ON THE CARDINALITY OF THE UPPER SEMILATTICE
OF COMPUTABLE ENUMERATIONS

A. B. Khutoretskii UDC 517.11:518.5

We shall use the following notations and abbreviations. # is the series of natural numbers;
AsB=(ANB) V(B ~A) is the symmetric difference of sets A and B; < denotes gtrict inclusion for
sets; 8¢ is domain of definition while /o/ is domain of values of function #; d£={x/yax ——yed/L};
p.r.f. is a partial recursive function; r.e.s. is a recursively enumerable set; an & -enumeration is an
enumeration of family < ; g.r.f. is a general recursive function.

DEFINITION. The dual sequence of finite sets {'Z,f [neX, seN} is called an effective sequence of
approximation (e.s.a.) for enumeration ¢ of the family of r.e.s. ¢¢ if the following conditions are met:

1) function p(n,s), equal to the Godel number of sets z‘,;’ , is general recursive;

s -
2) sgv Z,, =T, for alln;

L4 S5+/
3) z,« ¢, forallsn .

One can give an analogous definition for an e.s.a. for an enumeration of a family of p.r.f.
It is clear that an enumeration is computable if and only if it has an e.s.a.

It is known that there exist families of r.e.s. for which the upper semilattice of computable enumera-
tions contains infinitely many elements and has a very rich structure. Onthe other hand, there are com-
putable families of r.e.s. which have only one (to within equivalence) computable enumeration (cf. [2]). And,
finally, a family of r.e.s. may have no computable enumerations at all. The theorem constituting the basic
contents of this paper shows that there are no other possibilities.

THEOREM 1. Let the family of r.e.s. ¢ have computable enumerations v and « , v 74.5 H o There
then exists a computable (¥ -enumeration ¢ suchthat w« <7 and v£<z.

Proof. Let { v’,f } and { ,u,f} be e.s.a. for the respective enumerations v and «. Let X bea
computable enumeration of the family of all p.r.f., and let {X¥ ,f ! be an e.s.a. for X . We shall construct,
by stages, the dual sequence of finite sets {Z: } . Inthe process of construction some numbers will ob-
tain successors. There are two types of successors: n7 -successors and ~2 -successors (for each ~ ).
Each number Y can be the successor of several numbers simultaneously. We shall say that x is 7 -
free ( n2 -free) on step & if x was not an ~n7/ -successor ( ~Z2-successor) up to step s . Moreover, we
will set up a list of certain number pairs (x,z7) . Each pair on this list will have a mark of the form
or (for some sz ), Inthe list at step s there cannot be two pairs with identical marks.

CONSTRUCTION
Step s=0 . Weset 2,7 = § for all =47 and £°=x .
Step s>o consists of two half-steps plus finishing touches.

Step S>¢ . We shall perform the construction under the assumption that the following condition is
met: 7 is defined for all = and = (¥m)J») T5' < wx) . Lt is easy to verify that after step s
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these conditions hold for the sets 7,, . Let (s),=~. If tnere do not exist numbers s’<s , such that

(¢’), = n , we then transfer to the flmshmg touches of step s . If, however, such s’/ exist, we then
let = be the largest of these. If 3 ’ = A‘,LR we then go to the finishing fouches of step s . Let
3,1{ = é\.L: .

Half-Step 1. We denote by 2« the least even number which does not have a successor.

Case 1. Among the pairs on the list there is none with the mark [77] _We make the n7 -successors

of the 2z first 2/ -free numbers. If there exist pairs x,y , such that xe or | yer :' A /":”(x) ’

we then choose from them the pair with the lowest ordinal number and add it to the list of pairs, with the
mark [z7] ascribed to it.

Case 2. Inthe list there is a pair (x,y) with mark [#7]. ©® Iz efz' f7/ux,(x) , we then cross off the

list the pair (x.y¥) with the mark [#7] . (This pair could stay on the 11st if it bore another mark.) We
note immediately that pair (= y) with these same marks can no longer occur on the list.

Half-Step %.

