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This work is concerned with the rigorous analysis of the effects of small periodic 
forcing (perturbations) on the dynamical systems which present some interesting 
phenomena known as delayed bifurcations. We study the dynamical behavior of 
the system 

~u 
"r f(u,  Ii + et) + sg(u, li + st, 8, t) 
O f  

u(t)l,.o ffi uo( li) + 0(8) 

(0.1) 

where uo(l) is the solution off(uo(l),  I) •O and l(t)=-li+8t is a slowly varying 
parameter that moves past a critical point I_ of the system so that the linear 
stability around uo(l) changes from stable to unstable at I_.  General results are 
given with respect to the effects of the perturbation 8g(u, I(t), e, t) to several 
important types of dynamical systems 

~u 
=f(u,  lj +80 (0.2) 

which present dynamical patterns that there exist persistent unstable solutions 
in the dynamical systems (delayed bifurcations) in contrast to bifurcations in the 
classical sense. It is shown that (1) the delayed bifurcations persist if the fre- 
quency of g( . , . , . ,  t) on f is a constant co which is not a resonant frequency; 
(2) in case the frequency of g ( . , . , . , t )  on t is co =. co( lt + st ) that is slowly 
varying, the resonance frequencies where the delayed bifurcations might be 
destructed are shifted downward or upward depending on co'(l_)>O or 
co'(I_) <0; and (3) delayed pitchfork (simple eigenvalue) bifurcations occur in 
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a r one parameter family of periodic perturbations. (1) is a rigorous 
analysis of the results in [3], (2) is a new and interesting phenomenon, and 
(3) is a generalization of the results of Diener [8] and Schecter [ 19]. 

KEY WORDS: Delayed bifurcation; resonance; periodic forcing; Hopf bifurca- 
tion; simple eigenvalue bifurcation. 
AMS Subject Clussificatiom: 34C35, 34D20, 58F14, 92C30. 

1. INTRODUCTION 

The mathematical analysis of a collection of dynamical behaviors which 
were known as delayed bifurcations has been developed by many authors 
[I--4, 7-241. Typically, these problems involve dynamical systems con- 
taining a parameter which is slowly varying with time t or in general, fast- 
slow systems where the parameter is determined by the slow equations. 
When the mentioned parameter is kept constant, the dynamical behavior of 
the systems is well understood. For each value of the parameter, there are 
"static" solutions (equilibria, or periodic solutions). Further, there is a 
critical point in the parameter so that the linearized (orbital) stability of 
the solutions in the classical sense changes as the parameter moves across 
the critical value. The interesting behavior of delayed bifurcations can 
be observed when one considers the solutions of initial value problems of 
these dynamical systems where the parameter is slowly varying with time. 
In fact, as the parameter slowly passes the critical point, the solutions of 
the dynamical systems remain close to the unstable "static" solutions 
mentioned earlier, only bifurcating away from them at some points of the 
parameter which are above the bifurcation points at distances depending 
only on the initial parameter values and independent of the slowness of the 
parameter change. The limits of the solutions as the speed of parameter 
change goes to zero present the pattern that the solutions of the initial 
value problems stay close to the "static" solutions (which generally are not 
the solutions of the systems with a slowly varying parameter) up until 
certain points above the bifurcation point, then move away. See Fig. I. 
These delayed bifurcation phenomena are different from what people 
understand as bifurcations, and are named as delayed bifurcations. 
Further, the separations present memory effects in such a way that if the 
initial parameter is farther away from the critical point, then the separation 
would be farther above the critical point. These delayed bifurcation 
phenomena are antiintuitive, and their mathematical structures are rather 
complicated. The theory, however, offers a good explanation to a number 
of natural phenomena. 
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Fig. I. 

~0 

The behavior of the solutions u(/) present the pattern that u(1) stay close to Uo(/) for 
li ~< I~< Iq where Iq > I_ is independent of 8. 

We consider the following well-known example to start our mathe- 
matical formulation of the problems: 

~u 
~-~= f(u, I, + et) (1.1) 

u( t)l, =0 = Uo(L) + 0(8) (1.2) 

Here f :  R 2 x R ~ R 2 has analytic extensions for both variables. For each/,  
the equation u, =f(u, I)---0 has an equilibrium Uo(I) which is also analytic 
in L Assume that there exists I = I_ such that when I < I_,  the eigenvalues 
21(I), 22(I) =21(i) are in the left-half complex plane, i.e., Re 2j(I) <0  for 
I<I_ ,  and when I > I _ ,  Re2j(I)>O. We may assume that Im2~(I_)<O 
to distinguish the two eigenvalues. Also, I~ < I_.  One would agree from the 
basic stability theory that 

Ilu(t)-uo(l~+et)ll=O(e) for te{t:I(t)=-Ij+et<~I_} (1.3) 

Because all the eigenvalues stay in the left half of the complex plane, (1.3) 
can be achieved by some standard arguments, such as semigroup theory. 
Standard references can be found, for example, in Refs. 5 and 6. The inter- 
esting question remains on the behavior of u(I(t)) after I(t) goes across I_.  

It was implied by some quasi-steady-state theory [1, 7, 12] that 
u(I(t)) goes away from uo(I(t)) shortly after I passes I_ since the signs of 
the eigenvalues change from negative to positive at I_ .  Some asymptotic 
methods had been utilized to determine whether the peeling (separating) 
point occurs at I = I _  + O(8 I/2) or I = I _  + O(e 1/3) [1, 7, 12]. 

Surprisingly, in contrast to all these predictions, the experimental 
results and numerical computations [3, 11, 18] indicated that for some 
systems, lu(t)-Uo(Ii+et)l = O(e) when Ii~I(t)<~Iq, where Iq=Iq(I~)>I_ 
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is independent of e as e--, 0 +. The amount of delay of the bifurcation 
I q - I _  is determined by I~ < I _  by a manner of monotone decreasing 
function which presents a memory effect. 

This type of phenomena is of interest for their importance in mathe- 
matics and also applications to other fields. We mention below some pre- 
vious work in the literature to show their connections with physiology and 
physics. In fact, the theory is applicable to the reversed aceommodation 
phenomena in the experiments of membranes of the giant axon of a squid 
studied by Jakobsson and Guttman [ 11 ]. Essentially, if the membrane is 
connected with a constant electric current, then there exists a threshold 
such that the membrane potential can accommodate any current below the 
threshold, and when the current is above the threshold, the potential 
starts to oscillate (burst). The discovery of Jakobsson and Guttman in 
[ I 1 ] concerns the response of the membrane potential with respect to a 
continuously increasing current, and it was found by them that if the 
increasing is slow, the potential will accommodate until the current reaches 
a point which is substantially higher than the threshold. More significantly, 
the amount of delay is independent of the slowness of the increasing. 
Baer et al. [3] considered the corresponding mathematical problems by 
studying the FitzHugh Nagumo equation and made extensive numerical 
computations for the slow passage problem in the FitzHugh Nagumo 
equation. In particular, Baer et al. [3] indicated that the initial current 
I i < I _  and the current Iq where u(I(t)) moves away from Uo(I(t)) may 
satisfy the relationship 

qRe2,(r)  d r = 0  (1.4) 

which was later confirmed by the author [21, 22]. We also note that other 
applications of delayed bifurcation in laser and others are available in the 
literature [9 and references therein]. 

Rigorous study of delayed bifurcation started at least in the 1970s. 
Shishkova [20] discovered the delayed bifurcation phenomena in a 
particular ordinary differential equation system. Later, Neishtadt [ 14-17] 
considered the general systems having delayed Hopf bifurcations. Su [ 21, 
22] gave out a rigorous proof of the delayed Hopf bifurcation for the 
spatially uniform FitzHugh Nagumo equation. The case of a nonspatially 
uniform FitzHugh Nagumo system was also studied for the delayed Hopf 
bifurcations [23]. A quite different approach was utilized in order to deal 
with the parabolic system..Candelpergher et al. [4] also attempted to 
explain the delayed Hopf bifurcation phenomena from the nonstandard 
analysis point of view. Rigorous analysis for delayed pitchfork bifurcations 
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is also available in the literature. Under the restrictive condition that u- -0  
is a constant solution of u,=f(u, Ii+st), Diener and Diener [8] and 
Sehecter [ 19 ] independently proved the existence of delayed simple eigen- 
value bifurcations. Without the restrictive condition stated above, the 
problems are rather difficult and open. The reason is that, in general, a 
nonhomogeneous equation cannot be changed into a homogeneous equa- 
tion by finite steps of transformations, even in the linear case. Although 
n-step iterations of some transformations can reduce the nonhomogeneous 
terms to O(en), the consequent sequence of the nonhomogeneous terms is 
divergent as n ~ oo [ 15]. We extend their results in Section 6. In another 
direction, there are some results [15, 24] in a more general ease where 
delayed bifurcation occurred to a family of periodic motions whose critical 
exponents moved across the imaginary axis as the parameter slowly moved 
past the critical point under some nonresonance conditions. 

These mathematical theories have provided a solid theoretical founda- 
tion for giving mathematical descriptions of natural phenomena such as the 
reversed accommodation. A question was seriously imposed by experimen- 
talists on the :reason why the reversed accommodation phenomena were 
observed in some experiments, but not in others, or how sensitive these 
persistent unstable solutions would be with respect to perturbations. 
Further, reversed accommodations were found on tissues under laboratory 
conditons, and it would be interesting to know whether these types of 
behaviors happen to live tissues where other disturbances exist. Baer et al. 
[3] studied the problems numerically and observed that if (1.1) is added 
with a small perturbation g = 8 sin tot, then unstable solutions persist when 
to ~ �89 Itoo l, �89 Itoo [, Itoo I, 2 Itoo I, where Itool = Jim )~1(I_)] is the frequency 
at the Hopf bifurcation point. At those resonance frequencies, the delay 
amounts I , - I _  were significantly reduced. Rigorous analysis was not 
given. 

In this work, we resolve these issues in terms of rigorous analysis. We 
first show the delayed bifurcations of (0.1) by proving the existence of 
certain persistent unstable solutions under the nonresonance conditions 
to#2 Jtool/n,n~N, and we consider the situations near the resonances. 
Then we generalize the results into situations where the periodic forcing 
eg(. , . , . ,  t) is of a slowly varying frequency, and an interesting pheno- 
menon of shifted interference is discovered. Finally, we consider a general 
version of delayed bifurcations in simple eigenvalue bifurcations related to 
previous work by Diener [8] and Schecter [19]. 

We organize this paper in the following way. In Sections 2, 3 and 4, 
we consider the problems of delayed Hopf bifurcations under the influence 
of a periodic perturbation. We show that under the nonresonance condi- 
tions and some other generic conditions, the delay will persist. In Section 5, 
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we study the problems with a periodic forcing with a slowly varying 
frequency, and new phenomena of shifted interference are studied. In 
Section 6, we show that for each scalar ordinary differential equation which 
has a pitchfork (simple eigenvalue) bifurcation, there exists a eodimension 
one family of periodic perturbations with moderately large norms such that 
delayed bifurcation phenomena occur under these perturbations. 

2. ASSUMPTIONS AND BASIC RESULTS 

We begin with the introduction of a basic result of delayed Hopf bifur- 
cations. Let u(t) be solutions of the initial value problems 

~u 
~-f= f(u,  Ii + et) 

u(t)b.o = Uo(L) + O(e) 

where the systems satisfy the following assumptions. 

(A1) f ( u , I ) : R Z x R ~ R  2 has an analytic extension 
III < r,, in .the complex plane for some r, > 0. 

(A2) For each fixed L the system 

(2.1) 

(2.2) 

for lul <~r, 

v, =f(v,  I) (2.3) 

has an equilibrium solution Uo(I) which is also analytic in I for lit < ra. 

(A3) The variational system of (2.3) about Uo(I): 

wj =f,,(Uo(I), I)  w (2.4) 

is a linear system with coefficients depending on the parameter L Let 
A(1) =f,(uo(I), 1). Assume that two eigenvalues of A(I), 21(I) and 22(I), 
are conjugate to each other, i.e., 22(I)=2t(I)  for 1 on the real axis and 
III < ru. Further, there exists a real number I_ such that Re 2j(I) < 0 when 
I < I _ ,  Re 2j(I) >0  when I > I _ ,  Im 21(I_) <0. Also, I i < I _ .  

We make some change of variables to simplify the system. We let I = 
Ij + et be the independent variable, and y = u(t) - uo(l~ + 80. System (2.1) 
becomes 

8yt = fu(uo(I), I) y + fz(uo(I), 1, y) + eGl(I) (2.5a) 

Yli~l~ = O(e) (2.5b) 



Periodic Forcing and Delayed Bifurcations 567 

o o  I f  o o  where fz = En - z (1/n [)(anf/aun)(Uo(I), I) y - ~,n ~ Z Cn(Uo(I), I) yn. The non- 
homogeneous term GL(I) = -(a/Ol)  Uo(I) is a bounded vector function of/. 

Proposition 2.1. Let y(L e) be a family o f  solutions o f  (2.5) with 
initial conditions which satisfy ly(Is, e)l <~ M,e. Then there exist M =  M(ML), 
Iq = Iq(M1, M) > I_ ,  eo = eo(Ml, M), such that 

ly(I, e)l <. Me (2.6) 

whenever If <~ I <<. Iq, e <. Co. Further i f  Ii is close enough to I_ ,  then Iq and 
I~ satisfy the relationship 

I•qRe ,~,I(T) dT= 0 (2.7) 

The proof of proposition 2.1 can be found in Refs. 14-17 and 21-23. We 
demonstrate the behavior of u(I) in Fig. 1. 

We now consider the delayed bifurcation problems under the periodic 
forcing in (2.1) which was initially proposed by Baer et al. [3]. Before we 
go into the formal argument, we should point out here the essential effects 
of resonances. Baer et al. [ 3 ] had observed from their numerical computa- 
tions of the FitzHugh Nagumo equation, which is a very typical example 
of delayed Hopf bifurcation phenomena, that when the forcing frequency co 
of the function g was taken to be 2 Icool, Ico01, �89 Ico01, ~ Ico01, where 1o901 - 
IIm 2~(I~)1, the amount of delay is drastically reduced. It is conceivable that 
due to high sensitivity of the delayed bifurcation phenomena with respect 
to the roundoff errors in computations, it might be extremely difficult to 
observe what really happened exactly at those resonant frequencies. We 
provide an example below by using the following modified Shishkova- 
Wallet's equation to show that, in fact~ when the forcing frequency co = COo, 
the delay amount would be O(x/e Iln(e)l) rather than O(1). 

Example. 

~ i =  ( I +  ROo) U + ee i'~ (2.8a) 

ul1=l, = O(e) (2.8b) 

for I~ < I_ - 0 .  We define u+ be the solution of (2.8) with the initial condi- 
tion u+(1)=0,  and u_ the solution of (2.8) with the initial condition 
u _ ( -  1)= 0. It can be easily shown through a direct calculation that 

,u+(0) -u_(0) ,  =]~, e -('/z',('z+2'(m-~ ds I (2.9) 
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When co=co0, the distance lu+(O)-u_(O)l=Jt__xe-(l~)'2ds>~K~/~ 
for some K>0 ,  when e~<eo is sufficiently small. Thus, u_ jumps away 
from u+ in the sense lu+(1)-u_(1)l =O(1) at the point Iq-=inf{I>0 I 
v/se(i/(2~))I2=O(1)} = 0 ( ~ ) .  In other words, the bifurcation of 
u_(1) from Uo(I)=O occurs near the critical point I _ = 0  at Iq= 
O ( ~  log(e)l). Hence the bifurcation has not been delayed substantially. 
The key element here which prevents the delayed bifurcation is the inter- 
ference between the frequency at the critical point (of critical exponents) 
coo and the frequency of the periodic forcing co. If co#COo, however, then 
we can derive the estimate lu+(0) -u_(0) l  ~ e  -c/~ for some c>0 ,  which 
implies delayed bifurcations. 

This example can be easily modified to 

eui,=(I + icoo)u + e (n~z l@nz e~'z/" ) (2.10a) 

ul1= z~ = O(e) (2.10b) 

where Iq-=O(x/~log(e)l ) if co=(1/n)coo. Thus the resonance effect is a 
vital factor in our considerations. 

We now introduce the setting of our perturbed problem. We study the 
initial value problems, 

~u 
~-[=F(u, I~+ et, 8, t) (2.1 la) 

u(t)lt .o -- Uo(/~) + O(e) (2.1 lb) 

under the following hypotheses. 

Assumptions. (H1) F(u, L e, t): R 2 x R x R + x R + --+ R 2 has an 
analytic extension for lul < a, I1] < r,, t e ( - oo, oo) in the complex plane 
when e<~eo. F(u, I, O, t)-- f(u,  I) where f was specified in (/11)-(/13). 
Namely, f (  u, I): R 2 x R --* R 2 has an analytic extension for lul ~< a, III ~ r ,  
in the complex plane. F(u, 1,e,t) is real analytic in e for O<~e<.g.eo. 
Consequently, 

F(u, 1, e, t) = f(u, I) + ef l(u, I, e, t). (2.12) 

(H2) For each fixed L and e set to O, the reduced system v,= f (v , I )  
has an equilibrium solution uo(I) which is also analytic in l for I1] < ra. The 



Periodic Forcing and Delayed Bifurcations 569 

perturbation f~(u, L e, t) is a periodic function of  the variable t with the 
period 21r/to. In particular, we may express 

fl(u, I, e, t) = ~. C,(u, I, e) e ~'t (2.13) 
n ~ Z  

where C, are analytic in all variables and ~.,~z I C,( u, I, e)l <~M for lul <a ,  
I1] < r= in the complex plane and e <~ %. 

(H3) The variational system of  (2.3) about Uo(I): wt=f=(Uo(I), I)w 
is a linear system with coefficients depending on the parameter L Denote 
A(I) = fu(uo(I), I). Assume that two eigenvalues of A(I), 21(I) and 22(I), are 
conjugate to each other, i.e., 22(I )=  21(I) for  I on the real axis and III < r=. 
Further, there exists a real number I_  such that Re Aj(I)<O when I < I _ ,  
Re 2j(I) > 0 when I>  I_ ,  Im 21(I_) < 0, (d/dl) Re 2j(I_) > O. Assume also 
that there are no branch points of  2j(I) in the complex plane so that 2j(z) 
are analytic in the region of  consideration, and the matrix Q(I) which 
satisfies Q(I) A(I) Q- l  __(at(or) a2~t)) can also be extended analytically into 
the complex plane. We assume It < I_ .  

