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Discrete Time Semigroup Transformations with
Random Perturbations

F. Hoppensteadt," >+ ¢ H. Salehi," >’ and A. Skorokhod'-**
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Let (X, #) and (Y, ¥) be two measurable spaces with X being a linear space.
A system is determined by two functions f(X): X - X and ¢: X x ¥~ X, a (small)
positive parameter ¢ and a homogeneous Markov chain {y,} in (¥, ¥) which
describes random perturbations. States of the system, say {x e X, n=0, 1,..},
are determined by the iteration relations: x; | = f{x2) + ep(x%, y,.1) for n=0,
" where x§=x, is given. Here we study the asymptotic behavior of the solution
x% as ¢ 0 and n — oo under various assumptions on the data. General results
are applied to some problems in epidemics, genetics and demographics.

KEY WORDS: Difference equations; random perturbation; averaging; diffu-
sion approximation; randomly perturbed iterations; stability.
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1. INTRODUCTION

We consider a system in a linear phase space X with discrete time neZ
which is perturbed by a random process {y,,neZ,} defined on a
measurable space (Y, €). The system depends on a small parameter ¢ > 0;
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if =0, the system is nonrandom. Let x} € X denote the state of the system
at time n. We suppose that x% is determined by the recurrence relations:

£

xi+l=f(xi)+s¢(va yn+l)9 X, =Xo (1)
where x, is given; f: X — X, ¢: X x Y - X are given functions. The problem
is to investigate the asymptotic behavior of the system as ¢ — 0 and n— o0
under various assumptions on the data.

If f(x)=x, Eq. (1) is a perturbed difference equation. For such equa-
tions we obtain results that are analogous to results that have been
obtained for randomly perturbed dynamical systems and differential equa-
tions by several authors; see Gikhman (1950, 1951, 1964), Khasminskii
(1966, 1968, 1968a), Papanicolaou (1968), Papanicolaou et al. (1977),
Pinsky (1974), Pardoux (1977), Krylov et al. (1979), Freidlin et al. (1979),
Rozovskii (1985), Sarafyan et al. (1987), Skorokhod (1989), Hoppensteadt
et al. (1994), and Hoppensteadt et al. (1995, 1996). Our results are concerned
also with general limit theorems for Markov processes; see Skorokhod
(1965), Stroock et al. (1979), Ethier et al. (1986), Jacod et al. (1987), and
Protter (1990).

This work was motivated by some problems in epidemics, genetics,
and demographics; see Hoppensteadt (1982). We apply our general
theorems to problems from these fields.

Assumptions. We suppose that the noise process { y,} satisfies one of
the following conditions: (NP1) {y,} is a stationary ergodic process with
ergodic distribution p(dy), ie., for any function g(y): Y— R, for which
§ 1&(»)| p(dy) < 0, we have

P{lim % Z g(yk)=fg(y) p(dy)}=l
k=1

L Rl

(NP2) {y,} is a homogeneous ergodic Markov process with transition
probabilities

Py, C)=P{y,eCly,=y}, Ce%, yeY

and ergodic distribution p(dy).
Here and below unlabeled integrals are assumed to be over Y.

Remark. It is easy ‘to see that a stationary ergodic process
{y.,neZ} generates an ergodic Markov process:

Z,,={y", Yn—1s }’,,_2,-..} in Y%+
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(NP3) {y,} satisfies (NP2) and, additionally, its transition probabilities
satisfy a strong mixing condition:

o0

Y sup [Py, O)—p(C)| <0

k=1yeY Ce%

We use throughout notations: %, the o-algebra generated by {y,..., ¥4},
Rk(ya C) =Pk(y’ C) —p(C), and

R(y, O)=1c(»)—p(C)+2 ¥ R(y,C) (2)

n=1
We consider system (1) in the following phase spaces.

(PS1) X is a separable Banach space.
(PS2) X=H, where H is a separable Hilbert space.
(PS3) X=R-“

The function f is assumed to be continuous, and ¢ measurable in y
and continuous in x.

2. DIFFERENCE EQUATIONS

First, we consider Eq. (1) with f(x)=x. In this case, {x%} is deter-
mined by the difference equation

Xﬁ+l—xﬁ=8(p(xf,, yn+l), xf)=x0 (3)

We suppose condition (PS1) is satisfied and that ¢(x, y) is bounded in y
over Y for all xe X. Let ¢ be defined by

#(x)= [ o(x, ») pldy) (4)
Let the nonrandom sequence {x%} be determined by the equation
X —X,=ep(X)), Xi=x (5)

It is referred to as the averaged system. The following result is easy to
establish (see, e.g., Hoppensteadt, 1993, Chap. 7.3).

_ Lemma 1. Let @ satisfy the following Lipschitz condition: There exists
I>0 for which ||@(x)—-@(x')|| <I|x—x'|. Denote by x(t) the solution of
the differential equation:

dx(t)

TP, =0)=x, (6)
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Then for any t,>0,

lim sup ||%X(en)—%.||=0 (7)

e—0 engy

This result can be generalized to randomly perturbed systems in the
following way.

Theorem 1. Let {y,} satisfy condition (NP1), and let ¢ satisfy the
Jfollowing conditions.

(B) |lo(x, y)| p(dy) <o for all xe X.

(L1) There exists a measurable function K(y). Y— R, for which
fUy)pdy)=I<co and for yeY, x,x'eX, lo(x,y)—o(x, )<
I(y) llx—x'1.

Then for any t,>0

P{lim sup |x;— X(en)]| =0} =1 (8)

-0 ne<yy
Proof. Using (7) it suffices to prove that

P{lim sup |x,—X[|=0} =1 9

E—=0 ne<y

Because of (2) and (4) we can write

xp—X,=e 3 [p(x% yisr) = @(F)]

Kan
=8k§"[¢(xz, Yies1) = Xy Viex1)1 + Ry(n) (10)
where
Rn(n)=8k§"[¢(fz’yk+l)—¢(fk)] (11)
Therefore

15, = %, <sup IR +& 3 Uyesr) Ixi~ %2l
sn

k<n
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from which we can easily deduce

x5 — X3, <sup [|R(k)| exp {8 2 Ky 1)}

k<n k<n
and hence
Sup %6 — £ | < sup |Ry(n)] exp {e 5 l(y,.“)} (12)
neg an<ly ne<ty
Note that
lme 3 My, =to | 13) pldy) (13)

nES

Let R(n)=eY, ., [o(#(ke), yi 1) — §(F(ke))]. Lemma 1 implies that
lim sup [|R,(n)~—R(n)|=0

e=0 en<gyy
To prove the theorem it suffices to show that

lim sup |R(n)|=0

£—0 negy

Let0=t|<12< LA <t,=to and

r—1
S,r,=£ Z Z (@(X(1:), Y1) — @(X(1))) l{risk::<l,+,} (14)

i=1 k<n

Condition (NP1) implies the relation

lim sup ||S,[j=0

te—=0 en<gy

In addition, we have

r—1
IRE(H)—-S:IISE Z Z |¢(f2’ yk+l)"'(p(f2)_‘¢(f(ti)’ yk+l)

i=1 k<n

+ ¢(f(t:))| l{r,-<ks<t,+l}

r—1 _
e Y Y (I+yesn) [F—%(8)| Ly cke<s, b

i=1 k<n
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Using Lemma 1, formulas (13) and (14), we can show that

r—1
limsup sup IR, (n)| <21 Z (L1 =) |X(2;4 ) — (1))

g0 nesiy i=1

The right-hand side of this-inequality can be made arbitrary small. 0

Now we consider deviations of the solution of the perturbed system
from the solution of the averaged system. Let

2t = (x5 — %)/ /¢ (15)

We show that under certain natural conditions z¢ converges to a Gaussian
process. This result is based on central limit theorem (CLT) for X-valued
random variables. If we suppose that X' = H, then the CLT does not require
additional conditions, and we have the following theorem. In the following
theorem as well as other places, the weak convergence of processes means
the weak convergence of the finite dimensional distributions of the pro-
cesses involved.

