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Cauchy's equation on A + 

THOMAS RIEDEL 

Summary. Recently R, C. Powers characterized the order automorphisms of the space of nondecreasing 
functions from one compact real interval to another [6, 7]. In this paper we show how his results, as well 
as the lattice-theoretic techniques which he employed, can be used to obtain solutions of Cauchy's 
equation for certain classes of  semigroups (triangle functions) on the space A + of probability distribu- 
tion functions of nonnegative random variables. 

1. Introduction 

This paper is divided into six sections, Section 1 being this introduction. The 
next two sections are preliminary in nature. In Section 2 we give the complete 
solution of Cauchy's equation for continuous Archimedean t-norms and in Sec- 
tion 3 we introduce and study a subspace of A ÷ which plays a central role in our 
study. Some general properties of solutions of Cauchy's equation for triangle 
functions are presented in Section 4. In Section 5 we use these results as well as 
recent results by R. C. Powers to find all order automorphism solutions of 
Cauchy's equation for semigroups of the form (A ÷, zr) ,  where T is a continuous 
Archimedean t-norm. Finally, in Section 6, the central section of this paper, we 
obtain a representation for all sup-continuous (equivalently, residuated) solutions 
of Cauchy's equation for semigroups of the form (A ÷, zr),  where T is a strict 
/ = n o r m .  
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2. Cauehy's equation for t-norms 

We begin by recalling several well-known definitions and facts (for details see 

[8]). 
A t-norm T is a binary operation on the interval I =  [0, 1] which is commuta-  

tive, associative, nondecreasing in each place, and has 1 as identity. A t -norm T is 
Archimedean if T(x, x)  < x for all x in (0, 1); and T is strict if it is continuous and 
strictly increasing on (0, 1] x (0, 1]. It is well-known that every strict t -norm is 
Archimedean and that a continuous Archimedean t-norm admits the representation 

T(x,y)  =g¢- ' t (g (x )  + g(y)), for all x , y  in L (2.1) 

where g is a continuous, strictly decreasing function from I into R + =  [0, ~] ,  
g(1) = 0, and g~ 1) is the pseudo-inverse of  g, namely the function determined by 

g~-I~(g(x)) = x for all x in L 
g(g~-~(y)) = min(y,g(0))  for all y in R +. (2.2) 

Furthermore, T is strict if and only if g(0) = oo, in which case g~- ~ is the ordinary 
inverse of g and T admits the representation 

T ( x , y ) = g  l ( g ( x ) + g ( y ) )  f o r a l l x ,  y i n L  (2.3) 

The function g is called an inner addit&e generator (briefly, a generator); and it is 
well-known that g and h generate the same t-norm if and only if there is a k > 0 
such that 

g(x) = k • h(x) for all x in L (2.4) 

DEFINITION 2.1. Let T be a t-norm and 0 a function from I into L Then 0 is 
a solution of  Cauchy's  equation for T if and only if 

O(T(x, y)) = T(O(x), O(y)) for all x, y in L (2.5) 

There are two obvious solutions of  this equation, namely: 

O(x) = 0 for all x in L (2.6) 

and 

O(x) = i for all x in L (2.7) 
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We will refer to these solutions as trivial solutions and, henceforth, unless otherwise 
stated, "solut ion" will mean "nontriviai solution". Note  that, if T has no interior 
idempotents, i.e., if T is Archimedean, then (2.6) and (2.7) are the only constant 
solutions of  (2.5). 

We now find all continuous solutions o f  (2.5) for strict and for continuot~ 
Archimedean t-norms. 

THEOREM 2.2. Let T be a strict t-norm, g an inner additive generator of  T, and 
0 a mapping from I into L Then 0 is a solution ofCauchy's equationJbr Tifandonly 
if  there is a k > O, such that 

O(x) = g-~(k"  g(x)) for aIl x in L (2.8) 

Proof Using (2.3) we have that 0 satisfies Cauchy's  equation for T if and only 
if O(g ~(g(x) + g(y))) = g-~(g(O(x)) + g(O(y))), for all x, y in L Letting a = g(x), 
b = g ( y )  and applying g to both sides, we obtain 

(gOg- ~)(a + b) = (gOg- ~)(a) + (gOg- ~)(b), (2.9) 

for all a, b in R +, Thus 0 satisfies Cauchy's  equation for T if and only if (gOg ~) 
satisfies Cauchy's  equation on R +. Since (gOg -~) >10 on R +, it follows that  there 
is a k > 0 such that 

(gOg-1)(s) = k ' s  for all s in R +, (2.10) 

which is equivalent to (2.8), 

Note  that the solution (2.8) is independent of  the choice of  generator and that 
all these solutions are order automorphisms of  I (see Definition 5.1). 

