INDEX SETS OF DEGREES OF UNSOLVABILITY

S. Kallibekov UDC 517.11:518.5

In the theory of recursive functions recursively enumerable sets are classified by various methods.
One of the fundamental classification methods is partitioning these sets into equivalence classes (degrees)
according to reducibility type: Turing (T-) reducibility, truth table (tt-) reducibility, many-one (/72 ) re-
ducibility, and one-one (1-) reducibility [3, 4]. The complexity of such classes of recursively enumerable
sets is in a certain sense characterized by their index sets (more accurately, by the recursive isomorphism
type of their index sets) with respect to the principal computable enumeration (the Post enumeration),
which is uniquely defined up to recursive isomorphism. The index sets of the classes of recursively enum-
erable sets corresponding o a given recursively enumerable degree of unsolvability and recursively enum-
erable m(¥Y-degree are studied in [1, 2, 9].

C. Jockusch studied some relationships between these reducibilities in [8] and posed some questions.
In particular, he asked if any recursively enumerable degree of unsolvability contains an infinite family of
pairwise /m -incomparable recursively enumerable 7t -degrees (an antichain). Previously Yates [2] had
proved that in a complete degree there exists an infinite antichain of recursively enumerable rz -degrees
which are represented by maximal sets. Lerman (7] strengthened this result for recursively enumerable

14
degrees # such that {f = 0”

In this note we prove a theorem from which follows characterizations of the recursive isomorphism
types of index sets of classes of recursively enumerable sets corresponding to a given recursively enumer-
able degree of unsolvability [1, 2]. Our theorem differs somewhat from Yates'. In the proof we use an ef-
fective method for constructing a recursively enumerable set which is Turing incomparable with the given
recursively enumerable, nonrecursive, incomplete set. This method eliminates the application of the re-
cursion theorem to prove the effectiveness of the existence of such a set and gives the recursive function
asked about in [5], p. 69. Using the characterizations of the reflexive isomorphism types of recursively
enumerable sets corresponding to a recursively enumerable r@##)-degree [9], we deduce from the theorem

that any recursively enumerable degree of unsolvability '5: such that 23 ( 5)2/7j contains an infinite

antichain of recursively enumerable /(ZZ) -degrees. From this we obtain a negative answer to one of
Rogers' questions ([4], Sec. 9.6): does every recursively enumerable degree of unsolvability contains a
recursively enumerable £ -degreewhichis maximal among all of the recursively enumerable Z7 -
degrees contained in this degree of unsolvability ?

Let A be any recursively enumerable set. Consider the classes of recursively enumerable sets
A= |RIR=,A4}, #={R|R< A}, £,=|R|A< R} and A={R|R{ A, A#£, R} . Denote the index

sets of these classes by C@), G(=a),G(=a) and G(1a) respectively; here @ is the Turing degree of A4 .
The fundamental definitions and upper bounds for the recursive isomorphism types of the index sets under
investigation can be found in {1-4] and {9].

PROPOSITION 1. There exists a recursive function # such that if 7, is a recursively enumerable,
nonrecursive, incomplete set, then 7 ) is a recursively enumerable set which is Turing incomparable
with 7

e

The proof of this proposition is contained in the proof of Theorem 1.
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THEOREM 1. Let A be any recursively enumerable, nonrecursive, incomplete set and let # be
any recursively enumerable degree such that the degree of A is less than or equal to f . Let S be any

setin & 3 ( f) . Then there exists a uniformly recursively enumerable sequence of recursively enumer-
able sets {Bx}xe/\f such that for all « :

keSS ===> B, has degree %;

Kng =8, and A are incomparable.

Proof. Let {L xe} «een Dbeauniformly recursively enumerable sequence of recursively enumer-
able set, uniformly of degree < 3 » such that for a given « andfor every ¢+, ./, . nLKJ-=9f,LKL—
and £ « are recursively separable, and for all « :
«eS => (Fe) [ L., has degree ;4&, (\9’< e) [ /,K/. is recursivel];
K#S = (ve) E”L-«e is recursivel. '
(Such a sequence is constructed in {1], Lemma 4.)