Theorem 2. Let {y,} satisfy condition (NP3), X satisfy condition
(PS2), and @ satisfy the conditions:

(C) @(x,y) is bounded and there exists a positive compact operator
B: H— H such that B~ '¢(x, y) is bounded,

(L2) (0/0x) ¢(x, y) is continuous in x uniformly with respect to y and

0
f stp é;w(x, »)| p(dy) <o
We define the jump process
za(t)= Z zfxl{m:61<(n+l)s} (16)

n=1

Then z%(t) converges weakly as ¢ 0 to a process z(¢), which solves the
equation

()= [ o= GRS (s) ds+ (1) a7)

where 7(¢) is a Gaussian process with independent increments in H having
mean En(t) =0 and variance

En(e), 1= [[ (9(¥6), ), xX@(5(5), ¥), %) p(dy) Ry, s (18)



Discrete Time Semigroup Transformations with Random Perturbations 469

Proof.
(1) Let

[>=]

1
”g(t)=k§1'\7:Rg(k) 1{ka$t<(k+l)s} (19)

with R, (k) as in (11). It follows from Theorem 2 in the Appendix that #,(t)
converges weakly to the process 7(¢) described in the theorem.

(2) Note that z° satisfies the relation

2=/t ¥ (9(X% Yirr) — B(F2))

k<n

k<n

=& ¥ (@(x% Yirr) - <o(xk,yk+1))+\/. R.(n) (20)

Therefore

Izl <e X (o) llzkll+\/-lIRF(n)ll

k<n

(21)

k<n k<n

sup ilzkli<sup\/-(lR(k)ﬁexp{ > l(yk)}
k=1

Since the distribution of sup,, < 1/\/- ) |R.(n)] converges to the distribu-
tion of sup, ¢, [In( t)I[ (see the Appendix, Corollary to Theorem 2), there-
fore sup,, <, [{z || is bounded in probability as ¢ — 0.

Set

a2=\/;; Z ((p(x,*’c, yk+1)"‘¢(fia yk+l)

k<n

9 =€ & =3
™ (X% Vier XL —X5))

& a cE a = =€ &
ﬂn =¢ kgn (5; ¢(xk9 Yic+ l) __a; ¢(xk)) 2
Equation (20) may be rewritten in the form
& a == -1/2
z=e ¥ = @(%p) zi+e” PR (n) + o+ B (22)

k<n
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Using condition (L2) we can prove that sup,, ., [la; [ —0 iﬁ probability as
n—o0,e—0.
In the same way as (21) we can show that for 0 <t < ¢,,

sup  llzi—zi < sup 72 |R(k)~ R(ko)l

 Sekg<ek <ty f Seky<ek<iy

xexp{e T Uy} (23)

€R<12

Let O0<t;<---<t,.=t, and O<k <--- <k, , satisfy the
inequalities ;< ¢ek; < ¢;+ &. Using the representation

‘ a L =E a e vl &
B.=¢ Z Z <‘a‘;¢(x/},.}’k+l)"a¢(xk)> zk,l{ki<k<k,-“}

i=1 k<n

: 0 = g Sl 2t & £
te Z > (5;‘/’(?‘7(,)’/:“)—5);(?()‘&)) (-Tk—z;},)lqk,.gd,“}

i=1 k<n

inequality (23), and proof of relation (14), one can show that
SUp,.; <4, 187,11 = 0 in probability as ¢ » 0, n— co.
Let 2% be determined by equation

0 1
fi=e ¥ 5-@(¥) 2 +—7=R,(n) (24)

k<n \/;

It is easy to see that

sup {lz;,— 21l = O(sup |« |+ sup [B8;1)

n<ty en<ty <t
consequently
‘sup |z5—25] -0  in probability as £—0 (25)
sty
Let

2':(‘) =z Zf;l{m:<1<(n+1)t:}

Then it follows from (24) that
tg
#(t)= fo 7 PX(9) £(s) ds +7°(1) +0.(1) (26)

where J,(t) — 0 uniformly in ¢ < t,. The proof of the theorem is now a con-
sequence of (1), (25), and (26). O



Discrete Time Semigroup Transformations with Random Perturbations 4

2.1. Diffusion Approximation for Large Time

Here we consider the system of the previous section but with ¢ =0, so
(%() = x,). We introduce the stochastic jump process

()= Y x;litnci<itns 1)) 27

n=1

We will show that %%(¢) converges weakly to a diffusion process in X under
some natural conditions. This result is based on a martingale characteriza-
tion of diffusion and its application to limit theorems for weak convergence
to diffusion processes (Strook er al, 1979). Since such methods were
developed for diffusions in R¢, we restrict our attention to iterations in R,

We need the following statement (see Skorokhod, 1989, p. 78,
Theorem 1).

Proposition. Let a differential operator L, be of the form
L, f(x)=(a(t, x), f'(x)) +1/2 Tr B(, x) f"(x)

f(x) is a twice differentiable function R‘— R, a(t, x): R, x RY— R",
B(t,x): R, x R*— L (R"), where L _(R") is the space of nonnegative sym-
metric operators RY — R”. Suppose that the stochastic differential equation

dn(t) =a(t, n(1)) dt + B'(t, n(t)) dw(t) (28)

where w(t) is the Wiener process in R and B'” is the nonnegative square
root of B, has a weakly unique solution.

Let D be a set of bounded functions f: R — R for which derivatives f’
and f" exist and are continuous bounded functions, and D is dense in the
space Co(RY) of all continuous bounded functions which tend to zero at
infinity.

If a set {£(t), €>0} of R“valued stochastic processes satisfy the
conditions

(1) for any feD and continuous bounded function ¢(x,,.., x,):
(RY)"—=R

i EQ(E,(11) El a1, E41)

<[ newrrm-eo-[ " Liseom o] o

uniformly for 0<t; < --- <t, _ <t<t+h<T for any T>0,
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(2) &(0)— x in probability as ¢ =0, then & (t) conve}'ges weakly to
the solution n(t) of Egs. (28) for which n(0) = x.

Theorem 3. Let conditions (NP3) and (PS3) be fulfilled and suppose
@ satisfies the condition (L3): ¢ is bounded, its derivatives (8/0x) ¢(x, y),
(8°%/0x?) @(x, y) are bounded and uniformly continuous in x uniformly in y,

and { ¢(x, y) p(dy) =0.
Then the process X(t) converges weakly to a diffusion process %(t)
having generator L that is defined for any fe C*(R?) by the formula

L) = [[ L") 9l ), 0, )
+(@'(x, ¥) olx, p), S(0)] p(dy) RO, dy')

~ [(@'(x ») 0%, ), 1)) pldy) (26)

and %(0) = x,.

Proof. Denote by % the og-algebra generated by {y,... yx}. To
prove the theorem it suffices to show that for a class of functions dense in
C?*RY), we have -

lim £ ’E<f(f“’(t+h))—f(f”(t))— [ s ds/ff) 0 ()

here F¢=% for ek <t<e*(k+1).
We need the following auxiliary result.

