EVERY RECURSIVELY ENUMERABLE EXTENSION OF A THEORY OF LINEAR ORDER HAS A CONSTRUCTIVE MODEL

M. G. Peretyat'kin

UDC 517.15

It is well known that not every consistent theory, even among those which are finitely axiomatizable, has a constructive model. In view of this it is interesting to examine conditions which are sufficient for a theory to have a constructive model. One such condition is:

A. The theory \mathcal{T} has a solvable extension.

Another interesting sufficient condition was obtained in [5], and consists essentially in:

B. The theory $\mathcal T$ is axiomatizable by a recursively enumerable set of Krom formulas without equalities.

The present article will prove that the following condition is likewise sufficient for a theory to have a constructive model:

C. The theory \mathcal{T} is a recursively enumerable extension of a theory of linear order with a finite number of supplementary one-place predicates in signature.

Notice that there exists a completely unsolvable recursively enumerable theory, extending a theory of linear order, without supplementary one-place predicates in signature. In other words, there exist theories which have property C, but not properties A or B.

<u>DEFINITION 1 [1].</u> A partially ordered set M is said to be tight if every sequence $\{x_i\}_{i \in \omega}$ of elements of M contains an increasing (not necessarily strictly increasing) subsequence.

Denote by W_n the set of all words of the alphabet $A = \{1,2,\ldots,n\}$ ordered as follows. If $w_1,w_2 \in W_n$, then $w_1 \in w_2$ if and only if w_1 is obtained from w_2 by striking out certain letters.

It was shown in [1] that W_n is a tight partially ordered set. We shall also use the result obtained in [1] to the effect that the direct product of two, and hence any finite number, of tight partially ordered sets is tight. Thus the partially ordered set $W_n^m = W_n \times W_n \times \dots \times W_n$ (with m factors) is tight.

<u>DEFINITION 2.</u> Let M be a partially ordered set. A subset $F \subseteq M$ will be called a filter if $W_1 \in F$, $W_2 \in W_2 = W_2 \in F$. We shall refer to the set $B \subseteq M$ as a basis of the filter F if B consists of pairwise incomparable elements and $W \in F \iff \exists v \in B \ (v \in W)$.

The following lemma is a slight modification of a lemma given in [1] (where the complement of F, and not the set F itself, was considered).

LEMMA 1. Let M be a tight partially ordered set. Then every filter $F \subseteq M$ has a finite basis.

Here and below, a consistent set of propositions of a certain signature, closed with respect to logical amplifications, will be called a theory.

Our aim will be to prove

Translated from Algebra i Logika, Vol. 12, No. 2, pp. 211-219, March-April, 1973. Original article submitted December 19, 1972.

^{● 1974} Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15,00.

THEOREM. Let \mathcal{T} be any recursively enumerable theory of signature $\mathfrak{G} = \langle -, <, \mathcal{R}_1^{\ \prime}, \mathcal{R}_2^{\ \prime}, \dots, \mathcal{R}_n^{\ \prime} \rangle$, extending a theory \mathcal{T}_0 of linear order of signature $\mathfrak{G}_0 = \langle -, < \rangle$. Then \mathcal{T} has a constructive model.

<u>Proof.</u> Throughout what follows, the theory \mathcal{T} is fixed. We shall assume that this theory has no finite models, since otherwise the theorem would be trivial. It may easily be shown (by introducing 2^n new one-place predicates instead of the n original ones) that the theorem can in general be reduced to the particular case when \mathcal{T} contains the statement

$$\left[\begin{array}{c} \bigwedge\limits_{i\neq j} \forall x \; \left(\mathcal{R}_{i} \left(x \right) \longrightarrow \neg \, \mathcal{R}_{j} \left(x \right) \right) \right] \& \left[\forall x \left(\mathcal{R}_{i} (x) \vee \mathcal{R}_{2} (x) \vee ... \vee \mathcal{R}_{n} (x) \right) \right].$$

Hence we shall assume that this statement belongs to the theory ${\mathcal T}$.