(H4) (First Nonresonance Condition) Assume that there exists some 
0 < r b < r o  such that for I z - I _ l  <r~ in the complex plane, 21(z)-into#O, 
22(z) - into # O for n r Z, where 2j(z) are the analytic extensions of  the eigen- 
values 2j(I). Since Re 2j(I)11=z_ =0 ,  (H4) can simply be remembered as 
Itool - I I m  2j(I_)l  #nto for ne  N if  we consider z near I_.  

(HS) (Second Nonresonance Condition) Assume that there exists 
some 0 < r b < r o  such that for I z - I _ l  <rb, the analytic extensions 2j(z) 
satisfy 2 2 j ( z ) - i ( 2 n -  1 ) t o # 0  for neZ ,  j--- 1,2, or simply 2 Itool - 
2 IIm 2~(1_)1 # ( 2 n -  1)to. 

Since we intend to show that lu(t)-Uo(Ii+et)[ = O(e), we use y =  
u(t)-Uo(Ii+et ) as the new variable and I=I~+et  as the new independent 
variable. Then (2.11) becomes 

ey1=f~ I, e,---~--Z-l',y)+eQo(uo, I, e, -~--)I-" (2.14, 

n 4.e ~~ where Fo--Y'.~= 2 (1/nl)(O"f/Oun)(uo(1), 1) y . . . .  1 (1/nl)(O"f dOun)(Uo(I), 
L e, (x- 1,)/8) y-, 

I--I,'~ 
eQo Uo, L e,, " 8 ) = e  Y'. ~,(L e) d '~'-z'v" (2.15) 

n~Tr 

is of order O(e). 
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We observe here that for fixed L F(u, L ~, t) is periodical on the 
t-variable, and consequently, Fo(uo, L e, t) and Qo(uo, I, 8, t) are periodical 
on the t-variable. Therefore, they can be uniquely expressed as the Fourier 
series of t whose coefficients depend upon I and e. Thus, we derive 
eQo(uo,/, e, t) - - - e ~ , z  ~n(L e) e *~'. The corresponding series for the 
ease of I=li+8t  naturally leads to (2.15) after the change of variable 
t=(I-Ii)/8. Throughout the paper any function which depends on I/e 
periodically and also depends on (/, e) can therefore analogously be decom- 
posed uniquely by following the natural expansion method mentioned 
above. It should also be noted, however, that the decomposition of 
eQo(uo, L e, (I-I~)/8) into the series with the form of (2.15) is not unique 
if the natural decomposition method is not followed. The natural decom- 
position method which we used has the advantage that the coefficients of 
the series ( but not the series itself) have bounded analytic extensions for 
the z-variable with its total upper bound independent of 8 ~ 0  +. This 
property is crucial to the problem in the sense that the desired solution to 
our problem will be shown to have a similar series expansion. 

We may absorb the terms that involve I~ into the coefficients as 
the terms e ~'~'/" are bounded by constants. For simplicity, we neglect the 
dependence on I~. The initial value problem (2.14) is then equivalent to 

8y,= A(l) y + F, (l, e, ~, y)  + ~Q, (I, e, ! )  (2.16a) 

Yl 1--  li = O(e)  (2.16b) 

where Ft is analytic in y and has the expression 

/ k ~ l  ml+nlmk,  ml~O, nl~O 

with (y~, y2)r---y. From the properties ofF0 and Go, the coefficients ofF,  
have the form 

/~ ml'nl) (~, ~, ~)~---'8 ~ ~l,n/'~(ml'nl){/'~, ,8~, e ~'~ (2.18a) 
n~Z 

8 , /  n e Z  " 

for k~>2 (2.18b) 

Denote Mraxn the set o f m x n  matrices. All terms b~,.nO(I, 8 ) r  i a re  

analytic in I. From the fact that F(u, I, e, t) of (2.12) is analytic in u for 
luf <~, and b~=*,,~o(I, e) correspond to the coefficients of kth power terms 
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in the new system, it is not hard to verify that there exists a constant M a 
independent of e such that for k i> 1 and I I -  I_ I < rb in the complex plane, 

~., Ib (m'''')(I, e)l ~< M. 
n , 7  ml,O. nl~O. ml+nl=k k.n (;/2)* 

The nonhomogeneous term eQl has the form 

(2.19) 

QI = ~'. q.(I, e) e ~'~/~ (2.20) 
neZ 

where Z , , z l qn (Le ) l<~M for [ I - - I_ l<rb  in the complex plane. The 
method of the decompositions in (2.18) and (2.20) were mentioned earlier 
in the observation after (2.15). These decompositions are unique based 
upon the natural method which we used. 

We begin with the initial value problems (2.16) for/~ < I < I_ .  

Lemma 2.2. Let y = y(L e) be a family of  solutions of  system (2.16) 
with initial conditions at I~ satisfying ly(L e)l Iz=l,~<Mle. Then there exist 
re=re(M), M2=M2(MI)  and e0=e0(Ml)>0  so that when I I _ - / , . l < r c ,  
O < e  < e  o, 

ly(I, e)l ~< M2t (2.21) 

for I ~ < I < I _ .  

The proof is somehow standard. If we note the fact that all e ~''t/~ terms 
remain bounded when Ij < I <  I_ ,  the proof is not much different from the 
one of Theorem 1 in Refs. 21 and 22 or Lemma 1 in Ref. 24. We refer the 
proof to Lemma 1 of Ref. 24. 

Lemma 2.3. Let Ii > I_ be any point above the critical point I =  I_ ,  
and y =  y(I, e) be solutions of  (2.16) with initial conditions at I = P  which 
satisfy lY(Le)ll1=~<~Mle for any e>0 .  Then there exist rd=rd(Mm), 
eo=eo(Ml), M2=M2(MI)  SO that for e<~eo, 

whenever I_  <<. I <~ I ~ <<. I_  + r d. 

(2.22) 

Proof. If we replace the variable I by J = 2I_ - / ,  then Lemma 2.3 
follows immediately by analogous arguments as in Lemma 2.2. [] 

865/9,/4-5 
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We also see that the exponential growth property is valid in this case. 

Proposition 2.4. Assume that YA and ys  are two solutions 0f(2.16) on 
Il <1<15, and lya(I)l <~M2e, [ya(I)[ <<.M2e whenever I, <~I<~I2. Then 
there exist M 3 -- M3(M2), e o ffi eo(M2) so that for 8 <~ eo, 

I el/~g ] R.,~,~.~,~ < lyA(I2)- Ya(I2)l ~M3el/e.[~Re;htO~ (2.23) 
Ms lYA(II) - Ya(II)l 

Proof. See Refs. 21 and 22. We note that there is no restriction on 
whether/j  are above or below I_ .  [] 

We denote y(I, s, e) to be the solution of (2.16) with the initial condi- 
tion: 

y(L s, 8 ) 1 , . .  = 0 (2.24) 

If we can show that the solution y(I, Ij, e) for some Ii < I_ and the solution 
y(I, P, e) for I~>I_ have a distance of magnitude O(e -c/') at I = I _  for 
some c > 0, then the delayed bifurcations will follow from Lemmas 2.2 and 
2.3 and Proposition 2.4 in the following way: We have ly(I, I~, ~)] ~M2e 
for I~<I<I_  and ]y(I, IJ, e)]<~M2e for I _ < I < I  t. Adding the fact 
ly(I_, L, e ) -  y(I_,  P, e)l = O(e -~/~) and Proposition 2.4, we get that 
]y(I, I~, e)l ~< M2e when I~ < I <  Iq for some I v ffi Iq(c) > I_.  So it is the key 
step to obtain the estimate ly(I_, It, e) - y(I_,  F, e)l ffi O(e -~/~) in this 
problem. 

To achieve this, we need some additional properties. Let Q(I) be the 
nonsingular matrix such that AQ = Q(at~ol~ a2~i~).~ If we let y ffi Qyffi Q(r~), 
then the system (2.16) becomes 

8(Y,'~ (~ , (0  o V r , ~  (Le,  I ,  
r jl=\ o +Q-'F' ; Qr) 

(,,,, (2.25) 

We rewrite (2.25) as 

(YI~ (~1(1) l~201.)~(]rl~+F2[[~ f. y~+,~Q2f~8 I~ ( J\Y2J \ -J \ 8J 
8 \Y ,  J I = \  0 8 

(2.26) 
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where F2=  Q-IFI - sQ- I (OQ/aI )  Y, Q2 = Q-IQI .  The nonlinear term F2 
has the expression F 2 = (F2. ~, F r 2. 2) , where 

P2,.i~g.(Ej.l,, (J~,!) Yldl-J~j,I,2(I~F~,!) Y2) 

+ 
2 ~ k <  oo, I ~l~k+ 1 

i L E,..., (L ,, -~)= ~ f~;..,..( .) e "~'/~ 

(2.27) 

(2.28) 

The functions f j, k, i..(/, e) have analytic extensions f j, k, t.,,(z, e), and when 
I z - I _ l  <rb, 

.<M~ 
j ~ l , 2 0 ~ l ~ k  n~TZ (2.29) 

for k~> 1 from (2.19). The coefficients before the linear terms have a factor 
e due to the nature of F2. Similarly, Q2 =(Q2. l, Q2.2) r, where 

Q2,j "~ ~ fg. o, .(I,  e) e '~z/~ (2.30) 
n ~ Z  

fj. o, .(/, e) can be extended analytically to fj. o..(z, e), and 

Ifj.o.,,(z,e)l<~M for Iz-I_l<r~, (2.31) 
n eZ,j~ 1, 2 

We consider the solutions II(1, s, e) of (2.26) which satisfy the initial 
conditions 

(y,(1,,,  )31 
I,'(I, s, ~)1,-~--- \ Y~(X, s, e)]l,=~ = \0]  (2.32) 

If we write (WI, wz)r=(F2, l, F2,2)~'+e(Q2. l, Q2.2) r, then (2.26) can be 
expressed by the integral equations: 

, ( ) rj(I,s,e)---t[ e'/~s;'~"'~w, j,,,-J, r,(J,s,e), Y~(z~,~) ~, 
8 J x  - 

for j - -  I, 2 (2.33) 
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We intend to find the solutions of (2.33) of the form 

Yj(/, s, e) = e ~ gj. ~(/, s, e) e ~'~I/~, for j--- 1, 2 (2.34) 
n~7 t 

with the proper ty  that  ~.jm !.2 ~ ,n ,Z  Igj, n(,I~ $, e)[ ~<M. 
Let us make some remarks here. In general, for the function Yj(L s, e), 

the series representation in the form of (2.34) is not unique. This issue, 
however, does not bear any effect on our problem. We intend to establish 
a vector equation for the coefficients {gi.~} in such a way that if {gj.~} 
satisfies that vector equation, then the corresponding Yj will satisfy (2.33). 
The set of coefficients {gj.,} constructed in this way is unique because the 
above-mentioned vector equation has a unique solution. Further, the key 
of the problem is to expand Yj(I, s, e) in a series of the form (2.34) whose 
coefficients {gi, n} have totally bounded analytic extensions as e ~ 0 +. The 
set of {gj, n} obtained through the vector equation can exactly do so. Other 
methods to expand Yj(I, s, ~) may lead to a different set of {gj.,} which 
may or may not have a totally bounded analytic extension. 

We also note that (2.33) or, equivalently, (2.26) contains a pair of two 
equations which are conjugate to each other, i.e., Y,(I, s, ~)= ~,(I, s, e) or 
gz,(l~ s, e) = gl. _,(I, s, 8). Thus, it suffices to solve the equivalent equation 

1,, , ( J ) 
Y~(T , s , e )=-[  e '/*'b~'~a" W, J , e , -  Yj,  f l  dJ (2.35) 

where 

\ n e e  neZ  

\ n E Z  n~Z 

k~2 l~;l~k+! XneZ 

(2.36) 



Periodic Forcing and Delayed Bifurcations 575 

We combine (2.36) into 

W, = ~ h,(I, t, g) e ~'0I/" + ~ ef,, o,,(I, e) e in~ (2.37/ 
n c Z  n e Z  

where g = (gin.., n r Z), 

h,,(I'e,g) =~2 E f , . , . t . . ,gl . , , .  +e2 E f l ,  l,2, n, g l , -n2  
nl +n2~n "1 +"2 ~"  

k i n 2  l ~ < l ~ k + l  n l + n  2 �9 +nk+  I 

x gt.,k_t+, f f l ,  --nk_t+3"'" g l ,  --nk+l) (2.38) 

3. ANALYTIC EXTENSIONS OF SOLUTIONS 

Delayed bifurcations are closely related to the analytic extensions of 
solutions. In fact, Shishkova [20] and Neishtadt[16] indicated delayed 
bifurcations by showing a bounded analytic extension of the solutions at a 
neighborhood of I_ in the complex plane where both the neighborhood 
and the bound are independent of e--* 0 +. However, with the presence of 
periodic forcing, there is no such extension. Instead, we shall show that a 
solution can be expressed by a Fourier series of e (im~176 whose coef- 
ficients can be extended analytically and uniformly bounded in e, but 
the series itself may be divergent in the complex plane. The idea is the 
following: we express the right-hand side of (2.35) in a Fourier series of 
e (~~176 neZ ,  m e Z ,  and then Eq. (2.33) will be equivalent to the 
corresponding vector equation for the coefficients of the Fourier series. Let 
us introduce several technical lemmas. We denote cl(D) the closure of a 
set D. 

Lemma 3.1. Let h(z, e) and R(z) be analytic in cl(D) for some open 
and connected region D c C. Suppose T is a point in cI(D) where Re R(z) 
attains its minimum in cl(D). Assume that for any z e cl(D) there exists a 
path F(z, T ) ~  el(D) such that F(z, T) connects from T to z and Re R(z) is 
nondecreasing along F(z, T). Then there exists h(., D, e): el(D)--* C such 
that 

J~ h(z, e) e R(*)/* dz =h(z, D, e) eR(Z)/*--h(~, D, e) e R(r (3.11 
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for z ~ cl( D ) and ~ ~ cl( D ), and h( z, D, e) satisfies the property that 

II%(z, D, 8)11 ~< IF(z, T)I Ilh(z, e)ll (3.2) 

We denote T: (h, R, D)--, ~t(z, D, 8) to be the transformation from h to h. 
Then (3.2) can also be rewritten as ItTII ~< sup~,a~D~ IF(z, Z)l. 

Further, i f  R'(z) # 0  in cl(D), then 

8 8 2 ( h ( : , 8 ) y  
h(z, D, 8) =-E-~ h(z, 8) + ( -  1) ~ \ R'(z) / 

+ . . .  + ( _ l ) m _  , 8 "  R'iz) ht"J(z' 8) + 0(8 m) 

8 8 2 /h (Z ,  8)~' 
- [ R,--~ h(T, e) + ( -  1) R,---~ \ ~ /  

+ ... + ( - 1 ) m - l E ( T ) h r m l ( T , e )  e I/'~lr~-"~'~ (3.3) 

where h t~ ~ h(z, e), h c''J ffi ((I/R'(z)) h t ' ' -  z~(z, 8))'. 

Proof. We define the fimction 

h(z, D, 8)= e-"~)/~ (L,r~.. r h(~, 8) eR'~'/~ d~) (3.4) 

It is easy to verify that h(z,D, 8) satisfies (3.1). Since ReR(z) ' i s  non- 
decreasing along F(z, T), we obtain from (3.4) that Ilhll ~< IF(z, T)I Ilh(z, 8)11. 

From integration by parts, 

f,,:~:, eRC~/"h(r, 8) dr=hl '}(z ,  8) eR~/ ' -hl"}(T,  e) e R{r)/~ 
T) 

+ ( -  1)" 8m f, ht"+tl(r,e)eR~~ (3.5) 
~/"{ z, T) 

where 

~2 
~/{m}(z, 

, g  (h(z, 8) 
e) =~.~, , h(z, e )+  ( - I )  ~--'~-z, �9 \ R'(z) / l~ (z) a~ (z) 

8 m 
+ . . .  + ( - 1 )  ' ' -~ h [ml  (3.6) 

R'(z) 
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We denote the last term of (3.5) to be ~{m} We then obtain 

IR{I)(z' D' e) e-R(~'/'I <" em [ f~ ,~,r~ htm+ 'l(z' e) e(~(~'-R(~))/" drl 
~<8 m [[him+ l](z, 8)11 = O(e m) 

because Re(R(z ) -  R(z))<~ 0 for z e F(z, T). This implies (3.3). [] 

Remark. The Inequality (3.2) is an estimate of h which does not 
involve the derivatives of h and is useful for later arguments. 

Proposition 3.2. Let So < I_  be any point sufficiently close to I_ .  
Assume that ~ is a point in the upper half of  the complex z-plane, such that 
Re [C~oAl(Z) dr=O, Re ~ <<.I_,Im ~ >~O, i.e., ~ and s o are on the same level 
curve of  Ol(z)=Re [~_ Al(z) dr in the upper complex plane and to the left of  
the line Re z = I_ .  Then there exists a nonempty region Be which satisfies the 
following properties. (1) ~ ~ cl( Br (2) Be is symmetric with respect to the 
real axis. (3) Let z = T# E cl( B r ) be a point where Re ( ~ ~r Al(z) dr -- inogz ) 
attains a maximum in cl(Br For every point z ~ cl(Br n ~ Z there exists 
F, (z ,T , )ccl (Br  which connects from T, to z such that Re(~At(z )dr  
- inogy) is monotone decreasing as y moves from T~ to z along the path 
F,(z, T,). (4) Re[~oAt(z)dr<--.O for zr162 (5) max_.~n r IF(z, 7,)1 goes to 
z e r o  a s  s O ~ I _  . 