Lemma 2. Let g(x, y): R‘x Y= R be a bounded function that is
continuous in x and measurable in y for which g'(x, y) and gi(x, y) are
bounded and uniformly continuous in x uniformly with respect to y. Then if
en<t,

lim EG Z”: [g(x‘,",y“,)—-fg(x';" y')P(dy')]>=0 (30)

n—aw,e—0 kel

Proof. Set (x, y)=g(x, )~ g(x, ') p(dy"). Then

1 il ~ 1 - ~ 7 ]
E- Z &(x5, Yi+1) == Z fg(xo,)’)RkH(J’o,d}’)
R Ly
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1t follows from condition (NP3) that for all »,
Y [ #x0¥) Resr(vor )
k= l

is bounded, and as a result,

. 1o ..
lim E= 3 &(x% yir)=0

n—+o,e~—0 k=1

We have

Z L&(x%, yisr) —&(x5, Yi+1)]
k=1

n k-1
=Y ¥ L85 Yer ) =8 Yes1)]

k=1 i=0

= Z (gfv(x?! yk+l)’ ¢(X?, yk+|))

0§i<k<n
+368 Y (X Yer ) @(x5, yis ) (X5, yin (140, 4)
Ogi<k<n

where 6, —0 uniformly as n— o0, =0, e’n<T, because gl(x, y) is
uniformly continuous in x. We have

8 ~t & &
E; Z (g.\'(x," yk+l)’ fﬂ(x,-s yi+k))

O0gi<k<n

= T [ 8 Y R (e ) = 0le)
Oi<k=n
and
(82/71) Z E(gix(x}ia yk+ I) (p(x;:’ yi+l)’ ?’(xf, yi+l)) = 0(82)
O0gi<ksn

Therefore,

(52/'1) Z E(80(x5, Yier ) @(X5, Yig1)s (X5, ¥:i41)) O

O0gi<k<sn

= O(ne’E max 0) O
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We now return to the proof of the theorem. Note that the sequence
{xt, .} is a homogeneous Markov sequence, so it suffices to prove (29)
for t=0. Let f be in C3(R“). We have

n—1 n
SO = fxg)= 3 (flxg, )~ fx))=¢ ¥ (f'(x2), ¢(x5s Vier1))
k=0 k=0

FER) S (6D 9y View ) (X Fer ) + O(nE?)
- (31)
Set
(f'(x), o(x, y)) =g(x, y)
Then

n—1 n—1
eE Z &8(x%s Yiy1)=¢€E Z 8(x5, Yiw1)

k=0 k=0
n—1 k-1

+eE Y Y (&(Xir1s Yar1) —8(X5 Yis1))

k=1 j=0

n—1

=¢E Y g(x5 Yis1)

k=0

+&E ) (8MX5, Y1) 9(XE, Yiv1)) + O(ne?)
O0gick<n
t—2

n n—k
= Y E Y | (2lx5, ¥) 0(x5 pia ) RiDig 12 ')

i=0 I=1

+ O(g +ne?)
Let
o0
G(x, y)= Y, (&% '), p(x, y)) Ry, dy')
=1
It is clear that subject to ne*> < T, we have
n—2 /n—k .
&E Z ( Z f(g;(xf, VYolxi, vie D R YVisi, &)= G(x5, yis l))
i=0Q M=1

tends to zero as n— o, € —0.
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Thus subject to the constraint that ne? < T, we have

n—2
E(f(xf,)--f(st)—ﬁ2 2 [3(5G0) @(xhs Yierr)s 0(X%, Yier )

i=0
L6, yk+,>])

tends to zero as n— o0, £— 0. :
The proof of the theorem now follows from Lemma 2. O

Corollary. Under the conditions of Theorem 3, for all 6 >0

lim P{ sup |x¢—x§|>d}=0 if z,-0ase—0

e—0  n<h,

3. LINEAR DIFFERENCE EQUATIONS

All results of Section 1 are valid for linear equations of the form
X1 =Xy =EA(Yy 1) X, (32)

where A(y) is a measurable function: ¥ — L(X), where L(X) is the space
of bounded linear operators: X— X [this means that A(y)x is a
measurable function: Y — X for each x € X]. Here we consider some results
for (32) that cannot be obtained from Theorems 1-3. First, in Theorem 4
we determine the behavior of xZ as n— co for all ¢ sufficiently small. The
special form of this equation enables us in Theorem 5 to extend our earlier
results to cases where 4 = A, is unbounded as ¢ — 0.

3.1. Stability

We first derive some results about the stability of solutions to linear
problems.

Theorem 4. Suppose that conditions (NP3) and (PS2) are satisfied.
Moreover, suppose that

(1) sup,.y§1A(Y' N2 P\(y, dy')<c for some constant c,

(2) the solution to linear equation

a5t -
T—Ax(t) (33)

865/9/3-10
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where Ax={A(y)xp(dy) is such that for some a>0 and o>0,

1%(2)| S ae™* |%(0)|. Then there exists e, >0 for which
P{lim [[x¢| =0} =1 for e<e,
n—=oc
Proof. Let %2 =(I+¢ed)" x,, z5=x"—%%. Then
n—1
zi=e Y (I+ed)*  A(yu_is1) X,
k=0
where 4(y)=A(y)— A. Using the representation
n~—1
xt=xo+8 ), AYir)) X
i=0

we can rewrite (34) in the form

n—1
t=¢g Z I+ 8A)k Z(}’n—k+l) Xo
k=0

n—=1 n—1
+¢&? Z Z (I+8/T)”—IZ(}'1+I)A(J’:'+I)x?

i=0 I=i+1

— o€ 2.,,8
=¢eu, +ew,

(34)

(35)

where u;, is the first sum and w?, is the second double sum of the expression

for z&.
Let us evaluate E(u, «5) and E(w%, w). We have

n—1 n—1

E(up, up)= Y, ¥ E((I+ed) Ayu_is1)) Xo, (I +eA) A(yn_111) Xo)

k=0 [=0

n—1
=, M+ed||* f 1A Py_ g4 r(Pos &') %o |12

k=0

+2 z EJ'((I+&Z)”""+IZ(}'/:) Xo,

lg€k<ign+1

(I+ed)"~'*  A(y'") x0) Pr_i(i> ')

< ey P2 5 [E((redy =t A xo

il€kgn+1
n+i-—k

l=1

5 (I+sZ)"-k-'+'Z(y')xo)R,(yk,dy')
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Note that for m> 1

[$ a+edy=' 20" xRl5, )
=1

m m—1
=f,f47(y’)x0 Y R(y,dy)+e ), f(l+a§)”‘"“
I=1

=1
e I
) % 5 Ry )
k=1
Since
|[30% % Rina)]
=1

=[] A(»") xo mil Ry, dy') P(¥', dy")
(=1

hence condition (1) and (NP3) imply that

|30 2003, )| <1 1

for all m> 1, where ¢, is a constant which depends on c.
This implies the inequalities

|

[ £ edy="20) xR )
=1
<(er+eme™ V4 | ¢,) x|
and

E(uz ut) < {neun "’7"c+(2nzse”‘ 14 "Z" ¢, + ¢, ene” uzu)

x sup E|A(y)I?} %ol

O0<k<n
Thus for en< T,

E(, u) <nCy|x,)/% where Cris a constant
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In the same way we can show that

n—1
Ew:,wi)=2 Y E( Y (+edy Ay

Ogi<jgn—1 Imi+1

n-—1
Ay Y (I+aA“)"-'"2(ym+l)A(y,-+,)x;)

me=j+1

n—1 n~—1
Ly E( S T+edy =" Alyr,y)
i=0 l=i41
n—1
A% Y <1+eA)"-'A(y,+,)A(y,-+1)x;)
Imj+1
Since

2
<nCrcE Ix;|?

n-1

Z (I+ed)" "  A(y1p1) APis) X5

lx=i+]

E

SO

n—1
Ewi, w)<nCrc 3, E|X{1?+2 ¥ nCre JE|XI*Elix;|?

i=0 Ogi<j<n—1
< (n*cCr+2n*cCy) max E ||x¢)?
isn
We have
ExiN2=E |x5_ |2+ 2eE(x; _y, A(y,) Xisy) +E°E | A(y,) %5, 1P

<E ¥, uZ<1 +2¢ [ 140 P(p,1, )

+¢2 j 14" W Py dy'))

Therefore
E |x; | < e™2 [xo ] (36)
where ¢, >0 is a constant. Thus
E|we|?<0(n®) |xol> for en<T
E |1z, |2 <2°E |luj |+ 26°E Iwi | sup E 232 <ebr xoll” (37)

ne<T

where b is a constant.
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Let g<1 and ¢, be chosen such that
1%(to)I* < g xo 112
Since
E|x:—x(t,)|?—=0 as e—~0,ne—1t,
there exists ¢, such that

Elxt|?<qlx)|> if e<e and ne<to<(n+1)e (38)

Note that
E x5, 1> <q" IIxo)?

and

E|xs,. 1P<q*E |x2)?