Case 1. Among the pairs on the list there are none with the mark (=2 ; and there exist numbers £x
such that 2xe /ozf; , 2x does not have an =2 -successor, and Zx does not have an ~7 -successor with

e We select the largest such number 2x, . We choose the first y such that wy= ’ij » and we

make y n2-successors of the number 2x, . I 2x, has m7 successors w1th m>pn, we release all these

successors, If there exist pairs (x.y) , such that xeﬁz , Y& v e ” ""zs o’ we then choose that pair

of them with the least ordinal number and add it to the list, ascribing to it the mark . We then transfer
to the finishing touches on step s .

Case 2, Among the pairs on the list there is one (x,z77 with mark - If yev, v 7nct , We

1’.‘ (x)
then strike the pair (x,y) with mark [#2) from the list. We then turn fo the finishing touches on the
step.

If neither case 1 nor case 2 occurs, we transfer to the finishing touches for step s .

Finishing Touches for Step s>¢ . After having performed all the foregoing operations, we do the
following.

For all pairs (Zx,y) suchthat y is an ~/-successor of 2x , we set fz'; 2 Ty v ; for all pairs
oyt : PR I s ,.s
(2x,y) suchthat ¢ is an 72 -successor of Zx , we set T e UMy and we set s = /ux for

all x5 ; for all other z we get 2, = ¢’

We have described the construction of sequence {z°} . We note that elements were added to ™

only during the finishing touches for step s , while all preceding actions on step s were necessary after
oL

o SH
= ¢, for all ~ and s .Z;Lms

is obviously the computable enumeration of some family of r.e.s. ¢t , ¢ 2 ¢ suchthat ¢, = for
all x .

rn T

having decided how to supplement each z;fz” . Itis clear that ¢, ugt ¢
>a

LEMMA 1. Each number Zx receives a successor.

Proof. We assume that there exist numbers Zx which never obtain successors. Let Zx, be the
smallest such number. Let s, be a step such that all the numbers Z2x<Z2x, already have successors on
step s, (we note that a number, once having obtained a successor, thereafter always has a successor since,
in losing an ~7 -successor, the number acquires an 2 ~-successor).

Let 7 be a number suchthat %, is a g.r.f. and, on the list of pairs at step S, , let there be no
pairs with the mark . (Such an ~ exists since the list contains a finite number of pairs at step S, .)
Then, on some step s>5, there supervenes case 1 of half-step 1 for (s),=~ . If number Zx, does
not have a successor up until step s , it obtains it on step s . Lemma 1 is proven.

LEMMA 2, {(Yu)(ZT, e d).
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Proof, ¢, = €0t . Let «= Zx. By Lemma 1, each number 2x receives a successor y .

If this is an ~Z -successor then it is adopted in case 1, half-step 2, of some step s . Then, MHy= T :; .

Z L4
In the future, this successor will not be released. This means that 7:;; z:: ‘v ,a; forall s’>s .

Consequently, %, -Hy € ct.

Let ¥ be the 77 -successor acquired by number f£x onstep s . Then, Zx had no successor
prior to step s , which means that z"f“- ¥ . If y is a constant ~7s -successor of number 2x , then
g,— Vyeal! . If, however, y will be released, then Zx will obtain an ~2 -successor g which will not
be lost, and CTp=p et . Lemma 2 is proven.

I follows from Lemma 2 that ¢ is a computable enumeration of family ok .

T
We denote by A, the set of numbers which acquire ~Z -successors during the construction process.
(Here i=s2 .)

4
LEMMA 8. I A’ is a finite set for all « <~ ,then A, is also a finite set.

/

Proof, Assume that Ay is infinite, Let 8,< 8,<...< S;<... be an infinite sequence of all steps such
that, on step s; , some number 2Zx; acquires an~/-successor y. . Then, on each of the steps S; case
1 of half-step 1 prevails with (s),=~ . This means that X, is a g.r.f. and that, at step S, , the list
contains no pairs with mark . Let ¢ be the largest element of set ¢/ /1:' which, by hypothesis, is