Proof. The region Be is constructed by the following considerations. 
Let /'so be the level curve of ~ l ( z )=Re~_  At(z)dr which intersects the 
real axis at so < I_ and s~ > I_ .  See Fig. 3 or 4. The properties of these 
level curves with different So are well known from Refs. 16 and 22. Let 
Bo = {z ] Re z ~< I_ ,  z s between F~o and ff~o} where ff~o is Fso's conjugate 
image. When So<I_ is close enough to I _ ,  B0 is a region close to 
I_  as well. With the fact that for s<I_,[~Al(z)dr-- in toz=[~(Al(z  ) -  
inw) dr-- inogs and Re(~ Al(~ ) dr -- inogz) = Re ~ (Al(r) -- inog) dr, we need 
to examine the behavior of Al (z ) -  ino~ and the corresponding level curves 
of ~ ,  = Re ~ ~_ ( A ~(z) - ino~) dr. From the fact that Re A ~ ( I _ ) = O, Im A ~ (1 _ ) 

0, we observe that when z = I is on the real axis and near I_ ,  

A~( I )=a l ( I - I_ )+O(( I - - I_ )2 )+i (O~o+O(I - I_ ) )  (3.7) 

where 

0 
al =-~-iRe 21(I)l t=L >0;  COo=Ira 21(I)lt=t_ < 0  (3.8) 
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Thus if we express z -  I_  = x + iy, then the level curves Re ~ (21-/nto) dr 
= c are essentially in the form of parabolas with high order terms: 

� 8 9  O(x 3, y2) ~ C (3.9) 

where too-  nto # 0 as follows from H4. When I z - I _  I is sufficiently small, 
all level curves of ~,(z) are classified into two types. For too-  nto > 0, the 
level curves are parabolas opening upward (convex). For too-  nto < 0, they  
are downward (concave). Let no<0  be the unique integer such that 
too - nto < 0 for n I> no and too- no.) > 0 for n ~ n o - I. 

We state a sublemma which we later refer as "the rule of the 

convexity." 

Sublemma. Let  assumptions H1-H5  hold. Let z = z(x) be a level curve 
o f  q~,(z) = Re ~ (21 - into) dr for  n ~ Z. There exists ro > 0 such that for  any 
0<r~<ro, i f  z t,z2 e Br( I_  ) and Re z I ~ Re Z2, and ~On( Z l ) f f i~n (Z2) ,  then for  
any x: Re(zl - I_  ) <. x ~ Re(z2 - I_  ), the level curve z - z(x) = I _  + x + 
iy(x) o f  qT,(z) which passes through zt lies inside the ball B2,(I_) that is 
uniform for any n e Z. Furthermore, for  any positive number N >  0, there 
exists r I - r t ( N )  >0 such that for any 0 < r  ~<min(r o, rl), if  {z,, i=  1, 2} 
Br(I_) " belong to the level curve Fl  o l i n ( z )  as well as F 2 o f  q~m(Z) for  some 
m, n ~ Z, then one o f  the following three cases occurs. (a)  I f  0 < too - nto < 
too-into,  and [a)o-ntoJ<.~N for some N > 0 ,  then F I is above F 2 for  
Re z t ~ Re z ~ Re z 2. (b)  I f  t o o -  nto < too - mto < O, and Itoo-ntol <~ N for  
some N > 0 ,  then F 1 is below I'2 for  Re z l <~ Re z <~ Re z 2. ( c ) I f  too - nto < 
0 <too-into,  then Fi is above F2 for  R e z l  <~Rez<~Rez2. 

Proof. Let z - ~  I_  + x + iy be a point of the level curve F of ~n(z) 
which passes Zl and z2. Then (x, y) satisfies the relation (3.9). Now since 
z, aB , ( I_ ) ,  i f  1, 2, ICI ~ Itoo--ntoJ r + M o  r2 for some constant Mo>0.  

We assert that there exists ro such that for r ~< ro, F is inside B2~(I_) 
for x e [ x ~ , x 2 ] ,  i.e., I z - I _  1~<2r. Otherwise, let xm be such a point that 
Iz(x)l <2r  for x~ <~x<xm and I z ( x m ) - I _  1=2r. From (3.9), which is 
rewritten as 

�89 x 2 -- (600 -- nto) y 4- x 3 0  l(x, y )  -t- y202(x,  y )  = C (3.9') 

for some O~,O2 where le~l~Mo, 1021 ~<Mo when I z - l _ l < ~ 2 r ,  we get 
that ([too-nto{-2Mor) [Yl ~ C+2at  r2 +Mor3<~ Itoo-nto[ r+(Mo + 2at) r 2 
+ M o  r3. Thus when r~<ro--min([too-ntol/(8Mo+ 16at), 1/8, 1/(4Mo)) 
>0, [Yl <~3r/2, and consequently I z - I _  [ <2r  for xt  <~x<<.xm which con- 
flicts with the definition of x,~. This implies that the point xm does not exist 
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and I z ( x ) - I _  1<2r  for x~ <~x<<.x2. Further, by taking the derivative for 
x once in (3.9'), we derive 

atx--(COo--nCO) y' + 3x2Ol + x30'l + 2yy'O2 + y20'2=O (3.9") 

where O~ represents the total derivative of the function to the x-variable. 
Then lY'[ ~< C2 r for r ~< rt .  Finally, by taking one more derivative for x in 
(3.9"), we get 

al -- (COo - -  nCO) y" + 6xOl + 6x20'1 + x30~ ' 

+ 2 y y " O  2 + 2 y ' 2 0 2  + 4 y ' y O '  2 + y20'; = 0 

Consequently, y"=(al+O(r))/(coo-nco). Let us look only at case (a), 
where 0 < coo - nCO < COo - mCO. Other cases are similar. If z = I_  + x + 
iyj(x) e Fj for j =  1, 2, then for any sufficient large Mo > 0 which is uniform 
for all r <~ ro and n e Z, 

y,[ =al  + O(r) >a  t --Mo r 
(D O - -  ?'/03 COO ~/ ' /03 

y~ = a l  + O(r) < a l  + M o r  

COo- mCO O9o- mco 

Let r~ Since ICOo--nCOl-.<N, we find 
that when 

r<~rO ~ al [(coo--mco)/(coo--nco)] -- 1 = al (COo--mCO)--(COo--nCO) 
Mo [(coo-mCO)/(COo-nco)] + 1 Mo (coo-mco)+(COo-nCO) 

y~'(x) >I y~(x). Since yl(xj) = y2(xj) for y = 1, 2, yl(x) <~ y2(x) for Xl ~< 
x ~< x2 by the maximum principle of the differential equations. This com- 
pletes the proof of the sublemma. 

Remark. In the remainder of this paper, we take N =  COo. Since the 
comparison of two levels curve in the section below (where we refer to the 
rule of the convexity) will always contain at least one level curves of ~on 
with [COo-ncol-..<coo. Thus they satisfy the requirement about the con- 
stant N. 

We define ~n  to be the set of all level curves of ~On(Z)= 
Re[~(2t--inco)dr. The level curves for Re[~(21(~)-inoco)dT which 
compose Zno are the most concave in the sense that if F~ ~ Zno intersects 
/'2 ~ Y n, which is the set of all level curves for Re ~ (2 t(~) - inCO) dr, n ~ no, 
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in two points z~ and z2 in the neighborhood of I_ ,  then for z between zm 
and z2, /'~ is above 72 from the rule of the convexity stated above. See 
Fig. 2. Similarly, ~-0 - l are the most convex meaning if / ' ,  ~ 2~,o_ l , / '2  ~ Z .  
for n # n o -  1, and if/ '~ r~/'2 = {Zl, 22}, /'~ is below/ '2  between (zm, z2) 
also by the subleznma above. 

By the nonresonance conditions H4 and HS, Icoo-nocoJ # [ (coo-  
(no -  l)co)l. Thus either (a) [coo- n0col < Icoo- (no-  1)col or (b) Icoo-nocol 
> Icoo-(no-1)col. Suppose (a) holds. Then when z is close to I_ ,  the 
level curves ~o(z)  where z -  I _  = x + i y ,  

�89 x 2 - (coo - noco) y + O ( x  3, y 2 )  = C (3.10) 

are the most concave ones in the set of all level curves and their corre- 
sponding conjugate images. The conjugate images of 2~,,o (z) written as 
~-0 (z) -- ~-o (x, y), which have the expressions 

�89 x 2 - (coo - noco)(  - y )  + O ( x  3, ( - y ) 2 )  = V (3.11 ) 

are the most Convex ones since ~,~ are more convex than ~ .o - i .  Assume 
(b) holds. Then ~ .o - I  are the most convex, and ~o-m are the most 
concave. 

By nonresonance conditions H4 and H5, 

coo - no) ~ - (coo - mco) (3.12) 

for m, n e Z. Therefore, we can arrange all )':.. in an order according to the 
magnitudes ]coo-ncol. When z is sufficiently close to I_ ,  all ~..  are.obeying 
the rule of convexity and concavity in the order of the magnitudes 
Icoo-nco[. We may use the notations n,, n2 .... , n ..... to express the order 
of the curves according to the magnitudes, and ~{t), ~(2), ...,2~(,) .... to 
express the sets of the level curves in such an order. For example, in case 
(a), ~ ( 1 ) = L o  ..... y,(k) =5".o, for some k. 

r2 ~ E .  f o r n # n o  

Fig. 2. The convexity argument. If  T'~ and T' z intersect at z~ and zz near l_ ,  then r~ is above 
T" z when z is between z l and 22. 
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We define that an open set B is ~{") accessible if, given z ~ el(B), there 
exists a path Fn(z, Tn) = el(B) from Tn to z such that Re ~ ($1(t) -- ino~) dt 
is monotone decreasing as y moves from T. to z along F.(z, Tn), where T. 
is the maximum point of Re S~ (hi(t) - ino~) dt in el(B). 

We also note the very crucial point that if an open and connected 
region D is not y:n) accessible, then there must be a value c such that the 
set L(c)= {zeDlRe(S~ ~l ( t )d t - ino~z)=  c} is not connected. The argu- 
ment is very simple. Assume this assertion is false. Since D is connected, 
there is a curve F which connects any z with Tn. If ~on(z)= Re(~ $1( t ) -  
inoxlt) is not monotone in F, then there exist z~ and z2 in F such that 
q~(zl) ffi q.(z2) and rp.(z) is monotone decreasing in the segments from Tn 
to z~, from z2 to z, but not between zt and z2. We modify F r o  ~ b y  replac- 
ing the segment between zl and z2 with the level curve L = { zeD I q~.(z) = 
qn(z~)}. Then ~ is of the property that q.(z) is monotone decreasing on 
which contradicts the fact that D is not Y.r accessible. 

Thus if Bo is ~{n) accessible, arid we cut off portions of Bo without 
disconnecting any of F e  )":~) in the sense that the new set Bt = Bo has the 
property (6B1 - 8Bo) n F is either empty or a single point, then Bt is Z {"J 
accessible. 

We now construct the region B~ in the following way. 
The level curve of ~l(z)fRe_J~_ ~t( t )d t  which passes through z-- 

So: F~o(z) and its conjugate image F,0 bound the region Bo as assumed. We 
note that Z o -  y.r as classified, and there are only finitely many families 

r;, 

_Y 
f'2, 

r,+,/-f---. . .  

-/ / 
/ 

Fig. 3. The construction of Bi. We cut offpart of Bo so that BI is 57 ~k-I) accessible. When 
is below z k - i ,  we take F~ ,  P~ ,  F~" I and F~_t as the boundaries of the region BI. 
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of ~n)  which are in front of ~o in the order which was described 
previously. For n ~ k +  l, Bo is ~n~ accessible because of the order in 
which they are arranged (those level curves are more "flat"). However, Bo 
may not be accessible for some ~(~) for 0 < n ~ k -  1. 

We choose the level curve Fk_ 1 of Re ~_ (~l(z-) - / n  k_ ! r d~ which 
is tangent to r~o o r / ~ .  Suppose/'So and Fk_ l intersects at z = zl,_ l, we 
name the portion of F~_ l left of zk_ l as F~-_ 1, and the portion right of 
zk_ l as F~"  I. Correspondingly, we have/~k'-i a n d / ~ - i .  Similarly, we 
can define F ~ ,  / ~ .  Define in case (a), when ~ F ~  is to the left of 
zk_~,B~ to be" the r~egion bounded by F~,/~, r~_i-and/~_~; and in 
case (b), when ~r 0 is to the right of Zk-l, BI tO be the region bounded 
by F +, r~+, F~_~ and .P~'_ ~. See Figs. 3 and 4. 

is obvious that BI is accessible for ~e-~ because of the way in 
which we construct B~ by using several pieces of level curves in ~- ~) to 
form the boundary (namely, F~_~, zP~-_~ or /'~-_~, F~-_~). Also, B~ is 
accessible for ~("), n i> k. This comes from the fact that Fc~ (OBI- 0Bo) is 
empty or a single point for any Fr ~"), n >~k, which follows from the 
convexity argument. This completes the construction of B~. 

We then follow finitely many steps to find F~_2, F~-2 which are 
tangent to OB~, and let F~_ 2, r~_ 2 and 0Bin become the new boundaries 
of B2 which cut off B~, and so on. The details of the constructions of 
B2, ...,B~ are similar to that of B: but lengthy, hence they are not pre- 
sented. Eventually, we can get B~ which is accessible for all ~"), nr N. 

r~ 

P2, 

r~-I i 

. /  

Fig. 4. The construction of BI. We cut offpart of Bo so that B~ is y~k-~) accessible. When 
is above zk-i, we take F ~ , / ~ ,  F~-_~ and/~'_~ as the boundaries ofthe region Bz. 



Periodic Forcing and Delayed Bifurcations 583 

Bk intersects the real axis between two points z = s ~ ( ~ ) < I _  and z = I _ .  
Thus B e = B, is the desired set which satisfies all the properties. [] 

I.emma 3.3. Let the assumptions H I - H 5  hold. Then the solution 
y(L s, e) o f  (2.16) with the initial condition y(s, s, e) = 0 has the property 
that y(I, s, e) = Q(I)( ~) and 

Yl(I ,s ,e)=e ~ ~ gl . . . .  (I ,s ,e)  ei~'~ (3.13) 
m~Z n~Z  

for  some coefficients {gl.n.m}" There exists a neighborhood Nl o f  I_  in the 
complex plane such that for  any ~ E NI ,  the functions gl.~,,,(L s, e) have 
analytic extensions g,,~,,,(z, ~, e) in z for  z ~Br  where Be was defined in 
Proposition 3.2. Further, there exists a constant M independent o f  e ~ 0 such 
that for  ~ e NI, z 6 cl(Br --- B e u ~Br 

~ sup Ig, . . . .  (z,~,t)<<.M (3.14) 
n E Z  m E Z  ~ N I , Z ~ B  ~ 

For f ixed z e  c~ r Be, gl . . . .  (Z, ~, e) are analytic in ~. 

Remark. The coefficients {gl . . . .  } depend upon variables L s, e, and 
the decomposition of Yt(I, s, e) into series (3.13) is not unique. Lemma 3.3, 
however, allows us to find a set of coefficients g~ . . . .  (z, ~,e) which has 
bounded analytic extensions as e ~ 0 +. 

Proof. Let T: (h, R, D) --. h be as denoted. Denote h,(z, Be, 8) = 
7(h~, ~ -  2~(t) dt +inooz, Be) and f~,o.,(z, B e, e) =T( f l ,  o.,,(z, e), ji_ 2,(r) dt 
+ inooz, Be). 

From (2.35)--(2.37), using the facts 

f f  el/'lSa,~a~h,(J, e) e i''s/~" dJ 

=h , (L  Be, ~) eJ~"a/~'-hn(s, Be, e) e */cga'c~)a~ei'''/` 

as well as 

I I 

-3  

=.fl, o , . (LBr ei~'~ - J l ,  Is, B r e) el/"g~'{~e~e *~'~'/~ 
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we obtain the equivalent equations of (2.35): 

Y,=Ho+ ~ H.e~"'#'+R,,o+ E R,,. e~'/" (3.15) 
n ~ O  n ~ O  

where 

1 ~., elt.r ~ Ho='~{ - . z 'h . ( s ,B . , , )  + ~o(I, B., ,)} (3.16a) 

H. =~.(I ,  a., 8) for nil0 (3.16b) 

Rl, o= {-- ~zTl,o,,l(s, B., 8) ell'I~|(')a'e'~"'l" + fl.o.o(l, B., 8) } (3.16c) 

Rl..=.fl.o..(l,B,.,e) for nil0 (3.16d) 

Lot H=(H.,neZ), and R=(R~..,neZ). Then a solution of the vector 
equation 

g=l (H(g)+ R) (3.17) 

corresponds to the solution of (2.35), which can be expressed in a Fourier 
series form as 

Z eg,.. e'~"'/~= E (~.+R,..)e'/" 
n e Z  n e Z  

If we further assume that g=,. can be decomposed as 

gl,. = ~ g= ..... (I, s, ~) e #~'':~ (3.18) 
m e Z  

then (3.17) is equivalent to 

g=/~(g)__l j ~ + l ~  (3.19) 
8 8 

Here g=(gl,..m(I,s,8)), B=(/~,~=,ncZ, meZ), where l~.,==Om(H.), 
~=(l~., , . ,neZ, mcZ),  where I~.,==O,.(RL.); and 0,. is defined as the 
formal projection mapping: 

Om: ~ cke~'~/'--*=,,, (3.20) 
k e Z  
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Note that Om is only a formal mapping because the well definedness of 0., 
depends on the unique identification of ~k, which is difficult for any general 
function of s. The mapping 8., is well defined here only in the sense that 
once the decomposition of g is assumed, then H.,  R L. can be expressed 
uniquely according to the order of e "~/~ in the natural way. The functions 
O,,,(H,,) and O,,,(R~.,,) are simply to denote the corresponding coefficients. It 
can be verified that 0., is commutative with T. Thus for n =~ O, 

]~,m~.Ora(H~)--~ "~(Om(hn) , f:- /~I(T) d~" -~- in(,oz, B,)(I) Bs, ~,) (3.21a) 

i~" "=O'(Rl n)= ffoL~ Bs' " forf~ m#om=O (3.21b) 

R 1 {ho(L B,, k ~ z O,m~'~ 0 m 8)- ~', hk(s, B,, e) e'/*g~,(~)a~dk'~"/~} 

_--(( ::- ) 1 T O,~(ho), 2~(z)dz+inoz, B~ (LB,,e) $. 