To  find corresponding solutions for continuous, non-strict, Archimedean t- 
norms we need the following: 

LEMMA 2.3. Let T be a continuous Archimedean t-norm and 0 a continuous 

(nonconstant) solution of(2 .5) .  Then 

0 ( 0 ) = 0  and 0 ( 1 ) = I .  

Proof Since T is Archimedean, it has only 0 and 1 as idempotents; and since 0 
has to map  idempotents to idempotents, we have 

T(0(0), 0(0)) = 0(0) and T(0(1), 0(1)) = 0(1). 
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If 0(0) = 1 then, for all x in L O(x) = T(O(x), 0(0)) = O(T(x, 0)) = 0(0) = 1. Thus 0 
is constant, which cannot be, so that 0(0) = 0. Similarly if 0(l) = 0, then, for all x 
in L TO(x), 0(1)) = O(x) = 0, which cannot be, so that 0(1) = 1. [] 

THEOREM 2.4. Let T be a continuous, non-strict, Archimedean t-norm and let g 
be an inner additive generator o f  T. Then 0 is a continuous solution o f  Cauchy's 
equation for T i f  and only i f  there is a k >>. 1 such that 

O(x) = g~-1)(k • g(x)) for  all x in L (2.11) 

Proof Using (2.1) and (2.2) we have that 0 satisfies Cauchy's equation for T if, 
and only if, for all x, y in L 

(gOg ~- ~))(g(x) + g(y))  = rain(gO(x) + gO(y), g(0)). (2.12) 

Now, let g(x) = a and g(y)  = b. Then a, b are in Ran g = [0, g(0)] and, in view of  
(2.2), x = g~- l)(a) and y = g~-I)(b). Thus (2.12) becomes 

(gOg ~- l))(a + b) = min((gOg ¢- l))(a) + (gOg ~- l~)(b), g(0)) (2.13) 

for all a, b in [0, g(0)]. 

Suppose 0 is a continuous solution o f  (2.5). Then, using Lemma 2.3 and (2.2), 
we have 

(g0g~-~))(0) =g(0(1))  = g( l )  = 0 and (gOg ~ ~))(g(0)) =g(0(0))  =g(0) ,  

whence there exists an x~ in (0,g(0)) such that O<(gOg~-I))(Xl)<g(O). Let 

xo = sup{x~l(gOg~- ~)(x~) < g(0)}. Then 0 < Xo ~< g(0), and (gOg (l~)(x0) = g(0). 
Furthermore, if t >/0 is such that (gOg ~ ~))(t) < g ( 0 )  then, by (2.13), 

(gOg ~- l))(t) = (gOg (- L))(t - u) + (gOg ~- t))(u), for all u in [0, t], 

which implies that (gOg (- l))(u) < g(0) for all u in [0, t]. Consequently, we must have 

(gOg(-I))( a + b) = (gOg (- '))(a) + (gOg ~- '))(b), (2.14) 

for all a, b and a + b in [0, :co], and 

(gOg (- 1))(s) = g(0), (2.15) 
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for Xo ~< s ~< g(0). The first equation yields that there exists a k > 0 such that 

(gOg ~ - ' ) ) (a)  = k . a, (2.16) 

for all a in [0, x0] (see [2]); and, if we let a = Xo, we obtain 

(gOg'-J))(Xo) = k " x 0 = g(0). 

Thus k =g(O) /xo  >i 1; and, combining (2.14) and (2.15), we have that 

(gOg C l))(a) = ~(g(O)/xo)  " a for a in [0, Xo], 
[g(0)  for a in Ix0, g(0)]. 

Finally, letting a = g(x)  and using (2.2) we obtain (2.11). 
In the other direction, suppose 0 is given by (2.11). Then, using (2.2) and again 

letting g(x)  = a and g(y )  = b, the left-hand side of  (2.12) is equal to 

min(k • min(a + b, g(0)), g(0)), (2.17) 

whereas the right-hand side is equal to 

min{min[k • rain(a, g(0)), g(0)] + min[k • min(b, g(0)), g(0)], g(0)}. (2.18) 

It is readily verified that both of  these expressions are equal to 

k .  (a + b) for 0 ~< a + b < g(O)/k,  

g(0) for g(O)/k <~ a + b, 

whence 0 satisfies Cauchy's  equation for T. 

Note that  even though the x0 in the above p roof  depends on the choice of 
generator, the function 0 in (2.11) does not. 