E 2
£ =5 T El,, peEmE bl
Jj=0 k=0 r=0 —9q
Thus
P{Z ||xj||2<oo}=l O
=0

Remark. Let X=R“ Then the assertion of Theorem 4 is true with
(NP2) and (2) and replacing (1) with

(1) sup [ ()| P\(y, &) < 0

yeY

To prove this we note that

sup sup E(|x;|/yo=y) < Crlxl (39)

yeY en<T
and that for any 6 >0, #,>0, xoe R sup, .y P,{|x% —%(t,)| >6} = 0 as
en—to. P, is the conditional probability given that y,=y. Let {e,,.., e,}

be an orthonormal basis in R? and let x(x,) be the solution of (32) with
x§(xo) = xo. Then

d
x5(x0) = Z (x0, €x) x7(ex)

i=1



480 Hoppensteadt, Salehi, and Skorokhod

We denote by #(x,, ¢) the solution of Eq. (33) for which X(xq9, 0) = x,.
Then for any ¢ >0 and ¢,

lim sup P{ sup |x(x,)—X(xo, to)| >J} =0 (40)

ne—ty yeY Ixgl =1
It follows from (39) and (40) that for any 0<p <1
lim sup E(}x;(xo) — ¥(xo, 20)|?/yo=y) =0

en—ty yeY
and there exist t,e R, , ¢ <1, and &, >0 for which

sup E(|x;17/yo=y) <q |x,|” (41)

Y
if e<eg, and ne <ty <(n+1) e Inequality (41) implies the relation
P{Z |xj|<oo}=l
j=0

Now we consider a generalization of Eq. (32) in a Hilbert space H:
Consider

xft+l_x::l=£As(yn+l)x::n xg:x() (42)

where 4,(y) is a measurable function: ¥ — L(H) for each £ > 0. We assume
that condition (NP2) holds for the sequence {y,}. The first condition on

A(y)is
(Al) (a) [(ALY)xx) Py dy)<c x|
(b) [14) x> Py, dy') <ere™ fix]ls

for all ye Y, xe H; here ¢, is some constant. _
Set A.x={ A,(y') xp(dy’). Then |4, > <c,e~" and (4,x, x) <c, x|
Denote by &, the o-algebra generated by { yo,..., ¥,,}-

Lemma 3. Under condition (Al) we have
E(I1x51%/yo=y) < llx5 |1 e*”
7+ e,y < e
Proof. The first inequality is a consequence of the relation
E(llx 1%/ F 1) = x5 12+ 26E((x7, s Ao ¥a) X5 - )/ Fz1)
+ & E(|A(y(n) x;,_ 1%/ F, 1) S (1 +3ecy) x5, _,|* O
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The second condition on A4 is
(A2) there exists an invertible compact operator Re L(H) for which
(©) §140Y) Rx||? Py(y, dy') <, 1xl1%,
(d) JIRT'ALY)—ALY) R xI? Py, dY') < e, lx),
() JIRA,(y)—=ALY) R™*) x| Py, dy') < ez x|,

for all ye Y, xe X; ¢, is a constant.
Lemma 4. Let conditions (Al) and (A2) be satisfied. Then there
exists ¢,> 0 for which
(1) E(JR™'%%/F, 1) <™ | R %)%,
(I) E(|R™x:|1%/%%) < e |[R™?x, |12,
(D) E(lix;— x5 1|1%/%) < csene™™ |R™'xg |12,
(IV) E(|R™'x;~R™'x§|1*/%5) S csen e | R™2x5 |13,
(V) (I+ed,)" R—R| <csenes™
Proof.
(I) We have
R—lez=R—‘xft—l+8As(yn) R*le:—l +£Bt:(yn) xi—l
where B(y)=R~'4,(y)—A4,(y) R~". This relation implies the inequality
E(IR™'%5 1%/ Z ) S(L+c38) IR'x5 112
(II) This can be proved in the same way. We omit its proof here.
(III) We have
n—1

xt—xp=¢ Y A{Yis1) RR7x;
k=0

n—1
E(lle,—stllz/%)SE(szn X E(IIAe(ka)RR’lxillz/-g'Z)

k=0

We use (c) and I to complete the proof of IIL
(IV) This can be proved in the same way. We omit its proof here.
(V) |I+ed,)"R—Rli<e Xzt II+ed)*| |4.R]

note that |4, R| < co. |
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The last auxiliary result we need is the following.
Lemma 5. Let B(-) be a measurable function: Y— L(H) for which

LIB( ) p(dy) <o, and let R be a compact operator from L(H). Let
B={ B(y) p(dy). Then

p(tim (,,ZB(yk) B)RN 0)-1

Proof. It is easy to see that for all x,

P(lim ! Y. B(y.) x—Bx =0)=1
n—s ¢ k=1
Therefore
P(lim (% Y B(y,,)—-F)Rlll=O)=l
n-—s o0 k=1

if R, is finite dimensional, i.e., if R (H) is a finite-dimensional subspace. We
note that R can be represented in the form

R=R{+R}
where R? is a finite-dimensional operator and |R3] <. O
The main result concerning the solution of Eq. (42) is stated in the
following theorem.
Theorem 5. Suppose conditions (NP2), (PS2), (A1), and (A2) are
satisfied. In addition, suppose the following condition is satisfied.

(A3) There exists a measurable function B(y): Y — L(H) and a con-
stant ¢, such that

(f) JIB) pldy) <o,
(8) NJ(4Ly') R=B(y") xP(y, dy)| <ca %1,

forallxeH, yeY.
Then for any t,>0 and § >0, we have

lim sup P{||x%—%| >3} =0 (43)

e~0 en<yy

where 32 =(I+¢e4,)" x,.
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Proof. Let zi=x:—5%°, A,(y)=A(y)—4,, then

n—1
Z:=8 Z (I+szs)kAz(yn—k+l)xfl—-k (44)

k=0

Let 0=1¢,<t,< - <t,,,=1q, &(k;—1)<t;< ek, We can rewrite (44) in
the form

zfx=8 Z (I+8‘:fe)ki Z Ze(yn—k+l)x:—k,-+l+l+ufl+vfx (45)

i=1 li$3k<(’,‘+| 4 zn)
where (a A b)=min[a, b] and

r

w=¢ Y (I+ed)k y [T+ed) =5 ~T1 A py—is1) Xi_ (46)

i1 y<ek <(4;4) & en)
r
vfl::s Z (I+€Ae)ki Z Atz(yn—k+l)(xfx—k-xfl- i+,+l) (47)
im] ;Sek< (4, A en)

We consider x, = R?w,, w, € H. Using representations
Zg(yn~k+‘1)xf._k,+l+1=§(yn—k+l)R(R—Zx:‘km*“‘)
F(AVnokat) R=BYptcx RN 1)
[here B={ B(y) p(dy), B(y)=B(y)—~B],
{U+ed)~ ~114(y) x
=[(I+edy* 5 —I]R(R™'A(»)—-4(y) R ") x
+[(T+ed) % —T1RA(y) R(R™*x)

Zx(yn—k+l)(xft—k—xi—ki+l+ 0
=Zs(yn-—k+l) R(R—le,—k'"R-le,_kHl_,.])

and Lemmas 3-5, we can prove the relations

lim sup P{|lz5—uf—v5|>d} =0
=0 ey

lim sup E |u || <cs IR™2X0]l X (t41— 1)’

e~0 en<gy jus 1

lim sup E |05 <es IR 260l X (841 —1)?

e~0 en<y i=1

which imply (43). O
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The following example illustrates the theorem.