(3.21c) 

:(TLo, o(I,B,,e)-f,,o,o(s,B,,e)e '`~g~,(~ for m- -0  
= ( - ( f l ,  o,m(s, B,, 8) e I/~L~,<*)a*) for m # 0  

(3.21d) 

For each ~ e C which satisfies Re ~ < I_ and Im ~ >1 0, we can find the 
point so ~ So(C) < I_  in the real line such that Re ~ 21(z) dr = O, i.e, ~ and 
s o are on the same level curve of $1(z)---Re ~_ 2)(~)dz. 

To find the analytic functions gt. . , , .(z,  ~, 8) which extend gL., . , (I ,  s, e), 
we assume that gL., .,(z, ~, e) take the series form of 

g,.~.m(z, ~, e)= 5". gL..m. AZ, ~, 8, So) e#*~ ~'~')~ 
lEZ 

(3.22) 
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for each r satisfying Re ~ < I_ ,  Im ~ > O, I~ - I_  I ~ rain(re, r~ and z e Be. 
Since (2.37) and (3.19) contain gl.,~,, which also need to be extended, we 
find the conjugate terms in the form 

r _~. _.,(~ $ e) =: ~. r -. .  -.,, _t(g, ~, *, So) e -I/*~z'(~ (3.23) 

for n e Z ,  m e Z ,  l e Z .  The indices ( -1 )  ofg~. _ , , -m.- t  are due to the fact 

eZ/, ~ ~,~,)a,= e-Z/~ ~ ~,~o ar since ~o i t(z) dr is purely imaginary when ~ is on 
the same level curve as So. 

We denote the formal projection operator fit: 

fit: ~, ~ el"/`I~ ~''t')d~ "" at (3.24) 
k e Z  

Again similar to the case of 0,,, for any function y(~) which can 
be uniquely represented as Y-k, Z 0Ck(~) ekleI~ ~'(rl'tr, fltY(~) "* at(~) is well 
defined. For the functions concerned below, once (3.22) is assumed, then 
they can be all expressed uniquely in terms of the series of ekUl~ a,~~ in 
the natural way. Also, fit are commutative with T. 

The analytic extensions of gl ...... t(Z, ~, ~, so) in (3.19) will lead to a 
delay equation which contains gt.,,.,,.t(z, ~, e, so) as well as g l . - , , . - , , . - i  
(~, (, e, So). For our convenience, rather than considering a delay equation 
for all ~ with Im ~ >I O, we study a system of two vector equations: 

gl ...... Rz, r e, so) ='~ ,o . . . . .  ~+-e "~ (3.25a) 

g, . . . . .  ,(z, r e, s 0 ) = ~ n , ,  . . . .  , + ~ / L ~  . . . .  , (3.25b) 

where/~,o.-.-,, ,, R,.~ ~.,,.1 and ~ . . . .  ,, ~s~ . . . .  , are defined as follows. For 
n#O,  

( Y? ) = I T  fltOm(h,,), 2 t (~)dr+inmz,  B r (z ,Br 
8 

(3.26a) 
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#l(71, 0, n(Z, B~, 8)), for m = 0  
l~~ for m ~ O  

= ~(TLo.n(z, Be, ~)), for m=O,  
(0, otherwise 

/ = 0  
(3.26b) 

--l{'~(fllOm(ho),~[-Al(T)d'c-.Firtt.oz, B,)(z,B,,e)-et/":o;'l")a" 

(3.26c) 

B,, y,,o,o(r 
/~,o.O.~./= ~ x el/" l~0 ~<~)d'e-l/~ S'r ~'~ a~}, m = 0  

kl.'t~.~Jl.O.mV~, ~, ) t, m#O 

I 
ft, o. o(Z, Be, e) m = 0, t = 0 

= 0 71~176162176 m=0,m=0' l~o,l=-ll:b-1 

fl.o.,,,(~,Br ~o mq~O, I = - - 1  
m # 0 ,  l # - - I  (3.26d) 

Equations (3.26a)--(3.26d) are obtained through decomposition from 
(3.2I). We note that Eq. (3.25b) is obtained in a similar way from (3.21) 
by taking ~ (instead of r at the variable s. Thus, we get directly for n # 0, 

~so , , t (Z '~ 'e)  =l-Te (flflm(hn), ~i'-2~(z)d~+inogz, B~I (z, B~, ~) (3.26e) 

R", o . . . . .  ,(Z, 4, e) ---- ~'f~" o,,,(z, Be, e), m - 0, l = 0 (3.26f) 
10, otherwise 
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Hs~176 I- dT Br (~', B,~. 8) -- e~l/e ~:o A'(,) d~ 

• Y" T ~ +  ~ Om_~(h~), ~.,(~) d~ + O~o)z, Be (~, ~ ,  ~) 
k r  

(3.26g) 

(7~, o, o(Z, a~, e) 

.g,o, o,,,,,, = ~ 0 7 "  ~ ~ B~' ~) e'/'I:~ ~'(''*' 
~O .f, o ,,,(~. B~, e) e'/'I'o'h(')'~, 

m=O, l=0  
m--O, l = - 1  
m=O, l~0 ,  1~- -1  
m#O, l = - - 1  
m ~ 0 ,  l # - 1  

(3.26d) 

Let So and ~ be defined above. Consider z r Br such that Proposition 3.2 is 
true. In particular, for zeBr Re ~ A~(~) dr <~ O, therefore [e~/~a,(~)'~ I ~< 1. 
Further, we observe that given any z e B  o there exist F,(z, 7",)= el(Be) 
and F,(~., T , ) c  cl(Br such that q~,(z) is decreasing on both curves. 

Denote g=(gl.,.m.t(Z, ~, e, SO), g, . . . . .  t(Z, ~, e, SO)), (1~I~ o, I~, o) =(rl ,  u.,.m.t, 
. . . . .  

Ilgll= ~ ~ ~ sup (Igt . . . . .  ,(z,~,,,so)l+lg, ..... ~(z,~,~,so)l) 
neZ meZ I~Z  ze~e~ 

It suffices to prove Lemma 3.3 by showing that (3.25) defines a con- 
traction mapping from G r = { g: l] gH < 7} to itself for some positive number 
7 when e < eo and [so - I_ ] < r for some r independent of e. 

Since both 1~o,.,,~,, and ~ o  . . . . .  , contain TCP,0.,Ch.), S~-~,( t)dT+ 
in~oz, Be) which are evaluated at (z, Be, e ) as well as (~,Be, e) and 
le~/" g, oa'(')a'l ~< I, we get 

_ 4 
1 it (.~.o( g), ~o(g))ll < ~  ~.. llT(gmPl(hn))ll 

4 
~<~ sup ]F.(z,T.)[ ~ I[O,.fl,(h.)[[ (3.27) 

8 n~eZ, z~B~ n,m, l e Z  

The last inequality is from Lvmmas 3.1 and Proposition 3.2. Now from 
(2.29)-(2.31) and (2.37)-(2.38), we get 
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E 
n, m, l~ Z 

k=2 l ~ l ~ k + l  

From (2.29), we obtain, further, that  

E 
n , m ,  l c Z  

110,./~,(h.)ll ~<F-M~ Ilgll + ~. e *M~ Ilgll* 
k-~ (o'/2y 

<*2M~ Ilgll + 
M J  I[glt 2 1 

(~/2) ~ 1 - ~  Ilgll/a 

Therefore, we derive 

$ 

~<4( sup [F,,(z,T.)I)(M.,IIg][+ 4Maljg[[2 1 ) 
.~z,~a~ ~2 1 - 2t- Ilgil/o ~ (3.28) 

Similarly, from (3.26), we have 

-1 g,o)ll Z ff,.0..ll 
g 8 n~Z 

Then from (3.3), particularly by taking R(z)=J~-~l( 'c)dT+intoz,  and 
using the fact that [R'(z)[=[21(z)-inool>8~ for z~B e, we derive that  
there exist 62 > 0, 8s > 0, and Mz, ~ = Mi , , ( f 'L  o, n) which are independent of 
g such that when e < ~o, 

I 8 p 8 2 " 1 IIfL o..ll + ~  Ilf~.o..]l + ~ M~, . ( f t ,  o.n) 117~, o,,,11 ~ 6, 

Consequently, when M is sufficiently large and e ~ %, 

1 I1(/~, ~ ) l l  
8 

(3.29) 
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If we denote/:~o(g) = I/e(g~o(g), H~(g)) + I/e(~,o, ]~o), then when e < eo, 

1 li/7~o + -~,otl + ! 11/'1~ + R~[I II/~,0(g)ll -= ~ e 

~<4Mo sup (max (IF.(z, T.)I, IF.(~, T.)l)) 

( 4,,,,__: 1 ) 
x Ilgll + o.2 1 -2 e  Ilgll/a + 2M  (3.30) 

where IF,,(z, T.)I express the arc lengths of F,,(z, T,,). We note that 
sup=~n. [F,,(z, 7".)1 goes to zero as ~ goes to 1_. Thus, when ~ is close 
enouglq to I_ in the complex plane, namely, there exists r 2 = r2(M ) > 0, 
whenever ~eNt - {~, I ~ - I - I  ~<r2}, s maps the sphere /~aM = 
{ g: I[ gll < 4M} to itself. Further, for any g~=) e/~4M and g~b~ e ~aM, we show 
in a similar manner as in (3.28) and (3.29) with ( ~ 0 , / ~ )  terms canceled 
that 

1 
- - II ~ o ( g ' b ' )  _ [t,.o (g,. , )  II + 1 I1/-?so(g'"') - /~o (g ' " ' )  II 

8 8 

4 <p2-- zeBr (max (IFn(Z, 7'.)1, IF.(~, 7".)1)) 

• {~2 ( ~  ilf,.t.,.,,ll) llg, h~ g,,,~ll 

+ e2 (,,~z llf ,. ,.2.,,ll ) llg'b'- g'"'ll 

k = 2  l ~ l ~ k + l  

~<8M= sup (max (Ir.(z, T.)I, Ir.(e, 7".)1)) 

1 
x(1  +16M=17 2 1-8~M,,/a)Ilg 'b '-g{~ 

1 
(3.31) 



Periodic Forcing and Delayed Bifurcations 591 

when ~ is close enough to I_,  say, [ ~ - I _  [`< r2. The fixed point argument 
provides the existence of the anlytic functions g(z, ~, e) which extend g(I, s, e). 
Note (~r Be # ~. Then for zr  ~ r  Be, the analyticity ofg(z, ~, e) for the 

variable comes from the analytic dependency of the solutions on their initial 
time. Standard references in this regard can be found in Ref. 6. 

Further, for I r  `<r2, and zr since Re[C~o21(z) dz=O, 

Ilgt . . . .  (z, ~, e)ll + ~ Iigl.,.m(z,~,e)ll 
n ,  pn n ,  r a  

= ~ ~ g l  ..... l(7",~,e, SO) el/e~OAl(t) dv 
n, m t G Z  

+ ]t~Z offl ..... -1(~',~,8,$o) et/e'ox'(r)dr 

-< X ~ IIg, ..... t(z, ~, e, So)ll 
n ,  m / 

+ ~ ~ Ilgt . . . . .  _,(~, ~, *, s0)ll .<2 Ilgll .<8M 
n ,  r n  l 

This comPletes the proof of Lemma 3.3. [] 

w e  make some additional remarks here. First, z = 1_ belongs to all 
cl(Br for I ~ - I - I  <r2. Thus all expressions are valid for z = I _ .  Second, 
if the initial parameter s >I I_ is on the other side of the critical point, 
similar properties are expected. Lemma 3.3 can simply be rewritten for the 
case of s t> I_ without much change. 

We now consider the functions y,(I_,  s, e) which are essential in deter- 
mining the distance between two solutions of (2.16), y(LI~ and 
y(L Io, e) where the solutions y(L I ~ ~) and y(L Io, ~) satisfy the initial 
conditions y(L I ~ ~ ) [ I  = 10 = 0 for I ~ > I_  and y(L Io, e) lt = i o = 0 for Io < I_ 
respectively. 

Lemma 3.4. Assume H1-H5 hold. Let y(I, s, e) be the solutions of(2.16) 
with the initial conditions y(I, s, e)[i=~.=O for s < l_ .  Then for s `< I <.I_, 
(alas) y( I, s, ~) can be expressed as (a/as) y = ( ( ayl/as), ( ay2/as) ) r, and for 
j = l , 2 ,  

ff--~yj(I,s,e)=( ~ Aj . . . .  (I,s,e)e~"~176 el/"I~ttr)d~ 
x n ,  m ~ Z  

+ (  ~ By . . . .  (I, s, 8) eVUOI/seir'uos/~) e 1/*'x2tt)dt (3.32) 
n , m ~ Z  
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where Ay,~(I,s,e)=By_.._m(I,s,e), both Ay,.,m(I,s,e),ay,~..(I,s,*) 
have analytic extensions A j, ~,,~(z, ~, e), By, ~, re(z, ~, e) which are analytic in 
for I~--I-I <<.rT, and are analytic in z for z ~ B~. Furthermore, 

Z IIAy,..m(Z,~,*)ll+ ~ IIBy.,,,,,,(z,~,e)ll.<M (3.33) 
y, n,  m j ,  n,  m 

for t ~ - - I - I  <.r7, z~Br  and for any e<~eo where eo---8o(M, ,~j) and r T > 0  
is independent of  e--,O. In particular, z = I _  belongs to every cl(Br for 
I~-I-I  <r7, and therefore 

o-s y j ( I _ , s , e ) = 2 R e  ~y,m(S,e)e tm'~ e l/eit'-~t'(')d* (3.34) 

and ~j, ~(s, e) have analytic extensions ~:. m(~, e) for [~ -- I_ I <<- r7 and 

Z IIAy,.(~, e)tl <.M (3.35) 
m ~ Z  

Proof. Let Y =  Q - l y  as defined in Section 2. Then Y(I, s, e ) =  
(Yl(I, s, e), Y2(I, s, e)) r satisfies (2.26) and (2.32). From relation (2.32), 
Y(s,s ,e)=O for all s, we obtain from (2.17) and (2.26) that 

a / 
_7_ Y(I, s, t) l l=s = - - - -  Y(I, s, e) l / . s  = - Q2 is ,  ~, ~} " 0.36) 
8s 81 \ I:,] 

Thus, if we let r /=  (O/Os) Y(I, s, e), then 

~ , l ( s , e )  ,12ff)) 't + O'Y e 

rl(I, s, s)i,=a = - Q2 (s, f, ~I (3.38) 

where Q2=(Q2, I, Q2,2) T, Q2. j=~nez f j ,  o.~(s,e)d n'~/~, j = l ,  2, and 
Y.n~zllAo,.(~,e)[I ~<M for I ~ - I _ l < r 2 ,  and fj.o,.(~,e) analytically 
extend f:, o.~(s, e). Because Q2(s, e, s/g) have the analytic extensions for its 
coefficients f:. o. ~(I, e) which satisfy (2.31), it is necessary only to show that 
the solutions t / j= t/j(/, s, e), j =  1, 2, of 
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e,~/j----('~'t~ I) 220(i)) r/j+-~OF2 (I, e,~I, Y)t/j (3.39) 

, t j (L s, e,)l,-, = ej (3.40) 

have the desired properties (3.32)-(3.33) because F/= - Q 2 , 1 (  s ,  e,, s / e , )  r l l  - -  

Q2,2(s,e,,s/e,)F h .  Without loss of generality, we just consider ~h- We 
express ( aF2/a Y)( t, e,, I/e,, Y) into ( F3, ~( I, e,, I/e,, Y), F3, ~( I, e,, I/e, I9) ~. Then 
(3.39)-(3.40) can be written into integral equations 

.,(i, ~, e,) = (r '"~* ) 

1 / e  ~/'ga'~)'~ [~ o 3, ~ 'I~(L s, 
o - i /e I~ 't2t r)  d~ F (3.41 ) 

From the fact that F3,j depend upon I/e, periodically and upon I/e,, I 
analytically, and F3.j also are analytic functions of Y which themselves are 
expressed in the Fourier series in Lemma 3.3, F3.j have the property that 

F3, j  = e, E ~.~ (qj, i . . . .  ( L  ,,~, e,), qj, 2 . . . .  ( L  s, e,)) ei '~ ~''s/~" ( 3 . 4 2 )  
n~7_ ra~Z 

where 

~, ~ Ilqj.k . . . .  (Ls, e,)ll~<M (3.43) 
j ~ l , 2 ,  k = l , 2  n E Z  m ~ Z  

for some constant M. Inequality (3.43) can be easily derived from 
(2.27)-(2.29) along with (3.13). We look for the solution r/t of (3.41) of the 
form 

( e~/'I~ ) + ~m kCtl,2 (i, s, e)/ . . . .  
tll m ~,(Odr (tXl. t.n.m(I, $ , e) ~ .ein,ot/6eimcoS/eel/,j~,~,(Odr 

4" E \fll .  2, n.m(l, S, g l . . . .  (I, ~q, e))  .e,,~o,/,e,m,,,~/~e,/,i:h,~, . (3.44) 
n, m 

From (3.41), we obtain that (at ,ffl)=(al, j .  . . . .  fl l j , . . . ,I  j = l ,  2, 
n ~ Z, m E Z) must satisfy 
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y, 

and 

e~O,;/~eb,,~/,e l/, I, ~ ~t(~) a~ l , j ,  n,  m 

n ,,~,I/,ob,,o,~/~ el/~ I~ 22(r) a~ 
"~ Z P l , J , m  m~" o 

I'I, m G Z 

=le'/'f~,2/oa" [~e-l/ 'I i2, 'oa'[ (e  ~'/, qz,,. .m(J,s,e)e~"~a/'e'~ 

et/~. f~ 2u(,) a~ e'/'I~a'(~)a~+ ~ (0q.l.-.m 
n, m 

m et/~l~zz(~)aT) ) '4" f l  1, 1, n, ei'K"J/e'eim~ 

dr ( S n~m qj, 2 . . . .  ( J, s, 8 ) einr ) 

x ~ (~l.2.,,,,,el/~l~2,(~ . . . .  ~ �9 ,ei"a/~'e*"~/" dJ 

Su 

(3.45) 

We express the right-hand side of  Eqs. (3.45) into 

' ' I , ~  m 
e i/~ S. ~t(,) a~ ~ Li. l . . . .  (~, J, s, e) e*"W~'e; ..... /': 

- $  

+ ~. ql. I ..... (J, s, e) e+"'a/~e ~176 
tl, m 

+ ~. Li,2 . . . .  (fl, J, s, e) ei"'J/+ei""+/~e j/~'I~22-a,)<'>'*] dJ 
n, tn 

(3.46) 

f d el/,j~a2(,Ja ~ t ~.. [L2. l . . . .  (0[ ,  J, s, e) e~"a/'e~"~""/~e l/*J., {a,-2,~oa. 
-$  

tl~ m 

+ L2. ~ ,. m(fl, J, s, e) eU'W*e u'*'~'/* 

+ ql.u.n.m( J, S, e) e~/~el"~'/~e I/~I~ ~2' -2~u~)a~] d J  (3.47) 
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where 

Lj ,  1 . . . .  -'~ ~ .  qy, k, k l , k~(L  '3, $) "Oq,k,l , , l~,  
k l+ l l~n ,  k 2 + 1 2 ~ m , k ~ l , 2  

L j , 2  . . . .  = ~ qj, k, k l , k2(L  S, ~,) " ~ l , k ,  It.l 2, 
kl+llffin, k 2 + 1 2 ~ m , k ~ l , 2  

j = l , 2 ,  

(3.48) 

j =  1,2. 