Let \mathcal{T}_{pNF} be the subset of \mathcal{T} consisting of formulas specified in the prenex normal form. Obviously, \mathcal{T}_{pNF} is a recursively enumerable system of axioms of the theory \mathcal{T} . For every formula $\varphi \in \mathcal{T}_{pNF}$ we denote by φ^{\sharp} the Erbranov form of the statement φ [4]. Let $f_0^{m_0}$, $f_1^{m_1}$, ..., $f_s^{m_s}$, ... be the list of all functional symbols for all such possible φ^{\sharp} . We shall assume that, with respect to a formula $\varphi \in \mathcal{T}_{pNF}$ and with respect to the occurrence of the quantor \mathcal{F} in this formula, an s can effectively be found such that $f_s^{m_s}$ serves for replacing precisely this quantor. In particular, the function $\lambda:\lambda(s)=m_s$ is general recursive. Denote

$$6^* = \langle =, \langle, R_1, R_2, \dots, R_n, f_0^{m_0}, f_1^{m_1}, \dots, f_s^{m_s}, \dots \rangle.$$

Denote by \mathcal{T}^* the theory of signature \mathfrak{G}^* , the set of axioms of which may be $\{\varphi^* \mid \varphi \in \mathcal{T}_{n \ltimes \varphi}\}$. Obviously, \mathcal{T}^* is a recursively enumerable theory, and the restriction of \mathcal{T}^* up to the signature \mathfrak{G} is precisely \mathcal{T} .

We shall construct a model $\mathfrak{M}^* = \langle M, \sigma^* \rangle$ of the theory \mathcal{T}^* . The fundamental set of the model \mathfrak{M}^* will be $M = \{a_0, a_1, ..., a_s, ...; s < \omega\}$.

The equality relation of M is natural: $a_i = a_j \iff i = j$. As the numeration $\forall : N \longrightarrow M$ we shall take the mapping defined as follows: $\forall (s) = a_s$.

Predicates and functions of the signature σ^* will be defined step-wise on M. After step t, the predicates $<,\mathcal{R}_1,\mathcal{R}_2,\ldots,\mathcal{R}_n>$ will be defined on the finite set $M_t=\{a_0,\sigma,\ldots,a_{|t|(t)}\}$. At this instant the predicate < will specify a linear order on M_t , while the predictates $\mathcal{R}_1,\mathcal{R}_2,\ldots,\mathcal{R}_n$ will define a division of the set M_t into n disjoint subsets. The following conditions will then be satisfied:

- 1. $M_0 \subseteq M_i \subseteq M_j \subseteq \ldots \subseteq M_t \subseteq M_{t+i} \subseteq \ldots$
- 2. $|M_{j}| > t$.

The predicates on M_{t+t} will be continuations of the corresponding predicates on M_t .

As distinct from the predicates, the Skolem functions $f_0^{m_0}, f_1^{m_1}, \dots, f_s^{m_s}$ will be trial and error functions. This means that the value of the function $f_s(a_a, a_b, \dots, a_q)$ is not defined once and for all at a given instant, but is variable from step to step, while always remaining defined. For instance, at the instant t=0 the value of every function will be a_o . This value may be changed several times later, but there always exists an instant t_o , dependent on $s, \alpha, \beta, \dots, \gamma$ such that, starting from this instant the value of $f_s(a_a, a_b, \dots, a_q)$ will remain the same. This last value is in fact, by definition, the value of the function in the model \mathfrak{M}^* . In general, therefore, the Skolem functions are not recursive in the numeration γ .

The process of construction is such that the following condition is satisfied.

3. At every instant t the values of all the functions belong to the set M_t .

Before turning directly to the process by which the model is constructed, let us describe the terms and concepts to be employed.

a) Level s functions. By definition, these include all expressions of the form $f_i(a_{\alpha}, a_{\beta}, ..., a_{\gamma})$, for which $max\{i, \alpha, \beta, ..., \gamma\} = s$.

