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In the theory of r e c u r s i v e  functions r e c u r s i v e l y  enumerab le  se t s  a r e  c l ass i f i ed  by va r ious  methods .  
One of the fundamental  c lass i f ica t ion  methods  is par t i t ioning these se ts  into equivalence  c l a s s e s  (degrees) 
according to reducibi l i ty  type: Tur ing  (T-) reducibi l i ty ,  t ru th  table (tt-) reducibi l i ty ,  many -one  ( r a )  r e -  
ducibili ty,  and one-one (1-) reducibi l i ty  [3, 4]. The complexi ty  of such c l a s s e s  of r e c u r s i v e l y  enumerab le  
se t s  is in a ce r ta in  sense  c h a r a c t e r i z e d  by the i r  index se t s  (more accura te ly ,  by the r e c u r s i v e  i s o m o r p h i s m  
type of the i r  index sets)  with r e s p e c t  to the p r inc ipa l  computable  enumera t ion  (the P o s t  enumera t ion) ,  
which is  uniquely defined up to r e c u r s i v e  i s o m o r p h i s m .  The index se t s  of the c l a s s e s  of r e e u r s i v e l y  e n u m -  
e rab le  se t s  cor responding  to a given r e c u r s i v e l y  enumerab le  deg ree  of unsolvabi l i ty  and r e c u r s i v e l y  enum-  
e rab le  rn (~ ) -deg ree  a r e  studied in [1, 2, 9]. 

C. Jockusch studied some  re la t ionsh ips  between these  reducib i l i t ies  in [8] and posed s o m e  ques t ions .  
In pa r t i cu la r ,  he asked  if any r e c u r s i v e l y  enumerab le  degree  of unsolvabil i ty  contains an infinite family  of 
pa i rwise  r r~- incomparab le  r e c u r s i v e l y  enumerab le  m - d e g r e e s  (an antichain).  P r ev ious ly  Yates  [2] had 
proved  that in a comple te  degree  there  ex is t s  an infinite antichain of r e c u r s i v e l y  enumerab le  rr~ - d e g r e e s  
which are  r e p r e s e n t e d  by m a x i m a l  se t s .  L e r m a n  [7] s t rengthened  this r e su l t  for  r e c u r s i v e l y  enumerab l e  

deg rees  2¢ such that ~/__. O,t 

In this note we prove  a t h e o r e m  f r o m  which follows cha rac t e r i za t i ons  of the r e c u r s i v e  i s o m o r p h i s m  
types  of index se t s  of c l a s s e s  of r e c u r s i v e l y  enumerab le  se t s  cor responding  to a given r e c u r s i v e l y  ChUrner- 
able degree  of tmsolvabil i ty  [1, 2]. Our t h e o r e m  differs  somewhat  f r o m  Y a t e s ' .  In the proof  we use  an e f -  
fect ive  method for  const ruct ing a r ec t t r s ive ly  enumerab le  se t  which is Tur ing incomparab le  with the given 
r e c u r s i v e l y  enumerab le ,  nonrecur s ive ,  incomple te  se t .  This  method e l imina tes  the appl icat ion of the r e -  
curs ion t heo rem to p rove  the e f fec t iveness  of the ex is tence  of such a se t  and gives  the r e c u r s i v e  function 
asked about in [5], p. 69. Using the cha rac te r i za t ions  of the re f lex ive  i s o m o r p h i s m  types of r e c u r s i v e l y  
enumerab le  se ts  cor responding  to a r e c u r s i v e l y  enumerab le  r n ( ~ ) - d e g r e e  [9], we deduce f r o m  the t heo rem 

that any r e c u r s i v e l y  enumerab le  degree  of unsolvabil i ty ~ such that ~ J  (~)M/73 contains an infinite 

antichain of r e c u r s i v e l y  enumerab le  r r ~ ( ~ )  - d e g r e e s .  F r o m  th is  we obtain a negative answer  to one of 
R o g e r s '  quest ions ([4], Sec. 9.6): does eve ry  r e c u r s i v e l y  enumerab Ie  deg ree  of unsolvabi l i ty  contains a 
r e c u r s i v e l y  enumerab le  55 -deg ree  which is  max ima l  among all  of the r e c u r s i v e l y  enumerab l e  ~ - 
degrees  contained in this degree  of unsolvabi l i ty?  

