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Discrete Time Semigroup Transformations with 
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Let (X, ~ )  and ( Y, qf) be two measurable spaces with X being a linear space. 
A system is determined by two functionsf(X): X ~  Xand ~: Xx Y--. X, a (small) 
positive parameter e and a homogeneous Markov chain {Yn} in (Y, rC) which 
describes random perturbations. States of the system, say { x,~ r X, n = 0, l,...}, 
are determined by the iteration relations: x,~ + t = f(x~,) + tga(x~, Yn + ~ ) for n I> 0, 
where ~o = Xo is given. Here we study the asymptotic behavior of the solution 
x~, as e ~ 0 and n ~ oo under various assumptions on the data. General results 
are applied to some problems in epidemics, genetics and demographics. 

KEY WORDS: Difference equations; random perturbation; averaging; diffu- 
sion approximation; randomly perturbed iterations; stability. 
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1. I N T R O D U C T I O N  

We consider a system in a linear phase space X with discrete time n ~ Z+  
which is perturbed by a random process {Yn, n eZ+} defined on a 
measurable space ( u cr The system depends on a small parameter e > O; 
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if e--O, the system is nonrandom. Let x~ e X denote the state of the system 
at time n. We suppose that x~, is determined by the recurrence relations: 

x]+,  =f(x~,)+ e~a(x], Y,+ l), x,~ =Xo (1) 

where x0 is given;f: X--, 2", q,: Xx  Y--, Xare given functions. The problem 
is to investigate the asymptotic behavior of the system as e --, 0 and n --, 
under various assumptions on the data. 

I l l ( x )  = x, Eq. (1) is a perturbed difference equation. For such equa- 
tions we obtain results that are analogous to results that have been 
obtained for randomly perturbed dynamical systems and differential equa- 
tions by several authors; see Gikhman (1950, 1951, 1964), Khasminskii 
(1966, 1968, 1968a), Papanicolaou (1968), Papanicolaou et al. (1977), 
Pinsky (1974), Pardoux (1977), Krylov et al. (1979), Freidlin et al. (1979), 
Rozovskii (1985), Sarafyan et al. (1987), Skorokhod (1989), Hoppensteadt 
et al. (1994), and Hoppensteadt et al. (1995, 1996). Our results are concerned 
also with general limit theorems for Markov processes; see Skorokhod 
(1965), Stroock et al. (1979), Ethier et al. (1986), Jacod et al. (1987), and 
Protter (1990). 

This work was motivated by some problems in epidemics, genetics, 
and demographics; see Hoppensteadt (1982). We apply our general 
theorems to problems from these fields. 

Assumptions. We suppose that the noise process { y,} satisfies one of 
the following conditions: (NP1) {y,}  is a stationary ergodic process with 
ergodic distribution p(dy), i.e., for any function g(y): Y - , R ,  for which 
S [g(Y)[ p(dy) < oo, we have 

P ~l im 1 ~ g ( y k ) = f  g ( y ) p ( d y ) } = l  
~ n-.~ oo l'l k =  l 

(NP2) {y.} is a homogeneous ergodic Markov process with transition 
probabilities 

P . ( y , C ) = P { y . e C / y o = y } ,  CeCg, y e Y  

and ergodic distribution p(dy). 
Here and below unlabeled integrals are assumed to be over Y. 

Remark. It is easy ,to see that a stationary ergodic process 
{ y, ,  n e Z} generates an ergodic Marker  process: 

Z . - ~  { Y n ,  Y n - l ,  Yn-2,'"} in yz+ 
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(NP3) {Yn} satisfies (NP2) and, additionally, its transition probabilities 
satisfy a strong mixing condition: 

sup [Pk(Y, C ) -  p( C)I < oo 
k z l  y ~ Y , C ~  

We use throughout notations: ~ the a-algebra generated by { Yo ..... Yk}, 
Rk(y, C) = Pk(Y, C) - p(C), and 

R(y, C ) = l c ( y ) - p ( C ) +  2 ~ R,(y, C) (2) 
n ~ l  

We consider system (1) in the following phase spaces. 

(PSI) X is a separable Banach space. 
(PS2) X=H,  where H is a separable Hilbert space. 

(PS3) X = R  a. 

The function f is assumed to be continuous, and r measurable in y 
and continuous in x. 

2. DIFFERENCE EQUATIONS 

First, we consider Eq. (1) with f ( x )=x .  In this case, {x,%} is deter- 
mined by the difference equation 

g P, x,,+t-x,,=ecp(x,,, Y.+l), Xo=" xo (3) 

We suppose condition (PS1) is satisfied and that ~o(x, y) is bounded in y 
over Y for all x ~ X. Let ~ be defined by 

O(x) = ~ q)(x, y) p(dy) (4) 

Let the nonrandom sequence { ff~,} be determined by the equation 

~.§ ~ - x.-~ = ~ ( ~ ) ,  Xo-~ = X o  ( 5 )  

It is referred to as the averaged system. The following result is easy to 
establish (see, e.g., Hoppensteadt, 1993, Chap. 7.3). 

Lemma 1. Let ~ satisfy the f_ollowing Lipschitz condition: There exists 
[ > O f  or which II~(x)-~(x')ll ~<l IIx-x'll. Denote by s the solution of 
the differential equation: 

d~( t ) 
dt = ~(~(t)), ~(0) = Xo (6) 
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Then for any to > 0, 

lira sup II~(en)-~,~ll = 0  (7) 
~ 0  e.n~t 0 

This result can be generalized to randomly perturbed systems in the 
following way. 

Theorem 1. Let {y.} satisfy condition (NP1), and let 9 satisfy the 
following conditions. 

(B) ~ II~0(x, Y)tl p(dy)< oo for all xeX.  
(L1) There exists a measurable function l(y): Y ~ R +  for which 

~l(y)p(dy)=[<oo and for yEY,  x ,x '~X,  Ilco(x,y)-q~(x',y)l[<~ 
l(y) IIx-x'll. 

Then for any to > 0 

P {lim sup IlxX-~(~n)ll =o}  = 1 (8) 
~ 0  n z <~ t  0 

Proof. Using (7) it suffices to prove that 

P {tim sup Ilx,Z-~,%ll =o}  = 1 (9) 
~ 0  n r . ~ t  0 

Because of (2) and (4) we can write 

where 

X n - -  X n = 

k < n  

k < n  

[ ~o(x~,, yk+ ,) - ~ (~ , ) ]  

[ r Yk+ I) - -  ~ ( ' ~ '  Y k +  I ) ]  -]" ~1~,:(n) (10) 

Therefore 

Rs(n) = e  Z 
k < n  

(11) 

I[x~-2~.[I <sup IIRs(k)[I + e  ~ l(y,+,)IIx~-~l[ 
k ~ n  k < n  
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from which we can easily deduce 

llx,~-.x~,ll ~<sup llR,(k)[l exp (e ~ l(yk§ } 
k ~ n  k k < n  

and hence 

sup [[x,~-.f~,[I ~< sup [R,(n)[ exp {e ~ l(y,,+~)) 
ne  ~ t o t:n ~ t o he. ~ t 0 

Note that 

lira e 
he. ~ t o 

l(y,,+ ,) = to f l(y) p(dy) 

Let k~.(n) = e  Z k < ,  [~(~(ke), Yk+ i) - ~(~(ke))]. Lemma 1 implies that 

lira sup IIR~.(n)-~.(n)ll=0 
~ 0  8 n ~ l  0 

To prove the theorem it suffices to show that 

lira sup II~=(n)ll---0 
~ . ~ 0  n r , ~ t  0 

Let O=t~ < t 2 <  - . .  < t r o t  o and 

r - - 1  

s,;=, Z Z 
i ~ I  k < n  

(q~(s Yk+ I ) -  O(:~(t,))) 1 it,~,~,<,,+, ) 

Condition (NPI)  implies the relation 

lim sup 1187, II = 0 
~ D  ~ t ~ t  0 

In addition, we have 

r - - I  

12~,(n)-ST, I ~<e Y', ~ Iq~(~,, yk+,)--O(~])--~O(ff(ti), Yk+t) 
i = l  k < n  

+ 0(X(tt))l ll,,,~k,<,,+,) 
r - - I  

<~e E E ([+t(yk+O)[:~--~(t,)l lu,.k.<,,+,) 
i = l  k e n  

467 

(12) 

(13) 

(14) 
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Using Lemma 1, formulas (13) and (14), we can show that 

r - - I  

limsup sup I~(n)l~<2/2 F (t,+l-t,)[.~(ti+l)-~(t,)[ 
* ~ 0  n ~ t  0 i ~ l  

The right-hand side of this. inequality can be made arbitrary small. [] 

Now we consider deviations of the solution of the perturbed system 
from the solution of the averaged system. Let 

z~ - (x , , -  x,,)/V/ee (15) 

We show that under certain natural conditions z, ~, converges to a Gaussian 
process. This result is based on central limit theorem (CLT) for X-valued 
random variables. If we suppose that X =  H, then the CLT does not require 
additional conditions, and we have the following theorem. In the following 
theorem as well as other places, the weak convergence of processes means 
the weak convergence of the finite dimensional distributions of the pro- 
cesses involved. 