- b) Terms of levels $0 \div \S$. (The expression $0 \div \S$ is to be read as "from 0 to \S .") By definition, these include the following terms of signature \emptyset^* : the variables x_0, x, \ldots, x_{\S} , and also the terms obtained by a single substitution of these variables in the symbols of the functions f_0, f_1, \ldots, f_{\S} . Terms of the levels $0 + \S$ will be denoted by $\mathcal{T}_0^{\S}, \mathcal{T}_1^{\S}, \ldots, \mathcal{T}_{K(\S)}^{\S}$.
- c) The formula describing the arrangement of the terms of levels o+s. We define this as the explicit formula $\phi(x_o,x_1,\ldots,x_s)$ which is a conjunction of formulas of the type $\tau_s^s=\tau_s^s$, $\tau_s^s<\tau_s^s$ and describes a linear order on the set of all terms of levels o+s. All we require here is satisfaction of the condition: the terms x_o,x_1,\ldots,x_s are arranged in different classes of equal elements in this order.
- d) The formulas describing the arrangement of the terms of levels $\mathcal{O}+\mathcal{S}$ in the model at the instant \underline{t} . (Under the condition $\mathcal{S} \neq \overline{t}$.) We define this as the formula of the type above described, which is true at this instant in the model under the interpretation x_i in a_i , $i=\mathcal{I},\mathcal{I},\ldots,\mathcal{S}$.
- e) The φ -representatives. (Let φ be a formula of the type φ). We define the φ -representatives as the system $\xi_1, \xi_2, \ldots, \xi_m$ of terms of levels $\ell+s$, which contains just one term from every class of equal elements in the linear order which describes φ . Here, $\xi_1 < \xi_2 < \ldots < \xi_m$ and π depends on φ .
- f) The filter of contradictions for ϕ . Let $\phi(x_0, x_1, ..., x_s)$ be any formula which describes the arrangement of the terms of levels $0 \div s$, and let $\xi_1, \xi_2, ..., \xi_m \phi$ be ϕ -representatives. We define the filter of contradictions for ϕ as the set $F(\phi) \subseteq W_n^{m+\ell}$ (where n is the number of one-place predicates), which is defined as follows.

Let $w = \alpha_1 \alpha_2, \dots \alpha_c$ be an arbitrary word of the alphabet $A = \{1, 2, \dots, n\}$. With $i = 0, 1, \dots, m$ we denote

$$\varphi_i\left(\omega\right) = \exists y, y_2 \dots y_c \left[\dot{S}_i < y, < y_2 < \dots < y_c < \dot{S}_{i+1} \right] \dot{\alpha} \left[\int_{-\infty}^{c} \mathcal{R}_{\alpha_K}\left(y_K\right) \right] ;$$

we do not write β_i in this formula if i=0, while we do not write β_{i+1} if i=m.

Let w_i , i=0,1,...,m, be any m+1-member sequence of words of the alphabet A; then, by definition

$$(\omega_{o}, \tau, ..., \omega_{m}) \in F(\phi) \Leftrightarrow \exists x_{o} x_{i} ... x_{s} \left[\phi(x_{o}, x_{i}, ..., x_{s}) \& \int_{i=0}^{m} \varphi_{i}(\omega_{i})\right] \in T^{*}.$$

It can easily be seen that the set $\mathcal{F}(\varphi)$ thus defined is in fact a filter of the partially ordered set $\mathcal{W}_n^{m+\prime}$.

g) The level \underline{s} contradiction. Consider an instant \underline{t} in the construction of the model such that $\underline{s} \in \underline{t}$. Let $\underline{c} : (\underline{x}_0, \underline{x}, \dots, \underline{x}_s)$ be the formula which describes the arrangement of the terms of levels $\underline{0} + \underline{s}$ in the model at the instant \underline{t} . Let $\underline{s}_1, \underline{s}_2, \dots, \underline{s}_m$ be $\underline{\phi}$ -representatives, and $\underline{s}_1, \underline{s}_2, \dots, \underline{s}_m$ their values under the interpretation \underline{x}_i in $\underline{\alpha}_i$. Denote by \underline{Q} the set of elements of $\underline{M}_{\underline{t}}$ which are less than \underline{s}_i , by \underline{Q}_i , $\underline{t} = 1, 2, \dots, m-1$, the set of elements of $\underline{M}_{\underline{t}}$ which are arranged between \underline{s}_{i-j} and \underline{s}_i , and by \underline{Q}_m the set of elements of $\underline{M}_{\underline{t}}$ which are greater than \underline{s}_m .