Let  A be any r e c u r s i v e l y  enumerab le  se t .  Consider  the c l a s s e s  of r e c u r s i v e l y  enumerab l e  se t s  

tzlZ  A} ,  rlzlz  , l z  . Denote  the index  

se t s  of these c l a s s e s  by GCa), G~(~cZ),G(~cz) and G0cZ), r e spec t ive ly ;  here  cz is the Tur ing degree  of A .  
The fundamental  definitions and upper  bounds for  the r e c u r s i v e  i s o m o r p h i s m  types of the index se ts  under 
invest igat ion can be found in [1-4] and [9]. 

PROPOSITION 1. T h e r e  ex i s t s  a r e c u r s i v e  ftmetion f such that  ff ~-e is a r e c u r s i v e l y  enumerab le ,  
nonrect t rs ive ,  incomple te  se t ,  then ¢r/ce) is a r e c u r s i v e l y  enumerab le  se t  which is  Tur ing incomparab le  
with ~T e . 

The proof  of this propos i t ion  is contained in the proof  of T h e o r e m  1. 
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THEOREM 1. Let  A be any r e c u r s i v e l y  enumerab le ,  nonrecurs ive ,  incomplete  se t  and let  ~ be 
any r e c u r s i v e l y  enumerab l e  degree  such that the degree  of A is l e s s  than or equal to ~ . Let  N be any 

se t  in ~ (~) . Then the re  ex i s t s  a uniformly r e c u r s i v e l y  enumerab le  sequence  of r e c u r s i v e l y  ChUrner- 

able se t s  I ~ } ~ N  such that  fo r  all  ~ : 

~ E g  : .~ ~ has degree  ¢; 
~ ¢ S  ) z ~  and A a re  incomparab le .  

Proof .  Le t  I/~e}~;e~N be a uniformiy r e c u r s t v e l y  enumerab le  sequence  of r e c u r s i v e l y  e n u m e r -  

able se t ,  uni formly of degree  -.< f ,  such tha t  fo r  a given x and for  eve ry  g=fi~ ,zS~imL~cj=~,Z,~g 

and L ~ j  a r e  r e c u r s i v e l y  sepa rab le ,  and for  all  t< : 

x ¢  S ~ (Ve) [ Z~g e is  r e c u r s i v e l .  

(Such a sequence  is cons t ruc ted  in [1], L e m m a  4.) 

Let L~e* "~-j~eb/L~.'7 for  all  ~ ,e  . Then we have 

¢ s --> ( w ) E L : , "  

Now we t r a n s f o r m  the sequence  {L~e } 

is r ecu r s ive ] ] ;  

has degree 

is reCu~ive ]], 
is recursive ] .  

¢3s  

into a sequence of embedded  r e c u r s i v e l y  enumerab le  se t s ,  

where  eve ry  K i (C=~I,2,,,..) is  a c r ea t i ve  se t  and e v e r y  /V]~g ( £ -- O, ¢,2 . . . .  ) is a r e c u r s i v e l y  enum-  

e r a b I e  se t  which is  rrz -equ iva len t  to L ~ ~i " F ix  some  me thod  of enumera t ion  {/V/~Z} Ze/¢ and some gen-  

e r a l  r e c u r s i v e  functions ~ . ,  g=0,,,, . . .  , which e n u m e r a t e  the c rea t ive  se ts  /(g without repet i t ion.  In 

genera l  we may  a s s u m e ,  although this is not n e c e s s a r y ,  that e v e r y  LKe , g-- 0,,'.2,... , and t he re fo re  

also Life ( , g  g e)  can be e n u m e r a t e d  without repet i t ion ,  s ince Lja e- is an infinite se t  for  all e e  N .  