Note further that, if T and 0 are as in Theorem 2.4, then 0 is an order 
au tomorphism of I (see Definition 5.1) if and only if k = 1 in (2.11), i.e., if and only 
if 0 is the identity map  on L 

To illustrate the above, let T(x ,  y) = Max(x  + y - 1, 0). Then g(x)  = 1 - x is a 
generator with pseudo-inverse g~- l~(y) = Max(1 - y, 0) and, using (2.11), we ob- 
tain 

{O k f o r O < ~ x < < , l - l / k ,  
O(x )=  . x + ( 1 - k )  for 1 - 1 / k < x < ~ l .  
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3. Preliminaries from A + 

We will denote by A ÷ the space of  all nondecreasing functions F from R ÷ into 
I that satisfy F ( 0 ) =  0, F(oo) = 1 and that are left-continuous on (0, oo). 

The following elements of  A ÷ are of  particular importance and therefore merit 
special symbols: 

(i) For any a in R +, g~ is the function in A ÷ defined by 

e.(x) = {~ for 0 ~<x ~<a, 
for a < x  ~< oo, 

and 

e ~ ( x ) = { ~  forx=oo.f°r0~<x<°°' 

i f 0  ~ < a < ~ ,  (3.1) 

(ii) For any a in R + and b in L ~..~ is the function in A ÷ defined by 

(3.2) 

i for 0~<x ~<a, 
~,,,b(x) = for a < x < oo, 

for x = oo, 

i f 0 ~ < a  < oo, (3.3) 

and 

oo.b = e.~. (3.4) 

Note that, for all a in R +, 6a,1 =ea  and 6a,o = e ~ ,  and that we also have: 

LEMMA 3.1. For 0 <~ a, c < (~ and O < b, d <~ 1, 6,.b = 3c.d i f  and only i f  a = c and 
b = d .  

In the sequel we let 

A; ~ --- {a~,b l a in R *, b in I}. 

The elements of  A + are partially ordered by 

F<~G if and only if F(x )<~G(x )  f o r a l t x i n R  +. (3.5) 
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In particular, 

e~ ~< gb, whenever a >i b, 

and 

6,,j, <~ 6,a, whenever a 1> c and b ~< d. 

Moreover, e~ and to are, respectively, the least and greatest elements in this partial 
order. 

DEFINITION 3.2. A triangle function r is a binary operation on A ÷ that is 
commutative, associative, nondecreasing in each place, and has eo as identity. 

As an immediate consequence we have that e~ is a zero for z, i.e., that 

z(e .... F) = e~ for all F in A +, (3.6) 

whence (A +, r) is a semigroup with identity and zero. 

D~VlNITION 3.3. Let T be a triangle function. Then for any sequence F~ . . . . .  F. 
in A +, we write 

r2(F~, F2) = z(F,, F2), 

and 

z"(g, . . . . .  F . ) = z ( r " - ' ( V ,  . . . . .  F. , ) ,F . ) ,  

for n > 2. Furthermore, for any F in A + and any n >/2. the n-th v-power of  F is 

denoted by 

F7 = z"(F, . . . .  F) ;  (3.7) 

when it is clear from the context, we often omit the subscript and just write F". 

We will be principally concerned with the class o f  triangle functions z r  that are 
induced by left-continuous t-norms via 

zr(F, G)(x) = sup {T(F(u), G(v))} (3.8) 
u W r ~ x  

for a l lF ,  G i n  A + a n d x i n R + .  
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A simple calculation yields that, for all a, b in R ÷ and all c, d in L 

zr(6 .... 8b.a) = Oa + b,T(c.d)" (3.9) 

Thus we have: 

LEMMA 3.4. (A~,  rr)  is' a subsemigroup o f ( A  +, r r ) .  

Moreover, it follows from (3.9) that, for any 6,, b in A~-, 

~,.b = tT(~,, 6o,~). (3.10) 

Thus the semigroup (A2,  r r )  is generated by the family of  elements {~,, g0,b}. 
With the partial order defined in (3.5), A + is a complete lattice, i.e., a partially 

ordered set in which every subset has a supremum and an infimum. Here, for any 
subset S of  A +, the supremum of S is the pointwise supremum of all functions in 
S and the infimum of  S is the supremum of  the set of  all lower bounds of S. The 
latter refinement is necessary since the pointwise infimum of  left-continuous func- 
tions need not be left-continuous. 

We also have the following basic lemma, which is due to R. C. Powers [7]: 

LEMMA 3.5. Let F be in A +, then 

F =  sup 6a,F<a). 
a E R  + 

(3.11) 

DEFINITION 3.6. A function q~ from A + into A + is said to be sup-continuous if, 
for any index set J and any collection {~  } such that Fj is in A + for all j in O r, we 
have 

q~( SuP Fj) = sup ~o(Fi). (3.12) 
J E , -  / i ~ J  

It follows at once from Lemma 3.5 that a sup-continuous function on A + is 
completely determined by its value on A f .  

