EVERY RECURSIVELY ENUMERABLE EXTENSION
OF A THEORY OF LINEAR ORDER HAS A CONSTRUCTIVE
MODEL

M. G. Peretyat'kin UDC 517.15

It is well known that not every consistent theory, even among those which are finitely axiomatizable,
has a constructive model. In view of this it is interesting to examine conditions which are sufficient for a
theory to have a constructive model. One such condition is:

A. The theory T has a solvable extension.

Another interesting sufficient condition was obtained in [5], and consists essentially in:

B. The theory 7 is axiomatizable by a recursively enumerable set of Krom formulas without equal-
ities.

The present article will prove that the following condition is likewise sufficient for a theory to have a

constructive model:

C. The theory 7 is a recursively enumerable extension of a theory of linear order with a finite num-
ber of supplementary one-place predicates in signature.

Notice that there exists a completely unsolvable recursively enumerable theory, extending a theory of
linear order, without supplementary one-place predicates in signature. In other words, there exist theories
which have property C, but not properties A or B.

DEFINITION 1 [1]. A partially ordered set M is said to be tight if every sequence {.1;}
elements of M contains an increasing (not necessarily strictly increasing) subsequence.

of

lew
Denote by W,7 the set of all words of the alphabet /4-{/,2, ---,n} ordered as follows. If 27/ W, .,
then o« & A if and only if ¢« is obtained from ¢, by striking out certain letters.

It was shown in [1] that Wn is a tight partially ordered set. We shall also use the result obtained in
{1] to the effect that the direct product of two, and hence any finite number, of tight partially ordered sets

is tight, Thus the partially ordered set an= W, x W, x...x W, (with m factors) is tight.

DEFINITION 2. Let M be a partially ordered set. A subset Fc M will be called a filter if u e F,
W&d =>ueF | We shall refer to the set B S M as a basis of the filter F if 8 consists of pairwise
incomparable elements and we F& JreB (Ve W)

The following lemma is a slight modification of a lemma given in [1] (where the complement of F ,
and not the set F itself, was considered).

LEMMA 1. Let M be a tight partially ordered set. Then every filter FSM has a finite basis.

Here and below, a consistent set of propositions of a certain signature, closed with respect to logical
amplifications, will be called a theory.

Our aim will be to prove
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THEOREM. Let 7 be any recursively enumerable theory of signature 6=<=,<, /?,‘. A’;, cers A’,,’) ,

extending a theory T, of linear order of signature 6,~<=,<>. Then 7 has a constructive model.

Proof. Throughout what follows, the theory 7 is fixed. We shall assume that this theory has no
finite models since otherwise the theorem would be frivial. It may easily be shown (by introducing 2"
new one-place predicates instead of the 7 original ones) that the theorem can in general be reduced to the
particular case when 7 contains the statement

[u/% Yz (R, (@) ==&, (a:))]& [Yx (R (@R, @)v...v &, (x))_\ _

Hence we shall assume that this statement belongs to the theory 7 .

Let TpNF be the subset of 7 consisting of formulas specified in the prenex normal form, Obviously,
rpNF is a recursively enumerable system of axioms of the theory 7 . For every formula Ye 7'

we denote by Sp’ the Erbranov form of the statement ¢ [4]. Let fo ) f .fm,‘ .- be the l1st of all
functional symbols for all such possible ¢* . We shall assume that, with respect to a formula e 7, pNF
and with respect to the occurrence of the quantor J in this formula, an s can effectively be found such

m .
that 7('5 f serves for replacing precisely this quantor. In particular, the function A: Afs) = mg is general
recursive. Denote

6%= (=.< 'va/?zv A’,“f f{ . ,>

Denote by 7 * the theory of signature ¢* , the set of axioms of which may be el . Obvi-
, PE T

ously, 7% isa recursively enumerable theory, and the restriction of T* up to the signature ¢ is pre-
cisely 7 .

We shall construct a model m'= <M, o*> of the theory T The fundamental set of the model m’
will be M=la, a,,..,q,...; §<d}.

The equality relation of M is natural a= a = u—/ . As the numeration v:N—M we shall take
the mapping defined as follows: Y (§) =

Predicates and functions of the 51gnature 6* will be defined step-wise on M. After step t ,the pred-
icates <,#,R,, ..., &, > will be defined on the finite set Mt' {a,,a, N } . At this instant the pred-

icate < will specify a linear order on Mt , while the predictates £,, R,....,K, will define a division
of the set Mt into 2 disjoint subsets. The following conditions will then be satisfied:

1. MysMeMs. ... seMsM, <.
2. lMtl> £.
The predicates on Mt 4+ Wwill be continuations of the corresponding predicates on Mt .
As distinct from the predicates, the Skolem functions fp, f, ... will be trial and error functions.