Example. Let H=L,[0, n], and for fe L,[0,27] we let

A.,(y)f=a(y)2—1—j8-[7(a+ﬁ>—7(a—ﬁ)]

where f(«) is the 2z-periodic extension of f, and a: Y- R. Suppose that
[ 1a(»)l p(dy) < o and sup, [ a*(y") Py(y, dy') < co.
Then A,(y) satisfies condition (A1) since

[ (40 S0 flay da=o0
and
n 2 7
[ () £ <2 [* f(a) d
0 &€ o
We consider an operator R of the form
R@)=[ R(f) Jx—B) dp

where R(£): [0, 2z] — R is an integrable function.

This operator is invertible if {3 ¢”#R(B) df #0 for all ne Z; it is com-
pact if 2" R(B) df < oo; for all k we have R~*4,(y) =4, (y) R™* if R is
invertible; and if R'(f) e L,[0, 2], then

(4,y) R=a(3) R) /(@)
. —R(B— .
—an [ % +J52) ﬁ‘ﬂ ‘/E)—ﬁ’(ﬂ)] Fa—p) dp

where Rf(«) = {3* R'(8) fla— ) dp. _ _
Therefore the condition lim,_, {2 [((R(8+ \/E) —-R(p—- \/;:) )/
2./e)— R(B)1? dB =0 implies conditions (A2) and (A3).

4. RANDOMLY PERTURBED ITERATIONS

We first consider linear iterations in a Hilbert space H. Let {x%} be
determined by the iterations

Xpr1=Bx, +eA(yas1) X, XG=X
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where Be L(H), {y,} satisfies one of the conditions (NP'I ), (NP2), or
(NP3), and A(y) is a measurable mapping of Y into L(H) for which (we
assume) the operator

Ax = f A(y) xp(dy)

exists with 4 € L(H). We define
X =(B+ed)"* ' x,

It follows from Theorem 1 that for each fixed ¢, sup,, ., |x5 — X% || - 0 with
probability 1 as ¢~ 0. Our goal is to investigate the difference x% — %% for
larger values of n [ie, for n larger than O(1/e)].

We have the following resulit.

Theorem 6. Suppose (NP3), (PS2) and the following two conditions
are satisfied:

(1) W(B+ed)|< c e,
(2) V1A Py, dy')<ct, where ¢, and a are positive constants.
Then lim,_ o lim sup, _, o sup, < 42 E Ix%— %5 1> =0.

Proof. We introduce the following notations:
T.=B+ed, A(y)=A(y)-4, A=A4(y)
x2=Y &S/(nk)x,, where S(n,0)=T"  S(nn)=4,---4,

k=0
and for k<n,

Se(n + 15 k+ 1) =‘Zn+lSs(n’ k) + TsSu(na k + 1)
We then note that

fi = Sa(n’ 0) xO

E|xi—x|>= Y &*E(S,n, k) xo, Sen, 1) x,) (48)
k=1
It is easy to check that

Sn, k)= Z T:—ikzikTik°ik—l_lz

Igi<h<---<ign

T (49)

Bo1”
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Let R¥(y,dy’)=var Ri(y,dy'), and
R*y,dy')= Y, R¥y,dy')
k=1

It follows from condition (NP3) that sup, R*(y, Y)=R* < c0.
Let

A(y)=[A(y) (3, &)

Then
IA(y)l <2¢,

We represent  E(S.(n, k) x,, S,(n, k) xo)=un,k) in the form
u(n, k) =3X5_ouln, k, j), where

unk, )= E(T: %4, -4, Th='xo, T2 44, .- 4, Th™'x5) (50)

and the sum is taken over the partitions {i,,.., iy}, {Ji, ji} for which
card{ij,.., iy} O {J1ss Ji} =J.

Let A,ud,04;={1,2,.,2k—j}, where card A, =card A,=k—j,
card 4, =.

Let {i\,, it} U {Jises Ji} = {M1ss hoi_;} and denote by u,n,k, j,
Ay, Ay, A3) the sum of those terms of the right-hand side of (50) for which
hie{i,.. i} ified, uA; and h;€{j\,. ji} if i€ A, 4;. Then

ue(na kr j: Al’ 112, AB)

= : Z J'"'J.¢(y,l’-~-; y’2k—jahl,---’h2k—j9AlsA2:A3)

LShy< e <hy_ &0
Py (y0, &) Phy_n (V1 dY2) - "th,r_j—hu_j__l(y'Zk—j—l’ Yy _j)
where
(¥1ser Yok —js Bysees Bope jy A 15 A3, 43)
=(T; %AV, A(Ye,) T xo, Ti 4 A(yy) - A(¥p) T x0)
and

{al,--., ak} (W) {ﬁl,..., ﬂk} = {I,..., Zk“j}
@< e <o, fi < e <P, a,=f, if i,=j,
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Let

BPrses Yok )= [ [ 6 Y ) 5, i3 )

P=1
Then § satisfies the conditions

(I _‘.é‘(yls"-’ Yk — jsor) pldy)=01ified,u4,,
(D) 110 P jre) S (201)* 7 NI x0 12,

(III) a(n k ]sAlsAZ’ 3) zs [&(yla ] y2k—_/s hl: s th—p Ala
Ay A3) TT2ET (R —n,_ (Viz1s i) + p(dy))], where the sum is
taken over all 0<h <h,< -+ <hy_;<n—1.

Using I-1IT we can show that

k
lun, k, j, 4,, 45, 4 3)I<(201)2""(R*)2"" "xo”2

SO

(2k— )

k
(k= ')!(k—j)!j'( VR bl

lus(n, k, NI <
|lu(n, k)| <Q" leoll2
where Q>0 is a constant. Therefore

Elx;—%1°< X e *E(S(n, k) xo, Si(n, 1) xo)|

k,I=1
© (sQl/z \/;;)k+l )
<k=§=1 =y ixol

(}: (Qje_m)ky 1o 12

if n<@/e? It is easy to see that the right-hand side of the last inequality
tends to zero as §— 0. O

Remarks.
(I) It follows from the proof of the theorem that

Elx—%|2=0(@en?) for O(en?)=0(1)
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(II) In the same way, we can prove that
E|x;— %] <(e2"—1) x| (51)

where Q, is a constant.

(III) Suppose that the following condition is satisfied instead of (1)
in Theorem 6:

(B +ed)"} <1~y(e’n), where a y: R, — R, is a function for which
lim (4(6)/6) = 0 (1)
Then there exists a positive number ¢, and constants ¢, >0 and ;>0
for which
E||x;|* < coe ™" (52)

for e<ey, neZ,.
To prove this we note that I and II imply

E x| = %317 + E ||x;, — %, |* + 2(%;, Ex, — %)

2
<=yt + B ol < (1= (K52 R) o) 2

where the constant R is determined by (I) and (51). ;
Let 4 satisfy relation (Y(5)/6) — R>2 for 6 < 4; then E [|xt |2 < e~ %"
for e2n< 4. If e < 4, then this inequality is true for all n.

4.1. Iterations of Nonlinear Function
Let f: H— H, ¢: Hx Y— H be given, and let {y,} satisfy condition
(NP2). Let x: be determined by
Xy 1 =f(x}) tep(x;, yoi1),  Xg=xo (53)

We have the following result.