Furthermore, letting J be the empty set yields tp (e~)=  e~. Thus in lattice- 
theoretic terminology a function tp: A + -~ A + is sup-continuous if and only if it is 
residuated [4]. 

DEFINITION 3.7. Let z be a triangle function. Then ~ is sup-continuous if, for 
any index set J and any collection {Fj } such that Fj is in A + for all j in J, and for 
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all G in A +, 

3( sup 6 ,  G) = sup r (~ ,  G). 
j ~ J  j E J  

The next lemma is due to R. M. Tardiff [9] (see also [8, Sec. 12.9]). 

LEMMA 3.8. If T is a continuous t-norm, then z r is sup-continuous. 

However as pointed out by Tardiff, convolution is not sup-continuous. 

AEQ. MATH 

(3.13) 

4. Cauehy's equation for 

We now turn to Cauchy's  equation for triangle functions 3 on A +. We begin 
with some properties which do not depend on the specific choice of  3. 

DEFINITION 4.1. Let 3 be a triangle function and q~ a function from A + into 
A ÷. Then q~ is a solution of  Cauchy's  equation for T if and only if 

~0(r(F, G)) = z(~p(F), q~(G)) for all F, G in A +. (4.1) 

There are two trivial solutions, namely ~0 = zoo and ~0 = Co; and, as before, unless 
stated otherwise, "solution" will mean "nontrivial solution". As in the case of 
t-norms, we note that, if r has no interior idempotents, i.e., if r(F, F) = F implies 
that F = ~o or F = eo~, then eo~ and eo are the only constant solutions. Furthermore, 
for any such r, a non-constant solution ~0 has to satisfy 

t p ( e ~ ) = ~ ,  and q~(~o)=Co; 

the proof  is analogous to that of  Lemma 2.3. 

LEMMA 4.2. Let q~ satisfy Cauchy's equation fo r  z. Then 

(i) ~o(e0) is the identity on Ran ~o, 

(ii) q~(~) is the zero on Ran q~, 

(iii) ~o maps idempotents to idempotents, 
(iv) ~o preserves n-th powers, Le., ¢p(H n) = ~o(H) n, f o r  all H in A +, 
(v) ~0 maps any element with an n-th root to an element with an n-th root. 
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Proof (i) For  all F in A +, tp(F) = (0(z(F, ~o)) = z(q~(F), q~(eo)). (ii) For all F in 
A+, ~o(~,) =tp(r (F ,g~)) .  (iii) I f  H is an idempotent of  z, then 
o(H) = tO(z(H, H))  = z(~0(H), ~o(H)). Lastly, (iv) is an easy induction and (v) is a 
direct consequence of  (iv). [] 

The next result is also immediate. 

THEOREM 4.3. Let  z be a triangle function. Then the following functions q~ satisfy 
Cauchy's equation .for r: 

(i) The identity map q~(F) = F. 
(ii) The power junction q~(F) = FL 

(iii) l f  z has an interior idempotent H, the function qgH given by ~oH(F) = z(F, H),  
for  all F in A +. 

The next lemma shows that for sup-continuous q~ and z it suffices to consider 
Cauchy's equation on the subspace A2. 

LEMMA 4.4. Let q~ be a sup-continuous function from A + into A + and let z be a 
sup-cont[nuous triangle function. Then q~ satisfies Cauchy's equation for  z i f  and only 
if 

~o(z(3 .... fib.d)) = z(~0(6,,,c), ~9(3e.a)) (4.2) 

[or att 6 ..... fie, a in A + . 

Proof. The necessity is obvious. In the other direction, assume that (4.2) holds. 
Then, using Lemmas 3.5 and 3.8, we obtain 

~o(z(F, a ) )  = tp(z(sup 3a.r(o) , sup fib,ate))) = sup~ supb ~P(r(ba'e(")' 3b'G(b))) 

= sup sup r(~o(a~,r~,~), qg(Ob,~(e))) = z(q~(sup fia.F(a)), q~(sup 6b,c;(b))) 
a b a b 

= r(q~(F), ~o(G)). 

5. Order automorphism solutions of Cauchy's equation for Zr 

DEFINITION 5.1. A mapping ~b from a lattice L~ into a lattice L 2 is called 
(i) an order isomorphism if ~ is a bijection and q~ and ~b -1 are order-preserv- 

ing; 

(ii) an order au tomorphism if (i) holds and L~ =/ -2 ;  
(iii) a dual isomorphism if 4~ is a bijection and ~b and ~b-i are order-reversing. 
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The set o f  order automorphisms of  a lattice L is usually denoted by Aut(L); and 
it is a well-known lattice-theoretic .fact that all order automorphisms are sup- 
continuous (see, e.g., [3] or  [4]). 