Theorem 2. Let {y,,} satisfy condition (NP3), X satisfy condition 
(PS2), and go satisfy the conditions: 

(C) go(x, y) is bounded and there exists a positive compact operator 
B: H ~ H such that B-lgo(x, y) is bounded, 

(L2) (a/Ox) go(x, y) is continuous in x uniformly with respect to y and 

(sup ~-x go(x, y) p(dy)< ~ 

We define the jump process 

z~'(t) = z~ z,~ll,,~t<l,,+ll~l (16) 

Then z~(t) converges weakly as e ~ 0 to a process z(t), which solves the 
equation 

f2o 
z(t) = ~x 0(~(s)) z(s) ds+~(t) (17) 

where r/(t) is a Gaussian process with independent increments in H having 
mean E~(t)=0 and variance 

z(~(t), x) 2 = f~ ff  (go(gfs), y), x)(go(g(s), y'), x) p(dy) R(y, dy') ~ (18) 
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Proof. 

(1) Let 

el(t) = k~= 1 "~e R'(k) 1 {k"<t<(k+ l)"} (19) 

with R.(k) as in (11). It follows from Theorem 2 in the Appendix that q.(t) 
converges weakly to the process r/(t) described in the theorem. 

(2) Note that z,~ satisfies the relation 

Zn~ 
k<n 

= ~ k<."tE ( CJO(Xsk ' Yk +l )  --  ~0(X~., Yk +t)) + ~ R.(n) (20) 

Therefore 

Ilzgll ~e  ~ l(yk)Ilz~ll + 1_.1_. k<. V/~ IIR.(n)ll (21) 

ken k~n~/e  k=l 

Since the distribution of sup,,~_<,0(1/V4) IlR.(n)]l converges to the distribu- 
tion of sup,<,o [Iq(t)l[ (see the Appendix, Corollary to Theorem 2), there- 
fore sup...<,~ [Iz] [[ is bounded in probability as e ~ 0. 

Set 

k<n 

0 
- 0-7 e ( ~ ,  yk + , ) ( x ~  - ~)) 

k<n 

Equation (20) may be rewritten in the form 

, _  0 
z.  - ~ ~ .  ~x ~(x~,) z~, + 8 - L/2Ro(n) + =,", +/~;  (22) 
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Using condition (L2) we can prove that sup,~<~ o l l~ II ~ 0 in probability as 
r/---+ o ~  /~--~ O. 

In the same way as (21) we can show that for 0 < t t < tz, 
8 sup I Iz~-  Zko II 

tl ~ e-kO < eJc < t 2 

Let O < t z < . . . < L + t = t o  and O < k t < . - - < k , + ~  
inequalities t~ <<. ek~ < t~ + t. Using the representation 

sup e -1/2 I lR,(k)-  R~(ko)ll 
fi ~ d %  < ek < t2 

satisfy 

fl*.=e,~., ~" -~Xq;(xk, yk+t)--  ~(X;) z~l{k,.k<k,+O 
" =  k < n  

(23) 

the 

Let 

consequently 

It is easy to see that 

sup IIz~, - eX II = O( sup [l~, t1 + sup liP, '=, II) 
,gr'7 '< 10 P.,n .< l 0 rd! ' <  t o 

sup z~ , -~ , [ [ -~0  in probability as e ~ O  (25) 
e.n ~ 10 

Then it follows from (24) that 

e"(t) = I~ ~(~(s)) e~(s) as + ~'(t) + ~(t) (26) 

where J,(t) ~ 0 uniformly in t ~ to. The proof of the theorem is now a con- 
sequence of  (1), (25), and (26). r'l 

i ~ l  k < n  

inequality (23), and proof  of  relation (14), one can show that 
sup,~ <,o [I/~ II--' 0 in probability as e ~ O, n ~ ~ .  

A~ be determined by equation Let z ,  

~. --  0 ~. 1 
~ : = e  ~ ~--~(.f~,)2~.+ R,:(n) (24) 

k < n  G X  
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2.1. Diffusion Approximation for Large Time 

Here we consider the system of the previous section but with ~ = 0, so 
(~(t) =Xo). We introduce the stochastic jump process 

2" (0=  ~ x.ll.-..<t<,a~.+l) I " " (27) 
t i l l  

We will show that 2"(t) converges weakly to a diffusion process in X under 
some natural conditions. This result is based on a martingale characteriza- 
tion of diffusion and its application to limit theorems for weak convergence 
to diffusion processes (Strook et al., 1979). Since such methods were 
developed for diffusions in R e , we restrict our attention to iterations in R e . 

We need the following statement (see Skorokhod, 1989, p. 78, 
Theorem 1). 

Proposition. Let a differential operator L, be o f  the form 

L t f ( x )  = (a( t, x), f ' ( x )  ) + 1/2 Tr B( t, x) f " ( x )  

f ( x )  is a twice differentiable function Re ~ R, a ( t , x ) :R+ x R d  ~ R a, 
B(t, x)! R+ x Re--* L+(Ra), where L+(R  d) is the space o f  nonnegative sym- 
metric operators Re--* R a. Suppose that the stochastic differential equation 

dll( t ) = a( t, tl( t ) ) dt + B' /2( t, rl( t ) ) dw( t ) (28) 

where w(t) is the Wiener process in R e and B ~/2 is the nonnegative square 
root o f  B, has a weakly unique solution. 

Let D be a set o f  bounded functions f :  R e ~ R for which derivatives f '  
and f "  exist and are continuous bounded functions, and D is dense in the 
space Co(R e ) o f  all continuous bounded functions which tend to zero at 
infinity. 

I f  a set {~(t), e>0} of  Re-valued stochastic processes satisfy the 
conditions 

(1)  for  any f ~D and continuous bounded function q~(xl ..... xn): 
(Re) n -~ R 

lira E~b(~,:(tt) ..... ~.(t._ t), ~.(t)) 
n ~ 0  

x [ f(~.(t  + h ) - ~ ( t ) -  -tft+h Ls(f(~.(s)))ds] = 0  

uniformly for  0 <~ t t < ... < tn_ l <<. t <<. t + h <<. T for any T>0 ,  



472 Hoppensteadt, Salehi, and Skorokhod 

(2) ~.(O)~x in probability as e--*O, then ~,(t) converges weakly to 
the solution q(t) of Eqs. (28) for which q(O) = x. 

Theorem 3. Let conditions (NP3) and (PS3) be fulfilled and suppose 
~o satisfies the condition (L3): ~o is bounded, its derivatives (a/ax) (p(x, y), 
(a2/ax 2) ~o(x, y) are bounded and uniformly continuous in x uniformly in y, 
and ~ q~(x, y) p(dy) = O. 

Then the process ~(t)  converges weakly to a diffusion process Y,(t) 
having generator ~ that is defined for any f E C2(R d) by the formula 

r f (x)  = f~ [ (f"(x) q~(x, y), ~(x, y') ) 

+ (~o'(x, y') tp(x, y), f ' (x) ) ]  p(dy) R(y, dy') 

-- f (9'(x, y) 9(x, y), f ' (x))  p(dy) (28) 

and~(O)=xo. 

Proof. Denote by a~. the a-algebra generated by {Yo ..... Yk}. To 
prove the theorem it suffices to show that for a class of functions dense in 
C2(Rd), we have 

l i m e  ( f W ( t +  h, , - f W ( t , ,  - r fW,s, , l =o (29) 

here ~ ' ,  - ~k for ,2k ~< t < e2(k + 1). 
We need the following auxiliary result. 

Lemma 2. Let g ( x , y ) : R d x Y ~ R  be a bounded function that is 
t ~ n x continuous in x and measurable in y for which gx(., Y) and gx.,( , Y) are 

bounded and uniformly continuous in x uniformly with respect to y. Then if 
e2n <~ t, 

lim E ( ~  ~ [g(x*k, yk+t)--~g(x~, y')p(dy')])=O 
n ~  ~ , e - . * O  k ~ l  

(30) 

Proof. Set g(x, y)=g(x,  y ) - 5  g(x, y') p(dy'). Then 

t l  u e! X  (x ,yk+o =1 X f (xo, y')Rk§ dy') 
n k=l n k ~ l  
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It follows from condition (NP3) that for all n, 

f ~(Xo, y')Rk+ ,(Yo, dy') 
k ~ l  

is bounded, and as a result, 

lira E 1 ~ ~(x~,yk+l)=O 
n ~ o o , 8 ~ O  H k ~  I 

We have 

[ g(x~., Yk+,)--g(X~o, Yk+,)] 
k~l  

~, k - - I  

= ~ [g (X~+l ,  Yk+l ) - -g (X~ ,  Y k + l ) ]  
k~l  iffi0 

=e ~ (g'~(x~, Yk+,), ~O(X~, Yk+,)) 
O ~ i < k ~ n  

l ? It g �9 +~e" ~, (gxx(Xi, Yk+l) r Yi+ I), r y ;+ i))(1 +Oi, k) 
O<~i<k<<,n 

where Oik~ 0 uniformly as n ~ m, e ~ 0, e2n <~ T, because g'.'x(x, y) is 
uniformly continuous in x. We have 

E -8 ~ (g.',.(x~, Yk+ .), q~(x~, Y,+k)) 
n O~i<k<<.n 

f -r s t R =e/n 2 gx(xi, Y) k_l(Yi+l,dy') = O(g) 
O ~ i < k ~ n  

and 

(e:ln) 