KRerr
finite. (If & A4 :: & wethenset z =0.) There exists Z, suchthat Zx; >z when :-Z (since each
sy

number acquires an 7/ -successor no more than once), Number 2Zx; can lose its n7/ -successor Y
only in acquiring an m2 -successor, with /<~ . This means that the numbers 2x; , for 2 > Z,,

do not lose successor y, (since a number greater than ¢ cannot have an ~72 -successor with ~<~z).
Then Cox= Vy: for >z . But z.=<¢ since an n7/-successor is always chosen as the least ~/ -free
number, This means that 'ZZX£= V; for 2>z, . Let 7‘((7:) = Zx; . It is clear that L) is ag.r.f.
v, = tf (i) for ¢ >2,, which means that V<2 . We now prove that € =, ., forall x . Assume
that 7 #x X, (x) for some x . There exists y suchthat ye (7, 4 M e Then, there exists a
step s’ such that xegz.,': and ye(c 4 /uz"%’(x) ) forall s>s’

The pairs with ordinal numbers less than the ordinal number of pair (X, y) are of finite number,
Each pair falls on the list of pairs having mark no more than once, From the fact that, on all steps
s; , there are no pairs on the list with mark , it follows that pair ( x,y), in the final analysis, falls on
a list having the mark . But then, it will never be expunged, since y ¢ T, /7 4z, (xy» SO that the list

will henceforth always contain a pair with mark . We have obtained a contradiction. This means that
Z=Hq (x) for all x ., Then z<x (x, isag.r.f.). Thus, V<% <,¢, butthiscontradicts the condition

lad 7
of Theorem 1that v £ « . This means that A . is a finite set, Lemma 3 is proven.

LEMMA 4, 4, is a finite set.

Proof, Follows immediately from Lemma 3.

LEMMA 5. I A: is a finiteset for all «x<~ , then ,4: is also a finite set.

2

Proof. We assume that 4, is an infinite set, Then, there exists an infinite sequence of steps
8,<8,<...< 5, <... , such that, on step S; , some number Zx; acquires the ~Z -successor ¥; . This
means that ¥, is ag.r.f. Let z be the greatest element of set th ,4; , which is finite by hypothesis.

(It UA,: = & we then set z=0 .)
K&

We can find z, suchthat 2x;>z when ¢>Z, . Let Z be some even number z>%, gepx, . Z
cannot have an ,n/ -successor with m« 2. From the method of ascription of an ~2 -successor {(cf. case 1
of half-step 2) it is clear that such a # necessarily acquires an »2 -successor. We define function / %
as follows:
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1) Z=2x+7 . Then, £%) = x.

2) ¢ iseven, Z&¢, ZepZ, . There exists a number g, ,suchthat 7, —wa, . We set
£ = ay, .

3) # iseven, Z>2, fe pX, . Then Z , during the construction process, obtains, and does not

subsequently lose, ~2 -successor 4, . We set £(£) = { . Itis clear that 1{({,) is a p.r.f.,
3= px, ,and g=pudd) for Ledf.

We now prove that V=2, (x) for all x . Assume that v, #C, 0 for some x . Then, there

x
exists a number z suchthat ye (V,4 Tx, (v )- We can find a step s’ such that xe d‘x and

ye(v:7'az, Z: i,y forall s >s’/ . No pair of numbers can occur more than once on the list of pairs with

the mark - The pairs with ordinal numbers less than the ordinal number of the pair (x, y) are of
finite number. But, case 1 of half-step 2 for (8), = ~ occurs infinitely many times, since A,L is in-
finite, This means that pair (x,z) will, in the final analysis, occur on a list having mark [z2] . But

then it will never be thenceforth expunged, since y¢Z, ,,,/7, . This means that case 1 of half-step 2

no longer holds for (8),=/ . We have obtained a comtradiction. Consequently, v,= Tz (x for all x .
Moreover, we have proven that 7, = uf(#) for all Zepz, , where £4) is ap.rd. Then, V=

z, ﬂfx (x) for all x , with 7( %, being a g.r.f. This means that v <. , which contradicts

z (%
Theorem 1. Therefore, A,f’ is a finite set. Lemma 5 is proven.

LEMMA 6. Set A,‘ is a finite for all ~ and < .

Proof. Lemma 6 is proven by induction on » . Lemma 4 provides the basis for the induction, while
Lemmas 3 and 5 provide the inductive step.

LEMMA 7. u<c.