(3.49) 

It can be verified directly that there is a constant Mb > 0 such that 

Z ILL:,1 . . . .  II+ ~. I[Ly.2 . . . .  [I 
j, n, m j, n, m 

<<-( ~ [I qj, 1. n. m( f, S, e) I]+ ~ '[q7.2 . . . .  ( I, S, e ) I[ 
\ A n.m, j ,n ,m  / 

X(j.,~m. II~[.j . . . .  1{ "~j,~n, m I]fll'J'n'ml[)<~Mb [l(~l, ]71)1[ (3.50) 

Under hypotheses H4 and H5, when [ ~ - I _ ]  is close enough to 0, 
it can be easily verified by the Taylor expansions of inogz and 
J~_(A2=Al+inog)dz that the level curves of Re(inogz),n~Z and 
Re~r (~2-21 + inog)dr, n ~Z, are less concave than F,,, and less convex 
than r m for O<~m<~k of which 8Br consists. Thus there exist 
[',,.t(z,~,,),-cl(Be) and /"~,2(z, rl,•162 such that Re(inogz) and 
Re J:c(+_(22(r)-Al(Z))+inog)dr are monotone increasing on the corre- 
sponding curves, respectively. The points ~n and r/~ are the minimum 
points of Re(inogz) and Re J~r (_+(22(r) -A t ( r ) )  + into) dr in cl(Br 

Now for z~Br we can apply Lemma 3.1 with respect to R(z)= inogz 
and R(z)=~"c(22-21+inog)dr. Let T be denoted as in Lemma 3.1. 
Denote that for m e Z, n E Z, 

L2, ~ ,,. re(z, 

EI,2 . . . .  (z, 

J~2. 1 . . . .  ( Z, 

ql.l . . . .  (Z, 

ql,2 . . . .  (Z, 

Be, e ) - T ( L I .  I . . . .  (o~, z, ~, e), incoz, Be) 

Be, 8) - T(L2, 2 ..... (,fl, z, ~, e), incoz, Be) 

Be, e ) - r ( L I .  2 . . . .  ( p , z , ~ , e ) , i n o ) z +  ( ,~2- , l t ) (~)dr ,  Be) 

B e, e) = "r(L2, 1 . . . .  (~, z, ~, e), incoz + f~ (,~1 - ~.2)(r) &,  Be) 

B e, e) - T(q,  1, n.m(z, ~, 8), ino~z, Be) 

Be, e)-T(qt.2,..m(Z,~,e),ino~z+ f] (21-Ae)(r)dr, B~) (3.51) 
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We now consider the corresponding vector equation of (3.45) after 
using relation (3.51): 

ot ei,~o ll~ e ~n,~ /S e i/ ,  i t, ~ t ( , ) ,~ 
E 1, l , n , m  

m, n i~Z  

+ E ~ l . l . n . m  ein~176 
m , n ~ Z  

= ~. (s l. ~.,,(I, B~, e) e ~'~ 
m, n 

--Li .  l.,,. re(S, B,.  e) e~"*l~) . eim~~ il~ f.[ ~'lO:) d* 

+ ~ (~1.2.,,.,,,(I, B,, e) ei'~ l/'ga2'Oa~ 
m, 

-- ~l.2. . .m(S, B~, e) e~'~ l/~I~*~e~) e ~176 

m, B 

-OI .  t.,.,,(s, B.,, e) e i'~'~/*) ei''~/"e I/~" I[a*(')a" (3.52a) 

ot e~,~,,l/,e~,,,~/~e I/a ~ 3. I ( r ) dr 
E 1,2, n , m  

m , n ~ Z  

n e i, uoi/eeimo~/~.e i/t S~ ~2 ( r ) dr 
"Jr" E HI ,  2, n ,m 

m , n ~ Z  

= ~ (~2. I . , .m(/ ,  B~, e)  e~ I/*I~t~Od~ 
m, n 

-/7.2. i.,. ~(s, B~. e) et"'*/~'e t/':g~'t*~'t*) e i'''~/~" 

+ ~ (L2. 2. ~.,,(I, B~, e) e ~"'a/~" 
m, n 

--~2.2.,.m(S. B~. e) e i"~ ei''~/~'e I/~I~2t~ 

+ ~ (01.2.,.re(I, B~, e) e~~ v~l**a,~~ 
m,n 

- q l .  2.,. re(s, B~., e) d'~/~el/"l[~2~~ e ~ / ~  (3.52b) 

We compare the coefficients of the series of both sides of the Eq.(3.52) 
to obtain a vector equation, then we extend it from (I, s) to (z, ~) for any 
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r ) and z eBr Lemma 3.3 permits the analytic extensions of the 
coefficients. The new vector equation becomes 

(" ~l, l . . . .  = El, l,., re(z, B~, e) + ~l, l,., .,(z, B~, e) for n ~ 0 

~l,l,O,m=El, l,O,m(z,Br - E EI, I,k,t(~,Br 
k+l~m 

- -  E "J~l, 2, k, l (~ '  Be, 8) - -  ' ~  ql ,  !, k, 1({~ ' B~, 8), 
k+l~m k+l~m 

1 1~1,1 . . . .  =EI,2,  n,m(z,Br 

0~!, 2, n, m = L2, 1 . . . .  (z, Be,  8) -Ji- ql, 2, n, m( Z, Be, 8), 

fll, 2,~,m = s . . . .  (z,Br for n # 0  

#l,2, O,m=E2,2, o,m(Z,nr , e ) -  E E2, l ,k , l (~ ,nr  
k+l~m 

- ~ E~,~,k,~(r162 E qt, z*,,(~,Br ~) (3.53) 
k+l~m k+l~-m 

The Banach space of (0q, fin) is defined in terms of the norm: 

[f(oq./3OIf = ~, (fl~t,j. .... II + {I.Sl,j,,.,,~ll) where[I- I I -  sup ]'J 
j~l,2, n~Z,m~Z zeB~ 

For z EBr (3.53) defines a fixed point problem for a vector equation: 
(~n, ~t)(z, ~, e)= T((~ l , ~t), z, ~, e) + S(z, ~, 8) where T represents all terms 
which contain /~ij,,~m that are dependent on (~l,/~n) and S contains the 
nonhomogeneous terms involving ~,j. ~.,~. We note that M~ is a constant 
[referring to (3.50)] which is independent of 8-+0 +. We can show by 
using Lemma 3.1 that for i = 1, 2, j = 1, 2, n ~ 7/, m ~ 7/, 

IIE,j,~.m(z, Be, 8)11 ~< sup (I/',,, ~(z, ~)1, I/'~,2(z, ~ ) 1 )  IIZ,j . . . .  II (3.54a) 
zEBr 

tl#,,l,~.m(Z, Be, 8)11 ~< sup (I/~, i(z, CDI, I/~.,2(z, r/if)t) Ilqt,j,~.,.ll (3.54b) 
zeBr 

Thus by combining (3.54) with (3.50), we obtain that 

UT((~, B,), z, r e)lf 

~<2Mb sup ([/~.,,(z,r [~n, 2(Z,I~n~)l)II(OCI,~I)[I (3.55a) 
z6e~,n6z, 

[[S(z,r sup ([/~.,~(z,r [/~..2(z,~/~)l), (3.55b) 
zE~,n~Z 
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IIT((=~ =), ~'~=)), z, ~, ~) - ~(=~b) ~,~b)), z, ~, 8)11 

~<2Mb sup (I/~.,,(z, ~.)1, l['..2(z, r/~)l) 
(3.56) 

There exists r6=r6(Mb) such that if [~-I-I ~r6 ,  T((0tl, fit)) + S  defines 
a contraction mapping from B4M~ ffi {(0q, Pt) : [[(~l, ]~l)[] ~<4Mb} to itself. 
This can be obtained through controlling [~-I_l~<r6 to get 
sup.~B,.,, z(I/~. ~(z, ~,)l, [/~n, 2( z, /~n=t:)[) ~< rain(�88 1/(4Mb)). Thus, the fixed 
point argument assures the existence of analytic extensions of (oq, jS~)---- 
(Oq.j.,.m, fllj. ,. ,,)" The extensions (u2, ,82) can be shown in an analogous 
manlier. 

For fixed z, (=l, ~l)(z, ~, e), (=2, ]~2)(z, ~, e) are analytic in ~ because of 
the analytic dependence of solutions with respect to their initial parameter. 
In particular, z = I_ belongs to cl(B).~for any ~: [ ~ - I _  [~< r6. We note 
that since Oy/Os are real, 22(I)=21(I), the coefficients Aj.,.m(I,s,e) 
and By. _,. _,,,(/, s, e) are conjugate to each other, i.e., Aj.,.,,(I, s, e)= 
Bj. _.. _,,(I, s, e). Thus we have (3.34)-(3.35) by letting I = I _  in (3.32)- 
(3.33) and Aj.m(~, e) = Y.,~Z Ay.,.I( I - '  ~, e) e "~~ [] 

Remark. For the solutions y(I, s, ~) of (2.16) with the initial condi- 
tion y(I, s, e)[~=~ = 0 for s > I_,  analogous extension results in Lemma 3.4 
can also be stated for y(I,s, e) when I_ <~I<~s. In the regions of ~ for 
which the extensions from left and fight of I_ overlap, we should have the 
same resulting functions since the functions are the same in the re~l axis. 

4. DEDLAYED HOPF BIFURCATIONS UNDER 
PERIODIC FORCING 

We now derive the delayed bifurcation phenomena. Consider the dis- 
tance of two solutions of (2.16), one of which is y(I, Io, e) with the initial 
condition y(L Io, 8)[1=~o = 0 for some Io < I_ ,  and the other y(L I ~ e) with 
the initial condition y(I, I ~ ~)[z=~o = 0 for /o  > I_.  As we noted previously, 
if we could obtain an estimate like [y(I_, Io, t) - y(I_,  I ~ e)[ ~< Ke-C/~" for 
some K, c > 0, then the results of delayed bifurcations follow from this 
and Proposition 2.4. In other words, the solution y(L Io, e) satisfies 
[y(LIo, e)[ =O(~) when Io<~I<~I q for some Iq>I_  as e ~ 0  +. The point 
Iq>_.max(I~,I~*) (I*,I~* are defined below) is above the critical point 
I_ ,  and is to be determined by the estimates of the quantity c. We intro- 
duce the key results here. 
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Theorem 4.1. Assume H1-H5 are satisfied. Let y(L Io, e) be the solu- 
tions of (2.16) with initial conditions y(I, Io, 8)lz.t0=0 for any Io<I_ .  
Take l ~  such that Re [~~ dr>O. Then for any M > 0 ,  there exists 

- -  J 0 

eo =co(M) such that for Iio-I_ I<~r6 (r6 is referred to in Lemma 3.4), 
8<<.co, the solutions [y(I, Io, e)--y(I,  1o, e)l<-..Me when and only when 
Io <~I <~Iq, where Iq is a point above the critical point. I f  assumption (4.4) 
(below) is satisfied, then lq is determined by Iq = I* + O( e [ log (e)[) > 1_, 
where 1">1_ is the point satisfying the relation Re~o~21(z)dz=0. 
Otherwise, without (4.4), we have Iq >~ I* + O(e Ilog(e)l) > I _ .  

Proof. 
such that Re ~ 21(T)d~ > 0. Using (3.34), we obtain 

D -- y(I_ ,  Io, e) -- y(I_,  I ~ 8) 

\ n ~ Z  Io  

Take Io to be any point with I _ -  re ~< Io < I_ ,  and i o >  I* 

(4.1) 

where . , / .--(Al. . ,  A2..) r. Under conditions H4-H5, we can apply Lemma 
3.1 to treat the integrals. Still denote F~(z, T.)~cl(Br to be the curves 
from T. to z such that the functions Re ~ - 2 t ( r ) d r +  incoz are monotone 
decreasing functions of z on the paths. We construct 2.(.~., z, e ) -  
T(A., J/- 11(~) dz+ incoz, Be). Then we get 

E , 0 D = 2 R e  2.( /1. , l~ ~ ~'~a'+i'~oz /" 

- E 2.(A.,  Iv, e) enid'g; z,c~)a.+,.,,,io/.] (4.2) 
. e Z  / 

where 112.11 ~< IIA.(~, e)ll max=~n~ If.(z, T.)I. Thus we get that 

iDl<~ 4e- , / . . .  $?_ a,,.,a~(\ ~z Ild.ll~max I/~.(z, 7".)1 

<<. M~e-l/. Re i?_ a,t~)d~ (4.3) 

for a constant Mc > 0. It was indicated in Ref. 24 that the assumption that 
for some finite integer I>  0 and some real number k3 > 0, 

[ Ren~  2.(.~., Io, e) el/~zml~ff at(~)d" +~'t~ >~k3et (4.4) 



is quite general in the sense that (4.4) is valid for all but a certain class of 
systems. In fact, using Lemma 3.1 and particularly (3.3), we can express 
that for any 1r N, 

~, Z, ( , 3 , , ,  Io, e) e'/""'s"o- ~': " ~  + ~ ' ' a "  
noZ 

..:.o,.> = ~ (--")m~i(~0)__~0.)'4"0("I'I"I) 
neeZ 1 

3~-](1 ~ ~) ,o l e~/'z'S'~- ~:,) dr + ~Zo/, 
- 5". ( -8)"  ~,(zo)_inoe'/~r'; (~'(')-'~)dr J m~, 

[ m ~  "~n[m](I0' 8) ]ell~lmI~g,~l(rldr+lnc,)lo/e = E  ( - 1 ) " :  , , , z  I 21(Io) -- into + O(el+ l) 

From the construction of  ,~,(I,e) in Lemma 3.4, we can express 
,~n(/, e) -- ~ ~ o ek'~,, k(I) + O( e J+ I) for any finite l e N. Thus 

,~,(.~,, I o, e) �9 q* ,m .[~" Al(r) dr + Inmio/e 
n~Z 

' '[ 
= Z E Z ] ~,(]o) ' -  i.~oj neZ k~0 . ~ i  

X e lie I ,  ~ A.l(Z') d~4" InO,lO/8.4. o(el-b 1) 

and its real part is in general greater than O(e ~) for some finite 1r N unless 
its coefficients cancel out to make it a smaller amount. In mosk of  the 
examples which we have calculated, (4.4) is satisfied unless the systems are 
homogeneous or the nonhomogeneous terms are far smaller than any order 
ore  to start with (for example, to be exponential small). We, however, can- 
not produce an easy condition on the equations themselves to determine 
for any arbitrary system whether (4.4) can be satisfied. Thus (4.4) remains 
as an assumption. 

Since I* < /o ,  and consequently ~ Re 2~(~) dr < ~ Re ~(~) dr = 
~ Re A~(z) dr, the terms in the second group of (4.2) are smaller than 

~/"I~:%"~'~'(')dr m 4 2  we those in the first group by a factor of  e -  0 . Then fro ( . ), 
can derive that 

- 2 ( ,~z l.~(.~,, I~ e'/ 'I~ ~,(')a'>lk3eZe-'/~acI[~ ~,(')dr (4.5) 
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when e ~< eo. From Proposition 2.4 and the estimates (4.3) and (4.5), we get 
that if ly(I, Io, e ) -  y(I, I~ e)l <<.Me, then 

M3Mr R~ go a,{~)~> l y(I, Io, 8 ) -  y(I,/o, e)l = K(I) IDI e ~/~ Re If_ ~,{, d~ 

>1 ( k3/M3) etel/~ Re I~o ~,~o d~ 

Thus ly(I, Io, e)-y(I , /o,  e)l ~ g e  when and only when Io<~I<~lq, where 
Iq--I* + O(e Ilog(e)[) under assumption (4.4). Otherwise, without (4.4), we 
have Iq >~ I~ + O(e Ilog(e)t). [] 

Remark. (4.4) is a general condition, and there are exceptional cases. 
For example, if QI(I, e, I/e)=-O in (2.16), then Iq> I~ + O(e [log(e)[), and 
y(l, Io, e) =- O. 

We note that Theorem 4.1 is a general result, but the range o f l  0 where 
the theorem is applicable varies from case to case. In particular, this is 
so because the conditions require that every Fn(z, T,) lies in a close 
neighborhood of I_ .  Thus if llm2~(I_)-ino~l =~--* 0 + for some n eZ,  
then the range of admissible Io can be very small, i.e., Io = I _ -  O(t~) since 
all level curves can be very "tall." Therefore Theorem 4.1 cannot provide 
much information in the near resonant cases for solutions with initial 
points left of I_  - 0(6). We introduce a different result which complements 
Theorem 4. I in the sense that it concerns the cases where I0 is farther left 
of I _ -  0(6) in the near-resonant cases as well as other cases. 

