 -5  

.64619470 x 10 -19 .496718 x 10 - s  

.34061612 x 10 -19 .247168 x 10 - s  

.68378456 x 10 -~~ .981142 x 10-1~ 

.13524181 x 10 -19 .233128 x 10 -8  

.25579219 x 10 -20 .104231 x 10-8 

.54969132 x 10 -19 .456766 x 10 -8  

.38204581 x 10 -19 .130123 x 10 -8  

.64044531 x 10 -28 .957959 X 10-8 
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T a b l e  1 (continued) 

Function Algori thm 

Extended BFGS 
Rosenbrock 3.1 
Function 
n = 10 3.2 

m = 10 3.3 

Extended BFGS 
Powell 3.1 
Singular 
Function 3.2 
n = 4 m = 4  3.3 

Extended BFGS 
Power  3.1 
Singular 
Funct ion 3.2 
n = 8 m = 8  3.3 

Extended 
Powell BFGS 
Singular 3.1 
Funct ion 
n = 12 3.2 

m = 12 3.3 

Chebyquad BFGS 
Function -3.1 
n = 9 m = 9  

3.2 

3.3 

Chebyquad BFGS 
Function 3.1 
n =  10 
m = 10 3.2 

3.3 

[ Pl,P2] NIT NFE NLS 

95 149 53 

[0.1, 1.9] 100 133 32 

[0.I, 1.9] 97 140 42 

[0.1, 1.9] 95 142 46 

51 62 10 

[0.1, 1.9] 41 52 10 

[0.1, 1.91 41 52 10 

[0.1, 1.91 54 65 10 

79 97 17 

[0.7, 1.3] 83 100 16 

[0.7, 1.3] 68 86 17 

[0.7, 1.3] 50 67 16 

122 151 28 

[0.5, 1.5] 99 121 21 

[0.5, 15] 120 t45 24 

[0.5, 1.51 77 103 25 

67 91 23 

[0.7, 1.3] 62 80 17 

[0.7, 1.3] 54 89 34 

[0.7, 1.3] 64 88 23 

75 103 27 

[0.1, 1.9} 63 80 16 

[0.1,1.9] 70 96 25 

[0.1,1.9] 81 1 11 29 

Final f(x) Final I~'(x)[I 

.68416970•  10 -19 .458914• 10 -8  

.91963239 • 10 -19 .270758 • 10 -8  

.34074839• 10 -18 .474071• 10 - s  

.40048342• 10 -19 .417084 x 10 -8  

.47533144 • 10 -14 

.72702178 • 10 -13 

.72686315 • 10 -13 

.13133898 • 10 -13 

.559467 • 10 -8  

.229041 x 10 -8  

.232343 • 10 -8  

.152569 x 10 -8  

.35032841• 10 -13 .498566 • 10 -8  

.32632772• 10 -13 .207912• 10 -8  

.60691851 • 10 -12 .828386 • 10 . 8  

.94571608 x 10 -13 .298124 • 10-8 

.39141921x 10 -15 .477884 • 10 . 8  

.28154379 • 10 -11 .904334 • 10 -8  

.17121555 • 10 -13 .388941• 10 - s  

.31317460 • 10 -11 .820248 • 10 -8  

.48094067• 10 -16 .810873 • 10 -8  

.84896244 x 10 -18 .138852 • 10 -8  

.27144198 • 10 -16 .751233 • 10 -8  

.23632131 • 10 -17 .203399 • 10 -8  

.47727137 • 10 .2  .152842 • 10-  7 

.47727137 • 10 .2  .390727 x 10-  6 

.47727137 • 10 -z  .317386 • 10-6 

.47727137 • 10 -~ .921132 • 10-7 

[ Pl, P2], our new methods are certainly better than the classical BFGS method. 
Unfortunately, we do not know how to automatically determine the best region 
[&, P2]. Therefore, this important project appears to be worthy of further 
research. 
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