Proof. E is clear that w< z . Since €(2Zxts)= 4 (x) by construction, It thence remains to prove

that z‘,l Moo Let Z, beag.rdf. We now prove that Zz, does not lead enumeration = to x . By Lemma
6, the set /4 is fmlte. This means that, after some step §, , no number will obtain an ~/ -successor.,
Let 5<s,<...<5<... be all the steps suchthat s;>s,, (S;), = ~ and, on step s; , half-step 1 occurs. This
sequence is infinite since %, is a g.r.f. Then, case 1, half-step 1, does not occur on step S; since no
number can obtain an 27/ -successor on a step S5;> S, . This means that, on each step 5, , on the list

of pairs there is a pair (x,z) with mark . Moreover, on all the steps S; it is the same pair, since

a new pair with the mark can occur on the list only when case 1, half-step 1, occurs. But this means

. Sp— i Spg—1 : s
that, for all 7, yec /41}.\“).. It follows from this that ye ¢, Afly xy 2 180 Ty T fly )

Lemma 7 is proven.
LEMMA 8, v £¢.

Proof. Let Z, beag.r.f. We then prove that z, does not reduce v to z. X px 7 {2x/xeN}
is finite then %, does not reduce v to  since 7 (Zx+/) = w(x),while V¢ . Let px, n{2x/xeN}

be infinite. Set A is infinite by Lemma 6., This means that, after some step §, , no number can ac-

quire an ~Z2 —successor (case 1 of half-step 2 does not occur with (s, = ~ ). The set ¢ Am is also
M&rt

finite. Therefore,there exists an infinite sequence s, < s,<...<S;<...such that the following conditions
hold for all ¢ : on step s, half-step 2 occurs with (s;),=r., $; >S5, and on step s, there exists
number 2x suchthat Z2xe jaz:‘ , 2x does not have an nZ -successor, and 2x does not have an m7 -
successor with < . If, with this, case 1 of half-step 2 were to occur, then some number would acquire
an ~2Z-successor on step s;>s, , which is impossible. This means that pair (x,y) with mark (2] is
on the list at each step s; . Furthermore, it is always the same pair, since a new pair with mark
can occur on the list only when case 1 of half-step 2 occurs with (s),=»n . This means that ye

s -7
{ v' ;, (x) Z, (X)
Lemmas 7 and 8 complete the proof of Theorem 1, Theorem 1 is proven.

) forall £, Then yev, 4 ‘an 0 e V oz . Lemma 8 is proven,
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COROLLARY 1. If family of r.e.s. ¢ has two nonequivalent computable enumerations, it then has
infinitely many pairwise nonequivalent computable enumerations.

Proof. Let there be two or -enumerations v and «, V4 s . By Theorem 1 there exists an o -
enumeration ¢ suchthat x«<z , v¢ ¢. By enumerations v and 7 we can now construct an enumera-
tion 2, suchthat z< €%, . v# ¢ . By continuing in this way, we obtain an infinite sequence of enumerations
pe<f<C<..<g <. and V€, v, v, forall « . Corollary 1 is proven.

COROLLARY 2, If family ¢ has a principal enumeration v then, for each nonprincipal computable
ok -enumeration 4 , there exists an ¢ -enumeration ¢ suchthat p<z<v.

Proof. B suffices to apply Theorem 1 to the enumerations v and .
Yu. L. Ershov pointed out that Theorem 1 has

COROLLARY 3 ([1], corollary). For each noncreative r.e. z -th power "a" there exists a non-
creative r.e. /. -th power "4 ® such that z-4 .

Proof. The upper semilattice of r.e. ~ -th powers £ isisomorphic,as is well known, to the upper
semilattice £ (c¥) of computable enumerations of the family ot ={§, {+}}.

Z (and, this means, also 4, (¢¥) ) contains a greatest element, Corollary 3 then follows immediately
from Corollary 2. The following questions remain open:

1. Do there exist noneffectively discrete [2] families of r.e.s. with unique computable enumerations?

2. If the answer to the first question is affirmative, how is one then to describe the family of r.e.s.
having the unique computable enumeration ?

In conclusion, the author would like to take this opportunity to thank Yu. L. Ershov, L. A. Lavrov,
S. N. Kallibekov, and all the other participants in the seminar *Enumeration Theory" of the Siberian
Branch of the Institute of Mathematics, Academy of Sciences of the USSR, for their useful comments on
the present work.
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