Therefore, 

)" E(g":(x~, Yk+ ,) ~O(X~i, Y,+ I), q~(x~, y,+ I))= O(e 2) 
O<<.i<k~n 

(~2/n) Y, E(g.'x(X~, yk+,) ~o(x~, y,+,), q,( ,, y,+,)) Oik 
O ~ i < k ~ n  

= O(ne2E max Oik) 
i, k 

[] 
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We now return to the proof  of the theorem. Note that the sequence 
{x~., y.} is a homogeneous Markov  sequence, so it suffices to prove (29) 
for t=O. L e t f b e  in C3(Rd). We have 

8 s 8 8 ! 8 8 f(x,,)--f(xo) = ~ (f(xk+,)--f(xk)) =~ ( f  (X,,), ~(X,, Yk+,)) 
kffiO k = O  

"4-(82/2) ~ ( f " (x~)  ~O(X~, Yk+l), ~O(X~, Yk+l))-t-O(n83) 
k ~ O  

(31) 

Set 

(f'(x), ~(x, y))=g(x, y) 

Then 

n - - I  n - - I  

ee ~ g(x~, yk+,)=eE Z g(x;,yk+l) 
k = O  k = O  

n - - I  k - - I  

X e. +eE ~ ~, (g( i+l,Yk+l)--g(x~,Yk+l)) 
k = l  i = 0  

n - - I  

=eE ~ g(x;, Yk+,) 
k = O  

Let 

+ 8~z ~_, (g;,(x~, y,+~), e(xT, y,+,)) + O(ne 3) 
O ~ i < k < n  

n - - 2  n - - k  

= e  2 ~. E ~. f (g~,:(x~, y'), ~p(x~, y,+,)) Rt(Y,+ ,, dy')  
i = O  l ~ l  

-~" 0 ( 8  "4-/18 3 )  

oD 

G(x, y)= ~ (g~,(x, y'), ~o(x, y)) R,(y, dy') 
I=1  

I t  is clear that subject to n8 2 ~ T, we have 

n-2/n-k X ~ 1 
82~, p e r ~, ( ~, f (gx(x,, y )(o( ,, y,+t))R,(y,+~,dy')-G(x~.,y,+,) 

i = 0  X l = l  -- 

tends to zero as n ~ oo, e ~ O. 
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Thus subject to the constraint that ne 2 ~< T, we have 

f (  n-~ E x" . ) - f (X"o) -e  2 Y' ' . . . . .  [2( fx(xk)  q~(Xk, Yk+ I), qJ(Xk, Yk+ 1)) 
i ~ O  

+G(xL Yk+~)]) 
tends to zero as n--, oo, e---, 0. 

The proof  of the theorem now follows from Lemma 2. 

Corollary. Under the conditions o f  Theorem 3, for all J > 0 

lim P{ sup [x~ - x~[ > J} = O if t~ --, 0 as e ~ 0 
e ~ O  nng~2t~ 

475 

[] 

3. LINEAR DIFFERENCE EQUATIONS 

All results of Section 1 are valid for linear equations of  the form 

" " = t a ( y , + t ) x ~  (32) X n  + I ~ X n  

where A(y)  is a measurable function: Y ~  L(X), where L(X) is the space 
of bounded linear operators: X ~ X  [this means that A ( y ) x  is a 
measurable function: Y--, X for each x ~ X].  Here we consider some results 
for (32) that cannot be obtained from Theorems 1-3. First, in Theorem 4 
we determine the behavior of  x~, as n --, co for all e sufficiently small. The 
special form of this equation enables us in Theorem 5 to extend our earlier 
results to cases where A = A,: is unbounded as t ~ 0. 

3.1. Stability 

We first derive some results about  the stability of solutions to linear 
problems. 

Theorem 4. Suppose that conditions (NP3)  and (PS2)  are satisfied. 
Moreover, suppose that 

(1) supy,  YS IIA(y')II 2 PI(Y, dy') <<. c for some constant c, 

(2) the solution to linear equation 

d~( t ) = A2( t ) 
dt 

(33) 

865/9/3-10 
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where Axf[A(y)  xp(dy) /s such that for some a>O and ~>0, 
Ix(t)[ ~< ae-~ I~(O)l. Then there exists 8o > 0 for which 

P{ lira IIxX II = O} = 1 for 8 < 8o 

8 _  8 -~ Then -" (I+eA)"Xo, z , , - x , -x , , .  Proof.  Let x n = 

n--1 
z~ =8 ~ (I+8.~)* 2(y,,_k+O X~_k (34) 

kmO 

where 2 ( y )  = A ( y )  - A. Us ing  the representation 

n - - |  

x~- -Xo+8  Z i l0 , ,+ , )x~  
i l 0  

we can rewrite (34) in the form 

n--I  
z~=8 Y'. (I+d)k2(yn_k+OXo 

k~O 
n--I n--I 

"t-82 ~ ~ (I"FsA)n-t2(Yt+I)/I(Yi+I)X~ 
i~O Iffii+l 

8 2 8 = e u .  + 8  w,, (35) 

where u,~ is the first s u m  and w:  is the second double  sum o f  the express ion  
8 for z . .  
Let us evaluate E(u~, u~) and E(w~., w~). We have 

n - - I  n - - I  

E(uen ' Unn)= Z ~ E((Iq-82)k A(yn-k+l ) )  XO' (I+8.4)'2(y._,+,) Xo) 
k~O 1~0 

n - - 1  

=Z 
k~O 

III+ 8all 2k f il2(Y')ll 2 P~-k+ 1(7o, dy') Ilxo [[ 2 

+ 2  ~', Ef((I+e~)"-k+12(yk)Xo, 
l~k<l~n+l 

( I - 1 - 8 A )  n - t +  1 2 ( y ' )  Xo) Pl--k(Yk~ dy') 

<<.nee2naZ~cllxo[[2+2 ~. ~E((I+eA) n-k+i A(yk) Xo, 
l ~ k ~ n + l  

n+ l --k ) 
~', (I+eA) n-k-I+l ~(Y') Xo Rt(yk, dy') 
l~l 
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Note  that  for m > 1 

f ~. (I+eA)"-l.,~(y ') xoRt(y, dy') 
1~1 

=f gfy')xo Rt(y, dy') +e E (./..}_ B~)m--  1-- I 
l~1  l ~ l  

I 

.~2(y') Xo E R,(y, dy') 
k = l  

Since 

f A(y') Xo ~ Rt(y, dy')] 
I--I 

m-- I  

-_ ff 71(y") Xo ~, Rt(y, dy') P,(y', dy") 
l~1  

hence condit ion (1) and (NP3)  imply that  

I.A(y')xoR,,,(y, dy') <~ct Ilxoll 

for all m >/1, where ct is a constant  which depends on c. 
This implies the inequalities 

I f ~l (I +eA)"-' .71(y')xoR,(y, dy') 

(c~ + ~ne ~ ll~ll llall c~) Ilxo II 

and 

E(u~, u~) <~ {ne ~'2" II~llc + (2n2ee ~" uaLt I1-~11 c~ + clene ~ I~zH) 

x sup E IIA(y,)II 2} tlxoll 2 
O<k<n 

Thus for r ~< T, 

E(u~, u~) <~ nCr Ilxo II ~, where Cr is a constant 

477 
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In the same way we can show that 

E(w~, w~)=2 ~ E (I+•)"- 'A(y,+l)  
O~l<j~n--1  1 1 

n--1 I A(y,+,)x~, 2 (I+d)n-mA(ym+I)A(YJ+,)X~ 
m ~ j + l  

+ ~ E ( I + s J l ~ - ' ~ ( y , + l )  
i~0 I ! 

" - '  

A(YI+I)x~, ~ (I+~A)n-IA(yl+I)~(Yj+I) 
I ~ j + !  

Since 

2 

E (I+sA)"-I~(yt+l)A(yi+l) <~nCrcEllxTll 2 
t 1 

SO 

n--!  

