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Summary -- Zusammenfassung 

Note on the Computation of Jacobi's Nome and its Inverse. By employing the 
method of modulus reduction, JAcom's  nome and its inverse may both be computed 
to any desired accuracy without recourse to series expansions. The accuracy attain- 
able is limited only by the accuracy to which the given parameters are known. 

Bemerkung zur Bereehnung des Jaeobisehen Nomes und seiner Inversen. Durch 
Anwendung der 3/Iodul-t~eduktionsmethode kann der JAeomsche Nome und seine 
Inverse ohne Benutzung von t~eihenentwicklungen mit  beliebiger Genauigkeit be- 
rechnet werden. Die erreichbare Genauigkeit ist lediglich durch die Genauigkeit 
beschr/~nkt, mit  der die gegebenen Parameter bekannt sind. 

In the theory of elliptic and theta functions the parameter q known 
as the "nome" is of prime importance. I t  may be defined in terms of the 
complete elliptic integral K (k) by 

q = e -~K'/K (1) 

where K '  = K (k') and k' =- V [ - k ~ is the complementary modulus. I ts  
importance lies in the fact that  all of the JAco~Ian elliptic functions, as 
well as the theta functions, have simple expansions in terms of it. In  
particular, the modulus and the complementary modulus may both be 
expressed as functions of q by  
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B y  forming the  quan t i ty  

we find t ha t  

Hence  

Z 1 - V  ~ 
+ W ' (4) 

oc o~ 

+ + (5) 

1 ,  1 

z = V~ (q4). (6) 

Since q < 1, q 4 <  q, so t ha t  more rapid  convergence will result  f rom the  
la t te r  series (5). 

In  m a n y  problems it is desirous to  have q expressed di rect ly  as a 
funct ion of k. This m a y  be done by  inversion of the  series (2). The first 
four teen  te rms of this series have been given in [1]. Since Z is the  same 

funct ion of q4 as y ~- is of q, the  la t te r  series with Z as a rgument  can also 
be used to  accelerate convergence of the inver ted  series. However ,  as shown 
in [1], even wi th  four teen te rms of the above series, at  most  seven places 
can be obta ined  correct ly  when k > .9999. 

In  this note  we show how the  me thod  of modulus reduct ion can be 
applied to  compute  ei ther  k (q) or q (k) to  as m a n y  places as is desired 
for any  ]c < 1. The me thod  is be t t e r  adap ted  to computers  since it  requires 
no constants  as initial input  as does the series method.  I t  is based on the  
fact  t ha t  if two moduli  k and k 1 are re la ted according to  

1 - k" ~1 - 1 + k' ' (7) 

where /c' is the  complementa ry  modulus of k (GAuss' or L ~ D E ~ ' S  Trans-  
formation).  The corresponding nomes q and q~ are re la ted b y  

ql ---- q2 (8) 

By not ing t h a t  

~ ~ - k ;  ( ~ -  V~-)  ~ 
- ~ T k ; - -  ~ + V ~ -  (9) 

we see t ha t  the  t rans format ion  defined by  Eq.  (4) is actual ly  equivalent  
to  two applicat ions of the  GAuss t ransformat ion.  I t  is also clear t h a t  
r epea ted  applicat ions of (7) and (8) will lead to sequences of k's and q's 
which t end  to  zero. Le t  N be t ha t  value of n for which qn is zero to wi thin  
a specified tolerance.  Then  from (2) 

1 

]Cn "0 4 qn ~ = 4 qn-1 ,  (10) 

wi th  an error  less t h a n  qn. This leads to the following procedures:  
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1. Given k to f ind q 

I t  is reasonable to assume that  the initial values of k and/c' are known 
accurately. Then, without appreciable loss of significant digits we can 
compute successive values of kn and k~ according to the scheme 

t l + ~ n )  
2Yk~n (11) 

r 

/c~+1-- 1 §  

until a value of/On is obtained which is zero to within the desired tolerance. 
The corresponding value of q is then found from 

and the original q found by successive square roots. (Note that  qn-1 =- 

2. Given q to f ind k 

In this case we form successive qn according to 

qn+ l = q~ (13) 

continuing until q~ ~ 0. At this point the corresponding modulus is given 
by 

~ ~ 4 qg. (1~) 

The original modulus may now be determined by constructing the sequence 

2 V ~  

k' : l  k~_~ ~2 (15) 

, - 1  L1 @ /cn j 

for n = N . . . .  , O, thus arriving at the values of k and /c' corresponding 
to the given value of q. 

Advantages over the series method 

1. Eqs. (11) and (15) differ only in that  the roles of/c and/~' are inter- 
changed. Thus/~ (q) and q (k) are obtainable by essentially the same coding. 

2. When calculating q (/c), the accuracy attainable is unlimited, while 
the accuracy attainable by the series method is limited by the number of 
terms employed. 

3. No input constants are required. 

4. By combining a sine and cosine routine with the present method, 
all of the JAcoman functions can be computed for a given "q" by a single 
program. (See further [2], [4], and [SJ.) 
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Illustrative Examples  

1. Given k = s i n  89 ~ , / c ' =  cos  89  ~ to f ind q. 

Table 1. The sequence o] reduced moduli calculated ]rom Eq. (11) 

n /on k" 

.99984 

.96569 

.58770 

.10553 

.28000 

.19600 

.96046 

76951 
39109 
10087 
54082 
45493 
71375 
99494 

56 
35 
l0  
48 
89 • 10 .2 
70 • 10 -~ 
58 • 10 -12 

.17452 

.25968 

.80907 

.99441 

.99999 

.99999 
1.00000 

40643 
30190 
81742 
55457 
60798 
99999 
00000 

73 
50 
20 
38 
65 
98 
00 

S i n c e  k 6 < 10 -1~ w e  h a v e ,  a c c o r d i n g  t o  E q .  (16 ) :  

k ,  
q5 ~ - = . 2 4 0 0 1  7 4 8 7 3  64  • 10 -12 

g~ 
q4 = 2 - - . 4 9 0 0 1  7 8 4 3 9  24  X 10 -6 

q3---- . 7 0 0 0 1  2 7 4 5 5  43  X 10 - s  

q 2 =  . 2 6 4 5 7  7 5 3 9 7  77 • 10 -1 

q 1 - - ~ . 1 6 2 6 5  8 3 9 6 5  79 

F i n a l l y  

q = . 4 0 3 3 0  9 3 0 6 3  

2. Given q = .345 ,  to f ind k and lc'. 

S u c c e s s i v e  s q u a r i n g s  g i v e  

H e n c e  

38  

q5 = . 1 6 2 2 5  9 8 3 9 6  07 X 1 0 - 1 a <  10 -1~ 

k 6 -~ 4 q~ =~ 4 q5 = . 6 4 9 0 3  9 3 5 8 4  29  • 10 -1~ 

Table 2. Table o] increasing 1o's constructed /tom Eq. (15) 

t n kn l% 

.64903 

.16112 

.80280 

.56622 

.45040 

.92542 

.99924 

93584 
59579 
98306 
34006 
59477 
76731 
97017 

29 • 10 -14 
87 • 10 8 
91 • 10 -3 
27 • 10 1 
93 
05 
55 

1.00000 
1.00000 

.99999 

.99839 

.89282 

.37892 

.38730 

00000 
00000 
96777 
56683 
38808 
42956 
26649 

oo 
oo 
48 
12 
37 
73 
43 • 10 -1 

H e n c e  f o r  q - - - - . 3 4 5  

~ = . 9 9 9 2 4  9 7 0 1 7  55  

k ' = . 0 3 8 7 3  0 2 6 6 4  943 .  
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