Theorem 7. Suppose that conditions (NP2) and ( PS2) are satisfied as
well as
(1) f(x) and f'(x) are continuous, || f'(x)l|<g<1, and there is a
unique fixed point for f, say f(X) =%,
(2) @(x,y), ¢'{x, y) are bounded and continuous in x,
(3) tim,,_ Py, By=p(B) for all Be 3.



Discrete Time Semigroup Transformations with Random Perturbations 439

Then as ¢ — 0 and N - oo, the random sequence
-1 ~
uN n= (x N+n —X )
(for nz —N) converges weakly to a stationary random sequence

{8,,neZ}, where

Y A" k(x, i) (54)

k= —c0

Here A= f'(%), and {y{,keZ} is a stationary Markov chain in Y whose
nth step transition probability is P,(y, B) and whose stationary distribution

is p(dy).
Proof. Let z5=x%—x. Then
z, = fZ+20) = f(X) +ep(X+ 23, Yus), Zp=Xo—X
Set |
2 =42, +ep(X+ 2, Yari), 2y=xp—X
It is easy to see that
g Y A" K425, ) (55)
k=1
Using the relation
Zn— L = Az = 2) + e[ B(X+ 20, Yoo ) — @K+ 25, y, )]+ 8(27)
where
8(z)=f(X+2) - f(X) — 4z

in conjunction with Conditions (1) and (2), we can show that for ¢ satisfy-
ing the inequality

sup (/' () +elle'(x, M <q, <1
x, ¥y
we have
251 =250l <qu llzh =251 + | (2

lzne1 =25l < ZQ'{ ezl
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Since
122 | = O(e)
we have
&
lg (2l =o(e) and  [z5—£2] =2£_>
Set
& 1 £
=3 % (56)

then |juj — 4 || =o(e)/e.

We introduce the Markov chain {y}",n> —N}, y*¥=y, . It
follows from Condition (3) that the distributions of { y*¥} converge to the
distributions of { y*,neZ} as N — co. Using the representation

o ek =, 0&)
W= Z A k¢(x+—8—,y,1"”)

k= —~N

which follows from (55) and (56), we obtain (54). O

Remarks.

(I) The assertions of Theorem 7 are valid if #(x, ¢, y)=f(x)+
ep(x, ), for any sufficiently small ¢ and y € Y, maps a closed subset F< H
into itself.

(I1) Suppose that there is a finite number of closed subsets F,< H,
i=1,.., k which are invariant with respect to the mapping » for any suf-
ficiently small ¢ and y € ¥. Also suppose that the conditions of the theorem
are valid for each F, [there exists a unique fix point x‘€ F; for the map-
ping f(x)]. Denote by G,={xeH:liminf,_, , [ /"(x)— %] =0}, where
SR (x) = f(f"(x)), fx)=f(x). Finally, suppose that the Markov
chain {x%, y,} in Hx Y is ergodic for all ¢ <1 and its ergodic distribution
m®(dx, dy) has the property that

m® ((H—IL:)I G,) X Y) =0

for all small ¢>0. Then
P{ lim inf|x;—%|=0} =1
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5. SOME APPLICATIONS

Although there are a great many applications for the results derived
above, including problems in numerical analysis and simulation, we present
here three typical applications: one from epidemics, one from genetics, and
one from demographics.

5.1. An Epidemic Model

A population in which an infection is active can be divided (roughly)
into three classes: those susceptible to, those infectious with, and those
removed from the disease process. We take the simplest case, depicted by
the graph

S—oI-

where S denotes the susceptible population and I the infective population.
Passage from S to I depends on effective contact between a susceptible
and an infective. The numbers in these classes are counted at fixed
sampling times, and the results are denoted by {S,, I,}. We suppose that
these 'satisfy the Kermack—-McKendrick model (see Hoppensteadt, 1975,
1982):

S"+| =S"e——“l"

In+l=(1 _e-al,,) Sn+AIn

(57)

where « measures the infectiousness of the pathogen and A gives the
proportion of infectives surviving as infectives over one sampling period.
We see immediately that S, | S, and I, —> 0 as n — co. But the interest is
in whether an epidemic ensues from an initial infective, which we take to
mean that I, increases (significantly) before eventually vanishing. If the
sampling times are short, then «~0 and A~ 1. So we write a=ex and
A=1—¢gf. We then denote the solution of the above iteration having initial
values Sy, I, by {S¢,1%}. Lemma 1 shows that for any ¢,

n**n

lim sup (IS, —S(en)| + |1}, — I(en)]) =0 (58)

&0 en<y,
where S(¢) and I(¢) are the solutions of the system of differential equations

S=—aS], S(0)=3S,

X (59)
[=aSI-BI, I0)=1,

865/9/3-11
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We define a critical parameter by S = f/a. Integrating this system of equa-
tions gives

1=S0+IO—S+§log§— (60)
0

If Sy<S, then I(#) |0 and S(¢)|Sm as t— oo, where S, satisfies the
equation

S .
Smin=S0+IO+§log% (61)
0

On the other hand, if §>S,, then I increases for S<S<S,, and I
decreases for S.;, < S <S. The maximum of I(f) = I,,,, is determined from
the equation

S
Imax=S0+IO—§+Slog:g—
[}

Therefore, the dimensionless parameter S/, indicates the vulnerability of the
susceptible population to supporting an epidemic. This is referred to as the
Kermack—McKendrick threshold theorem (see Hoppensteadt, 1975, 1982).

Now consider the perturbed model where a and f§ are perturbed by
random processes. Let S% and I be determined by the perturbed
Kermack-McKendrick model

Sh =8, exp{—ex(y,.1) I}

I =(—exp{ —e(y, . ) I;}) S, + (1 =By, DT,
§5=2=S0
Iy=1,

(62)

Here o and § are nonnegative, bounded measurable functions defined on ¥,
and {y,} is a Markov process that satisfies condition (NP2).

Let d={,a(y) p(dy) and B={,B(») p(dy), and as before, S(r) and
I(t) are determined from the averaged differential equations. Then we have
the following result which shows that small random perturbations do not
significantly alter the threshold theorem for the deterministic case.

Theorem 8. For any é >0,

(1) lim,_, P{sup,(|S;— S(en)| + |} — Hen)|) >} =0
(2) SetS:, =lm,_ 8¢ I =sup,Il:, then

min

lin})P{Ianin—Snﬁnl+l1inax—'lmax| >5} =0
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Proof. It is evident that (1) implies (2). To prove (1) we note that by
Theorem 1 we have

lim P{ sup |S¢— S(en)| + |15 —I(en)|)>d} =0

=0 ne<ty

for any 6 >0 and ¢,.
It follows from (62) that

ft ST+ eV, 41) Se—B(ne D) TL ST exp{e(a( Vi) Sh=B(Yas )}
and therefore
n-—-1
ons<Thexp e T (S5,27m )= Bm )
k=0
<I: exp{ne(Se,a—f+07)}

where

so+|(1/N) 5 ﬁ(ym+k)—ﬂ).

k=0

07 = sup (

Nzn

N-1
(1/N) 3 (Pmss) —a
k=0

It follows from (NP2) that 67— 0 with probability 1 as n— o and
@y, ,<07. Suppose that S%a—pf+0,0~" < —yp, where y>0 and n,>m,
then

ey ILgIE

n=ny

l & £y
l—e“”s.)jl'"e y

Note that for n>n,,

Si=Shem{-e T a1z}

nySk<n
and
o0 S Ia
: 0
85— 85,1885, B alpea) <=2
fe=my

For n2n,
I < I exp{e(n—m)S;,a— B +0, )} <Ie s"=m™7

if Sta—f+0, < —7.
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Therefore
sup (|15 —I(en)| +1S — S(en)|)
ey
—e(ng —m) SOIfn
SKt)+15,e 5n—m ’+—;——e“’+S(to)—Smin (63)

ifS,a—B+6,_m<—7.
Set y = 1(f —aSp), and let ¢, satisfy condition
S(t)=Smn<bi,  H1)<dy,  S<L
4o
where t,>t,, (m— 1):s<t, <(me), and (ny—1) ety <nge.
It follows from the conditions