In [7] R. C. Powers showed that a mapping ~0 is an order automorphism of A" 
if and only if, for all F in A +, either 

tp(F) = 0 o F o ~,, (5.1) 

where 0 is in Aut(I)  and ~ is in Aut(R+),  or 

~o(F) = ct o F v o fi, (5.2) 

where ~t and fl are dual isomorphisms from R + to L i.e., continuous, strictly 
decreasing functions from R + to L such that ~ t (0 )=f l (0 )=  1 and e (m)=  
fl(m) = 0, and F v is the right-continuous quasi-inverse of  F which is given by 

!f{ for y = 0, 
FV(y)  = x ] F ( x ) > y }  for 0 < y  < 1, (5.31 

f o r y  = 1. 

In this section we determine all the order automorphisms of  A + that satisg, 
Cauchy's  equation for triangle functions of  the form Zr (see (3.8)) when T is a 
continuous Archimedean t-norm. We begin with order automorphisms of  the form 
(5.1). 

LEMMA 5.2. L e t  T be a continuous t-norm and let q~ be given by (5.1). Then 

satisfies Cauchy's equation for r r if  and only i f  

7(a + b) = y(a) + 7(b) for atl a, b in R +, (5.41 

and 

O(T(c, d)) = T(O(c), O(d)) for all c, d in L (5.51 

Thus q) satisfies Cauchy's equation for T r if and only i f  7 satisfies' Cauchy's equation 
on R + and 0 satisfies Cauchy's equation for T. 

Proof Note that, if ~o is given by (5.1), then 

q~(a..b) = ay - ,  ~a~.O~b), (5,6) 



Vot. 41, 1991 Cauchy's equation on A + 203 

and that, in view of  Lemmas 3.5 and 4.4, it suffices to consider Cauchy's equation 
on ~ ; .  Thus, using (3.9) and (5.6), we have on the one hand that 

~(Zr(a .... ~b,a)) = ~0(6~ + b,r,.a)) = ~ '~a + b),0~r(c.~)), 

and on the other hand that 

zr(~0(ao,, ), q~( bb.a ) ) = Z r ( 6~ - ,~o).0¢c~, a~ - ,C~),OCU~ ) 

= ~7 - l(a ) + ? - I(b),TlO(O,O(d) ) • 

Hence q~ satisfies Cauchy's  equation for r r if and only if these two expressions are 
equal. By Lemma 3.1, this is so if and only if (5.5) holds and ~,- ~ satisfies Cauchy's  
equation on R +. Since 7 is in Aut(R+),  the latter holds if and only if (5.4) holds. 

[]  

THEOREM 5.3. Let  q~ be given by (5.1). Then q~ satisfies Cauchy '  s equation fo r  ~r, 
where 

(i) T is strict with generator g, i f  and only i f  there exist k,  l > 0 such that f o r  all 

x in R + and F in A +, 

(q~(r))(x) = g - ' ( k ,  g (F( l  . x))). 

(ii) T is continuous, non-strict,  Archimedean with generator g, i f  and only i f  there 

exists a k > 0 such that, f o r  all x in R + and all F in A +, 

(~p(F))(x) = F(k  . x). 

Proof. It is well-known (see, e.g., [1]), that any ~ in Aut(R +) satisfies (5.4) if 
and only if there is a k > 0 such that for all x in R +, 7(x) = k .  x. Given this, (i) 
and (ii) follow at once from Theorems 2.2 and 2.4 and the fact that if 0 is given by 
(2.11) then it is an order automorphism if and ony if k = 1. []  

We now turn to order automorphisms ~o of  the form (5.2). We begin with the 
observation that for 0 ~< a < ~ and b # 0, 

a,~4y) = for 0 < y  < b ,  (5.7) 

for b ~<y ~< 1, 
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and that 

{0oo f ° r y = 0 ,  
e L ( y )  = for 0 < y  ~< 1. 

LEMMA 5.4. Let  ~o be given by (5.2). Then, for  all 6~,b in A~  , 

q~(bc/,b ) = 61~ --l(b},~x{a). 