Let L' = UL,; forall ~e . Then we have
xe  ice J

KES = (_5’8 )[(V/o e ){Z,; has degree ’;J 3
& (V/< e)[L:. is recursive]].
K ¢ S = (Ve )EL:e is recursive].

L 3
Now we transform the sequence {Lke} into a sequence of embedded recursively enumerable sets,

M2 KM, 2K, 2M , 2K 2. ..

where every K : ( {=012,..) is a creative set and every M «; (L=07%2,...) is arecursively enum-
erable set which is /m -equivalent to L:i . Fix some method of enumeration {Mzi} ;e 2nd some gen-
eral recursive functions 9y &=0,7,... , which enumerate the creative sets A7 without repetition. In
general we may assume, although this is not necessary, that every 4., . e=0,72,... , andtherefore
also :; { Ak’xe) can be enumerated without repetition, since Z’xe' is an infinite set for all ee V.

The construction of a set 5/< is carried out stepwise for a given & . We have two copies of the

natural numbers, the A -copy and the & -copy. In the construction we use the signs ’ , z,' é=01,... ,
ordered as follows:

@y? @Z’Izlf»@(!r,' i"" (1)

The signs (8, are placed at numbers in the A -copy and the signs [&), at numbers in the B -copy. Let
& (%) be a recursive function enumerating all pairs of natural numbers, where every pair is enumerated
infinitely many times, and let &7 be a recursive function of large range.

Let 3.=¢.
*
Step 2% . Make ZZ steps in enumerating every LKZ.,L'@ZL‘, and place the sign B], at ¢ in
the 4 -copy.

Suppose s(l)=<z, ¥>, e=.~na:::{x, y} and the sign [&] , is at the number .7 in the A -copy.
Enumerate

L“Z’f %12
£ = u|@reed) ™ (y.z,v)},
B:é-f P .
RE ={ul@v<zH)T* (e,uv)}.
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By a well known property of Kleene' s 7,' ~predicate these sets are finite. If they differ from A\ AZ’“L

¢~/
on the segment {0,7,...,1}, set 5 = B, and proceed to step 2¢1/ . If at least one of the sets
2¢~1
coincides with A\ 4” on {0, n} , set 5 —JS £ U/V/é‘f , shift the sign [£], to the number

n+7 andproceed to step 2Z+7 .

*
Step 2Z+7/. Make 2¢+7 steps in enumerating every Z,;, ¢ & 2¢ + 7, and place the sign 7 P
at 0 inthe A -copy. Suppose £(C)=¢ and the sign €, is at ~z inthe 5 -copy. Enumerate

zz!+/ Azz‘+/
/Z = {ul@v<2t+07, (e,u, ).
2¢
1 2¢

If this set is distinct from AW B, on {O,f,u-,m} , set B"ﬂ B, and proceed to step 2Z+2 . If
PA% oincides with N\Bjt on {0,/ .}, set Bzf-k/ B UK , shift the sign @2 to m+7 ,
and proceed to step 2¢Z+2 .

Let B, t;t éé B,f . Then B, is a recursively enumerable set.

LEMMA 1. If all the L:. J < €, are recursive, then all of the signs L—ZL and mz are
shifted a finite number of times.

Proof. The proof is by induction on the sequence (1). Let [Z} . €€€, , be the first sign in (1)
which is shifted an infinite number of times. We will consider the cases L—/ and =2 .

Let Z= /. Consider the step L‘U up to until which all of the signs preceding , in (1) have
been stabilized. Then it is clear from the construction that B, 2 ¥, and B M, is afinite set.

* —
Since all of the Z,,;., jse , are recursive, all /; La‘, X,y <€ are distinct from A, and therefore there

exists a step s,(e) such that forall s= Sye) ,
L5 L*
kx =0 “ y
~ n{o ...z l=4,"N {o.4...,2,)
— 4
for all v < e, where {0, /,...,ne} is an interval on which A is distinct from all AP%k= LY<E .
14

Moreover, there exists a step s, (€/, such that for all s=s ce) ,
(WA n o =An{o+4,..., 7,
{ ,/,-,,,fze} PRI ] el

Let Z, zmax {S,(),s,@,4,} . on subsequent steps 24(¢2Z) such that o(l)=<x,y>, mazxix,yj=e
the sign (& ; is shifted only when the set ,D “ coincides with A/\A on an initial segment of the
natural series, and therefore these sets will coincide on an arbitrarily large segment of the natural series.