Theorem 4.2. Let y(I, Io, e) be the solution of (2.16) with the initial 
condition y(I, Io, e)[1=1o=O for Io<I_.  Assume H1-H5 are true for the 
system. Then for any M> M2, there exists eo=eo(M)>0, such that for 
[Io-I_l  ~r6, e..<eo, 

ly(I, Io, 8)1 ~ Me (4.6) 

when Io <<.I <~I **, and I** >I_ is expressed below in (4.12). 

Proof. Let all notations in Theorem 4.1 stand unless noted otherwise. 
Then 

IDt =-ly(I_, Io, 8 ) - y ( I _ ,  I ~ 8)1 

(4.7) 
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r'a,o(/',) 

I O ~ I  0 

Fig. 5. We choose the integrating paths for terms which involve An and 2j(z)-imo 
according to the different values of Im 21(1_ ) - n 0 7  m 070  - n07 .  When 070 - n07 < 0, we choose 
Fl. 0(Io), and when 07o-m.o > 0, we choose/~1, o(I0). 

We now take io__ I~' > I_  to be the point on the positive real axis such 
that ~1(I ~ --~l(Io) i.e., Re [~  21(r)dr  = 0. Such a point is unique from the 

�9 ~ # 0 ,  . 

.monotomclty of  the harmome functaon ~ t (I) -- Re S 5_ 21( r ) dr for I > I_ .  
The corresponding level curve of ~l(I) through I o is denoted as Fi.o(Io). 

Let X.(Io)-minz.,,ReS~_(21(r)-ino.~)dr, where for n>~no such 
that Im21(I__)-nw<O, z is taken on Fl.o(Io)-{z,  Imz>~O, ~l(z)---- 
Re S~- 2 l(r) dr ffi ~l(Io) }, and for n ~< no - 1 such that Im 21(I_ ) - no9 > O, z 
is taken on /~. o(Io) - {g, Im z >I O, ~(z )  = Re ~_ 2t(r) dr = ~(Io)}.  See 
Fig. 5 for the integrating paths. 

It is obvious from the definition that Z(Io)~<~l(Io) because ~l(Io) 
minimizes only at n ffi 0. We show that because of H4, Ira 2~( I_) -  nco ~0,  
for Io sufficiently close to the critical point I_ ,  Z(Io)>O. In fact, 
Re(~- 2t(r) dr + ino~z) ffi - R e  S~t_ (21 -- into) dr. We see from the discus- 
sion of level curves in Section 3 that since Im 2~(I_)<0, the level curve 
Fl. o(Io) = C + is in the upper-half complex z-plane. See Fig. 5. Moreover, 
for n with Im2 t ( I_ ) -no~<Im2t ( I_ )<O,  the level curves Fl.~(Io)-- 
{z [ Im z>~O, Re ~_ (2~--inoJ) drffiRe ~z?_ (2~(r)--inco) dr} lie below F~. o(Io), 
and F~. ~(Io) = C +. In particular, Re ~_ (2~ -- ino~) dr >i Re ~_ 2~(r) dr for 
zeF~.o. For n with O> Im 2~(I_)--nog > Im 21(I_), F~.,,(Io) stay above 
F~. o(Io). Thus there are only finitely many n's whose level curves need to 
be considered for the minimizing of X(Io). Also, for n with 
Im 2 ~( I_) -  no~ > O, the situations are similar. Thus the minimum is indeed 
taken as 

~ze  FL o, n: lm 21(l-) ~Im 21(l- )--nr <O 

rain R e f f  (21(r)-- into) dr} 
: ~ P I ,  0 ,  n :  --lm}tl(l-)>Im21(l-)--mo>O 

(4.8) 
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where the minimums are taken from finitely many positive terms, and 
therefore X(Io)> 0. The positiveness of each term on the right-hand side 
of (4,8) can be easily verified from the structure of (3.9) by an implicit 
function theorem argument. See Ref. 22 (Section 6) for more details of this 
sort. 

To obtain the estimate of D, we use contour integrations to find the 
right-hand side of (4.7). For n's where lm 21(I_)- nco < 0, we take Fi, o as 
the path, 

I[~ :Tn(S, 8)e~i:l;-~'<')<~'+~'<<"i:ds[ 

= l ~.#~.o<lo) 2n(:Z, e) el/~<- J'l(r)d" +">z'~ dz 

<.f. ltl,,(z, e)l e ~i`"~s'- ~,<.l ,~. +,,,<o:/.> I,/zl 
z ~/"i. o(I o ) 

e-X('o >/~ iiJnii Ir,, o(#o)l (4.9) 

where IF~,o(Io)l is the length of the level curve Fi, o(Io). Similarly, for n 
with Ira 21(I_) -no9 > 0, 

I I~ J.(s, ~) e~/'f - ~,")'~+~''/~ ds 

=Is. 21"(z'e')eli g-sil(')a'+i"<~ 
e t' l, o(So) 

e-X(+o >1" I1:I,,11 IS',. o(Xo)l (4.10) 

Thus we obtain 

IDI = lY(I_, Io, 8) - y( l_ , /o ,  e)l 

<~2e -x<z~ ~ HA.U IF,,o(/o)l (4.11) 
n e Z  

Let M> M2 be a positive number, M 6 - 2 Z . ~ z  lJJ.}J IFi, o(Io)l and M o -  
(M-M2)/M3M6>O, where the constants M2 and M 3 are referred to in 
Lemma 2.2 and Proposition 2.4. 

865/9/4-7 
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We define 

I ~ * - i n f  I I I _  <I<<.l~ A~(~)dz=X(Io)-e ln-G7 - (4.12) 

From Lemma 2.2 and Lemma 2.3, we obtain that [y(/, /0, e)[ <~M2e 
for I o < I < I _ ,  and [y(I,I~ for I _ < I < I  ~ We continue the 
solution y(I, Io, e) f o r / >  I_ to obtain Theorem 4.2. By Proposition 2.4, 
there exists M3 such that 

[y(/, I o, e) - y(I, I ~ e)] ~<M 3 [y(I_, I o, e)-- y ( I_ ,  I ~ e)] el/~ R~ I~0 x,t~ 

<~ M6M3e-tl/~) ~So)el/S R~ I~_ a,(~) ar. (4.13) 

Thus by the definition of If*,  when I_ < I < I~'*, ]y(/, Io, e) - y(I, I ~ e)[ 
<~M6M3e/Mo. Lemma 2.3 then implies that ly(/, I0, e)[ <~(M2+M6M3/ 
Mo)e <~ Me when Io < I <  I** for any M > M2 by the choice of Mo 
mentioned above. [] 

Corollary 4.3. Let H1-H5 hold. Let y(I, I~, Ml ,  e) be any solution of  
(2.16) which satisfies the initial conditions [y(I, It, Ml ,  e)[ [ iffi Io <~ Mi e, then 
ly(/, It, M~, e)[ <~ Me whenever Io <~ I <.q Iq for any M >  M2 + Ma(M, + M2) 
> O, 0 < e <~ eo = eo(M) where Iq >I max(/*, I~'*). 

The proof follows from Theorems 4.1 and 4.2 and Proposition 2.4. 

Corollary 4.4. Assume H1-H5 hold. Let I~<Io be any point left 
of  I o which was studied in Theorems 4.1 and 4.2 and Corollary 4.3. 
I f  y(I, If, Ml ,e )  is a solution o f  (2.16) with its initial condition 
[y(I, Ii, MI, e)[ [ i l l  i ~ M 1 e, then for any M >  g 2 -t- 2M2M 3, [y(/, fi, MI, 8)1 
<.q Me whenever Ii <~ I <~ Iq for some Iq >I max( I , ,  I ~ * ) and e <~ e o. 

Proof. Since [y(I, I~, M~, e)[ [1.t,<<.g~e, [y(I, I~, g~ ,  e)[ [~=~o<~g2e 
by Lemma 2.2. Corollary 4.3 then implies Corollary 4.4. [] 

Corollary 4.5 (Memory Effects). Assume H1-H5 hold. Also assume 
the initial point It: Io<I~<I_  is closer to I_ than the point Io which was 
discussed in Theorems 4.1-4.2. Let y(I, I~, Ml ,  e) be a solution o f  (2.16) 
with the initial condition [y(I,I~,Ml,e)llz=~<~Mle. Let M s - - M +  
M3(MI +M2) (M is referred to in Theorem 4.2). Then ly(I, It, M, ,  8)1 
<~Mse whenever I i < I  <~I, ,where (q>~min(I**,I t) and I l is defined as the 

" " i I i �9 umque pomt I > I_ such that Re ~x, ~,(z) dr ~= O. Furthermore, there exzsts rs 
which is independent o f  e such that i f  [I i -  I_  [ <~ rs, then [I  i, I i] c (Io, I**). 
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I f  the initial values of y(I, I,, MI, e)li=t~ satisfy ly(1, 1~, Mr, e) - 
y(LIo, e)ll1~i=M4e for some M4>O,  then for any L>O,  ly(LIi, 
MI , e) - y( I, Io, e) l < Le when and only when I, <~ I <<. Iq for some Iq e [ P + 
e In[L/(M3M4 Re (21(1')))] + O(eA), I '+ e In[LMJ(M4Re (2t(P)))] + O(eA)], 
and ly(Iq, I,, MI, e) - y(Iq, Io, e)l = Le. Consequently, if we choose L > M 
(M is referred to in Theorem 4.2), then Iy(L I~, MI, e)l <~ (L + M)e when 
I, <~ I <<. Iq and ly(Iq, I~, n l ,  e)[ >... ( L -  M)e. 

Proof. From the initial condition ly(I, Ii, Mr, e)l I~=l,<..Mle, and 
[y(I, Io, e)] [1=l<~MAe from Lemma 2.2, Proposition 2.4 gives 

l y(I, Ii, Mr, e) - y(I, Io, e)l = K(I) ly(I,, e) - y(Ii, Io, e)l e R~ J~:~) 

<...K(I)(M2+ Mt)eeR~i~ ~*c~)d~ (4.14) 

for some (l/M3) ~< K(I) <~ M3. Since ly(I, Io, e)l ~< Me for Io ~< I~< I~'* by 
Theorem 4.2 and Re[~_At(~)dr<...O for It<~I<~P, we derive that when 
Ii<~I<~P, ly(I,I~, Mr, e)[ <~Mse for M s = M  + M3(Mt +M2).  

Further, if [ I ~ - I _  I ~ r 8 such that [ I .  P ]  ~ (Io, I**), then ty(I, Io, e)[ 
<...Me for Ie[.I,,I ']. From the initial condition [y ( I , I , ,Mt , e ) -  
y(L Io, e)l [l=i~=M4e, it follows from Proposition 2.4 that 

ly(I, I,, MI,  e ) -  y(f, Io, e)l = K(~r) ly(/~, e) - y(I~, Io, e)[ eRe~i ;qtr)dr 

= K(I) M4ee R~ g, ~tr a~ 

for some (l/M3) <~ K(I) <~ M3. 
Thus for any L > 0, when I, <~ I< [ i+ e In[L/(M3M4 Re (2n(I')))] + 

O(F), Re ~ ~, A l(r) dr <~ e In( L/(M3M4) ) and l y(I, I,, Mr, e ) -  y(I, Io, e)l < L, 
and when I' + e ln[ LM3/( M4 Re( At( I') ) ) ] + O(e 2) ~ I 4 I**, Re [~i Al('t') dr >I 
e In(LM3/M4) and [y(I, I,, Mr, e) - y(I, Io, e)[ I> L. Therefore,' Iq e [ P  + 
e ln[L/(M3M4 Re(2 t(I')))] + O(e2), I '+ e ln[LM3/(M4 Re(At(l')))] + O(e2)]. 
Let L> M. From Theorem 4.2, we get ly(I, Io, e)l<.Me for IE[I , , I ' ] .  
Then 

ly(I, L, ML, ~)1 ~< ly(L Io, ~)1 + K(I) M4eeR~I~, xg~)a~ 

< ( L + M ) e  

when Is <~ I < Iq, and 

ly(Iq, I,, M~, e)l t> - lyCIq, Xo, e)l + ~  

>_.(L-M)8 

when Iq <.I <~ I~*. [] 
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We also provide a result showing that the estimates I**, the amounts 
of delays in Theorem 4.2, are indeed sharp for the near resonance frequency 
cases .  

Theorem 4.6. Assume (H1)--(HS) hold. Also, assume the initial point If 
is close enough to I_ so that we can fred two points Io and I ~ with Io <~ 11 <~ 
I_ ~</o and IIo-/~ ~<0.4 for some constant o"4> to be specified below. 
Let y ( I , I ,  Ml ,e)  be a solution of  (2.16) with initial conditions 
[y(I, I ,  M1, e)l Iz~z, < Mle. Then [y(I, Ii, Mr, e)[ <~ Me when and only when 
Ii <<. I <<. Iq for some Iq = Iq( Ii, o9) >I_  as stated in Corollary 4.5. Assume the 
generic condition that ~, ,  in (3.34) satisfies klet>~ [~m(Z, e) e~'Oz-/*[ >t 
IRe A,.(z, e) e*~~ l >/k2e t when I z - I _  I <~rv for some m~Z ,  rT>O and a 

finite integer l>0 .  Assume in addition that ReAr(I) is odd about I_ and 
Ira 21(I)/s even about I_.  I f  the frequency o9 is near the resonance frequen- 
cies so that ogo-mog=J--*0, then the separating point lq satisfies cl I~1 ~< 
IIq- I_ I ~< c2 161 for some constants cj > O. 

Proof. We let the notations in Theorem 4.2 stand. Thus we get 

>~[Dl>~12Ref~Am(s,e) el/~ I~, - ,~,(-~) ,~  + imoJs/8 l 

I" I --2 ~_, flo "~"(s'e)et/'g-;'l(~)d'+l"~ 
r t # m  

(4.15) 

Using the assumption that Re At(I) is odd about I_ and Im At(I) is even 
about I_ ,  

oO 

~ q ( I ) - i m ~ = a l ( I - I _ ) +  ~, a , , ( I - I_ )  2"+1 
n m l  

+i(o9o--mo9+ ~ b n ( I - I _ )  ~ )  (4.16) 
n m l  

where at >0  as assumed in H3, a,  and b, are real numbers. Let z = I _  + 
x + iy. Then we obtain 
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I [ -  (2~(r)-/mo~) dr 

1 2 -- n~  ! -  = - -~al ( z - - I_  ) 2n-~an(z--I_)2~+2 

_ i ( ( ~ o _ m O g ) ( z _ i _ ) +  ~ 1 ) ,, ~1 " f n ~  b "( z - I -  ) 2~ 4- t 

oo 
1 al(x + iy)2 _ ~ 1 = - -  ~ a , , ( x  + i y )  ~ + 2 
2 , , - 1  

( ~ ~  ) 
- i (CO o -  mo~)(x + iy) + ~, =----7 b,,(x + iy) 2" + ' 

,,=l 2n+  1 

1 1 = - -~a tx2+~al  y2 + tSy + O(X4) 3 t- O(y 2) 

- i[ ~x + a lxy + x( O(x 2 ) + O(y2)) ]. (4.17) 

To solve the equation 

Im f~ (21(r)-imoJ) d~=Sx + a~xy + x( O(x2) + O(y2))] =0,  

we first let $--0. There exists ao > 0 such that if Ixl ~< ao, then there exists 
y=go(x)  which is the solution of Im~1~-(21(r)--imco)dz=O at $ = 0 .  
Using the implicit function theorem near $ = 0, we see that there exists 
$4>0  such that if $<$4 ,  we can find a function y= g(x, g)= - ($ /a l )+  
o(~ 2) + O(Ixl 2) which is the solution of Im ~-  (2 i(r) - imo~) dr = O, and 
g(x, O)= go(x). This implies that there exists a curve lg in the complex 
z-plane which has the form z = I _  +x+iy(x ,$) ,  where y = g ( x , $ ) =  
-(6/at)  + O(d2) + O([xl 2) such that Im ~-  (2~(r)-inco) dr =O for z e l~. 
We denote V(Io)= {Z=Io + iOg(Io-I_, $), O<~O<~ l}, v(I~ { z=I~  + 
iOg(I ~  I_ ,  $), 0 <~ 0 <~ 1}. Thus to replace the integration on the interval 
(io,/o) for the term related to Am(Z, 8), we construct the contour by 
following the vertical segment V(Io) from z = Io to lg, then following ls, and 
then the vertical segment v(/~ to z = I ~ Namely, 

f/0 ~m( s, l/e ~/- 21('c) d't 4- l tmos/e 8) ds e 
Zo 

= f,%)~t~,.,~lo)~m(Z, e) e 1/`I~- ~'(~)'~+~'~/~ dz 
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For z e l~, Im ~- (2t(r) - / m ~ )  dr ffi 0 as stated, and from (4.17), we have 

f f-  1 2 1 2 - 4 (,~l( T) - -  imo~) dT f= - - ~  al  x -}-~ al  y -F dy  q- O ( x  )'~'O(y 2) 

1 2 r ffi --~ alx --~al + O(x') + O(J 4) 

Thus there exist al >0  and J~>0 such that when Ixl < a ,  and IJI ~<~, 

1 2 f~2 c l  - 
- ~ a l x  -~<~Re J~ (2t(lr)-hnco)dr 

1 32 
<~ --~ alx2--4a I 

Also, when zel~,dz/dxfl +ig'(x, 3), where g'(x,J)=O(x)+O(3). 
Under the general assumption that k le t~  > lAin(z, e) et"~L/" 1 I> 
IRe.~m(z, e) e~Or-/~ I >~k28t when Iz-I_ 1 ~<r7 for a finite integer l>0 ,  we 
get 

IRe ftzAm(Z, e) eS/'l~- a,~)a~+~'~/" dz[ 

<~ lfl llAm(z, Dll e'/'~g-'~,'~)-"d~ lz'(x)l dx I 

~< ~0 k ~ ere- ~/~4,~ o, ~ -  a/~4,,,,)( 1 + C9 I xl + c91J l) dx 

:2 <~ ktsle--1/(4~)a'x2--Za/(4"B)(1 + C9e4 + C9 I~1) dx 
O0 

<~ C l g t V/~ e - eP / ( 4a l s ) (4.18a) 
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On the other hand, since Im J~- ( 2 1 ( 3 ) -  imco)dz = 0 for z ~ lg, 

Re ~1. Am(Z, 8) e ~/~ J': ~,.~,~ + ~o.~/~ dz 

----I~l[Re.~m(Z,e)e~"-/'z'(x)]el/"Rr176 

=lIIz[.Re~m(Z,e) eOnc~ 

• et/~ Re ~- c~,~!- ~m,o) ~ dx I 
I 

CI ~ - I_ 
>~J [klet-C9(lxl+6)x/k2-k28t]e-"/~)a":- '~2/(":)dx 

10--1_ 

~ f 10-I- ete-(t/')"'~-:/("")(kl - (C9a4 + C9 I~,1) ,r - k22) dx 
I0--I_ 

>1 Coete - : / { ' : )  f IO-I- e -O/~)atx2 dx 
.to-l_ 

c-~l. i /~e - e( l~  %I~I  X 
_ ~u~ ~/~ e_~,/(o:) | e -~2 dy by letting 
- ~ t  J"o-  ' -  )/,/; Y -  

>t C'oe I V/~ e-~2/(~:) (4.18b) 

where C9 is a constant  independent of  e and c~, c~4 and 0.4 are taken to be 
sufficiently small to allow k t - ( C9 c~4 + C90"4 ) ~ - k .2 > O. 