This means that the value of the function f" 1y, @ ) is not defined once and for all at a given instant,
but is variable from step to step, while always remaining defined. For instance, at the instant £=0 the
value of every function will be @, . This value may be changed several times later, but there always ex-
ists an instant zfa , dependent on §,«, P }' such that, starting from this instant the value of fs (@,

/J ,..,d,) will remain the same. This last value is in fact, by definition, the value of the function in the
model m". I general, therefore, the Skolem functions are not recursive in the numeration v .

The process of construction is such that the following condition is satisfied.
3. At every instant ¢ the values of all the functions belong to the set Mt .

Before turning directly to the process by which the model is constructed, let us describe the terms
and concepts to be employed.

a) Level § functions., By definition, these include all expressions of the form f:, ( /’”_‘ a, )

for which maz{i, p,.... )= $.
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b) Terms of levels 0+§ . (The expression 0+§ is tobe read as "from ¢ to § .") By definition,

these include the following terms of signature 6* : the variables Z, Ty, ..., L, andalso the terms ob-

tained by a single substitution of these variables in the symbols of the functions 71‘0,7('1 Yoo 7[’5 . Terms of
-

" x(s)

the levels ¢ +§ will be denoted by 'Z:p,

¢) The formula descrlbmg the arrangement of the terms of levels 0+§ . We define this as the ex-

plicit formula @(:ra, ..,®&¢) which is a conjunction of formulas of the type zj: e, fz:_: < rz/f and de-

scribes a linear order on the set of all terms of levels ¢ +$ . All we require here is satisfaction of the

condition: the terms x,,1,,. . X, are arranged in different classes of equal elements in this order.

d) The formulas describing the arrangement of the terms of levels g+§ in the model at the instant
¢. (Under the condition S<Z.) We define this as the formula of the type above described, which is true at
this instant in the model under the interpretation x, in a, . =3,1....,8.

e) The ¢ -representatives. (Let ¢ be a formula of the type @ ). We define the & -representatives
as the system ¢, ._§z ..-..4, of terms of levels ¢+§ , which contains just one term from every class of
equal elements in the linear order which describes ¢ . Here, S, <f£,< ...<$,and m dependson (.

f) The filter of contradictions for @ . Let QU(a‘D,a;,,,.,xs) be any formula which describes the ar-
rangement of the terms of levels ¢+ 5 , and let 5,,52,,,.,5,“ -@ be @ -representatives. We define the

filter of contradictions for @ as the set F (@) < W”ml (where 2 is the number of one-place predicates),
which is defined as follows.

Let w= «,%,,..«, be an arbitrary word of the alphabet A={#2..,2} . With (=04,..., m we denote

VL(“’)"—:?%%-"%[;ﬁ%‘}/z‘“‘%‘fm] &[K/i R, (y,)] ;

we do not write {; in this formula if (=0 , while we do not write _§‘;+, if (=m .

Let w,, ¢=04,...,m, beany m+/ -member sequence of words of the alphabet A ; then, by definition
m *
Wy, Gty € F @) V2, 2 [Play 2, 208N g, ()] € T

It can easily be seen that the set F (@ thus defined is in fact a filter of the partially ordered set

mef
W,
g) The level § contradiction. Consider an instant ¢ in the construction of the model such that §<# .
Let © (1, &.,...x; ) be the formula which describes the arrangement of the terms of levels 0+§ in the model
at the mstant t. et f § . ._fm be ¢@ -representatives, and }—,,_fz _€m their values under the in-
terpretation x, in ¢« . Denote by § the set of elements of M which are less than j', » by [2 )
1.2,...m~1 , the set of elements of ¥, which are arranged between 3 and -54 ,and by §, the set of

-
elements of M which are greater than fm .

Denote by w; , 6=0,/... m ,a word of the alphabet A of length |d;|, such that « is in the j -th
place of it if the predlcate G’ is true onthe ; -th element of the set £ . We shall say that there is a
contradiction at the level § at this instant if

(W 0y, W) € F (D) (2)

h) The 7 -contradiction at level & . The concept of level § contradiction discussed in the previous
paragraph is not in general effective; i.e., there may be no algorithm which, for the given § and for the
given arrangement of terms of levels 0+ in the set M, , yields an answer to the question: is there a con-
tradiction at the level § 2 The concept of f -contradiction at the level § in a sense approximates the con-
cept of level § contradiction, while being at the same time effectively specified. In essence, it amounts
to the following.

It is obvious that the sets # (@), with all possible @ , are uniformly recursively enumerable. Sup-
pose we have an effective process which enumerates the elements of all possible sets F(¢g) . Let ¢ t(qb)

be a finite subset of F (), evaluated at the instant ¢ , and let 53 t(Qb) be the set of all minimal elements
of G° (¥} . Denote by £t (¢} the filter for which Bt(f/b} serves as a basis. Obviously,
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FUP) e Flos.sr'@e. s F @),

while there exists an instant L‘o dependent on @, suchthat £27,= F? (P) = F(#) . This is precisely
the instant at which there appear in Gt ( @) all the elements of the basis of filter F/®) , which exists and
is finite by Lemma 1.