E(w'~, "" w,,)<~nCrc • EIIx~II2+2 
imO O~i<j~n-- I  

<~ (n2CCT + 2n3CCT) max E IIx~ II 2 

nCTc ~/E IIx~ II 2 E Ilxff It 2 

We have 

_ x ~" )+~2EllA(y.)x~_il[2 E Ilx~ 112 = E  IIxX_ ~ II 2 + 2eE(x~ l, A(y,,) ,,-a 

E IIx~_ t It 2 (1 + 2e Y IIA(y')II P(Y,,-1, dy') ~< 

+,2 f IJA(Y)e 

Therefore 

E IlxX U 2 ~ e.== [IXo II 2 (36) 

where c2 > O is a constant. Thus 

E llw~ll2 <~ O(n 3) IlXoH 2 for en<~ T 

E Ilz~ [12 ~ 2e2E [lu~ ]12 + 28'E IIwX 1[2 sup E IIz~ 1[2 ~< eb r IIxo 112 (37) 
n ~ T  

where br  is a constant. 
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Let q < 1 and to be chosen such that  

I[~(to)l[ 2 < q Ilxo tl 2 

Since 

Ellx~-~(to)lla---,O as e---,O, ne--,to 

there exists eo such that 

E IIxZ 112 < q Ilxo II 2 

Note that 

if e<eo  and 

and 

E IIxL 112 ~ q k Ilxo tl 2 

Thus 
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ne<<.to<(n+l)e (38) 

E i l x L  § II 2 ~ qk g IIx~ II 2 

E ~. Ilxff II 2= Y.~~ n-~ E IIxL§ <~ ETz~ IIX'r II 2 
j~O k~O rffiO 

P Ilxffll2 < oo =1  [] 

Let X =  R a. Then the assertion of Theorem 4 is true with Remark. 
(NP2) and (2) and replacing (1) with 

(1') sup f IIA(y')II P~(y, dy') < oo 
y s Y  

To prove this we note that 

sup sup E(Ix~ I/Yo = Y) <~ Cr Ixol (39) 
yeY e~T 

and that for any J > 0 ,  to>0 ,  x o e R  d supy~rPy{Ix~-g( to ) l  >c~}--*0 as 
en --, to. Py is the conditional probability given that Yo = Y. Let {e~ ..... ed} 
be an orthonormal basis in R d and let x~(xo) be the solution of (32) with 
X~o(Xo) = Xo. Then 

d 

x~(Xo) = ~ (Xo, ek) x~(ek) 
i ~ l  
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We denote by ~(Xo, t) the solution of Eq. (33) for which ~(Xo, O) =Xo. 
Then for any 8 > 0 and to 

lira sup Py{ sup Ix,~(Xo) - g(Xo, to)l > 8} = 0 (40) 
~ t  o y e Y  Ixol ~ 1 

It follows from (39) and (40) that for any 0 < p  < 1 

lira sup E(lx~(Xo) -2 (Xo ,  to)l'/Yo = y) =0  
e n ~  t 0 y 6  Y 

and there exist to ~ R +, q < 1, and eo > 0 for which 

supE( Ix~ lP /yo=y)<q  Ixol" (41) 
y 

if e < eo and ne ~< to < (n + 1 ) e. Inequality (41) implies the relation 

P Ixffl < ~  --1 

Now we consider a generalization of Eq. (32) in a Hilbert space H: 
Consider 

x .  ~ + I -- x,,~" =eA~(y.+t)x~,  x o~ = x  o (42) 

where A~(y) is a measurable function: Y--, L(H) for each e > 0. We assume 
that condition (NP2) holds for the sequence {y,,}. The first condition on 
A.(y)  is 

(A1) (a) [ ( A . ( y ' ) x , x ) P l ( y ,  dy')<.<cl llxll 2, 

(b) ~ IlA~(y')xll2 p~(y, dy')<~c~e -~ [Ixll, 

for all y e Y, x ~ H; here c~ is some constant. 
Set A~x=~ A.(y ')  xp(dy'). Then 11~i=112 ~< ct e - '  and (.4~x, x) ~<c~ Ilxtl 2. 

Denote by ~ .  the a-algebra generated by {Yo ..... Y,,}- 

Lemma 3. Under condition (.41) we have 

.~ .  e 2 3r.c n E(llx~.lla/yo Y)~<llxol[ e , 

II(I+ 8A.)"II ~< e (3/2) ec.n 

Proof. The first inequality is a consequence of the relation 

X B E(IIxZ 112/~_ 0 = IIx~._ ~ 112 + 2e.E(( ._~,  A.(y.) x._~)/~._~) 

+82E(llA(y(n) x~._~ 112/~._ ,) ~ ( 1  + 3 e c 0  IIx'._ ~ II 2 [] 
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The second condition on A is 

(A2) there exists an invertible compact operator R E L(H) for which 

(c) ~ lla,(y')Rxll2Pl(y, dy')<<.c2 Ilxll 2, 

(d) ~ II(R-IA,(y ') -A , (y ' )  R -1) xll 2 PI(y, dy') <<. c2 Ilxll z, 
(e) ~ II(R-2A~(y ') - A , ( y ' )  R -2) xll 2 P, (y ,  dy') <<. c2 Ilxll 2, 

for all y ~ Y, x e X; c2 is a constant. 

(I) 

(ii)  
(III) 

(IV) 

(V) 

Proof. 

Lemma 4. Let conditions (A1) and (A2) be satisfied. Then there 
exists c3 > 0 for which 

E( II R -  lx~, II 2 /~._  1) ~< e c'~" II R -  lxo II 2 
E( II R - 2 x ]  II 2/~o) ~< e C'~" II R--2X 0 II 2 

E( IIxX - x~ II 2/~0) ~< c3 en e c-'" II R - t x ~  II 2, 
E( IIR-lx~, - R- tx~  II 2/~0) ~< c3en e C3" IIR --2X~ [I 2 

II(I+ e-4~)" R -  Rll <~ caen e,'r 

(I) We have 

x,,=_~ x,,_l +eA~(y,,)R-tX~_l +eB,:(y,,)x,,_t 

where Be(y)= R- tA~(y) -  As(y)R -t. This relation implies the inequality 

E( ]l R - l x ~  ]12/~n -- 1) ~ ( 1 "~- C38 ) IIR -lx,~, _ ,112 

(II) This can be proved in the same way. We omit its proof here. 

(III) We have 

n--I 
x]-x~o=e Y. A..(y~+I)RR-lx~ 

k = O  

( "  ) E( II x~, - x;  II 2/~o) ~ E ~2n ~ E( II A 8(Yk + 1 ) R R - ~x~, II 2 / 4  
k~0 

We use (c) and I to complete the proof of III. 

(IV) This can be proved in the same way. We omit its proof here. 

(V) II(I+eff~)"R-RIl<~e , - t  Z k - o  II(I+ e3)kll II.4,RII 

note that IIA, RII < oo. [] 
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The last auxiliary result we need is the following. 

Lemma 5. Let B(.) be a measurable function: Y--, L(H) for which 
~IIB(y)II p(dy)< oo, and let R be a compact operator from L(H). Let 
B = ~ B(y) p(dy). Then 

Proof. 

Therefore 

P ( l i m  ( !  k~l B(yk)-- B) R [ -- 0) = 1 

It is easy to see that for all x, 

P ( l i m  I ! ~  B ( Y k ) x - - B x l = O )  =1 

ff R~ is finite dimensional, i.e., ff R I(H) is a finite-dimensional subspace. We 
note that R can be represented in the form 

R-Rf+R  

R ,~ where R~ is a finite-dimensional operator and II 2 II -~ & [] 

The main result concerning the solution of Eq. (42) is stated in the 
following theorem. 

Theorem 5. Suppose conditions (NP2), (PS2), (A1), and (A2) are 
satisfied. In addition, suppose the following condition is satisfied. 

(A3) There exists a measurable function B(y): Y--* L(H) and a con- 
stant c4 such that 

( f )  S IIB(y)ll p(dy) < oo, 

(g) tlJ (A,(M') R-B(y')) xel(y, dy')ll ~c4  Ilxll, 

for all x~H,  y r  Y. 
Then for any to > 0 and ~ > O, we have 

lira sfip P{ [Ix~ -~,~ [I >c~} =0 (43) 
e ~ O  e n ~ t  o 

where ~ ,= ( I + eA~) n x o. 
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Z~=8 ~ ( I+,~.d , )  k, Z " ~ e ( Y n - k + i )  n-ki+,+ Vn x~ l + u ~ , +  ~ (45) 
i = 1  t ige,  k <( t i+ ! A n n )  

where (a A b) = minia ,  b]  and 

~__. ~ " 4 u. e (I+e2~) k' ~ [ I + e A ~ ) k - e ' - - l ] g . ( y . _ k + l ) X . _ k ( 6 )  
i ~  I l i ~ g k  <(l i+ I �9 On) 

v~ , ~, ( I + , • )  k' ~ 2,(y , ,_,+t)(x,~,_k--x" +,) (47) n --ki+ ! 
i ~  ! ti<Mc <( t ,+  I A en) 

We consider xo = R2wo, Woe 1t. Using representations 

" , z R - 2 x t ~  A,(Yn.-k+I)X,-k,+I+I'=B(Yn-k+I)'R( n-k,+t+l) 
+ (2~(y ._k+ i) R - ]~(Y.-k + t))(R-lX~._k,+, + I) 

[here /~= ~ B(y)  p(dy), ]J(y) = B(y)  - B], 

{ (z+ ~2, ) * - * , -  z] 2,.(y) x 
= [ ( I + e A ) k - k ' - - I ]  R(R- t .~ , (Y ) -YL . (Y )  R - t )  x 

+ [ ( Z + e A ) k - k ' - - I ]  R.4~(y) R (R -2x )  

e X ~ . (Y . -*  + t ) (X . -k - -  .-k,§ + l) 
- - I x e .  I e, + I )  = 2 ~ ( y . _ k + l )  R(R . _ k - - R -  X._~,+, 

and Lemmas 3-5, we can prove the relations 

lira sup P{ [[z~. -- u,~ -- v~ 1[ > J} = 0 
e~0 nn~t o 

lim sup E ]lug, 11 ~< c5 [[R-2x01[ ~ (tt+ 1 - -  ti) 2 
e ~ O  e n ~ t  0 i ~ I  

lira sap E IIbZll ~<c5 IIR-Zxoll ~ (ti+~-ti) 2 
e ~ O  n n ~ t  0 / = 1  

which imply (43). f'q 

Proof. Let z ~ = x ~ - 2 ~ ,  . ~ , ( y ) = A ~ ( y ) - . 4 ~ ,  then 

n - - I  

z~=8 ~ (Z+82.)k 2~(y._k+,)x~_k (44) 
k f f i 0  

Let 0 = t I < t 2 < ... < t, + 1 = to, 8 ( k j -  1) < ti <~ ekv We can rewrite (44) in 
the form 
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The following example illustrates the theorem. 