The cons t ruc t ion  of a se t  3 <  is c a r r i e d  out s tepwise  fo r  a given /<. We have two copies of the 
natural  numbers ,  the ,4 -copy  and the 3 - c o p y .  In the const ruct ion we use the signs [-[]~ , [ ~ ,  e=O, ¢, . . . .  
o r d e r e d  as follows: 

, IN; , I N , .  IN. , , . . .  (1) 

The signs ~ a r e  placed at number s  in the A -copy and the signs [~z  at numbers  in the B -copy.  Let  
(g) be a r e c u r s i v e  function enumera t ing  all pa i r s  of na tura l  numbers ,  where every  pa i r  is enumera ted  

infinitely many t imes ,  and le t  C(~) l~e a r e c u r s i v e  function of l a rge  r ange .  
o 

Le t  ~ - - - -  ~ .  

Step Z~ . Make 22  s teps  in enumera t ing  eve ry  L2f , g,<Z~, and place the sign [~ ,  at 0 in 
the A - c o p y .  

Suppose ¢ (g )=  <:c , / /> ,  e~-~-,a:r  tzv,~/J and the sign ~ I  is at the number  .z in the /4 -copy.  
E n u m e r a t e  

~: U)} , 
YB ~ ~-/ B 2 e-t 
e 
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at  0 

By a well  known p r o p e r t y  of K leene ' s  ~ -p red ica t e  these  se t s  a r e  f ini te .  If they di f fer  f r o m  ,a/x A z~ 

on the s egmen t  {0,'I . . . . .  ,,'z], se t  L3 z~ z t - f  x ---" ~ and p roceed  to s tep £~+ t  . If at l e a s t  one of the se t s  

coincides with A/x.4 zW on tO, f, .... /z~ , se t  x¢ = z ~  / ~ e  , shift  the sign F-el~ to the number  

, ~ + t  and p roceed  to s tep 2 ~ + ~ ' .  

Step 2 i f + /  . Make 2 ~ + f  s teps  in enumera t ing  eve ry  Axe-, c ' ~  ~ q -  f , a n d p l a c e  the sign ~ z  

in the ~ -copy .  Suppose d~(Z)~-~ and the s ign gZ is at ~ in the 2~ -copy.  E n u m e r a t e  

A zt~~ A 
= 

If this s e t i s  dis t inct  f r o m  A/, /~< on lO,,¢,...,,,',zJ , se t  z~  ~ B ~  and p roceed  to s tep 2dq-2 . If 

p A~ ' '  coincides with , a / \ 2~  ¢~" on to,¢, . . . .  /-~] se t  ~ 4 y  ~2~ . z~ ' - x  = z ~  K u.~ e , shift  the sign [ ~ z  to ,-n+¢ 

and proceed  to s tep 2~ + 2  . 

Le t  2 ~ - - ~ = ~ , ¢  . Then 

/.,* LE MMA 1. If all the . . - -  . v j  

shifted a finite number  of t i m e s .  

B~< is a r e c u r s i v e l y  enumerab le  se t .  

, j ~<  e o are  r e c u r s i v e ,  then all  of the signs ~--J~ and ~---~z a r e  

P roof .  The proof  is by induction on the sequence (1). Le t  [~J£ ' e ~ e o  ' be the f i r s t  sign in (1) 
which is shif ted an infinite number  of t i m es .  We will cons ider  the cases  {= /  and [ = 2  . 

Le t  ~--- / . Consider  the s tep £o up to until which all of the signs p reced ing  

been s tabi l ized .  Then it is c l ea r  f r o m  the cons t ruc t ion  that 2~ K --~ MKe and B~ ~ M ~  
4 F  . d,  ¢~ 

Since all  of the £~j. 7_<e, are  r e c u r s i v e ,  all  Py ~ ,  ~ , ~ , < e  a re  dis t inct  f r o m  

exis ts  a s tep .sof t)  such that fo r  all  s ~ soCe) , 

oL' : n to, 
Y 

F ~  in (1) have 

is a finite se t .  

A , and the re fo re  the re  

fo r  all  x,U--~ e , where  {0, t . . . . .  /~et is an in te rva l  on which A- 

Moreover ,  there  ex i s t s  a s tep  s, ce),  such that fo r  all  s ~  s~ (¢) , 

is dist inct  f r o m  all  P/",,~ ,x, y .~ e . 