So A= /g 8 . But we observed above that 3, and M are distinct on a finite set. Therefore, &

< 18

recursive. Consequently, A is recursively enumerable in the recursive set B, and must itself be re-
cursively enumerable, which is impossible.

Let =2 . Consider the step f up until which all of the signs preceding Z in (1) have been
stabilized. Then it is clear from the constructmn that @{ =2 K, and 5 \K, isfinite. Further, the
sign @ 2 1is shifted only if N \5 and P coincide on an initial segment of the natural series, so

BK . We noted above that 5, and K, are distinct on a finite set, and therefore 8 o - 1s creative.

At the same time the complement of 5, is recursively enumerable in the incomplete recursively enumer-
able set A , which is impossible. This proves the lemma.
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To complete the proof of the theorem we consider two cases.

*

Case 1. K is an arbitrary fixed number, «gS. Then (Ve) L L_e is recursivel, and therefore
by Lemma 1 all of the signs [&],, =42, e=0,7... are stabilized. Now we claim that xSk#rA and
Ag B, . y

Suppose B,s,.A and B=F, . Let /Mg be the final position of the sign [£]
a step s(€) such that for all s$=25Sce) ,

7 There exists
s —
(N:Bk)n{oj, conmgy=B8.7{04...,m ¥,
A A
Bl 0ty mey = Al A (0 )
Let 2S+7/ (S25(€)) be a step such that £(S)= € . Then on this step we will have to shift the sign g,
This is a contradiction.

— s,
Now suppose A< B, and A=Pe . Let n, be the final position of the sign [€], . There exists
a step s such that for all s> 5@,

(N\As)n{o,/,,,,,ne} = An{o7,...,7.},
s

4 8
R nfort...n =R Ao, ....ne).

Suppose step Zs+7 (S» s(e)) is such that &(s)= <z, y>and e=max [:r;yj. Then onthis step we will have
to shift the sign [E, . This is a contradiction. Thus K¢/S=>»4 and B, are incomparable.

Case 2. K« is an arbitrary fixed number, «€S. Then Gea)f(\?,’o =e,) C L:P has degree
— »*
£1 &(Y/< eD)EL‘; is recursivel]. Then A is recursive in every ZKP,/);/;, ilet g(p) be the smallest
_— *
g suchthat A= /;z’kP . Suppose max { €0,g(eo)j= g,z¢, . Itis clear from the construction that the

sign 1 is shifted an infinite number of times. Let , be the first sign in (1) which is shifted an
infinite number of times. We will show that B, and A/, are distinct on a finite set. It is clear from
the construction that 3,2 My,  Moreover, it is clear from the proof of Lemma 1 (the case ¢=2 )
that if every sign 5' e<é¢,, =172, and the sign @, are stabilized, then the sign @z is also sta-
bilized. This means that every sign in (1) up to 7 is stabilized, i.e., B “M,.- is a finite set. Thus
x€S =8 has degree # . This concludes the proof of the theorem.

From the theorem and the corresponding lemmas in [1, 2], we obtain the following corollaries.
COROLLARY 1 [1]. Let f be any recursively enumerable degree. Then G(f)e Z'j (f) and G'(f)
has the smallest recursive isomorphism type possible for sets in Z,( f) . Therefore, & ( f)e 2 3
(f) \ /73 (f) .
COROLLARY 2 [2]. Let # be any recursively enumerable degree, f< 0’. Then C(< f)e 3, (F)

and &' (& f) has the smallest recursive isomorphism type possible for sets in &, f) . Therefore,
G & PeT(H TP .
COROLLARY 3 [2]. Let # be any recursively enumerable degree, # >0 . Then Gzpex,

and G (= f) has the smallest recursive isomorphism type possible for sets in b 4 Therefore,
] I
G(Zfezé\,44 . ' ]
COROLLARY 4 [2]. Let % be any recursively enumerable degree, O < f<0' . Then G (If)€ 1,

and G(|#) has the smallest recursive isomorphism type possible for sets in /7, .  Therefore,