Example. Let H=L2[0 ,  7t], and for f~L2['0 , 2n] we let 

A~(y) f = a ( y ) ~  [jT(a + v /~ ) - )7 (a -  v/~)] 

where 7(a) is the 2n-periodic extension of f ,  and a: Y--, R. Suppose that 
la(y)l p(dy) < oo and supy ~ a2(y ') Pt(Y, dy') < oo. 

Then As(y) satisfies condition (A1) since 

and 

~2. (as(y) f(~)) f(~) a~ = 0 
:0 

f~" (A~(y) f(~))2 ~< a2(y) f~" f2(~) d~ 

We consider an operator R of the form 

nf(~) = fr R(#) 7(~- #) d# 

where R(fl): [0, 2rr] --, R is an integrable function. 
This operator is invertible if ~g" e~"#R(fl) dfl ~ 0 for all n ~ Z; it is com- 

pact if ~2~ R2(fl) dfl< oo; for all k we have R-kAy(y)=A~(y) R -k if R is 
invertible; and if R'(fl)~L2[0, 27r], then 

(A,(y) R-a(y)  R') f(o 0 

. ,  r ~ F ~(b + v/~) - ~ ( # -  v/~) _ ~,(#)1 
=a y) Jo L 2 :  J 

#) d# 

where Rge(~) ----~ R'(fl) f ( ~ - f l )  rift. 
Therefore the condition l im,_.o~2"[((~(f l+v/~)-~(f l -w/~)) /  

2 V/~)_~,(fl)]2 d~--0 implies conditions (A2) and (A3). 

4. RANDOMLY PERTURBED ITERATIONS 

We ftrst consider linear iterations in a Hilbert space H. Let {x~} be 
determined by the iterations 

x,+ " I =Bx',,+~A(Y,+I)x~, Xo~ffiXo 



Discrete  T ime  Semigroup Transformations with Random Per turbat ions  485 

where B6L(H),  {y~} satisfies one of the conditions (NP1), (NP2), or 
(NP3), and A(y) is a measurable mapping of Y into L(H) for which (we 
assume) the operator 

Ax = f A(y) xp(dy) 

exists with A~ L(H). We define 

~, = (B+ 8:i) ~+ n + l  1 X0 

It follows from Theorem 1 that for each fixed t, sup,~<, IIxT,-2X U ~ 0 with 
probability 1 as e ~ 0. Our goal is to investigate the difference x ~ -  ~,~ for 
larger values of n [i.e., for n larger than O(1/e)]. 

We have the following result�9 

Theorem6. Suppose (NP3), (PS2) and the following two conditions 
are satisfied: 

(1) II(n + e-~)nll ~< ct e ":~, 
(2) [ IIA(y')II 2 Pt(Y, dy') <<. c2t, where ct and oc are positive constants. 

�9 x , , I V = 0 .  Then limo_o lim sup~_o sup,,~o/: E Ilx% - -~ ~ 

Proof. We introduce the following notations: 

T~=B+eA, Y I ( y ) = A ( y ) - A ,  2k=2(yD 

XSn= ~ ekS~(n,k)xo, where S~(n,O)=T~., S~.(n,n)=.4,,...Ai 
k = O  

and for k < n, 

S~(n + 1, k +  1) ---A,,+ ,S,(n, k) + T,S~(n, k + 1) 

We then note that 

x~ = S~.(n, O) xo 

- ~  2 E Ilxn-x.ll = ~ ~k+tE(S~(n, k) Xo, S~(n, l) No) 
k , l ~ l  

It is easy to check tha t  

(48) 

S~(n,k)= ~" T~-*k.4ikT~k-*k-'-'$ik_...AiLT~ ~-' (49) 
1 ~;i m</2< --. < i k ~ n  
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Let R*(y, dy')=var Rk(Y, dy'), and 

R*(y, dy') = ~ R*(y, dy') 
k ~ l  

It follows from condition (NP3) that supy R*(y,  Y) -ffi R* < oo. 
Let 

~,I(y) = f 2 ( y ' )  P l ( y ,  dy') 

Then 

IIA(y)II ~ 2c~ 

We represent E(S,(n, k) Xo, S,(n, k) Xo) = u~(n, k) 
u,(n, k) k = ~.jffio u,(n, k, j),  where 

in the form 

-- -- J l -  u,(n,k , j )=~E(T~-t~.~k. . . .~iT~'- tXo,  T n - A A A . . . A j T  . tXo) (50) 

and the sum is taken over the partitions {it ..... ik}, {Jt,..-,A} for which 
card{it , .... ik} C~ {j,,..., Jk} = J. 

Let A t u A 2 u A 3 = { I, 2 ..... 2k-j}, where card A1= card A 2 = k - j, 

card A3 = J. 
Let {il ..... ik} W {Jl,'",Jk} = {ht,..., h~_ j}  and denote by u,(n, k , j ,  

A l , A2, A3) the sum of those terms of  the right-hand side of (50) for which 
h,E{i~ ..... ik} if i e A ~u A 3  and h,~{j~,...,jk} if i~AauA3.  Then 

u,(n, k, j, Al, A2, h3) 

- -  s f , . f , ( y , ,  ..... y _j,h, ..... h _j,a,,a2,a3) 
1 ~ h l <  ... <h2k_ j~n  

P ' P _ __ ' d '  Ph,(Yo, dye) h2-h,(Y~, dy'2)"" h~ j-ha j , (Y~- j - l ,  Y~-j)  

where 

$(Y~ ..... Y~-y ,  hi ..... h2k-j, Al,  A2, A3) 

r T n - i t  ~ "  ~ " .  71t T~t - lXo,  n ~ [  ~ . . . # l~ (y f l k  •t , tY.,) "'.~,Y,d T*-Y*"'YP, ' T J | - I  x 'l 
e. o!  

and 

{~,,..., ~,} ~ {p,,..., p,} = {~ ..... 2k-y} 

~q< "'" <ark, i l l <  "'" <ilk,  CZ, f f l r  if i~,sfjp " 
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Let 

2k-y  

~(Yl ..... Y2k--J )~-f'''f ~(Ytl'"" Yt2k--J ) E PI(Yi, dy:) 
i-I 

Then ~ satisfies the conditions 

(I) ~ $(Yl,..., Y2k-j,...)p(dy3 =0 if i e A t u A 2 ,  
(II) Iff(Yl,..., Y2k-:,..-)l ~<(2Ct) 2k-j IIx0112, 

( l id u,(n, k, j, A t ,  A2, A3) = E $ . . . ~ $(y'~,..., y '~_: ,  h~ ..... h2k_j, A~, 
R i o t -42, A3) I'L2k=l j [ h,--h,_,(Yi--I, dy,) +p(dy3], where the sum is 

taken over all 0 ~< h t ~< h2 ~< "'" ~< h2k_: ~< n - 1. 

Using I-III  we can show that 

n k 
lu,(n, k, j, AI, A2, A3)I ~< (2Cl) 2k-j  (R*)2"k-J-~. IIx0 [I 2 

SO 

( 2 k - j ) !  
lug(n, k, J)l ~< ( k - j ) !  ( k - j ) t  j t  

_< rikn__ * lu~(n,k)l~ ~ kl IIx~ 

(2Cl) 2k- j  ( R * ) 2 k - j ~ l  " IIx0 II 5 

where Q > 0 is a constant. Therefore 

E Ilx~- ~7, II 2 < ~. ek +l IE(S,~(n, k) Xo, S~(n, l) Xo) I 
k,l=l 

~<-k-, : / IIXoll ~ 

if n < 0/e 2. It is easy to see that the fight-hand side of the last inequality 
tends to zero as 0--, 0. [] 

Remarks. 

(I) It follows from the proof of the theorem that 

E e -r, 2 2 IIxn-x~ll =O(en ) for O(en2)----O(1) 
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(II) In the same way, we can prove that 

g Ilx~-~X I1 ~<(e ~  1) Ilxo II (51) 

where Q I is a constant. 

(III) Suppose that the following condition is satisfied instead of (1) 
in Theorem 6: 

I](B+ eiT)~ll ~< 1 - -  I / / ( e 2 n ) ,  where a ~,: R+ ~ R+ is a function for which 

am (@(~)/~)= oo (1') ti~0 
Then there exists a positive number eo and constants Co > 0 and 0% > 0 

for which 

E IIxT, II 2 ~< coe - ~  

for e<80, n e Z + .  
To prove this we note that I and II imply 

EIIx~II2=II~;II2+E , -~. 2 -~. -~ IIx~--x~ II + 2(x~, E x X -  x,,) 

<~(1-~k(e2n)+Re2n) IIx~ ~< ( 1 -- \" t-'~n(~k(e2n) 

where the constant R is determined by (I) and (51). 