(N',A ~;) .. , ,  to, , Z'lo,  . . . . .  

Let  ~ ~zrz~a:  { So (e), s/ (e), ~o J . On subsequent  s teps  2d(xu.>g) such that  o(g)~-<~,y>,  ~ox:l...%~J,~.,e 

the sign F~ I is shif ted only when the se t  Pe a ~  coincides with A/\A St on an init ial  s egment  of the 

na tu ra l  s e r i e s ,  and the re fo re  these  se t s  will coincide on an a r b i t r a r i l y  la rge  s egmen t  of the natura l  s e r i e s .  

So ~-~- P ¢ ~ .  But we obse rved  above that  3 x and M~e a re  dis t inct  on a finite se t .  T h e r e f o r e ,  B x is 

r e c u r s i v e .  Consequently,  / 4  is r e c u r s i v e l y  enumerab le  in the r e c u r s i v e  se t  2~ x and m u s t  i t se l f  be r e -  
curs ive ly  enumerab le ,  which is imposs ib l e .  

Let  c'='2 . Consider  the s tep ~o up until which all of the signs p reced ing  Fe] 2 in (1) have been 

s tabi l ized.  Then i t  is c l ea r  f r o m  the cons t ruc t ion  that  z~ ~--- K e and B•,/<e is f in i te .  Fu r the r ,  the 
A s  

sign F~ z is shif ted only if /V~B: and Pe coincide on an init ial  s egmen t  of the  na tura l  s e r i e s ,  so 
- -  A 

B~ ~-" PC . We noted above that  B,, and K e a r e  dis t inct  on a finite se t ,  and t h e r e f o r e  2~ K - is c r ea t i ve .  

At the same  t ime  the complement  of B x is r e c u r s i v e l y  enumerab le  in the incomple te  r e c u r s i v e l y  e n u m e r -  
able s e t  A , which is imposs ib l e .  This  p r o v e s  the l e m m a .  
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To complete the proof of the theorem we consider two cases.  

Case 1. ;< is an a rb i t ra ry  fixed number,  ~ ' .  Then (Ve) [ /-'~e is recursive] ,  and therefore 

by Lemma 1 all of the signs f-~g g== 42, e- -o ,  , ' , . . .  are  stabilized. Now we claim that ~.~r A and 

A 

Suppose B ~ r A  and B - - P c  a Let  ~ e  be the final position of the sign [ ' ~  . There  exists 
a step a(e~ such that for  all .~ ~ a(e) , 

C N , S ; 5 , - , l o , ¢  . . . .  = g,,'fa¢, . . . .  

A a 
Pe ~ {O'"'"''"rZe) ---- P / ~  {0, t . . . . .  ~e}"  

Let ~ S + t  (s~s(e))  be a step such that C(s)= e . Then on this step we will have to shift  the sign f~z  " 
This is a contradiction. 

Now suppose A 6 r ~  ~ and A ~ e a ~  . Let  ,7 e be the final position of the sign ~-~ . There exists 
a step are) such that for all s a  s(e), 

( , v ,  A : > n  t = e t ,  

. . . .  . . . .  

Suppose step Z._s+ / (s~  see)) is such that 6(5)= <ae,~/>and e=ma:~t~,~/]. Then on this step we will have 
to shift  the sign I-~! . This is a contradiction. Thus ; ¢ ¢ S ~ A  and B~ are incomparable.  