P r o o f  If 6~,~ # e~, then (5.2) and (5.7) yield that 

[a(O) for/~(x) = O, 
(q(6~,b))(x) = ~(6~,b(/~(x))) = ~0ffa) for 0 </~(x) < b, 

/ 

L~(~) for b .</~(x) .< 1, 

i for x = ~ ,  
= (a) for ~ - l (b )  < x  < oo, 

0 ~< x .< /~ -~ (b) ,  

which establishes (5.9) in this case. A similar 

(o(~oo) = ~ ,  

AEQ. MATH 

(5.8) 

(5.9) 

LEMMA 5.5. Le t  T be a continuous t -norm and let q~ be given by (5.2). Then (o 
satisfies Cauchy 's  equation f o r  Zr if, and  only if, f o r  all x, y in 1, 

c~(c~ - l(x) + ~ - l(y)) = T(x ,  y), (5.10) 

and 

[~([3-1(x) + [3- l (y ) )  = T(x ,  y). (5.1l) 

P r o o f  As in the proof  of  Lemma 5.2, it suffices to consider Cauchy's equation 
on A2-. Using Lemma 5.4 we have on the one hand that 

(p(rT(6 .. . .  fib,d)) = q)(6a + b,r(c.d)) 

"~- (~ g -- I ( T ( c , d ) ) , a t ( a  + b ) ,  

and on the other hand that 

tr(q~(6=,,~), q(fb.d)) = tr(fa-,(c)..(.>, 6 , -  ~(a),.~b)) 

= 3# - t(c) + # - 3(d),T(~(a),~b))" 

argument shows that 
[] 
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Thus ~p satisfies Cauchy's  equation for z r  if and only if these two expressions are 
equal. By Lemma 3.1 this is the case if and only if 

a(a + b )  = T(a(a), =(b)) and fl-~(c) + f l - ' ( d )  = f l -~ (T(c ,d ) ) ,  

and these equations are clearly equivalent to (5.10) and (5.11), respectively. []  

THEOREM 5.6. Let cp and zr  be as in Lemma 5.5. Then ¢p satisfies Cauchy's 
equation for zr  i f  and only i f  T is a strict t-norm and ~ - l and fl - ~ are inner additive 
generators o f  T, i.e., i f  and only i f  there exists a k > 0 such that for all x in R + and 
al lFin A +, 

(~p(F))(x) = ( g - t F ~ g  ~)(k .x), (5.12) 

where g is any generator o f  7". 

Proof. Using (2.3) and the fact that a and fl are strictly decreasing, we have that 
T has to be strict and that both a -  ~ and t -  ~ generate T. It therefore follows from 
(2.4) that for some k > 0 and all x in R +, 

~ - ' ( x )  = k  • [~-~(x), 

which yields (5.12). [] 

In conclusion we note that, as was to be expected, very few of  the order 
automorphisms of  t~ + satisfy Cauchy's  equation; and these are the ones that 
essentially act on F by linear scaling on the left and/or the right. 

6. Sup-continuous solutions of Cauehy's equation 

We now consider the question of  finding sup-continuous functions cp:A + ~ A + 
that satisfy Cauchy's  equation for a given Tr when T is strict. As is to be expected, 
this will require the use of  powers and roots of  elements in the semigroup (A +, r r ) .  
Since these may not always exist, we will have to impose some restrictions on ~o; 
and this requires some preliminary discussion. 

DEFINITION 6.1. Let T be a strict t-norm and g any inner additive generator o f  
T. Then we let 

A~ = {F in 4 + [g o F is convex on (bF, o0)}, (6.1) 

where br = sup~ ~ e + {F(x) = 0}. 
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In view of  (2.4), the set A~ does not depend on the choice of  generator g. 

(Note: The set A 7 is commonly known as the set of  T-log-concave elements of 
A +. The terminology is due to R. A. Moynihan [5] (see also [8, Sec. 7.8]) and stems 
from the fact that he used multiplicative rather than additive generators to define 
this set.) 

Clearly b6o.b = a and, since 6a,b is constant on (a, ~ ) ,  it follows that g o 6~. b is 
convex, whence 

a~- _ A + . (6.2) 

The following result is due to B. Schweizer (see [5] and [8, See. 7.8]). 

THEOREM 6.2. Let T be a strict t-norm with additive generator g and suppose F 

is in A + \ { ~ } .  For any 1~ >1 O, let F I' be defined by 

F~(x) = g - ' ( # ,  g(F(x/#)))  for  0 < # < ~ ,  (6.3) 

F ° = lim F u = Co, (6.4) 
u ~ 0  

and 

F ~ =  lim P '  = ~ '~  for  F ~ eo (6.5) 
u ~ ~ [ eo for  F = Co. 