(0n-ml<% and  sup (14— Kem)|+1S5—S(em)) <9,

2 engY

that

&y
sup (JI¢—I(en)| + 1S — S(en)}) <, (4+2S0%) |

en;!o

5.2. Slow Genetic Selection

Let p, 0, and 7 be positive constants and let the sequence {g,} be
determined by Mendelian genetics for a single locus genetic trait having
two allelic forms, say 4 and B, in a synchronized population. Namely, let
g, denote the proportion of the gene pool that is of type 4 in the nth
generation. Then (see Hoppensteadt (1982)).

gn+l=f(gns P> 0, ‘E), &o is giVen (64)

where

pgi+og,(l—g,)
pgl+20g,(1—g,)+t(1—g,)?

The parameters p, o, and 1 are the relative fitnesses of the genotypes 44,
AB, and BB, respectively.

When selection is slow relative to reproduction, then these parameters
are near 1, so in this case we write

f(&nsps0,7)=

p=l+ea, o=14+e8, 1=1+¢y
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It is convenient to write the iteration in the form

eQXgy) . .
N8 e = 65
1+8P(gz)gn gO gO ( )

where P(x)=ax?+28x(1 —x)+p(1—x)* and Q(x)=x(1—x)(ax+b),
where a=a+y—2f and b=a—3.
Let g(¢) denote the solution of the differential equation

g=0(g)
8(0) =g,

We expect the solution of the iteration to be approximated by the solution
of this equation in some sense and we write

'3 & __
Ene1—8n=

(66)

g, ~glen)
There are four cases of interest regarding this system.
(1) A dominant: If g,>0, =20, a+5>0, and |a| +|b| >0, then

g(oo)=1.
(2). B'dominant: If go<1, $<0, a+5<0, and |a| +|b| >0, then
- &(0)=0.

(3) Polymorphism: If 1 >g,>0, >0, a+ b <0, then g(o0)= —b/ax.
(4) Disruptive selection:
. o lf ~bja>gy>0,56>0,a+b<0, then g(c0)=0.
o If —bja<g,<1,b<0, a+b>0, then g(co)=1.
We next consider this model perturbed by random noise and show

that, under certain conditions, these four cases carry over with convergence
meaning in probability. The perturbed system has the form

8ne1=J(8ns Prs 0y T3)
go=25o

(67)

where

pr=1+ex(y,,1)
O'i= 1 +8ﬂ(yn+l)
To=1+e/(Yn4+1)

(*) We suppose that the functions «, §, and 7 are bounded measurable
functions mapping Y — R and that the Markov process {y,} satisfies con-
dition (NP2).
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We denote the averages of the data by

a={a(y) play)
B= B(») pldy)

7= [ %y) pldy)

and

a+7—2

N
]
=2

S

K
=2

Theorem 9. Under the conditions (*) listed above, we have the follow-
ing results:
(1) A dominant: If g,>0, 520, d+b>0, and |a| +|b] >0, then

lim P{ lim g:=1} =1
g—0 n-s o
(2) B dominant: If g,<1, b<0, a+b<0, and |a} + |b| >0, then
lim P{ lim g;=0} =1
2—0 n—s o
(3) Polymorphism: If 1 >g,>0, b>0, G+b<0, then
lim P{ lim g¢= —b/a} =1

g0

(4) Disruptive selection:
(a) If —bj/a>g,>0,5>0, a+b<0, then

lim P{ lim g&¢=0} =1
=0 >
(b) If —bla<gy<1,b<0,a+b>0, then
' lin%P{ lim géi=1} =1
Theorem 9 shows that if selection is slow relative to reproduction, then

the genetic structure of the population proceeds in strict analogy with
the deterministic case. In particular, in cases (1), (2), and (4) fixation is

probable.
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Proof. Consider (2). It follows from Theorem 1 that

lim P{ sup |g°—g(en)| >0} =0

-0 en<ily

for any 6 >0 and ¢,>0.

Suppose that g(t,) <J and gf,o's 20, where eng<ty<é(ny+1)and é is
small enough. Let b(y)=a(y) —y(y). Then there exists a constant ¢, >0
for which

Snr1 SE1+eb(y,.1) +ec, g)) (68)
and there exists ¢, >0 for which
8ns1—8nSC2E
Let 85 ,,=maXo<,cm &k Then £ <gh+mcye It follows from (68)

that

gfn-l-m ng, exp {B Z b(yn+k) +8mcl g"fxm}
k=1

<gtexp{em(b+0, ,+c & )}

where 0<8, ,,,,1<0, m> 0nm—0 as m— co. Suppose that 8, ., <|b|/4
and

c,(25+amoc2)<% (69)
Then
b
g‘f,0+,,,$.2(5 exp {sm 5} for m>m,
therefore

P{lim g°=0}>1—P {9”0,.m0>'—3—'}

where m, satisfies (69). If 2¢,6 = |b|/8, and

B, L2
10c, °™8e,
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then my— o as ¢— 0 and

, Ia|
lim P{f’no.mo>'4‘ =0

=0

The proof of the other points are similar. O

5.3. Demographics

The age distribution of a population can be determined by census, and
then the numbers in various age classes, say {v,,..,v,}, define a vector
whose dynamics can usefully describe how a population’s age structure
changes. For example, a census might be taken every 5 years, females
counted, and data kept up through the end of reproductive ages, say age 55.
Then 11 age classes would be monitored.

The population’s dynamics are described by the system of equations

Va1 =Avn

where v, is the vector of age classes at the nth census and A is Leslie’s
matrix (see Keyfitz and Flieger, 1971) given by

% o v Gy O
A, 0 .-t 0 0
A= 0 4, 0 0 (70)
0 o . 0 0
o 0 .-~ 4,., 0

where «; >0 are the fertilities of the various age groups and 4,€(0, 1] are
the survival probabilities of the various age groups to the next census. The
first problem we consider here is to determine the asymptotic behavior of
A"x as n— oo.

The theory of nonnegative matrices shows (see Harris, 1963, Chap. 2,
Sect. 9) that

(1) A4 has a unique positive eigenvalue &;

(2) ¢ is an eigenvalue for A*, the adjoint of 4;

(3) the corresponding eigenvectors, say b and b* of A and A*,
respectively, have nonnegative components;

(4) if 8+ ¢ is another eigenvalue of either A or A*, then |8] <¢; and



Discrete Time Semigroup Transformations with Random Perturbations 499

(5) the powers of A can be calculated asymptotically:
A"x=(b* x) &b+ 0(67) (71)

where 8, is some constant satisfying 0 <8, <¢&.

The second problem is to determine the asymptotic behavior of solu-
tions to a randomly perturbed Leslie matrix. Let 4(y) denote a matrix of
the same form as A4 but having coefficients «,(y) and 4,(y) instead of «; and
A;, respectively. The functions «(y) and A{y) are assumed to be bounded
and measurable functions mapping: ¥ - R.

We consider the perturbed problem

X = (4 +8Z(Yn+1)) x5
Xq=Xg
We suppose that {y,} satisfies condition (NP2).