In order to define the concept of f{-contradiction at the level § , we require a word-by-word re-
petition of the previous paragraph, with just one modification: instead of condition (2), we have to re-
quire satisfaction of the condition

¢
(b w,,....w,,) e F (¥). 3)

Notice that the concept of f -contradiction at the level § depends onthe method of enumerating the
set F(®). We choose any one such method and settle on this.

We have

LEMMA 2. For every § there exists an instant t = ¢/s) such that for every ¢a t, » the concepts
of contradiction at the level § and of ?-contradiction at the level § are identical.

This follows from the fact that there is a finite number of formulas describing the arrangement of the
terms of levels 0+ § .

i) Admissible 6 -model. This is any & -model which imbeds isomorphically into the appropriate
model of the theory 7 .

With every finite model 720 ~< M, 6> we associate a word  of the alphabet A of length |M], such
that ; stands in its oc -th place if the predicate 7% is true on the /' -th element of the model A

LEMMA 3. The set of words D < W,; corresponding to admissible finite @ -models, is recursive.

Proof. Obviously, F= Wn' \ &2 is a filter. By Lemma 1, F has a finite basis. It follows that #,
and hence 2 , is a recursive set.

We are now in possession of all the necessary concepts, and can proceed directly to describing the
process of model construction.

Construction of the Model

Step £=0.M,={a,} , we define predicates on A, in such a way that an admissible 6 -model is ob-
tained, and all functions are identically equal to g, .

Assume that step -/ has been completed. Dencte by S,(Z) the least s« ¢~/ such that there is
a ¢ -contradiction at the level s . If there is no such § , we assume that so(i) isequalto 7.

Step £>0 . This consists of two substeps. If §,(¢)=¢ the first substep is omitted.

First substep., We check if it is possible to redefine the functions of level s, (£) and extend the pred-
jcates to the values of these functions going beyond A .o, In such a way that

1) the resulting & -model is admissible,

2) the I -contradiction at the level §,; '¢) disappears,

3) there arise no ! -contradictions at levels below §,( L.
The further procedure depends on whether or not this is possible.

a) It is possible. Let J be the least number of new elements needed for this, and let n be the
greatest number of elements of M, , . We set Mé/ =M,_U [an . "+Z} We continue the predicates

from M,  to M , and also redefine the functions of level S, (zf/ assigning values from Mt to them
in such a way as to satisfy all three of the conditions above hsted This terminates the first substep.

b) It is impossible. We set M = Mt- , and the first substep terminates here.

Second substep. If, as a result of the first substep, Mt +#My_; , we set M Mt , and step t termin-
ates here. If Mz‘ M,_, we let n be the greatest number of elements of Mtl We set M, Mt {a,.,} -
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We retain all the values of the functions, while continuing the predicates from V.é onto Mf in such a
way that

1) the resulting 6 -model is admissible,
2) 5, ( £+1) takes the greatest possible value. At this point the step t terminates.

*
Having described the process of constructing the model #% , our task is now to show that it sat-
isfies all our requirements.

Conditions 1, 2, and 3 are obviously satisfied.

Let us show that every function f' (@g+9,, ..., @y ) in fact becomes stabilized from a certain instant.
Since only functions of the level ¢,(Z) may be vaned at the instant 7 , we only have to show that, for every
s there exists an instant 7, such that

faés ———>.$‘a(£/>s. (4)

As ¢, we cantake 0. Assume thata f; satisfying condition (4) has already been found. We set

ésH= max { zfs, ¢ (S)} + 7

where £ (s) isthe function of Lemma 2.

Assume that §,(f,,, ~ /) =8 . This means that, at the instant ¢ = t;,, — 1, there are no contradictions
at the levels o¢,s,...,5-/ while there is a contradiction at the level § . Then, during the first substep of the
step =125, ~ / condition a) will be satisfied, since otherwise the theory 7* would only have finite models
of limited power. As a result, $, (L‘”,)z §+/ there are no contradictions at the kevels 0,7,...,5 . We
have thus ensured the possibility of continuing the predicates on to all the newly introduced elements, with-
out obtaining contradictions at the levels ¢,7,...,3 . Inthat case,at every subsequent instant ¢ , whether
as a result of the first substep or as a result of the second substep, the function 3, (¢) will not drop below

3+ .

If s, (t‘w f)= s+1 , there will be no contradictions at the levels 0,7,...,§ at the instant £= zf,_H -

In that case, we have §,(f)= g+/ at every subsequent instant £ .

/
Since every finite impoverishment of every finite submodel < m’ does not contradict 7% and
this theory is universally zu\.mmatlzable, " must be a model of the theory 7% . If we denote by a7
the ¢ -impoverishment of model m" , (m, v) will be a constructive model of theory 7 . QED.
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