Then F u is in A + and for  any g, v/> 0, we have 

zT(F v, F )  = F ~ + ~, (6.6) 

and 

(F,~) ~ = (F~)~ = F ~. (6.7) 

Note, however, that, in view of  Lemma 3.5, A f  is not closed under arbitrary 
suprema, and hence is not a complete sublattice of  A +. 

If  we let g-~(I . tg(x))= O(x) and x / #  =7(x)  then, for any # > 0 ,  the mapping 
F ~ F  ~' given by (6.3) is an order automorphism of  A 7 o f  the form (5.1). This and 

(5.6) yield that, for 6~.b ~ ~ ,  

6ua.b .= 6 ~,~,g -qug~b)~" (6.8) 
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By induction it follows from (6.6) that, for any positive integer n, F" as defined 
in (6.3) is precisely the n-th zr-power of  F as defined in (3.7). The following is also 
immediate: 

COROLLARY 6.3. Let T be a strict t-norm and G in / ~ + \ { ~ } .  Then for  any 
# > O, there exists a unique H in A~ ,  such that 

a ~ n I~, 

namely H = G l/u. 

The root H need not be unique in A +. For, as R. A. Moynihan has shown [5], 
if H t and/-/2 have the same log-concave envelope and if, for some integer n > 0, H7 
is in A?,  then H7 = HT. 

LEMMA 6.4. Let T be a strict t-norm and q~ a sup-continuous solution o f  
Cauchy's equation for  zr  such that, i f  F is in A f \ { e ~ } ,  then for  all positive integers 
n, rp(F I/") is in A + \{e~ }. Then, for all # >1 O, 

rP(F ~) = [~o(F)] ". (6.9) 

Proof. For kt in the set of  natural numbers N, this follows from Lemma 4.2(iv). 
Now let m be in N. Then, by (6.7) and the above, we have q) (F)= 
~((Fl:~) "~) = [~o(Fa/")] 'n. Since ¢p(F ~/m) is in A~-\(e~}, we can apply Corollary 6.3, 
which yields ~o(F t/") = [qg(F)] l/". It follows that (6.9) holds for all rational # ~> 0. 
Next suppose that # > v. Then, since g and g - ~ are decreasing and F is nondecreas- 
ing, (6.3) implies that F u ~< F .  Furthermore, since F is left-continuous and g and 
g -  ~ are continuous, we have 

lim F ~ = s u p  F ~ = F".  

Finally, let {r~ }n~= ~ be a decreasing sequence of  rational numbers with limit #. Then 

F ~ =  s u p  F~% 
r n > / a  

from which (6.9) follows by the sup-continuity of ~0. [] 

The next lemma is a direct consequence of  (3.10) and (6.8) (recall that 
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LEMMA 6.5. Let 5a, b # ecx), and let T be a strict t-norm with generator g. The~. 
for  any c in (0, I), 5.,b admits the decomposition 

~a,b = 7~ T ( e  ~ , (~,c(b)/g(c))" (6.]0) 

We can now prove the central results o f  this section, namely: 

THEOREM 6.6. Let T be a strict t-norm with generator g and let 4o be u 
sup-continuous solution o f  Cauchy's equation for  z r having the property that, for some 
c in (0, 1) and allpositive integers n, q~(6~(~) and q~(t~/~) are in A~ \{too, Co}. Then, fo, 

a l l F i n  A +, 

[p(F) = sup Zr([q~(ei)]', [~O(50,e)]kg(FCt))), (6.113 
t ~  R +  

where k = 1/g(c). 

Proof  By Lemmas  3.5 and 6.5 we have that  

F =  sup fit,F.) sup ~ l°t $kg(F(t))x~ ~T%O l i  ~ ,0 ,  c 1~ 
t ~ R +  t E R +  

whence the sup-continuity of  q~, the fact that tp is a solution of  Cauchy's  equati0~ 
for ~r, and (6.9) yield (6.11). E 

The converse of  Theorem 6.6 is also true; specifically, we have: 

THEOREM 6.7. Let T be a strict t-norm with generator g. Let  G and H ~ 

A + \ { t o ,  Co} and c in (0, 1) be given, and let cp: A + --*A + be defined by 

~o(F) = sup zr(G' ,  H kg(F(')) for all F in A +, (6.12) 
t~ .R + 

where k = 1/g(c). Then q~ is a sup-continuous solution o f  Cauchy's equation for ~r 
Moreover, G = qJ(el), H = (p(6o..) and for  all positive integers n, ~o(el/") and q~(6~:73 

are in A + \{ t~ ,  to}. 

Proof  Suppose that G and H are in A + \ { t ~ ,  to}. Then we have 

I ~oo  

TT(G', H k:~°.~ ('))) = r r (G ' ,  H ke(b)) 

for 0~< t ~<a, 

for a < t < ~ ,  

for t = o o .  