For  z e v(Io), we can write z = I o + iOg(Io - I_,  ~), then 

Re y~- (2~(~) -imo~) dr 

1 ~ 1 
= --atx2 +2 al y2 + @ +  O(x 4) + O(y2) 

1 a102g2(Io - I_,  ~) 
= --2 a'(l~ 2 

+ aOg(I o - - I_ ,  6) + 0((Io __/_)4) + 0 ( 0 4 9 4 ( [  0 - - I_ ,  1~)) 

1 g 2 ( I  o --  I _ ,  ~) 
<~ --2 a l ( I ~  2 

+ 6g(Io--I_, 6) + 0((Io--I_)  4) + 0(g4(Io--I_, ~)) 
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since 0~<0<~1. Using the p roper ty  that  g(x,J)ffi-(J/aO+O(j2)+ 
O(Ix]2), we can further  derive that  there exists C10 > 0 such that  

Re ff-  (2n('r)--/moo) dr  ~< -�89 + Cno(Io-l_)+ + CloJ 2 

~< - - / a l ( I  0 - -  1 _ )  2 

when J~<bsmJ5(lo). Also, Iz'(O)lflig(Io-l_,J)lffi(J/al)+O(b2)+ 
0((I_- I0)2). Similarly, there exists J6--J6(l ~ such that for J ~<J6, when 
z ~ v(/~ 

Re fl-  (2t(~) -/ tar.o) d~ ~< - l a n ( I ~  I_ )2  

and also, I:~(O)l=lig(I~176 Thus we 
derive the estimate that  when [a~ o - moil ffi IJI -+ 0 +, i.e., [JI ~< 37 = min(Js ,  J6), 

If" +Jm(Z'e) el/sI~-;q(r)ar+tm~ v(lo) ~ v( 1 ~ 

~ [ fv(lo) llJm(z, e)l, en/+ ~ I[- t&,t+)-~'~~ dr lz'( O)l dO [ 

+ [ fo(10) llJm(Z, e)ll el/" P" S~- {~,t')-~+~) d~ lz'( O)l dO I 

f ] -( tl~) al{ l~ - l- )2J( 1 ~< IIAm(z, e)ll e + c9 IZo-I_l  § c9 Ibl)'d0 

s2 + IlJm(Z, e)ll e-<V~)"'C10-~-)'~(1 + C9 I / ~  I_  I + <79 I~1) dO 

<~ c2ete -~ l/c~, .~ mi.t Clo - I- ~. cio - x-~2> (4.18c) 

Thus  when J ~< J7 and e ~< to,  

c,,++.+,-.,+, q+ >] i.R,+ j'~ .AmI+, ,+) ,,"+ +:- + '  *+"+++ + I 

=[.+j'++++ l 
>I C1 e -x'~a/" ~ 8 J (4.19) 

for  KI ~-al  and K2=--aJ4. 
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The rest of the terms are much smaller since the frequencies are not 
close to each other in the sense that as J ~ O, Ico0-ncol > c o - 6  > �89 for 
n # m, and therefore for n # m, 

}f~ ~.(s,  e )e  l/"g- a,<.) a~+~o#~ ds I ~< IIA.]I IF,, ol e -xt'1~ (4.20) 

for some Zt(I0, co)>0  which is independent of ~ as ~ ~ O. We then obtain 

I[to2.(s, e) eU'g- a'~')'~ +~'~U ds] <.q Me -x'~to'~ 
n ~ m  I0 

(4.21) 

Thus we have 

C2e ~ x/~e e - X262/" + Me-Zz~ z~, o,)/~ 

i> ID[ >~ et x/~ Cle-X '6 ' /~ -Me -x'~Io'~v" (4.22) 

When c~ is sufficiently small but fixed, we fred that for s~<eo, ID[ is 
bounded from above and from below by etx~e.e-r/2/'. We let It, j -  
inf{I[ I > I _ ,  S~_Re R~(~)dz = Kj~ 2 - e Iln(et'x/~e/g)[} = I_ + dj~ + 
O(e [hi eD for j =  1, 2. Then following Proposition 2.4, we can show that for 
e~<e0, 6 is sufficiently small, ly(I, Ii, e)l <~Me when and only when Ii~< 
I<~Iq for some I6.1 <<. Iq <<. I6. 2. Thus the delay amount is a multiple of c~. 
Finally, we note that this estimate/6 is consistent with I~'* defined in (4.12) 
as I,~l--.0 § in the sense that they are in the same order, and therefore I** 
is a sharp estimate in the near resonant cases. [] 

Remark. The assumption on [Re(.~,,(z,e)e/m~z-/~)[ is a general 
assumption similar to (4.4). There are exceptional cases. For example, in 
the sample equation (2.8), if we write it into equations in real variables, we 
find 3k(z, e) # 0 only for k = 1 there. In other words, the only resonant fre- 
quency there is co-- Icoo I. But this is a very special case since the system is 
linear and the perturbation is of a single term. In general cases, we should 
expect a fifll spectrum of all frequencies as in (2.10). Near the resonant 
frequency region, the delay amounts may decay in a linear fashion as the 
frequency approaches the resonant frequency. 

We also consider the situation where co is far away from the resonant 
frequencies such as co > 2 leo0 I. 

Corollary 4.7. Let all the assumptions and notations be as in Corollary 
4.5. I f  the frequency co is far away from the resonance region so that 
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2 Icoo I + J <~ co for some 6 > 0, then the separating point Iq satisfies 
I/q-/'*l-.<~iinel for some constant K > 0 ,  where I * > I _  is the unique 
point in the real axis that satisfies the relation Re ]'~fgl(r) d r=0 .  

Proof. We understand this result as saying that when 2 ]coo [ + J ~< co, 
the delayed bifurcation phenomena are not much different from the cases 
of delayed Hopf bifurcations without perturbations. The proof is, in fact, 
imbedded within the proof of Theorems 4.1 and 4.2. We notice that if 
2 Icoo[ + J  g co, then Be itself is ~n accessible for any. n~Z. Therefore 
Be = Be. Further, for n >/0(n < 0 rep.), when z ~ F~. o(Io)(z e P~. o(Io) resp.), 
we have 

(4.23) 

Thus the terms associated with n ffi 0 are the only dominating terms in the 
integrations of (4.7). Thus Iqffili* + O(e [in e[). []  

Remark. It is obvious from Theorem 4.6 and Corollary 4.7 that the 
delayed Hopf bifurcations can sustain the perturbations of high frequencies 
much better than lower frequencies. In one way, we say all resonant 
frequencies are distributed by the formula co=2 [co0[/n for n~ N which 
are below 2 Ice01. In another way, we observe that in the region 
{ co t co < 2 [coo [ }, the delay amount is typically r** ~ � 9  where I** -o "-~-i, was 
specified in (4.12), and in the region {co I co>2 Icool}, the delay amount is 
I*, which is the maximal delay. 

5. PERIODIC FORCING WITH SLOWLY VARYING 
FREQUENCIES AND SHIFTED INTERFERENCES 

We now study system (2.1) with a periodic perturbation g which is of 
a slowly changing frequency co = co(I~ + et). Such processes are commonly 
seen in real physical experiments, where various parameters usually vary 
slowly according to time. 

We study the system 

-r ffi F(u, Ie+et, e, t) (5.1a) 
Or 

u(t)l,=o ~ Uo(13 + O(s) (5.1b) 

under hypotheses (HI), (H3) as well as (H2)', (H4)', and (H5)' as follows. 
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Assumptions. ( H2 )' For each fixed L and e set to 0, the reduced system 

v, = f(v, I) (5.2) 

has an equilibrium solution uo(I) which is also analytic in I for 11] < ra for 
some ra> O. The perturbation fl(u, L e, t) is a periodic function of the 
variable t with the period 2n/co(I), where co(I) > 0 for - ra <~ I <~ ra and ~o( I) 
is analytic in L In particular, we may express 

fl(u, I, e, t) = ~ C,(u, L e) e ~"~t)t (5.3) 
n~Z 

where C, are analytic in all variables and L . z  IC~(u, L e)l <<.M for lul < a ,  
I1] < ro in the complex plane and e <~ Co. 

(1-14)'. (First Nonresonance Condition) Assume for I z - I _ l  <rb in 
the complex plane for O<rb<~r~, 21(z)--in(og(z)+r 
22(z) -- in(co(z) + oY ( z )( z -- 13) # 0 for n e Z, where 2j(z) are the analytic 
extensions of the eigenvalues 2j(I). ( H4)' can also simply be remembered as 
IoJo I - IIm ;tfiI_)l #n(~o(I_) + co'(I_)(I_ - I t ) )  for n e N. 

(1t5)'. (Second Nonresonance Condition) Assume that for I z -  I_ I 
<rb, the analytic extensions 2j(z) satisfy 22j(z)-i(2n-1)(og(z)+ 
oY(z ) ( z - I i ) )#0  for neZ ,  j = l , 2 ,  or simply 2 Icool-2 IIm2~(I_)l # 
(2n - 1)(co(I_) +~'(I_)(I_  -13) .  

We observe that the period of the forcing in (5.1) is 2x/o~(It+et), 
which is slowly varying with time in the system. Let us also use y = u(t) - 
uo(I~+et ) as the new variable and I = I i + e t  as the new independent 
variable. The initial value problem (5.1) is then equivalent to 

( ,-,, ) ( , - , , )  
e y t = A ( I ) y + F l  L e , ~ , y  +eQ~ Le, (5.4a) 

ylJffil, = O(e) (5.4b) 

where F~ is analytic in y and has the expression 

F , ( l , e , I - I ' ,  ) ~ Y = E B~mt'nOy~ty~ ' (5.5) 
8 i m l + n l ~ k ,  ral~O, nl~O 

with (Yl, Y2) r =  Y. The term eQt has the form 

Ql = ~. q,(L e) e i~'~I~1-1,~/~ (5.6) 
n~T 

where Y'.,,z Iq,(L e)l ~<M for I I - I_1  <rb. 



614 Su 

Theorem 5.1. Let y(I, Io, e ) be the solution of (5.4) with the initial 
condition y(I, Io, 8)lx=1o =O for Io <I_ .  Assume (HI),  (H2)', (H3), (H4)', 
and (HS)' are true for system (5.4). Then for large enough M, there exist 
r 9 = rg(M) > 0, e 0 = eo(M) > 0 such that for [Io - I_ [ ~< rg ,  e ~< e0, 

ly(1, Io, e) l~  Me (5. 7) 

when and only when Io <~I <~Iq, where Iq=I~ + O(e Ilog (e)[) > I _  is a point 
above the critical point. 

The proof of Theorem 5.1 is essentially similar to the proof of 
Theorem 4.1. The key point in the proof is also related to the existence 
of the paths F,(z, 7",) along which the harmonic functions ~ , =  
Re(S~ 21(r)dz- inco(z)(z-L))  are monotone decreasing, respectively. The 
new nonresonance conditions (H4)' and (H5)' assure that 2tOo- 
2Im l l ( l_)  ~n(co(I_) + to'(I_)(I_ -- L)) for any n r Z. Thus within a small 
neighborhood o f  the critical point I_ ,  the convexity argument remains 
true. Indeed, from the fact that 

l,(z) - ( i n o ~ ( z ) ( z  - 0 )' 

= ~ ( z )  - i n o y ( z ) ( z -  L ) -  ina,(z)  

• a l ( z - I _ )  + O ( ( z - I _ )  2) 

+ i(COo - n(o~(I_)  + o / ( I _ ) ( I _  - I,)) + O(z  - I _ ) )  . (5.8) 

where 

0 
al =-~-IRe l~(X)l, . ,_ > o; COo =Ira l l ( I ) l / - L  <0, (5.9) 

we obtain that the equations of the level curve of the function cp. = 
Re(S~ Am(Z) d z -  inco(z)(z - L)) can be expressed as z = I_ + x + iy, and 

�89 x 2 - (O~o - n~o(I_  ) - n o Y ( I _  ) ( I _  - L)  ) y + O ( x  3, y2)  ffi C (5 .10)  

Under hypotheses (H4)' and (H5)', the level curves would also be 
parabolas as well. Similar arguments in constructions of the accessible 
region Be lead to the existence of the analytic extensions of the coefficients 
ofgl.,~m(z, ~). The rest of the analysis follows through. 
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Remark 1. Although the delay of bifurcations in this case occurs in 
analogue to the constant frequency case, the resonant frequencies where the 
delayed bifurcations vanish are much different from the previous case. In 
fact, with a Hopf bifurcation whose frequency ]co01 is known, in case of 
periodic perturbations with constant frequency co, the resonant frequencies 
are co--2 ]coo l/n for n ~ N as known from Section 3, while in the slowly 
varying frequency case, the resonance occurs when co(I_) + co'(I_)(I_ - I i )  
= 2  Icool/n, Therefore in the latter case, if co'(I)>0, then the resonance 
frequencies which people observe in the experiments should be lower 
than 2 Ico0 [In. For co'(I) < 0, the result goes to the other direction. Thus 
the interferences are shifted because of the frequency change. Professor 
Neishtadt suggested that a new system of the frequency Q = c o ( I ) +  
(~co/aI)(I-It) is the essential cause of the shift. We are grateful to him for 
sharing his insight with us. 

Remark 2. In Ref. 24, we considered the phenomena of delayed 
bifurcations from a family of periodic solutions of a constant period. If 
we consider the related problems of delayed bifurcations from a family of 
periodic solutions with slowly varying periods, then we expect shifted inter- 
ferences would occur also in the sense that when the frequency of the peri- 
odic solutions and the frequency of the critical exponents form the relation 
c o ( I  ) + co'(I_)(I_ - I~) = 2 Icoo I/n, the delay is destructed. These pheno- 
mena indeed give us some intuitions on the reasons of the shift that when 
the solutions of the perturbed system are chasing the static periodic solu- 
tions with slowly varying periods, the effective frequencies co(I_)+ 
co'(I_)(I_-It)  of solutions are somehow staying behind due to the fre- 
quency change. When the "lagged" frequency co(I_ ) +  co'(I_)(I_ -I~) and 
the critical exponents COo have an interference at the critical point I_ ,  the 
delays are to be destroyed. 

Remark 3. We observe the fact that the shift of the interference 
depends on the initial parameter I~ as a monotonic function. This is 
another type of memory effect besides the memory effect of the amount of 
delay in the bifurcation, which also is monotonic function of It. The 
memory effect of the amount of delay provides a method to detect the 
initial parameter I~ from the parameter point where the separations occur. 
The phenomena of shifted interferences also provide a second way to detect 
the initial parameter by looking at the resonance frequency co(I_) and the 
speed of change co'(I_) to determine the initial parameter I~ under the 
assumption that coo is a known parameter. This type of result might be of 
importance in real physical inverse problems. 
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6. DELAYED SIMPLE EIGENVALUE BIFURCATIONS, 
A GENERAL CASE 

By showing this general result of delayed simple eigenvalue bifurca- 
tions, we intend to show the interesting phenomenon that by adding a 
small but suitable periodic forcing into a system, sometimes delayed bifur- 
cations are created rather than destroyed. 

From now on, we modify our method to study the delayed bifurca- 
tions of dynamical systems which have a simple eigenvalue slowly moving 
across zero along the real axis. Such systems have been studied in par- 
titular eases by Diener and Diener [8],  Sehecter [19], Lebovitz and 
Sehaar [ 13], and Haberman [ 10]. Our approach to the simple eigenvalue 
situation is to let the imaginary part of the eigenvalue tend to zero in the 
previously considered Hopf bifurcation situation. 

To be more specific, we consider a one dimensional equation: 

u , = f ( u ,  I j+et )  (6.1) 

u(t)l, =o = Uo(Is) + 0(8) (6.2) 

where f :  R x R --* R has analytic extensions for both variables. For each/ ,  
the equation ut = f(u,  I) = 0 has an equilibrium uo(I) which is also analytic 
on / .  Assume that there exists I =  I_  such that when I <  I _ ,  fu(uo(I), 1) < 0 
and when 1>1_ ,fu(uo( I), I) <0. Also, I t < I _ .  

Under the assumption that Uo(I)=-O, Diener [8] and Sehecter [19] 
independently showed that lu(I) - Uo(I)l ~< Me for I~ <~ I=- It + et <~ Iq, where 

~ > I_  satisfies [~fu(0, I) dI= O. The methods were essential comparison 
ethods similar ~t6 the exponential growth property in Proposition 2.4 in 

Section 2. There, the assumption Uo-= 0 is very crucial in the sense that 
if the system is perturbed by a constant of magnitude larger than e-r 
(e.g., e" for any n > 0) for e sufficiently small, then the delay vanishes. We 
consider the following example: 

cut = Iu (6.3a) 

u(Ii) = O(e) (6.3b) 

where It < I_  --0. Equation (6.3) is a special case of the systems described 
by Diener [8] and Schecter [ 19]. The delayed bifurcation phenomena are 
obvious. The perturbed system 

eu x = Iu + tr, (6.4a) 

u(I,) = 0(8) (6.4b) 
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would not present any delay in bifurcation if u >  e -c/" (e.g., a =8"). In fact, 
Iq--le In al in this case. Lebovitz and Schaar [ 13] gave some conditions of 
no delay as well. 