Case 2. • is an a rb i t ra ry  fixed number,  *'~S. Then ~.~eo)~(Vjo ~>eo) E Z,~p has degree 

f ~  ~ . ( V / ' < e o ) ~  ~. is recurs ive]] .  Then A- is recurs ive  in every /~p ,p~ ,  ; let ~(/o) be the smal les t  

such that ~--= Z ~  , . Suppose z,za~ l go,~(go)) = =o~eo " It is c lear  f rom the construction that the 

sign ~ 1  is shifted an infinite number of t imes .  Let [~I be the f i r s t  sign in (1) which is shifted an 

infinite number of t imes .  We will show that 23 K and MK~ are distinct on a finite set .  It is clear f rom 

the construction that 3,~----- ~/,¢~. Moreover,  it is c lear  f rom the proof of Lemma 1 (the case i = 2  ) 
that if every sign ~ ]~ ,  e-- go J ~=~,z, and the sign [ ~  are stabilized, then the sign ~'~z is also s ta-  

bil ized. This means that every  sign in (1) up to ~ '~  is stabilized, i .e.,  B xM~z- is a finite set .  Thus 

K ~ S ~ B ~  has degree ~ . This concludes the proof of the theorem. 

F r o m  the theorem and the corresponding lemmas in [1, 2], we obtain the following corol lar ies .  

COROLLARY 1 [1]. Let ~ be any recurs ive ly  enumerable degree.  Then G'(~)~ ~_~ (fi) and G ( s )  

has the smal les t  recurs ive  i somorphism type possible for sets in ~Tj ( ~ )  Therefore,  G (~ )~  ~73 

COROLLARY 2 [21. Let % be any recurs ive ly  enumerable degree, ~ <  O/ .  Then &r(~< ~ ) e  ~IjCf) 

and ~ ' ( ~  ~)  has the smal les t  recurs ive  isomorphism type possible for sets in ~ ( ~ , )  Therefore ,  

COROLLARY 3 [2]. Let ~ be any recurs ive ly  enumerable degree, ~ > O Then ~(~> ~ ) e  ~ 4  

and ~ (a,~) has the smal les t  recurs ive  i somorphism type possible for sets  in ~1~ . Therefore,  

COROLLARY 4 [2]. Let  f be any recurs ive ly  enumerable degree, 

and Gr([ f )  has the smal les t  recurs ive  i somorphism type possible for sets in 

a (  I f ) ~ / 7  4 ,2:4 . 

0 ": ~< O' . Then G (] ~)E"/7~ 

/-/4 " Therefore,  
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Let  ~ be any r ecu r s ive ly  enumerable  degree  of unsolvabili ty.  We wish to find the r e c u r s i v e  i so -  

morphism type of the index sets  G(, :  ~)=G(~ ~)',G(~} and ¢(>])= G(~)\C(~) . If f - - o  , then 

~(.~0)~,~ and G(.'.O}e/Tj and G(>O) has the smal les t  r ecu r s ive  i somorph i sm type possible  f o r  sets  in 

/7 a . If ~.=0( then G(~.ol)~-~ and G~,.~7')a~ and G(<O/) has the sma l l e s t  r e c u r s i v e  i somorph i sm 

type possible for  sets  in the class  ,q4 . There fore ,  the case O< 2~" Ot is the in teres t ing  one. It can 

easi ly  be shown that if S is any set  in ~]j (?e) , then ~ %  G (,~ ~2 and ~rG( ,~)  . Correspondingly,  

for  G ( > f f )  , if .S is any set  in ~ 4 '  then "5,z, rG(>/) and S%g(>~) . I n o r d e r  to c h a r a c t e r i z e  the 

r ecu r s ive  i somorph i sm type of these index sets  p rec i se ly ,  we will prove  the following proposi t ions .  

PROPOSITION 2. Le t  / be any r ecu r s ive l y  enumerable  degree  of unsolvabili ty,  o,~ ~<  O I . The 

pair  of sets  <G(~<~),G(~)> is an ~ -un iversa l  pa i r  for  pa i rs  of sets  < N o f l , >  such that ~o ~ -- 

and so S,e /fJ. 
Proof .  By T h e o r e m  I of [51, See. 6, there  exis ts  a r ecu r s ive ly  enttrnerable degree  ~ < ~ and 

~ / =  f ' .  Fix such a degree  ¢¢I" Now we cons t ruc t  a computable sequence of r e c u r s i v e l y  enumerable  

sets  ~B2} for  ~ such that for  all ~ , 

" N 

in [1]). Fu r the r ,  fo r  'go 

such that for  all  ,~ ,  
0 

~ e  S o 2~ has degree  ~ ; 

