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Summary - -  Zusammenfassong 

Clenshaw-Curtis Quadrature with a Weighting Function. An extension of the Clenshaw-Curtis 
quadrature method is described for integrals involving absolutely integrable weight functions. The 
resulting quadrature rules turn out to be slightly lower in accuracy than the corresponding 
Gaussian rules. This, however, seems to be paid off by the use of preassigned nodes and by the 
applicability of Fast Fourier Transform techniques. Some specific formulae are derived explicitly 
and several numerical examples are given. 

Clenshaw-Curtis-Integration mit einer Gewichtsfunktion. Das Quadraturverfahren von Clenshaw 
und Curtis wird auf Integrale iibertragen, die absolut integrierbare klassische Gewichtsfunktionen ent- 
halten. Es stellt sich heraus, dab die entstehenden Quadraturforrneln in der Genauigkeit den 
entsprechenden Gaul3schen Formeln nur wenig jaac~stehen, jedoch wegen der vorgegebenen 
Sttitzstellen und wegen der Anwendbarkeit des Algorithmus yon Cooley und Tukey numerische 
Vorteile besitzen. Einige Formeln werden zusammen mit numerischen Beispielen explizit an- 
gegeben. 

1. Introduction 

The Clenshaw-Curtis quadrature scheme [2] for the evaluation of 
t 

S f(x) dx (1) 
- 1  

is obtained by replacing f(x) with the polynomial PN (X) of degree N which 
interpolates f(x) at the points 

xj = cos (xj/N) (] = O, 1 ..... N), (2) 

and by evaluating the resulting integral exactly. In [2] it is shown that PN (X) 
can be represented in the form 

N 
PN (X)= ~"  aj Tj (x), (3) 

j=0  

where 
N . 

2 k~=~,f(xk) Tj(xt,). aj =--~ (4) 

* This work was supported by the Office of Naval Research under contract NR 044-37. 
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Here Tj (x) is the jth Chebyshev polynomial on ( -  1, 1) and ~ "  indicates that 
the first and last term of the sum are to be halved. 

The problem of how to choose an appropriate value of N is discussed 
extensively in [2] and by FRASER and WILSON in [6]. The number N is 
determined from a check on the smallness of several of the highest coeffi- 
cients aj in formula (3). Bounds for the error of the approximation P~ (x) to 
f(x) and for the Clenshaw-Curtis quadrature scheme are given by ELLIOT [5] and 
by CHAWLA [1]. 

For sufficiently smooth integrands the Clenshaw-Curtis rules yield results 
which are almost as good as those obtained by the corresponding Gaussian 
rules. This is due to the favorable choice of nodes in the interpolation process 
(3) and (4). 

In this note we extend the principle used by Clenshaw and Curtis to 
integrals of the form 

1 

I (f) = ~ f(x) w (x) dx, (5) 
- 1  

where f(x) is a "well-behaved" function and w(x) an absolutely integrable 
classical weight function, i.e. a function for which the moments are known. 

The rules discussed in 2. are obtained by replacing f(x) in (5) with the 
polynomial (3) and by integrating the resulting expression exactly. It follows 
immediately that the error criteria mentioned above for w (x) = t carry over 
with slight modifications to the general case. Some well known quadrature 
formulae are found among those derived in 3. for specific functions w (x). 
Numerical examples for the weight function w (x)=(1-x)  -x/2 are given in 4. 

We point out that because of (4) the Fast Fourier Transform techniques 
described in [3, 4] can be used in the computation of definite integrals. On 
the other hand, the quadrature coefficients given explicitly in 2. and 3. are 
useful if the corresponding quadrature rules serve to discretize weakly singular 
integral or integro-differential equations. 

2. Derivation of the Quadrature Formulae 

With PN (x) from (3) we consider 
1 

In ( f )= ~ PN (x) w (x) dx (6) 
- 1  

an approximation to I (f)  in (5). Substitution of (3) and (4) into (6) and 
rearrangement of the terms yields the quadrature rule 

N 

In (f) = ~" A} N) f(x~), (7) 
j = o  

where the nodes xj are defined in (2) and the weights are 

A(.~) =_2 (8) 
J N k=O - 1  
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We note that the integrals in (8) can be written as 

Jk (W)= f COS kt w (cos t) sin t dr. 
0 

(9) 

Theorem: The quadrature formula (7) has the properties: 
i) It is exact for all polynomials f(x) of degree <N. 

ii) The weights A~ m (j=0, 1,..., N) are bounded by 
1 

2 J" Iw (x)I dx 
- 1  

for all N. 
iii) The weights A} m (j = O, 1,..., N) tend to zero as N ~  09. 

Proof: Property i) follows from the interpolatory character of our quadrature 
formula. The boundedness condition ii) is deduced from 

1 

I Jk (w)]_< 5 I w (x) l dx (10) 
- 1  

and from (8). To show iii) we note that the function w (cos t)sin t in (9) is 
absolutely integrable on [0, n]. Thus Jk(w)~O as k--,oo by the Riemann- 
Lebesgue lemma. But since the right-hand side of the inequality 

IA}N'I_< 2 k~o'Jk(W)[ (11) 

is twice the Cesaro limit of ]Jk (W)[ we obtain iii). 