(52) 

~ - - R )  e2n)l[xo I[ 2 

Let d satisfy relation (ff(8)/8) - R > 2 for ~ ~< .4; then E Ilx~ II 2 ~ e-2~-" 
for 82n ~< d. If e 2 ~< A, then this inequality is true for all n. 

4.1. Iterations of Nonlinear Function 

Let f :  H - , H ,  q~: H x  Y - - , H  be given, and let {y,,} satisfy condition 
(NP2). Let x~ be determined by 

x~,+t =f(x~)+e~p(x~,  Y,+ t), Xo~'-- Xo (53) 

We have the following result. 

Theorem 7. Suppose that conditions ( N P 2 )  and (PS2)  are satisfied as 
weHas 

(1) 

(2) 
(3) 

f ( x )  and f ' ( x )  are continuous, [If'(x)ll ~<q< 1, and there is a 
unique f ixed point <for f ,  say f(.~) = ~, 

q~(x, y), qr y)  are bounded and continuous in x, 

Flmn_ ~ Pn(y, B) = p ( B )  for  all B 6 ~ .  
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Then as 8 --* 0 and N ~ co, the random sequence 

u2v, . -e  (x2v+ . -  2) 

(for n > ~ - N )  converges weakly to a stationary 
{ ~.,  n e Z} ,  where 

a .= ~ a"-k~o(2, y *) (54) 

Here A = f ' ( 2 ) ,  and { y~, k ~ Z} is a stationary Markov chain in Y whose 
nth step transition probability is P.(y, B) and whose stationary distribution 
is p(dy). 

P r o o f .  L e t  z~, = x,]  - 2 .  Then 

z~ .+,=f (2+z~)- - f (2 )+scp(2+z~,  y.+,),  z ; = x o - - 2  

^" = . 4 ~ + 8 q , ( 2  "~ ~), 
Z n §  d l ' Zn  ~ Yn+ 

Set 

??o = X o -  2 

It is easy to see that 

random sequence 

we have 

II .§  ~ -e~,§ II ~ IIg(eDII 
k ~ l  

~ = e  ~ A"-kq~(2+z ~ k-  l, Yk) (55) 
k = l  

Using the relation 

Z . + l - z . + ~ - A ( z . - z . ) + 8 [ ~ ( 2 + z ~ ,  y .+  t ) - ~ o ( 2 +  e~,, Y . + 0 ]  +g(e~.) 

where 

g(z) = f ( 2  + z) - f ( 2 )  - Az 

in conjunction with Conditions (1) and (2), we can show that for 8 satisfy- 
ing the inequality 

sup (tlf'(x)ll +~  II~0'(x, y)ll)~< qt < 1 
:r 
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Since 

I1~. II = o (s )  

we have 

II g~(~)ll = o(8)  and IIz~ - ~ II = o(~) 

Set 

a ~ , - ~  ~ (56)  

then Ilu~- a~ II = o(e) /s .  
We introduce the Markov chain {y*~,n>~-N},  .1~ yn =y~+~.  It 

follows from Condition (3) that the distributions of { y*~'} converge to the 
distributions of { y*,  n e Z} as N ~ oo. Using the representation 

k ~  - - N  

which follows from (55) and (56), we obtain (54). [] 

Remarks. 

(I) The assertions of Theorem 7 are valid if t/(x,~, y ) = f ( x ) +  
eq~(x, y), for any sufficiently small e and y e Y, maps a closed subset F ~  H 
into itself. 

(II) Suppose that there is a finite number of closed subsets F~ c H, 
i= 1 ..... k which are invariant with respect to the mapping ~7 for any suf- 
ficiently small e and y e Y. Also suppose that the conditions of the theorem 
are valid for each F~ [there exists a unique fix point :~teF~ for the map- 
ping f (x)] .  Denote by G,= {xeH: liminfn_.~ [If~n)(x)-~Jll =0},  where 
fo'+lJ(x)ff(fOO(x)), fr  Finally, suppose that the Markov 
chain {x~,, Yn} in H •  Y is ergodic for all e < 1 and its ergodie distribution 
m'(dx, dy) has the property that 

m~ ( ( H - 1 0 1 G , )  

for all small e > 0. Then 

x )=0 

P{ lira i ~  IIxX- ~'11 = 0} = 1 
n--* OO l 
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5. SOME APPLICATIONS 

Although there are a great many applications for the results derived 
above, including problems in numerical analysis and simulation, we present 
here three typical applications: one from epidemics, one from genetics, and 
one from demographics. 

5.1. An Epidemic Model 

A population in which an infection is active can be divided (roughly) 
into three classes: those susceptible to, those infectious with, and those 
removed from the disease process. We take the simplest case, depicted by 
the graph 

S ~  I--* 

where S denotes the susceptible population and I the infective population. 
Passage from S to I depends on effective contact between a susceptible 
and an infective. The numbers in these classes are counted at fixed 
sampfing times, and the results are denoted by {S,, I,}. We suppose that 
these satisfy the Kermack-McKendrick model (see Hoppensteadt, 1975, 
1982): 

Sn+ I = Sn e-gIn 
(57) 

I,,+, =(1 - e  -~I.) S .+2I , ,  

where a measures the infectiousness of the pathogen and 2 gives the 
proportion of infectives surviving as infectives over one sampling period. 
We see immediately that S ,  J, S o  and I ,  ~ 0 as n --* oo. But the interest is 
in whether an epidemic ensues from an initial infective, which we take to 
mean that I, increases (significantly) before eventually vanishing. If the 
sampling times are short, then 0t ~ 0 and 2 .~ 1. So we write 0t = 80t and 
2 = 1 -8]/. We then denote the solution of the above iteration having initial 
values So, I0 by {S,], I~,}. Lemma 1 shows that for any to, 

lima sup ( I S ~ - S ( ~ ) l  + II~-I(en)l)=0 (58) 
~ 0  e n ~ t  o 

where S(t) and I(t) are the solutions of the system of differential equations 

= - ~sI, s(0)  = so 

i=~sz-]/I, x(0) =z0 
(59) 

865/9/3-11 
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We defme a critical parameter by J = [3/~. Integrating this system of equa- 
tions gives 

I=  So + I o - S  + J l o g S  ~ (60) 

If So<J ,  then 1(050 and S(t)J, Smin as t ~  oo, where Smin satisfies the 
equation 

Smia = So + Io + J log Smi~ So (61) 

On the other hand, if J > So, then I increases for J <  S < So, and I 
decreases for Smi, < S<,J.  The maximum of I( t)=Ira= is determined from 
the equation 

J 
Imax = So + Io - J + J log s'oo 

Therefore, the dimensionless parameter J/So indicates the vulnerability of the 
susceptible population to supporting an epidemic. This is referred to as the 
Kermack-McKendrick threshold theorem (see Hoppensteadt, 1975, 1982). 

Now consider the perturbed model where 0t and fl are perturbed by 
random processes. Let S~, and I,~ be determined by the perturbed 
Kermack-McKendrick model 

, = s .  exp{ - 8 ~ ( y ~  + ,) I ;}  

I,~ +t = (1 - exp{ -eot(y,, +t) I~} ) S~ + (1 -eflfy,,  + 1  )) l~ 
(62) 

8~ S o -  So 

Io -Io 

Here ~ and,# are nonnegative, bounded measurable functions defined on 7, 
and {y . }  is a Markov process that satisfies condition (NP2). 

Let ~=~ro~(y)p(dy) and f l=[rf l (y)p(dy) ,  and as before, S(t) and 
/(t) are determined from the averaged differential equations. Then we have 
the following result which shows that small random perturbations do not 
significantly alter the threshold theorem for the deterministic case. 

Theorem 8. For m~y c5 > O, 

(1) rmt,_oP{SUpn(IS:~--S(ea)l + IIX--I(en)l)>~} =0 
(2) Set S=in=limn_. ~, Sn, Imax--supnl~, then 

lira P{ IS~i.-S~nl + II~.x--Im~xl >~} ----0 
8--*0 
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Proof. It is evident that (1) implies (2). To prove (1) we note that by 
Theorem 1 we have 

lira P{ sup I S ~ - S ( e n ) l  + II~-I(en)l)>J} = 0  
~ 0  r m ~ t  0 

for any J > 0 and to. 
It follows from (62) that 

I~+ ~ < I~ +e(oc(y,,+ ~) S~ - f l ( y , ,+  ~) ) I~ <~I~. exp{8(~(y. + ~) S ~ - f l ( y . + , ) }  

and therefore 

I,,, ~ Im exp e (S~,e(Ym§ + m  
kffiO 

--~ Im exp{ ne(S ~.e - fl + O. )} 

where 

O r e = s u p  I / N )  E ~176 So'+" ( I / N )  ~ f l ( Y m + k ) - -  �9 
N ~ n  k=O ksO 