~ S o z~: has degree incomparable with ~, and / .  
We may assume that ~6 °~ and B /  a re  r ecu r s ive ly  separable  for  any ~ and ~ .  Now define a computable 

o ,,  
sequence of r ecu r s ive ly  enumerable  sets  [2)~} , setting 27---_8£ u B ~  . Then for  any ~ ,  

has degree  / ; 

has degree  -: ~ , but g r e a t e r  than or equal to ~ (see the proof  of Th e o re m 2 

we const ruct  a computable sequence of r e c u r s i v e l y  enumerab le  sets  [ B : }  , S o 

g ¢  ~qO==O_/~7~: hasdegree cZ/K¢/. 

Now it is obvious that the r e c u r s i v e  function J such that _D~:- ¢~Sc~, reduces  the pai r  <50,57> to 

the pair  < G ( ~  f ) ,  GE~-)>. 

COROLLARY. Le t  f be a r e c u r s i v e l y  enumerab le  degree  such that O z / <  O ~ . Then the se t  

G(,~ ~) is r ecu r s ive ly  i somorphic  to the set  . ~  (ff(~)) where r r~  is an m -jump with r e spec t  

to A (see [6], 11I) and A has degree  f # 

Remark .  Let  O be any degree  of unsolvability such that c ~> O ut and c is r ecu r s ive ly  enumerable  

in O tit .  As noted in [1], Theo rem 6, c can be r ep resen ted  by e i ther  of the index set  G ( $ f }  or ~ ( f )  

fo r  some r ecu r s ive ly  emuuerable  degree  ~ ; we may also assume that O.~ f <  O / . Then the index set  

~(- :  ]}  can also be r ep re sen t ed  by the degree  c , which has another  {higher) i somorph i sm type.  

PROPOSITION 3. Let  / be a r e cu r s ive ly  enumerab le  degree such that O< ] < 0  / . The pai r  of 

sets  ,=G(~)  , ~ ( ~ ) >  is an ~-a-universal  pa i r  f o r p a i r s  of sets  < : $ o , ~ >  , s u c h t h a t  .91o~__ "-gl and 

The proof  is completely analogous to that of Propos i t ion  2. 
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COROLLARY. If / is a recursively enumerable degree, / -=  O' and ~ 0  ~/, then the set ~(>~) 
is recursively isomorphic to ~rt A (~(~)) where A has degree /~/. 

As an application of the above results and those obtained in [9], we prove the following theorem. 

THEOREM 2. Let / be a recursively enumerable degree of unsolvability such that ~(~)~/Tx . 

Then if a-o,& ~ ..... =%~z are r~z(~)-incomplete recursively enumerable r~z(~)-degrees contained 

in ~ , there exists a recursively enumerable rn(~{)-degree ~a+~ which is rrz Cdg) -incomparable 
with every =rE, £~ ~. 

Proof. We will consider two cases. Let / be an incomplete recursively enumerable degree of un- 

solvability as in the hypotheses. Let A~, ~4~, A~,...,Aa represent the recursively enumerable /'~(~] - 

degrees &o~&~,... ,~ respectively. Note that none of the Af ,~;~ is recursive or zr~(g~) -complete. 

Consider the set ~g------ ~.o)C'~(~,9.o) c/G'(~a.,)u~(;~&~)~.., c]~(~;&~)u~(~). Then, 

,.q'~$ and ;g"g/7~ (see [9]). By Corollary i, ,~,~,~(/) , while ,-q~,~(I~) (see the proof of Theorem 

I). Let / be a recursive function effecting this reduction. By the recursion theorem there exists a num- 

ber ~o such that ff~(~a;'= ~T~o . Now ~=~(,g since the indices of recursively enumerable sets which are 

(~d) - comparab le  with at l eas t  one AZ, £~ ,.z 
with e v e r y  /~£, Z ~  ~ . The re fo r e ,  ~o~,_~ and 

= ~-%= f/:~@, has degree  of unsolvabil i ty % but has 

parable  with eve ry  ~ . .  , ~'~ ~z . 