3. Specific Weight Functions 

a) w(x)=l:J2k(W)=-4/ (4k2-1) ,  J2k+~ (w)=0. 
This is the Clenshaw-Curtis quadrature scheme in the form given by FRASER 
and WILSON [6]. 

b) w (x )=(1 -x2)  - 1 /2 :J  o (w)= n, Jk (w)=0 otherwise. 
This yields 

S f (  x ) 1 I f  ( -  1 )+f (1 )+2  ̂ ' - '  j (1-xZ)-l/Z d x , , ~ N  ~,f(cos(nj/N)) (12) 
- 1  j = l  

which is the Gauss-Chebyshev formula of closed type, i.e. the quadrature rule 
of highest algebraic degree of precision for preassigned nodes x =  _+ 1. It is 
exact for all polynomials f(x) of degree _<2N-1  (see KRYLOV [7], where 
also error estimates are given). 

c) w (x)=(1 -xZ) m- 1/2, m positive integers: 

We obtain 

2,~ ( w ) = 0  (k=0 ,  1, .). (13) S2k(W)~---(--1) k 2  -2m/ 'g  (re+k), J 2 k + l  .. 
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For m= 1 only J0 (w) and J2 (w) are different from zero and the weights are 
found to be 

A (m - ~ sin 2 (nj/N), (14) J - N  

i.e. A(o N) and A~ ) are equal to zero and the other weights are positive. On 
setting N = M +  1 we obtain the Gauss-type formula 

1 ~ M 

f(x) ( l - x 2 )  1/a dx,,~--M-- ~ ~ sin 2 (rcj/(M + 1)) f (cos  (rcj/(M + 1))) (15) 
- 1  j = l  

discussed in [7] which is exact for all polynomials f(x) of degree _<2M -1 .  

d) w (x)=(1 - x )  1/2 (1 + x ) -  1/2. Jo (w)= - 2 J 1  (w)=g;  Jk (w) =0, k _ 2 .  

The weights are 

A(.m _ 2~z sin2 (re j~2 N) > O, (16) 
J - N  

thus yielding a semi-open formula because of weight zero at x =  I. A check 
of the general criteria developed in [7] indicates that we have derived the 
quadrature rule of highest algebraic degree of precision among those having a 
preassigned node at x = - 1 .  The formula is exact for all polynomials of 
degree < 2 N -  2. 

e) w (x)=(1 -x)- l /z:  Jk (w)=2 ]/~-(-- 1)k+l/(4k z -  1). 

It follows that 

A(N)=4I//2 - ~, ,  ( - 1 )  k+l cos(rckj/N) 
J N k=0 4k 2 -  1 

(17) 

It is easy to show that the A} m are positive for all j and N. 

In the case of w (x)= In ( 1 -  x) the formula for the Jk (W) is somewhat more 
complicated and we do not present it here. 

4. Numerical Examples 

We discuss some numerical values for integrals involving the weight func- 
tion w (x)= (1 -x)-1/2 .  We emphasize that the material presented is typical of the 
results obtained for the other weight functions discussed in 3. 

Table 1 shows the nodes xj and weights A} m for N = 2 ,  4, 8. For each N 
the N +  1 nodes x~ are found in the rows in which the corresponding N +  1 
weights A~ m are listed. We give only 6 decimals although 15 were used in our 
computations. The weights A~ m and A~ ) have been divided by 2 so that 
~ "  in (7) becomes ~ .  
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Table 1 

xj 

- 1 . 0 0 0  0 0 0  

-O.923 880 
-0.707 107 
-0.382 683 

0.000 000 
0.382 683 
0.707 107 
0.923 880 
1.000 000 

N=2  

0.188 562 

1.508 494 

1.131 371 

A ju~ 

N=4 

0.044 896 

0.413 569 

0.790 164 

1.023 093 

0.556 706 

N--8 

0.011 092 
0.105 695 
0.213 496 
0.308 031 
0.393 028 
0.461 522 
0.513 285 
0.544 511 
0.277 766 

Table 1 shows that the weights a(u) do not vary widely in size, in contrast 
to the Newton-Cotes type formulae for large N. Because of the interpolatory 
character of the quadrature rules the weights add up to 2 ]/~, the value of the 
definite integral of w (x) over [ - 1 ,  1]. 

In the following examples we give approximating values of the integral in 
question for those values of N which show typical stages of accuracy for each 
specific functionf(x). Normally one will pick only values N = No" 2 j (j=0, 1 . . . .  ) to 
make used of the previously calculated values off(x) .  

1 

Example 1: ~ e~(1-x)-l/Z dx..~4.598499. 
-1  

Table 2 

N 3 4 6 8 10 11 

I u - I  - .1610-3  .2510-4 .3910-7 .571o-10 .6910-13 .1010-t5 

The very accurate results are due to the smoothness of f(x). 
1 

Example 2: ~ cos 10x ( l - x ) -  1/2 dx~ -0 .585 092. 
-1  

Table 3 

N 8 12 16 20 24 32 

I N - I  .1410-1 .621o-4 .3710-6 .9110-9 .1210-11 .4410-15 

In this examplef(x)  is an oscillating function, and it takes more nodes to reason- 
ably approximate f(x) and thus I (f).  

1 1 

Example 3: S sin ~/1--Zx dx= ~ [ V l - x  sin ] / / 1 -x ]  ( l - x )  -1/2 dx~ 
- 1 - 1 ~ 1.534 456. 
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Table 4 

N 2 3 4 5 6 7 

IN--I --.171o--2 .321o--5 --.841o--8 .191o--10 --,341o--13 .22~o-- 15 

The integrand sin ] / i - x  has a singular first derivative. After splitting off 

the part causing this trouble we get the analytic functionf(x)= l//1 - x  sin ~//I-  x, 
and our quadrature process yields astonishingly good values. 

If compared experimentally with Gaussian quadrature rules in the case 
where they differ from those, the above rules turn out to be somewhat lower in 
accuracy. This seems to be paid off, however, by the use of preassigned nodes 
which make computations for several N more economical. 

This work was carried out during a visit at the Department of Mathematics, 
The University of Michigan. 
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