It follows from (NP2) that 0m--'0 with probability 1 as n--, ~ and 
0,m+l ~< 0~. Suppose that S~,~t-f l  + 0 , ,0 -"<  - ? ,  where ? >  0 and no>m,  
then 

n z n 0 

e ~< 1 I~,e ~r 
I~ <~I~, l_e_~,  ~ 

Note that for n >no,  

S~ = S ,~,o eXp { - e  ~ 0c(Yk+l)I~-} 
no <~k <n 

and 

o~ SoI~ 
-< ~ ) i  e ~ IS~-SXol~eS. o ,... oC(YK+,)I~,<~ 

k = n  o )~ 

For n I> no 

I~ ~< I~, exp{ e(n -- m)(S~oc - f l  + 0,o_m)} ,~. ~-~ ~tm~ [~ a - - 8 ( n - - m )  ? 

i f  S Sm O~ - ~ -Jt- O no_m ,r - ~. 
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Therefore 

sup (11~,-/(en)l + tS~.- S(sn)t) 
~ n ~ t  0 

n - - ~ n o - - m )  7 So me~r.l.S(to)__Smin <~ I( to) + Ime + 
3' 

if S ~ - p + O , ~ _ m  < -3'. 
Set 3'--�89 O~Smi.), and let tt satisfy condition 

3' 
S ( t t )  - -  Stain < ~1, I(tt) <$1, ~ t < ~  

where to > tl,  (m - 1 )~  ~< tt < (m~), and (no - 1 ) e ~< to < hoe. 
It follows from the conditions 

3' 10.o_m I < ~  and sup ( l I%-I (sn) t  + IS~-S(sn) l )~<~t  
e n ~ t  o 

sup ( l I : - Z ( e m ) l + l S : - S ( s n ) l ) < ~  (4+2So ~ )  
en  ~ t o 

that 

(63) 

[] 

pg~ + <rg.(1 - g.)  
f ( g . ,  p, a, ~ )=pg2 + 2ag.( 1 _ g . )  + r(1 --gn)  2 

The parameters p, ~, and T are the relative fitnesses of the genotypes AA, 
AB, and BB, respectively. 

When selection is slow relative to reproduction, then these parameters 
are near 1, so in this case we write 

p= I +e~t, a = l  +ep, r = l + e ~  

(64) 

where 

g.  + ~ = f (  g . ,  p, <r, : ), go is given 

5.2. S low Genetic Selection 

Let p, o', and �9 be positive constants and let the sequence {g,,} be 
determined by Mendelian genetics for a single locus genetic trait having 
two aUelic forms, say A and B, in a synchronized population. Namely, let 
g. denote the proportion of the gene pool that is of type A in the n th 
generation. Then (see Hoppensteadt (1982)). 
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It is convenient to write the iteration in the form 

~ ~ Q ( g . )  _~ 
= g . + l - - g .  1 g , ,  g o = g o  (65) 

where P( x ) = o~x2 + 2 f l x ( 1 -  x ) + y ( 1 -  x ) 2 and Q( x ) = x ( 1 -  x )( ax  + b ), 
where a = o~ + y - 2fl and b = o~ - 7. 

Let g(t) denote the solution of the differential equation 

g = Q(g) (66) 
g(0) =go  

We expect the solution of the iteration to be approximated by the solution 
of this equation in some sense and we write 

g . . . .  g(en) 

There are four eases of interest regarding this system. 

(1) A dominant: If go>0,  b>~O, a+b>.O,  and l a l+ [b [>0 ,  then 
g(oo) = 1. 

(2). B 'dominant: If go < 1, b ~< 0, a + b ~< 0, and lal + Ibl > 0, then 
g(oo) =0.  

(3) Polymorphism: If 1 > g o > 0 ,  b > 0 ,  a + b < 0 ,  then g(oo) = -b/o~. 

(4) Disruptive selection: 

�9 If -b /o~>go>O,  b > 0 ,  a + b < 0 ,  then g(m) =0. 

�9 If - b / o ~ < g o < l ,  b < 0 ,  a + b > 0 ,  then g(oo) = 1. 

We next consider this model perturbed by random noise and show 
that, under certain conditions, these four cases carry over with convergence 
meaning in probability. The perturbed system has the form 

g . + ,  - f ( g . ,  p. ,  a . ,  ~,) 
(67) 

g~ =go 

where 

B _ _  p . -  1 +eot (y .+l)  

a~,= 1 + e f t ( y . + , )  

z~.= 1 + e y ( y . + l )  

(*) We suppose that the functions ~., r ,  and ~ are bounded measurable 
functions mapping Y--, R and that the Markov process {y.} satisfies con- 
dition (NP2). 
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and 
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W e  denote the averages of the data by 

= ~ o~(y) p(dy) 

fl = ~ fl(y) p(dy) 

~7= ~ r(Y) p(dy) 

Theorem 9. Under the conditions (*) listed above, we have the follow- 
ing results: 

(1) .4 dominant: I f  go>O, 6>10, d + b >t O, and lal + 161 >o, then 

lim P{ lim g,~ = 1} = I 

(2) B dominant: I f  go< 1, 6~0,  8+6<..0, and lal + 161 >0, then 

lira P{ lim g,~ = O} = 1 

(3) Polymorphism: I f  1 >go>O, 6>0 ,  r  then 

lira P{ lim g,~ = -b/a} = 1 

(4) Disruptive selection: 
(a) I f  -6/a>go>O, 6>0 ,  ~i+6<0,  then 

lira P{ lira g,,-8 _ O} = 1 
8 ~ 0  n - * O 0  

(b) I f  -6 /a<go<l ,  6<0 ,  a + 6 > 0 ,  then 

lira P{ lira g~ = I} = 1 
g ~ O  n ,-.* oo 

Theorem 9 shows that if selection is slow relative to reproduction, then 
the genetic structure of the population proceeds in strict analogy with 
the deterministic case. In particular, in cases (1), (2), and (4) fixation is 
probable. 



Discrete Time Semigroup Transformations with Random Perturbations 497 

Proof. Consider (2). It follows from Theorem 1 that 

lira P{ sup I g ~ - g ( e n ) l  >6} = 0  
8--*0 e n ~ t  0 

for any 6 > 0 and to > O. 
Suppose that g(to) < 6 and g~o ~" 26, where en o < to < e(no + 1) and 6 is 

small enough. Let b ( y ) = o ~ ( y ) - ~ ( y ) .  Then there exists a constant c~ > 0  
for which 

g~+t ~<g~(1 + eb(y~+ 1) +ec~ g~,) (68) 

and there exists c2 > 0 for which 

g~, + l --gen<~ C2e 

Let ~ . m = m a x o ~ k ~ , ,  g,~+k" Then ~,~,.m<~g,~,+mc2 e. It follows from (68) 
that 

{m } 
8 ~< " e ~ b ( y , + k ) + ~ m c l g , , . , ,  g,, + m "- g,, exp ~ 8 

k s l  

~<g,~, exp{em(b + 0 .... + ct ~;. m)} 

where 0 < 0  ..... +t < 0  . . . .  0 . . . .  ~ 0  as m ~  oo. Suppose that 0~o.mo< Ibl/4 
and 

Ibl 
cl(2J + emoc2) < -~- (69) 

Then 

therefore 

for m > m  o 

P { l ~ m  8 - 0 }  >~ 1 - P  ~'0 > fb l~  
g n -  [ no,,~0 4 J 

where mo satisfies (69). I f 2 c l J  = lbl/8, and 

Ibl < _ [bl 
10c2 emo < 8c---~ 
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then m o ~ oo as t ~ 0 and 

lira P { 0 . , .  ~> [4b~[}-- 0 
8.,=)0 

The proof of the other points are similar. 
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5.3. Demographics 

The age distribution of a population can be determined by census, and 
then the numbers in various age classes, say {v~ ..... v,,}, define a vector 
whose dynamics can usefully describe how a population's age structure 
changes. For example, a census might be taken every 5 years, females 
counted, and data kept up through the end of reproductive ages, say age 55. 
Then 11 age classes would be monitored. 

The population's dynamics are described by the system of equations 

Vn+ 1 ~ A ] I  n 

where v,, is the vector of age classes at the nth census and A is Leslie's 
matrix (see Keyfitz and Flieger, 1971) given by 

A = ;[2 "'" 0 
0 "' .  0 

0 "" ~t,n_l 

(70) 

where 0~ t 1> 0 are the fertilities of the various age groups and 2t ~ (0, 1 ] are 
the survival probabilities of the various age groups to the next census. The 
first problem we consider here is to determine the asymptotic behavior of 
A n x  ag n ~ oo. 

The theory of nonnegative matrices shows (see Harris, 1963, Chap. 2, 
Sect. 9) that 

(I) A has a unique positive eigenvalue ~; 

(2) ~ is an eigenvalue for A*, the adjoint of A; 

(3) the corresponding eigenvectors, say b and b*, of A and A*, 
respectively, have nonnegative components; 

(4) if 0 # ~ is another eigenvalue of either A or A*, then ]0[ < ~; and 
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(5) the powers of A can be calculated asymptotically: 

A"x = (b*, x) ~"b + O(0~) (71) 

where 0~ is some constant satisfying 0 < 0t < ~. 

The second problem is to determine the asymptotic behavior of solu- 
tions to a randomly perturbed Leslie matrix. Let A(y) denote a matrix of 
the same form as A but having coefficients aj(y) and At(y) instead of at and 
2 ,  respectively. The functions a(y) and 2(y) are assumed to be bounded 
and measurable functions mapping: Y ~  R. 