Gl flellNZ, .
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Let p{ be any recursively enumerable degree of unsolvability. We wish to find the recursive iso-
morphism type of the index sets 5 (< F=G(= f) \ G’(f) and G’(>/)= 6’(3/)\5(/) . I f=0 ,then
GEg)=3 and G>0)/] and G(>0) has the smallest recursive isomorphism type possible for sets in

7. I pf=0f then G(>0’)=¢ and G@O’)e/‘é and G (<0” has the smallest recursive isomorphism

type possible for sets in the class ,’74 . Therefore, the case ¢« f <0 is the interesting one. It can
easily be shown that if S is any set in Z_, { f) , then Sé} G(<#) and g.s.,G’ « f} . Correspondingly,

for G(> #),if S isanysetin X, , then g&,G(;»f) and Se.’-.yCv'(>f) . In order to characterize the
recursive isomorphism type of these index sets precisely, we will prove the following propositions.

PROPOSITION 2. Let % be any recursively enumerable degree of unsolvability, 0O« /< o’ . The

pair of sets <(G(g f),G’(f)> is an 7z -universal pair for pairs of sets <S,S,> such that .5 2.5
and ,S,35,€Z.(F).

_]?_ro_of_. By Theorem 1 of [5], Sec. 6, there exists a recursively enumerable degree f; < f and
f,’= f ’ . Fix such a degree f, . Now we construct a computable sequence of recursively enumerable
sets {E,:} for .S, such that for all «< ,

kS, => 3/ has degree f ;

ke S, = BK' has degree < f , but greater than or equal to '/;, (see the proof of Theorem 2

in {1]). Further, for 5’0 we construct a computable sequence of recursively enumerable sets {BKO} s <5,
such that for all «,

g
€ S, B, has degree %, ;
KE S, B; has degree incomparable with 'f, and f .
/
We may assume that 3: and Eg are recursively separable for any « and £. Now define a computable

sequence of recursively enumerable sets {DK} , setting JJK=_8:U 5}: . Then for any « ,

KE,S; ==>_DK has degree a{,=%,
K € So\ ,gf:-:gﬁk has degree af(<f,
K ?’ ,S'ozzg_ﬂl< has degree Q/K#f

Now it is obvious that the recursive function f such that 'D/<=' 73 s reduces the pair <SD,S,> to
the pair < (< £, Gp)>.

COROLLARY. Let f be a recursively enumerable degree such that O« f< 0’ . Then the set

G(< f) is recursively isomorphic to the set .-rzj;, (G’(f)) where myA is an /m -jump with respect
to A (see [6], II) and A has degree f” .

Remark. Let ¢ be any degree of unsolvability such that c > 0" and c is recursively enumerable
in 0" . As noted in [1], Theorem 6, C can be represented by either of the index set G(<#) or G(f)
for some recursively enumerable degree /- ; we may also assume that J< f< 0. Then the index set
G« f) can also be represented by the degree C , which has another (higher) isomorphism type.

PROPOSITION 3. Let f be a recursively enumerable degree such that o< f <o’ . The pair of

sets <G5, G(f)> is an s -universal pair for pairs of sets <S,,8,> , such that .5 = &S, and
S,eX,,SeZ,(f) .

The proof is completely analogous to that of Proposition 2.
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COROLLARY. K f is a recursively enumerable degree, f< o’ and /Qa’f then the set &( >f)
is recursively isomorphic to mj; (G /}) where A has degree f ”,

As an application of the above results and those obtained in [9], we prove the following theorem.

THEOREM 2. Let f be a recursively enumerable degree of unsolvability such that 2, H=77, .

Then if a,.8,,...,&, are m(¢?) -incomplete recursively enumerable 7z (ZZ)-degrees contained
in 7’ , there exists a recursively enumerable ~1(¢%)-degree &pys which is /7 (¢%) -incomparable
with every ay, ez,