Our study of delayed simple eigenvalue bifurcation problems is 
motivated by the following consideration. The system 

eu1=Iu+e ~ a.e ~'~'I/~ (6.5a) 
n # O  

u(lj) = O(e) (6.5b) 

with ~ , , o  la, I ~< M has a delayed bifurcation pattern. Indeed, if we let u+ 
be the solution of (6.5) with the initial condition u § 0, and u_ be the 
solution of (6.5) with the initial condition u_ ( -  1)= 0, it can be easily be 
shown through a direct calculation that 

S' I lu+(0)-u_(0)l= Z a. e-l/t~)~:+2t'~176 <~Me -a'~ (6.6) 
n~O --I 

by a simple contour integration. Thus we find that by avoiding certain 
particular resonant frequencies, the delayed bifurcation phenomena persist 
even with a perturbation of a magnitude O(e). 

We now consider the generalization of the above situations. We study 
the dynamical systems 

u, = f(u, I t +et)+e (Aao(I i + et, e)+ ~', a,(Ii +et, t )e  i'''t) (6.7a) 
n~O 

u( t ) l , . 0  = Uo(I~) + O(e) (6.7b) 

where the system satisfies: 

Assumptions. (C1) f(u, I): R x R ~ R has an analytic extension for 
lul < ~, Ill < ra in the complex plane. 

(C2) For each fixed L the system 

v, = f ( v ,  z) (6 .8)  

has an equilibrium solution uo(I ) which is also analytic in I for III< ra. 

(C3) The variational system of (6.8) about Uo(I), 

w, = L(Uo(i), X)w (6.9) 
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is a linear system with coefficients depending on the parameter I. There exists 
a real number I_ such that 2 ( I ) - fu (uo( I ) , I )<O when I < I _ ;  ;~(I) = _ 
f ,( uo( I), I ) > 0  when I > I _ .  Also, assume (018I);~(I_)>0 and 2(I) is odd 
function at I_ .  The initial point I t < I_ .  

(C4) The perturbations are real functions in the form of  the series 
(,4ao(I i + et, e) + ~.n so a,(Ii + et, e) e~~ where to > 0 is a constant, ,4 is a 
real parameter, a n f d _ , .  For [ z - I _  ] <~r a in the complex plane, e <~eo, the 
coefficients have analytic extensions a,(z, e) which satisfy ~,nez Ilan(z, e)ll 
<~ M. Also, assume [ao( I_ , e )] ~>JlO>0. 

Let us also use y=u(t)--Uo(I j+et  ) as the new variable and I=I~+et  
as the new independent variable. The initial value problem (6.7) is then 
equivalent to 

eyi = A(I) y + F~(I, e, y) 

+e(--U'o(l)+ ,4ao(I,e)+ ~ a,(I ,e)e ''~ (6.1Oa) 
n ~ O  

YI~=I~ = O(e) (6.10) 

where F, is analytic in y and has the expression 

cO 

Fl(I, e, y )  = eBt(I, e) y + ~. Bk(I, e) yk (6.11 ) 
k ~ l  

The coefficients Bk(I, e) have analytic extensions for I near I_ in the com- 
plex plane. From the fact that F~(/, e, y) of (6.10) is an analytic function of 
y for lYl < or, and Bk(I, e) correspond to the coefficients ofk th  power terms 
in the new system, it is obvious that 

M,l 
IBk(Z, e)l <~ (t7/2)------~, k ~ N (6.12) 

for [z--I_[ <rb in the complex plane, e~<eo. Under the assumptions 
C1-C4, we have the general theorem for delayed simple eigenvalue bifurca- 
tions as follows. 

Theorem 63. Let as~qanptions C1-C4 hold. Suppose y(I, It, Ml ,  e) 
are a family o f  solutions o f  (6.10) with the initial conditions satisfying 
l y(/, I,, M1, e)ll i ~  I, <~ Mle for It < I_ .  Given a set o f  analytic coefficients 
{an(/,e),n~Z}, lao(I_,e)}>>.Jlo>O for e<~eo, there exists a parameter 
value ,4o-- ,4o( { a,, n e Z} , e ) such that when A = Ao,, the corresponding 
system (6.10) presents a delayed bifurcation pattern, i.e.,for large enough M, 
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there exist rloffirlo(M)>O, eo=eo(M)>O, such that for IIi-I_l<~rlo, 
8 <~ Co, 

ly(L It, M~, e)l ~ M v/~e (6.13) 

when and only when Ii <~I <<.Iq, where I a =I  l* + 0(~) > I_ is a point above 
the critical point, and Ij* satisfies Re ~'21(~) dr = O. 

Remark. We note here that typically y(I, It, MI, e) are bounded by 
O(x/~ ) rather than O(e). This is due to the difference that 2 ( I ) = 0  here, 
which makes the expansions (3.3) invalid in such a way that [R'(z)I = Is 
is no longer bounded below near z = I _ .  The best estimate in Theorem 6.1 
is only O(v/e), which is indeed sharp. We are grateful to Professor 
Neishtadt for pointing this out. 

A Sketch of Proof. We start to consider the perturbed systems of 
(6.10) in the complex variable 

dy - 
e ~ = (4(I) + i~) y~ + FdI,  ~, y~) 

+8(--U'o(I)+Aao(I,e)+ ~ a,(l,e)e tn'~ (6.14a) 
nv~O 

Yb=t, = O(e) (6.14b) 

which is indeed a two dimensional system in real variables. We prove 
Theorem 6.1 by the following steps. 

(1) For each ~ > 0 ,  there exists an A~ such that when A=A~, the 
solutions y~(I) and y~+(I) of the systems (6.14) satisfy the relation 

~ I 0 y _ ( I _ ) - y §  _ ) =  , (6.15) 

where y~(I) and y~+(l) are defined as the solutions of (6.14) with the initial 
conditions y~ I i~ to -'- 0 and y~. I l= 1o = 0 for I0 < I_  and I ~ > I_ ,  respec- 
tively. Here we simply assume that the points Io < I_  and i o >  I_  satisfy 
Re J~ ~.,(~) d r = 0 .  

(2) Ag are uniformly bounded for 0 < 0c ~< % and e ~< co. 

(3) Let A0 be any accumulation point of {Ag} as ~-- ,0 +. Then 

y _ ( I _ ) -  y+(I_) = 0 (6.16) 

from the continuity of the distance depending upon the parameter where 
y_(I) and y+(I) are defined as the solutions of (6.10) with the initial con- 
dition y _  11 = 10 = 0 and y + 11 = 1' ---- 0 for Io < I _ and /o > I _, respectively. 

~5~14-s 
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The delayed bifurcation phenomena follow from relationship (6.16) along 
with a exponential growth property similar to Proposition 2.4 in Section 2. 

We now prove the assertions. 

Step 1. We denote y~(I, s, e) to be the solutions of (6.14) with the 
initial conditions y~(I, s, e)l~ffi, = 0. We adopt Lemmas 2.2 and 3.4 from Sec- 
tions 2 and 3 with certain modifications. Eventually, we obtain the following. 

Lemma 6.2. Let the assumptions C1-C4 hold. Then the solution 
f ( L s ,  e) o f  (6.14) with the initial condition: y=(I ,s ,e) l~ . ,=O has the 
property that for  s < I <  I_  , 

f ( I , s , e )= , f i  X E (6.17) 
m e Z  n * Z  

There exists a neighborhood Nt  o f  I_  in the complex plane such that for  any 
r Nt ,  the functions g~, re(I, s, e) have analytic extensions g~. re(z, ~, e) in z 

for  z ~ B~, where B~ is a symmetric region left to I _ ,  B~ r~ { z I z <~ I_  } = 
{z I si(~, a~, ~t) < z < I_  } for  some st < I _ .  Further, for  ~ ~ N t ,  z e cl(B~), 

r z Z Z sup Ig,,.m(, 8)1 .< M (6.18) 
n e Z  m e Z  ~eNl.=~ 

for  some M >  O. For f ixed  z e f'), B~, g~.m(Z, ~, e) are analytic in ~. 

Remark. The difference between this and Lemma 3.3 is that R' ( z )=  
g(z) + inoJ + io~ may vanish near z = I_  as g --, 0 + and n -- 0. Con~quent ly  
(3.29) is not valid because 1/R'(z) is not bounded when ~--, 0 +. 

Equations (3.1)-(3.2) and the whole scheme for the proof of Lemma 
3.3 are still valid with different (but larger) estimates on ]b?t. o. nil) where 
fl.  o.. - T(f, .  o.., S. ()'(~) + ioO dr + incoz, B~). 

Let us first take the case of ,t = O. We also note that z = I_  is the 
only point such that z~B~r and R'(z)=2(z)+inoo=O. Thus for z 
with Iz-I_l>v/  and zE , Thus (3.3)~gives 
Ilft.o,n(z, B~, e)tl ~< C4 V/e. Then, for the point z with [ z - I _  [<<,~/e and 
z ~ B~, let z~ be the point with J z ~ - I _  l= ~/e, Im z~ ffi I m  z on the circle 
aB /;(  I_  ), i.e., z, ffi I _  + ~/e - (Ira ( z,  - I_))2 + i[ Im z,] . From the argu- 

ment above, since I z ~ - I _  I =~/~,  we find lift. 0. n(z~.B~, e)ll ~< C4 V/~, which 
is going to be used as the initial condition. By differentiating (3.4) with 
respect to z, we obtain the relation for f t .  o. n(z, B~, e) that 

0 -  
e ~z f t .  o.,,(z, B~, e) = (~(z) + i~ + imo) f t .  o. ~(z, B~, e) + eft. o.,,(z, e) (6.19) 
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Now we solve (6.19) along the horizontal line l,,,{r/,r/ffiz~+ 
O(z-z~),O<~O<~l} from z~ to z. Since Re(i@l)+i=+ineo)=ReA(tl)= 
O(v/~) for r/el~, there exists C 7 > 0  such that IRe(A(~/)+i=+ino~)l<~ 

C 7 : ;  We derive 

171.o..(~, B; ,  ~)1 = 7,. o..(z~ B~, s) el/~S=~o ~* '+ '=+  ~ ' ~  

+ ~=i fl, o,n(S,s) ell'l:i~(~ ds I 

< If~, o, .(z., B;, e)l e'/'ReS~o (~c')+~+"'~ 

+ f~ IA.o..(s, e)l e l/e~j~*~(~)+i=+;'o)~ds 

17~. o..(z~ B~, 8)1 e ~ ~/~) ~' "/; I , -  --d 

+ f~;lf,,o..(s,e)leU/~'r I 
Because the initial condition - = llf~.o,.(z~. B~, e)ll ~< C4 ~ and Is-~/l ~< 
I z , - ~ l  ~< Iz-z~l < j ~ ,  we get 117,,o..(z,B~, e)ll = O(v/~). 

For any general =--* 0 +, we find the points { O~ =} where A(z)+ i= = 0  
at z = O~. Since A(z) + i= is analytic, and A(z) + i~ is not a constant, { O~ =} 
is a finite set. The estimates IIf~, o, .(z, B~, ~)ll--O(V/;) can be derived 
following the same procedure as in the = = 0 cases. We observe the facts 
that when z satisfies [ z -  O~=[ >i V/~ and z ~ B~, IZ(z) + ir > C4 V/~, and 

when z satisfies Iz-  O;l <~ j'~ and z e B~, [Re(A(z) + io~ + ino~)l ~ C7 : .  
These two facts are critical in the proof  of cases where ~ = 0. Thus, we have 
IIfl. o..(z, B~, e)II -- O(~f;), which is independent of r as = -* 0 +. 

The rest of the derivation of (6.18) can be obtained by an analysis 
similar to that in Lemma 3,3. 

We note that as 0r 0 +, lim=_o+ n = ~ = B ~  #~ .  Further, as = -*0  +, 
the paths F~(z,T~), upon which the harmonic functions ~ -  
Re J~_ (A(~) + ir - ino~) dz are monotone decreasing, respectively, are non- 
singular in the sense that 

sup IF~(z, T~)I ~< C([~-I_I) (6.20) 
zeB~ 

for some C > 0  independent of ~r  +, when I r  for some 
r io>0 .  
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Lemma 6.3. Assume CI-C4 hold. Let y=(l, s, 8) be the solution of 
(6.14) with the initial condition y=(I, s, 8)li.~-- 0 for s < I_.  Then for s <~ 
I <~ I_ ,  (O/Os) y=(I, s, e) can be expressed as 

OS Xn, m e Z 

where A~,m(l  , $, 8) have analytic extensions A~.m(z, ~, e) which are analytic 
in r for Ir <~rto, and are analytic in z for zcB~ as defined previously 
in Lemma 6.2. Furthermore, 

IlA~.m(Z, ~, 8)11 <<.M (6.21) 
j ,  n ,  m 

for I~-- I_ I <~ rmo, z e cl(Br and for any e <~ eo = eo(M, 22). In particular, 
z = I _  belongs to cl(B~) for any ~ with Ir <r,o,  and therefore 

0 = , s ) - - (  ~ ~ , ( s , e ) d " " / ~ ) e  '/'I~-t~'*)+~) (6.22) Ts y (I_ ~ z  

where ,,~,(s, e) have analytic extensions ,~,(~, e) for I ~ -  I_1 <rto, and 

II//:,(~, 8)11 <~ M (6.23) 
m e Z  

Lemmas 6.2 and 6.3 are direct applications of the cort~spondhg 
Lcmmas 3.3 and 3.4 to the Eq. (6.10). To continue the sketch of the proof 
of Theorem 6.1, we apply Lemma 6.3 to derive that 

y+(= I_) - -  y_( = I_)  = ~ ( s ,  e) el/~g- t~"~+m~ei'~/~ ds (6.24) 

where A~ = -(Aao(I, 8) - (duo/dl) + 8g(I, 0g 8)) for some bounded, analytic 
function g(I, =, e). 

From the Taylor expansion of A(I), 2 ( I ) = a l ( I - I _ ) +  0 ( ( I - I_ )2 ) ,  
and the fact that [ao(I_ , e)[ I> ~o > 0, we obtain the estimate by a method 
similar to that in (4.19) that, for sufficiently small e ~<eo and independently 
0 ~ 0 ~  0, 

C2e-Xt~/~x/~>~ f'~ dsl >~cle-'~2~/'x/~ (6.25) 
lo 



Periodic Forcing and Delayed Bifurcations 623 

for some positive C~ and k 2 independent of e and ~. It is necessary to 
require ~<~o to assure lao(z, e)l ~>~1o/2>0 when I z - I _  I <<.Koc. Also, we 
have 

Ill ~  duo (z(')+l')* ds < M2e-X2 2/  /e (6.26) 
io e'/'s:- 

These estimates are obtained by analyzing the local structure of the func- 
tion ~ -  (2(r) + i00 dr as in (4.25). Details of estimations were carried out 
in (4.19). By using the analyticity of the functions and the structure of 
2(z) + i~ + ino9 for n # 0 whose imaginary part satisfies IIm 2(z) + ~ + 
noel ~>o~/2 > 0  when I z - I _  1~<, ~<~o,  we can obtain 

I 0 

fto /I~(s, e) e I/~l~- (z(*)+i~)a*ei'~~ ds 

~< 113~11 IF,(Io)l e -x2' ...... )/, for n ~ 0 (6.27) 

Especially, z2(n, ot, og)>/Xo>O when 0<a~<0%,n~0.  We choose the 
path to be Fl(Io) for any n > 0  where Ft(Io)={zllmz>~O, 
Re S~- (2(z)-/co) dr = Re S/o_ (2(z) -/co) dr}, which is the level curve of the 
harmonic functions ff ~(z) = Re ~_ (2(~) - ion) dr. For n < 0, the path is 
then chosen to be fit. The whole procedure is analogous to the similar one 
in Section 4. Therefore, from (6.21), we obtain 

lo ds Ito A~(s'e)el/~l~-~)a~eO""'/': <<.MlFt(Io)l e -x~ 
n # O  

(6.28) 

We also pay attention to the fact that the bounds of the integrations 
are independent of ~ as ~ 0  +. Since the term in (6.25) dominates the 
rest of the terms in (6.24), there exist A~ which are uniformly bounded 
with respect to ct by 1,4~l ~<M2 such that for 0 ~  o and e~<eo, when 
A =A~, 

y~_(I_)-  y+(I_) = 0  (6.29) 

where yL(I) and y~+(I) are two solutions from different sides of the critical 
w ot point for the equation (6.14) with A - A  o. 

Step 2. Step 2 is implied from the process in which Step 1 was 
obtained. 
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Step 3. We take A0 to be any accumulation point of{A~} as ~ 0  +. 
From the continuity dependency of the solutions y+ and y~ with respect 
to ~., we derive that 

y+(I_)- -y_(I_)=O (6.30) 

for the solutions y+ and y_  which are defined in (6.16). 
We observe that if the terms ~,,,ooan(I, 8)e i'~ and ao(I, e) are 

real, then A~ can also be chosen to be real. So is Ao. Moreover, if such a 
condition is met, even though y+ and f _  might be complex, their limits 
are real since y + and y_ are solutions of real systems with real initial 
values. 

From (6.30), Theorem 6.1 follows by using the fact y_ and y+ are the 
same solutions which satisfy l y ( I , I , ,Mi ,e ) l~Mx/~  for I~=Io<~I<~ 
I q -  I ~ Similarly, we can conclude the delayed bifurcation_properties of 
solutions with initial conditions [y(I, Ii, M~, e)[ 1~/, ~< MI ~/e by an argu- 
ment about exponential growth similar to Proposition 2.4. [] 

Remarks. (1) If the frequency co is replaced by co(I~+et), then 
similar results can be obtained. Analogous results concerning near resonant 
frequencies can also be given. (2) From Theorem 6.1, the perturbation 
functions form a codimension one manifold in the periodic function space. 

We believe the significance of Theorem 6.1 is to show that delayed 
simple eigenvalue bifurcations are also a common phenomena in the sense 
that they occurred in a codimension one family of systems among all 
systems in which the eigenvalue 2(I) is real, and changes sign at I = I _ ,  
rather than isolated systems under very restrictive conditions. 
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