Theorem 10. Let the conditions listed above in this section be satisfied.
Then

P {lim lim sup

e~0 n-» o

log [Ix7 ’_ }_
— logél=03=1

This theorem shows that for small g, the intrinsic growth rate of the
perturbed population is probably the same as the unperturbed one.
The proof of the theorem is based on the representation

c= [T (A+ed(,)) Xo=A"xo+8S, 1 Xo+ -+ +&"S, .%o
k=1

where

n

Sp= 2 A" A(pe) A<

k=1

S, ,= y A5 () A= A(py) - Aly,) A

azip>ih> - >izl

and formula (71). The details are not carried out here.

APPENDIX

Here we present some limit theorem for random variables which are
functions of a Markov chain {y,} that satisfies condition (NP3).
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Let
re=2 sup |R(y, C)|=supvar[R.(y,-)|

ye Y, Ce% yeY
Condition (NP3) implies that >, r, < co.

We consider limit theorem for H-valued random variables of the form
o1 J(ye), where f: Y— H is a measurable function.

Lemma 1. Let g{z,,.., 2,,): Y™ = R be €™-measurable bounded func-
tion for which § &(z),es 2,,) p(d2;) =0 for all k <m. Then, with || g|| denoting
the usual sup norm,

<lel ( i ’k)m

k=1

E< Z ) g(ykla ykzr"s }’A-,,,)/}’o
1<k <

o<k, 0

Proof. We have for 0<k, < --- <k,,,

|EZ(Yiys Viyros Vi)Yol

= ’EIJ 8(z1, 225 Zp) P (Y0, d=y)

Pk:—kl(zl’ dzy)--- P

“mt

- -
("m— [ @] d‘m) ’

m -1

= ,EJJ 8(215 2350 2,) Rp (10, dzy)

_,(zm- 1s dzm)

"

sz—kl(zl’ dzz)"'Pkm—k

- ‘EJ-...J-g(zl,..., Zw) Re (Yo, d2)

sz—kl(zl ,dz;) - Rk,,,—k,,,‘,(zm— 1> dZm)

<lgl reTiey—r, " Ty ki, _,
This inequality proves the lemma.

Condition (Al). Let g(z): Y~ R be a bounded measurable function
for which { g(z) p(dz)=0.

Corollaries. If g satisfies condition (Al), then uniformly in y,,
(1) E(Xk-: &yd)/ye)=0(1),
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(2) EZ, Sk <ky<ky<n gz(J’kl) &(ye,) g(}’ks)/}’o) = O(n).
To prove this relation we set ¢ ={ g*(z) p(dz). Then

E( T ()= gn) eriiyn) =00
1€k <kygn
and

cE( T (&) 8o =On)

1€k <ky<ky<n
(3) In the same way

E ( ) g(yx,) 84 (i,) g()’k3)/y0> =O(n)

lgk <kz<‘k3<n

E( Y 8(¥x,) 8(¥i,) 8% yk,)/yo) =O(n)

1k <ky<k,€n

(4) E(Zi: 8(y))yo)=(n?).
This follows from (2) and (3) and the relation
E( > g(ye) - 'g(yk)/yo) =0(1)

1€k)< - <k<n
(5) E(Zi: &(y))[vo) = O(n).

Lemma 2. Let g(y) satisfy condition (Al). Then for any ye ¥,

. 1/ ¢ 2

lim E (;( ) g(n)) / Yo= y) = H g(z) g(z') p(dz) R(z, dz'y=b
o k=1 .

Proof. We have

£((3, o))

=E<i gy+2 Y g(yk)fg(Z) Rj-k(yk,dZ)/yo>

k=1 Ilsk<jgn

~£( 3 (00 +2800 [ #2) T Rlreeda)[30))

k=1 =1

+0<i cf: rj_k>

k=1 je=n+1
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The statement of the lemma follows from ergodic theorem and the relation

S o ) X iAn
im=Y Y r=Im ) r=0 O
ek 3 (R n—-o ;o R

Theorem 1. Let g satisfy condition (Al). Set {,=Y"*_, g(y), {o=0,
and let

4,.<z>=—\/1;1—;<eck+(1—e)¢k+,) if telkink+1/n], 8=k+1—nt

where b is determined in Lemma 2.

Then the distribution of {,(t) converges weakly in Cy, ry to the distribu-
tion of the Wiener process w(t) for any T>0.

Proof.
(I) At first we note that it follows from Corollary 4 that

E|L(t) =L)<y 1t ~1]*

where ¢, is a constant which does not depend on n. Therefore the sequence
{¢.(1),te[0, T]} is tight in C[0, T] (see Billingley, 1968, p. 95, Theorem
12.3).

Let a subsequence {, () converge weakly in C[0, T] to the process
Co(2). It follows from Corollary 1 that {o(z) is a martingale and from
Lemma 2 that it has the square characteristic equal to t. Therefore {y(¢) is
the Wiener process.

Corollary. The random variable {, is asymptotically Gaussian with the
mean value 0 and the variance ./kb.

Now we consider a limit theorem for H-valued functions f. We assume
that the function f satisfies the following condition.

(A2) f is a bounded measurable function: Y— H for which
{ f(y) p(dy)=0 and there exists a positive compact symmetric
operator B for which sup, [|B~f(»)|l < .

We introduce the sequence of H-valued random variables:

&
Ne= Z S(yi)
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and the sequence of H-valued continuous stochastic processés:

n,.(t)=ﬁ(<k+1—nt)nk+(nt—k>nk+l)

kgtsl%’-l-, k=0,1,.

for -
n

Theorem 2. The distribution n,(t) converges weakly in Cpo r(H) to
the distribution of the homogeneous Gaussian process with independent
increments n(t) for which En(t)=0 and

Eln(2), 2=t [[ (f(3), ("), 2) Ry, dy') plly)

=(Vz,z) forany zeH

Here Cy, r1(H) is the space of continuous H-valued functions on
[0, 71

Proof. It follows from Theorem 1 that the finite-dimensional distribu-
tions. of (#,(t), z) converge to the finite-dimensional distribution of the
process (n(t), z), in particular,

lim Eexp{i(y,(t), z)} =exp{ —1/2(Vz, z)} (N

Let B be the operator from condition (A2). Then we have
Re(1 — Ee' 87'9) = E(1 — cos(B~'7,(1), 2))
= E(1 ~cos(B~'n,(t), 2)) 1 {1 5-15 01 <}
+2P{|1B~ "7, (1)l >}
<3EB™'1,1), 2)* L (15-1p,01 <1}
+2P{|IB~ "1, (1)l >}
Denote by Q, the nonnegative symmetric operator H — H for which

(Qrz’ Z) = %E(B—lnn(t)’ z)z 1{|]B"t7,,(l)|l <r}

It is evident that tr Or < 172 In the same way as Corollary 5 after Lemma 1
we can show that

£( 3 500, 5 B0)=0m) @
ko= k=1
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and therefore
E\B~'n(t)1?<c,t

where ¢, is a constant. Therefore
i (). B=12) !
Re(1 — Ee't" )<(0,2,2) + p" (3)

Since (2) and (3) imply that the distribution #,(¢) converges weakly in H
to the distribution of 7(¢) (see Gikhman et al., 1974, p. 372, Theorem 1).
Hence the finite-dimensional distributions of #,(¢) converge weakly in H to
the finite-dimensional distributions of #(z).

In the same way as Corollary 4 after Lemma 2 we can show that

n n 2
E( T S0, 3 f(yk)) —om)
k=]

k=1

and therefore
E "”n(tz) —'”n(tl)"4< C4(I2-— tl)z

where ¢, is a constant.

Now the proof of the theorem follows from the general theorem on
weak convergence in the space Cpo 7(X), where X is a complete separable
metric space (see Gikhman et al,, 1974, p. 140, Theorem 2).

Corollary. The distribution of (1/\/;) SUP; <7 I7i || converges to the
distribution of sup, .  |n()|.
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