Proof. We will consider two cases. Let f be an incomplete recursively enumerable degree of un-
solvability as in the hypotheses. Let A, A, Az""’A/z represent the recursively enumerable m2(%4Z) -

degrees &,,4 ,...4, respectively. Note that none of the A; .{<n is recursive or M (ZZ) -complete.
Consider the set S'= F(€«&,)UG(2&,)uG(«,)uG (> a)u... vG(«a, vGEa). Then,

ge EJ and §e/§ (see [9]). By Corollary 1, 54,G(f) , while Sé,O’(!f) (see the proof of Theorem
1). Let f be a recursive function effecting this reduction. By the recursion theorem there exists 2 num-

ber 4, suchthat % oy ﬂ',‘a . Now «, ¢.S since the indices of recursively enumerable sets which are
m(¢¢) -comparable with at least one Ay, £</z map into indices of sets which are Turing incomparable

with every Az-, i< ~n . Therefore, Koeg and f(Ka)éG'(f} . This means that the set An+f=

= ﬁz: ﬁﬂ%) has degree of unsolvability f but has ~(¥Z) -degree 4, , » which is m(¢¢) -incom-
parable with every &, .Z<s .

Let f= 0. Consider the set J,= G (#&,)0G(24)U..UC(>&,) . Then .5,€Z, and S,€/]

By Corollary 1, @4,0’ (07 . Let f be arecursive function effecting this reduction. Again by the

recursion theorem there exists a number x_ such that Tpoey ™= 72. Now xa,(sa , since the elements
(4

of 8, map into elements of G’(< 0'). Therefore, Koega and f(,ea) €0}, ie., the set D=
ﬁf(l::f 7., has degree of unsolvability ©7, but the ~(#Z)-degree d of D is such that a,z.a;{a( for
all Z</2 . Here we cannot assert that d;{d.i ,t< 72 . Therefore we construct a recursively enumerable
set C such that J@C is m(ZD -incomparable with every AL- , TS 2.

The m(£%)-degree of the set A, =~2@C will also be the required m(fy -degree &,4, - It
is clear that A,;, has the Turing degree O’ .
Here we will confine ourselves to a short description of the construction of €. Let = {2x|reD}

z

and %EKEM,QKYQ“' be a computable sequence, where Ma={2:x+//xe/v} , every M, is an infinite
recursive set, and Ki is creative, /=g7,.-.; {5—’; } be a computable sequence of graphs of all partial

recursive functions in one variable.. The construction is carried out stepwise. On the even steps every
A;,ten is m(cZ)-irreducible to Z,uC by the defined function %> on some initial segment

{0,1,...,9’} ,»if % 1is completely defined on this segment at the end of this step. For this we use the re-
cursive set A4, . Conversely, on the odd steps /m(ZZ) is not ZJ, ¢C -reducible to any Ai , L€ sz by the

defined function e on some inftial segment {o /,...,"l} , if % is completely defined on this segment at
the end of this step. For this we use the creative set K, .

COROLLARY 1. K f is a recursively enumerable degree of unsolvability such that 2 7] ( f)a /73 N

then this degree contains
a) an infinite antichain of recursively enumerable s~ -degrees;
b) an infinite antichain of recursively enumerable ZZ -degrees.

Proof. The proof is by contradiction. Let &,,&,,.-»&, be m(fZ) -incomparable recursively
enumerable /71(¢7) -degrees contained in f . Apply Theorem 2. Then &, , is recursively enumerable
/m(¢¢) -degree contained in # and ,7(4¢) -incomparable witheach &, ,Z< .
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COROLLARY 2. If # is a recursively enumerable degree of unsolvability such that 23( f);’fz
and f‘a o’ , then this degree does not have

a) a recursively enumerable /7t -degree which is maximal among all recursively enumerable = -
degrees contained in f;

b) a recursively enumerable Z#¥ -degree which is maximal among all recursively enumerable Z%¢ .
degrees contained in f .

Proof. The proof is by contradiction. Let &, be a maximal recursively enumerable /77( #) -
degree contained in f . Apply Theorem 2 to find a recursively enumerable /71(Z%)-degree d, which
is /m(£Z) -incomparable with &, . Now &,@4d,= &, is an m(¢£) -degree which is contained in #
and clo‘d,z

Part b) of Corollary 2 answers one of Rogers' questions ([4], Sec. 9.6). Note that the proof of Corol-
lary 2 shows that a recursively enumerable degree of unsolvability f such that 23 (/).?. }Z and fqy:

has an infinite chain of recursively enumerable m(Zf) -degrees.

In conclusion, the author wishes to take the opportunity to express his warm thanks to Yu. L.
Ershov for his continuing attention and useful advice.
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