Therefore, letting F = 6~.b in (6.12), we obtain 

q~(6.,b) = r r (G",  Hkg(b)). (6.13) 
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Using (6.8) we have, in particular, that for all positive integers n, 

l/n tp(3o.c) = tP(~5O,g- ~(gtc)/,)) = r r (  G°, HI/n)  --7:T(g0, H 1/") = H TM, 

and, since g ( t )  = 0, 

q~(el/,,) = qg(6u,,. I ) = r r ( G  l/., to ) = G l/., 

Hence, using Theorem 6.2, we have that q~(el/") and lj, ~(60,c) are in A + \ { ~ ,  ~o}. 
To show that <o is sup-continuous, we first note that from (6.13), (6.12) and 

Lemma 3.5 it follows that 

sup (P((~t,F(I)) = sup z r ( G ' ,  H kg(F(t))) = ¢p(F) = ¢p( sup 6t,F(,) ). 
t ~ R  + t e R +  1 E R  + 

Now let F = supp~ B Fp, where Ft~ is in A + for all/~ in some index set B. Since g is 
continuous and decreasing and H is left-continuous, following the argument  in the 
proof of  Lemma 6.4, for any t in R +, we have 

s~p H kg(FB (t)) = Kin fa kg( F~ (t)) = H k g ( s u p #  F,8 (t))  ( 6 . 1 4 )  

Next observe that, if L is a complete lattice, if  I and J are arbitrary index sets, and 
if {c~,j }i~l,j~ J is a subset of  L, then 

sup sup c~j = sup sup c,j. (6.15) 
i j ] i 

Thus, using (6.12), (6.15), the sup-continuity o f  z r  and (6.14), this yields 

~up ~(Ft~ ) = sup sup rr(G', H kgtF'('))) 
l l e B  t e R +  

= sup sup z r ( G ' ,  n kg(F,q(t))) 
teR+ ~eB 

= sup r r (G ' ,  H kg(F(t))) -- (p(F) -- ~(sup F~), 
t~R+ #eB 

whence 9 is sup-continuous. 

It remains to show that <0 satisfies Cauchy's  equation for ~r. Using (6.13) 
and the fact that z r  is commutat ive and associative, we have that, for all 6~.~ and 
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6b.d in Aa +, 

tr(~o(6~,~), ~P(6b.d)) = r r ( t r (  Ga, Hkg(~)), r r ( G  b, Hkgtu))) 

-~. ~T(ZT(G a, Gt) ,  Zr ( I t  kg(~), Hkg(a))) 

= z r ( G  ~ + b, Hk~g, .) + g~d,) = <p(6~ + b.T~.d>) 

whence the conclusion follows from Lemma 4.4. D 

We conclude this section with several remarks: 

(i) Since order automorphisms satisfy the hypotheses of  Theorem 6.6, they have 
to be of  the form (6.11). Using (5.6), it follows that  for order automorphisms 
of  the form (5.1) we have 

<P(el) = ~-1(1) and cp(6o.~.) = 6o.o~), 

and, using (5.9), that for order automorphisms of  the form (5.2) we have 

~o(el)=50.,~1~ and <p(6o.c)=ea-,tc), 

and a simple calculation shows that, with the above, (6.11) yields (5.1) and 
(5.2), respectively. The converse also holds, i.e., if we let G = ~ and H = 60.~ 
in (6.12), where 0 < a < ~ and 0 < b < 1, then using (6.13) and Lemma 3.5, 
the function q~ defined by (6.12) is easily seen to be an order automorphism of 
the form (5.1); similarly, if we let G =60,b and H = ~ a ,  then <p is an order 
automorphism of  the form (5.2). 

(ii) Since A + contains a copy of  R +, namely {ca [a ~ R+},  equation (6.1 1) has to 
include the functions <p that correspond to continuous solutions of  Cauchy'~ 
equation on R +. We obtain these by restricting <p in (6.11) to {e~ [ a e R + } and 
choosing q~(el) = e~ for any k > 0. In this case we have <p(e~) = ekx- 

(iii) The notion of  sup-continuity is a lattice-theoretic one; in probabili ty theory 
one is usually interested in functions that  are weakly continuous, i.e., continu- 
ous with respect to the modified L6vy metric (see [8, Sec. 4.2]). In general. 
neither o f  these two notions o f  continuity implies the other. However, as 
pointed out by R. C. Powers [7], order automorphisms of  A + are weakly 
continuous as well as sup-continuous. The question whether functions ¢ 
defined by (6.12) are weakly continuous is open. 
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