We consider the perturbed problem 

x" =(A+e2(y.+l))X~. n + l  

6 
X 0 = X 0 

We suppose that { y,} satisfies condition (NP2). 

Theorem 10. Let the conditions listed above in this section be satisfied. 
Then 

V ~-*0t lim lim._~sup log nll--x• II log ~ = 0} = 1 

This theorem shows that for small e, the intrinsic growth rate of the 
perturbed population is probably the same as the unperturbed one. 

The proof of the theorem is based on the representation 

~ -  f l  (A+sA(y,,))xo=A"xo+eS..tXo+ +e"S...Xo 
k ~ l  

where 

S., I = ~ A ~-k~(yk) A k- t 
k = l  

S., .= ~ A"-i~l(yit) At'-ia-l.71(yi~)'".71(yir) A i'-I 
n;nil>i2>... >ir~l  

and formula (71). The details are not carried out here. 

APPENDIX 

Here we present some limit theorem for random variables which are 
functions of a Markov chain { y~} that satisfies condition (NP3). 
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Let 

rk=2 sup IRk(y, C)I =sup var IRk(y, ")1 
y ~  Y, CEr/r y e  Y 

Condition (NP3) implies that Zk rk < 00. 
We consider limit theorem for H-valued random variables of the form 

Y-~-tf(Yk), where f :  Y ~  H is a measurable function. 

Lemma 1. Let g(zl,..., Zm): Y ' - ~  R be c~m-measurable bounded func- 
tion for which ~ g(zl ..... zm) p(dZk) = 0 for all k <~ m. Then, with II gll denoting 
the usual sup norm, 

E (  ~ )g(yk, ,Ykz, . . . ,yk. , ) /yol<~llg, l(~rk)" 
l ~ k l <  < k m ~ n  \ k ~ l  / 

Proof .  We have for 0 < k t  < "'" < kin, 

[Eg(yk,, Yk2,'", Yk.)/Yol 

=IEI...I d:,) 
Pk,.-k,(Zt, dz2)'" Pk,,,--k,,,_,(Z .... t, dzm) 

=lef...f g(z,,z2,...,z,,,)Rk,(yo, d'-,) 

Pk2--k,(Zl, dz2) "" Pk.--k,,_,(Z .... I, dz.) l 

= [ E f . . . f  g(z t ..... zm) Rk,(Yo, d-_,) 

R k 2 - k l ( Z  l , d z 2 )  �9 " �9 R k m - k m _ l ( 7 " , n  - 1,  dzm) I 
~< ]lgll rk, rk2--k, ' ' '  rk,,--k.,_, 

This inequality proves the lemma. 

Condition (AlL Let g(z): Y--,R be a bounded measurable function 
for which ~ g(z) p(dz) = O. 

Corollaries. I f  g satisfies condition (A1), then uniformly in Yo, 

(1) E(~.~ffi I g(y~)/yo)ffiO(1), 
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(2) E(~-I ~k~<k2<k,~n g2(yk~) g(Ykz) g(Yk,)/Yo) = O(n). 

To prove this relation we set c = ~ g'2(Z) p(dz). Then 

and 
1 ~ k  I < k 2 ~ n  

cE ( ~. (g(Yk2) g(Yk,)/Yo) = O(n) 
1 ~ k l  < k 2 < k 3 ~ n  

(3) In the same way 

g(Yk,) g2(yk 2) g(Yk.~)/Yo) = O(n) 
I ~ k  I < k 2 < k 3 ~ n  

~ k  I < k 2 < k 3 ~ n  

(4) Z((E~=l  g(yk))g/yo)=(n2). 

This follows from (2) and (3) and the relation 

E (  ~, g(yk,)"'g(yk~)/yo)=O(1) 
I ~ k  I < . . .  < k 4 ~ n  

E((~,'~. 1 g(y~))2/yo) = O(n). (s) 

Lemma 2. Let g(y) satisfy condition (A1). Then for any y~ Y, 

l i m  E = = [[  g(z) g(z') p(dz) R(z, dz') = b 
\ k = l  / t / 

Proof .  We have 

( ( ) 2 / , )  
E ~ g(Yk) o 

k ~ i  

j /)  =E ~. g2(yk)+2 ~ g(Yk) g(z) Rj-k(Yk, dZ) Yo 
k ~ l  l ~ k < j ~ n  

=E g2(yk)+2g(yk) g(z) Ri(yk, dz) Yo 
I i ~ l  

+ 0  rj_ k 
1 j f f in+l  

501 
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The statement of the lemma follows from ergodic theorem and the relation 

lira r,. ffi lim ~ r i = 0 [] 
n ' * ~  i = a + l - - k  n ~ o o l =  1 n 

Theorem 1. Let g satisfy condition (A1). Set (k = ~ .  i g(Yi), (o = O, 
and let 

(,,(t) = ~ n b  (0(k + (1 --/9) (k+ 1) i f  t e [ k / n , k + l / n ] ,  O = k + l - n t  

where b is determined in Lemma 2. 

Then the distribution o f  f ,(t) converges weakly in Cto" n to the distribu- 
tion of  the Wiener process w(t) for any T> O. 

Proof. 

(I) At first we note that it follows from Corollary 4 that 

El(,,(t~)--(,,(t2)[4 <cl [tl--t214 

where c t is a constant which does not depend on n. Therefore the sequence 
{(,(t), t e  [0, T]} is tight in C[0, T] (see Billingley, 1968, p. 95, Theorem 
12.3). 

Let a subsequence (,~:(t) converge weakly in C[0, 7'] to the process 
(o(t). It follows from Corollary 1 that (o(t) is a martingale and from 
Lemma 2 that it has the square characteristic equal to t. Therefore (o(t) is 
the Wiener process. 

Corollary. The random variable (k is asymptotically Gaussian with the 
mean value 0 and the variance x//-~. 

Now we consider a limit theorem for H-valued functions f .  We assume 
that the function f satisfies the following condition. 

(A2) f is a bounded measurable function: Y ~ H  for which 
S f (Y )p (dy )=  0 and there exists a positive compact symmetric 
operator B for which supy IlB-~f(y)ll < ~ .  

We introduce the sequence of H-valued random variables: 

k 

Y, fry,) 
i ~ l  
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and the sequence of H-valued continuous stochastic processes: 

1 
ft.(t) = ~ n  ( (k + 1 - nt) rlk + (nt-- k) rlk + t) 

v 

k k + l  
for -~<t~<. , k = 0 , 1  .... 

n n 
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the 

increments q( t) for which E~l( t ) = 0 and 

E(~l( t), Z) 2= t ~ (f(y), z)(f(y'), Z) R(y, dy') p(dy) 

=(Vz, z) for any z e H  

Here C[o ' rl(H) is the space of continuous H-valued functions on 
[0, T]. 

Proof. It follows from Theorem 1 that the finite-dimensional distribu- 
tions of (t/,,(t), z) converge to the t'mite-dimensional distribution of the 
process (~/(t), z), in particular, 

l i m  E exp{ i(~/.(t), z)} -- exp{ - 1/2t( Vz, z)} (1) 

Let B be the operator from condition (A2). Then we have 

Re(1 - Ee l~,tt)" n-,=)) = E(1 - cos(B-tr/.(t), z)) 

= E(1 - c o s ( B -  Iq,,(t), z) )  11 iln-'..c,>LI ~.~ 

+2P{ lIB-'r/.(t)ll >r}  

<~ �89 z) 2 1 { Itn-t~.~t~11 ~< ~ 

+ 2P{ llB-~/.(t)ll > r} 

Denote by Qr the nonnegative symmetric operator H--. H for which 

(Qrz, z) = �89 z) 2 1{ IIs-'..~,~11 ,~.} 

It is evident that tr Qr <<. �89 2. In the same way as Corollary 5 after Lernma 1 
we can show that 

E B, l f (yk) ,  B- ' f (yk)  = O(n) (2) 
k ~ l  k ~ l  

Theorem 2. The distribution ~/.(t) converges weakly in C[0. r j (H) to 
distribution of the homogeneous Gaussian process with independent 
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and therefore 

E IIB-Ir/.(t)ll 2 ~< c2t 

where c2 is a constant. Therefore 

Re( 1 - Ee ~,(~ a-,z)) <~ ( Q,z, z) + c2t 
r 2 (3) 

Since (2) and (3) imply that the distribution ~/.(t) converges weakly in H 
to the distribution of r/(t) (see Gikhman et al., 1974, p. 372, Theorem 1). 
Hence the finite-dimensional distributions of  r/.(t) converge weakly in H to 
the finite-dimensional distributions of r/(t). 

In the same way as Corollary 4 after Lemma 2 we can show that 

E f(Y~-), f(Yk) = O(n2) 
X k = l  k = l  

and therefore 

E II r/,,(t2) - ~/.(t t)ll 4 ~< C4(t2 - -  tt )2 

where c4 is a constant. 
Now the proof of the theorem follows from the general theorem on 

weak convergence in the space Cto. r](X), where X is a complete separable 
metric space (see Gikhman et al., 1974, p. 140, Theorem 2). 

Corollary. The distribution o f  (1/v/n) supk~. r  IIr/k II converges to the 
distribution of  supt < r [I r/(t)II. 
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