map into indices of se ts  which are  Turing incomparable 

¢-C(/~o) ~ ~ (~  . This  means that the se t  A~+{ ~ 

,-r~E)-degree &n+! , which is ~ C ~ ) - i n c o m -  

Let  ~- -0 ' .  Consider the set ,9o--O'('~"~o)UGY(~>~I)U...uO'(>, ~) • Then 5o~=~j and ~ 

By Corollary i, ~z~(O0 . Let / be a recursive function effecting this reduction. Again by the 

recursion theorem there exists a number ~ such that ~Jc*¢=~ " ~r~ o' Now ~o~5o, since the elements 

of ~o map into elements of d(< 09. Therefore, ~E% and SfKo)~G(O~, i.e., the set .D-- 

~c%T ~z~¢ ° has degree of unsolvability O t, but the rr~(~)-degree d of 2 is such that &i~ / for 

all a,~/z . Here we cannot assert that ~&{ , {~/z . Therefore we construct a recursively enumerable 

set C such that _D~C is rn(~) -incomparable with every A£ , {~; n. 

The nzf~-degree of the set A~+~=DeC will also be the required rrt(~ -degree &~+~ . It 

is clear that An+ 4 has the Turing degree O t . 

Here we will confine ourselves to a short description of the construction of C. Let -Do"IZ~#/:r~D ~ 

and Mo=--/4~/v[7~K~,.. be a computable sequence,r where /~¢o--I~+{Ix~NJ , every /~f{ is an infinite 
recursive set, and /d/ is creative, Z=~ ~...;~;} be a computable sequence of graphs of all partial 

recursive functions in one variable., The construction is carried out stepwise. On the even steps every 

/~-, £~/z is rrt (r: ~) -irreducible to 2~o~ C by the defined function ~P~ on some initial segment 

{O,~' .... ,~J , if ~ is completely defined on this segment at the end of this step. For this we use the re- 

cursive set Me . Conversely, on the odd steps rn[~) is not ._~ uC -reducible to any /~£ , ~'6/7 by the 

defined function ~e on some initial segment I O, ,',...,~, if ~ is completely defined on this segment at 
the end of this step. For this we use the creative set /~ . 

COROLLARY i, If / is a recursively enurnerable degree of unsolvability such that ~3(f)-~=/73 , 

then this degree contains 

a) an infinite antichain of recursively enumerable ~rt-degrees; 

b) an infinite antiehain of recursively enumerable ~ -degrees. 

Proof. The proof is by contradiction. Let &o ,&~ .... ,an be m(~) -incomparable recursively 

enumerable /~z(~) -degrees contained in / . Apply Theorem 2. Then ~4-~ is recursively enumerable 
/-~(~) -degree contained in ~ and zr~({~) -incomparable with each ~- , ~'~/z. 
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COROLLARY 2, If / is a recurs ively  enumerable degree of unsolvability such that ~'*..$(~)~-/'~3 
and fi-~ O / , then this degree does not have 

a) a recurs ively  enumerable rrL -degree which is maximal among all recurs ively  enumerable ~ - 
degrees contained in ~ ; 

b) a recurs ively  enumerable ~ -degree which is maximal among all recurs ively  enumerable ~£ 
degrees contained in ~ . 

Proof.  The proof is by contradiction. Let &o be a maximal recursively enumerable ,'~(~)- 
degree contained in ~ . Apply Theorem 2 to find a recursively enumerable r r z ( ~ ) - d e g r e e  &7 which 

is /n(~t)  -incomparable with '£o • Now e~o~&r== cL~ is an m(d~) -degree which is contained in 

and &o-¢ &~ 

Par t  b) of Corollary 2 answers one of Rogers ~ questions ([4], Sec. 9.6). Note that the proof of Corol- 

lary 2 shows that a recurs ively  enumerable degree of unsolvability ~ such that X 3 ( / ) ~ / 7 3  and ~ O '  

has an infinite chain of recursively enumerable m(g~) -degrees .  

In conclusion, the author wishes to take the opportunity to express his warm thanks to Yu. L. 
Ershov for his continuing attention and useful advice. 
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