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Summary — Zusammenfassung

Note on the Computation of Jacobi’s Nome and its Inverse. By employing the
method of modulus reduction, JacosI’s nome and its inverse may both be computed
to any desired accuracy without recourse to series expansions. The accuracy attain-
able is limited only by the accuracy to which the given parameters are known.

Bemerkung zur Berechnung des Jacobischen Nomes und seiner Inversen. Durch
Anwendung der Modul-Reduktionsmethode kann der Jacosische Nome und seine
Inverse ohne Benutzung von Reihenentwicklungen mit beliebiger Genauigkeit be-
rechnet werden. Die erreichbare Genauigkeit ist lediglich durch die Genauigkeit
beschrénkt, mit der die gegebenen Parameter bekannt sind.

In the theory of elliptic and theta functions the parameter ¢ known
as the “nome’ is of prime importance. It may be defined in terms of the
complete elliptic integral K (k) by

q = oK M)
where K' = K (k') and k' = Vl — k% is the complementary modulus. Its
importance lies in the fact that all of the Jacosian elliptic functions, as
well as the theta functions, have simple expansions in terms of it. In
particular, the modulus and the complementary modulus may both be
expressed as functions of ¢ by
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By forming the quantity
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z =1k (g9. (6)

Since ¢ < 1, ¢* < ¢, so that more rapid convergence will result from the
latter series (5).

In many problems it is desirous to have ¢ expressed directly as a
function of k. This may be done by inversion of the series (2). The first
fourteen terms of this series have been given in [1]. Since Z is the same
function of ¢* as ]/75 is of ¢, the latter series with Z as argument can also
be used to accelerate convergence of the inverted series. However, as shown
in [1], even with fourteen terms of the above series, at most seven places
can be obtained correctly when k > .9999.

In this note we show how the method of modulus reduction can be
applied to compute either k (g9) or ¢ (k) to as many places as is desired
for any & < 1. The method is better adapted to computers since it requires
no constants as initial input as does the series method. It is based on the
fact that if two moduli £ and k, are related according to

1 -
ki =1%> (7)

where &’ is the complementary modulus of & (Gauss’ or LANDEN’s Trans-
formation). The corresponding nomes ¢ and ¢, are related by

¢ = ¢ (8)
By noting that
1— % 1— & \2
k2=1+k;:(1+v17) )

we see that the transformation defined by Eq. (4) is actually equivalent
to two applications of the Gauss transformation. It is also clear that
repeated applications of (7) and (8) will lead to sequences of &’s and ¢’s
which tend to zero. Let N be that value of » for which ¢, is zero to within
a specified tolerance. Then from (2)

1
by > 4Qn2 =4 qp-1, (10)

with an error less than ¢,. This leads to the following procedures:
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1. Given k to find q

It is reasonable to assume that the initial values of k and &’ are known
accurately. Then, without appreciable loss of significant digits we can
compute successive values of k, and %, according to the scheme
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(11)

until a value of &, is obtained which is zero to within the desired tolerance.
The corresponding value of ¢ is then found from

En )2
In = (T) (12)
and the original ¢ found by successive square roots. (Note that ¢p—1 =
S En
= ]/Qn jost i )

2. Given q to find k
In this case we form successive g, according to
Gns+1 = 4 (13)

continuing until ¢, ~ 0. At this point the corresponding modulus is given

by

ky x 4. (14)
The original modulus may now be determined by constructing the sequence
2Vkn
kn—l =7 I En }
, i . (15)
()
for n =N, ..., 0, thus arriving at the values of £ and %’ corresponding

to the given value of ¢.

Advantages over the series method

1. Egs. (11) and (15) differ only in that the roles of £ and &’ are inter-
changed. Thus k (¢) and g (k) are obtainable by essentially the same coding.

2. When calculating ¢ (k), the accuracy attainable is unlimited, while
the accuracy attainable by the series method is limited by the number of
terms employed.

3. No input constants are required.

4. By combining a sine and cosine routine with the present method,
all of the Jacosran functions can be computed for a given “¢” by a single
program. (See further [2], [4], and [5].)
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Tllustrative Examples

1. Given k = sin 89°, k' = cos 89°, fo find q.

Table 1. The sequence of reduced moduli calculated from Egq. (11)

n n kn
0 .99984 76951 56 17452 40643 73
1 .96569 39109 35 .25968 30190 50
2 58770 10087 10 .80907 81742 20
3 10553 54082 48 .99441 55457 38
4 .28000 45493 89 x 10-2 .99999 60798 65
5 .19600 71375 70 X 10-3 199999 99999 98
6 .96046 99494 58 x 1012 1.00000 00000 00
Since kg << 1071 we have, according to Eq. (16):

g %i — .24001 74873 64 X 1012

VR, .

U = = 9001 78439 24 x 10

gs = 70001 27455 43 x 102

gs = .26457 75397 77 X 10-1

¢ = .16265 83965 79
Finally

g = .40330 93063 38

2. Given q = .345, to find k and k'

Successive squarings give

qs
Hence

kg

~

16225

98396

= .64903

07 x 10714 < 1010

93584 29 x 1014

Table 2. Table of increasing k’s constructed from Hq. (15)

6 .64903 93584 29 x 1014 1.00000 00000 00
5 16112 59579 87 x 10-¢ 1.00000 00000 00
4 .80280 98306 91 x 10-3 .99999 96777 48
3 .56622 34006 27 x 10t .99839 56683 12
2 45040 59477 93 .89282 38808 37
1 92542 76731 05 .37892 42956 73
0 .99924 97017 55 .38730 26649 43 x 10—
Hence for ¢ = .345
k= .99924 97017 55
k' = .03873 02664 943.
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