Denote by \mathcal{U}_i , $i=0,1,\ldots,m$, a word of the alphabet A of length $|\mathcal{Q}_i|$, such that ∞ is in the j-th place of it if the predicate \mathcal{Q}_i is true on the j-th element of the set \mathcal{R}_{∞} . We shall say that there is a contradiction at the level \mathcal{S} at this instant if

$$(\omega_0, \omega_1, \dots, \omega_m) \in \mathcal{F}(\mathcal{Q}). \tag{2}$$

h) The t-contradiction at level s. The concept of level s contradiction discussed in the previous paragraph is not in general effective; i.e., there may be no algorithm which, for the given s and for the given arrangement of terms of levels s in the set s, yields an answer to the question: is there a contradiction at the level s? The concept of s-contradiction at the level s-contradiction, while being at the same time effectively specified. In essence, it amounts to the following.

It is obvious that the sets $F(\phi)$, with all possible ϕ , are uniformly recursively enumerable. Suppose we have an effective process which enumerates the elements of all possible sets $F(\phi)$. Let $G^t(\phi)$ be a finite subset of $F(\phi)$, evaluated at the instant t, and let $B^t(\phi)$ be the set of all minimal elements of $G^t(\phi)$. Denote by $F^t(\phi)$ the filter for which $B^t(\phi)$ serves as a basis. Obviously,

$$F^{o}(\varphi) \subseteq F'(\varphi) \subseteq ... \subseteq F^{t}(\varphi) \subseteq ... \subseteq F(\varphi)$$
,

while there exists an instant t_0 , dependent on ϕ , such that $t > t_0 \Longrightarrow F^t(\phi) = F(\phi)$. This is precisely the instant at which there appear in $G^t(\phi)$ all the elements of the basis of filter $F(\phi)$, which exists and is finite by Lemma 1.

In order to define the concept of t-contradiction at the level s, we require a word-by-word repetition of the previous paragraph, with just one modification: instead of condition (2), we have to require satisfaction of the condition

$$(\omega_0, \omega_1, \dots, \omega_m) \in \mathcal{F}^t(\Phi). \tag{3}$$

Notice that the concept of t-contradiction at the level s depends on the method of enumerating the set $F(\phi)$. We choose any one such method and settle on this.

We have

LEMMA 2. For every s there exists an instant $t_o = t$ (s) such that for every $t > t_o$, the concepts of contradiction at the level s and of t-contradiction at the level s are identical.

This follows from the fact that there is a finite number of formulas describing the arrangement of the terms of levels $0 + \delta$.

i) Admissible 6-model. This is any 6-model which imbeds isomorphically into the appropriate model of the theory 7.

With every finite model $\mathcal{M} - \langle M, 6 \rangle$ we associate a word w of the alphabet A of length |M|, such that j stands in its ∞ -th place if the predicate \mathcal{M} is true on the j-th element of the model \mathcal{R}_{∞} .

LEMMA 3. The set of words $\mathcal{D} \subseteq W_n'$ corresponding to admissible finite 6-models, is recursive.

<u>Proof.</u> Obviously, $F = W_n' \setminus \mathcal{D}$ is a filter. By Lemma 1, F has a finite basis. It follows that F, and hence \mathcal{D} , is a recursive set.

We are now in possession of all the necessary concepts, and can proceed directly to describing the process of model construction.

Construction of the Model

Step t=0. $M_0=\{a_0\}$, we define predicates on M_0 in such a way that an admissible 6-model is obtained, and all functions are identically equal to a_0 .

Assume that step t-t has been completed. Denote by $s_o(t)$ the least $s \in t-t$ such that there is a t-contradiction at the level s. If there is no such s, we assume that $s_o(t)$ is equal to t.

Step t>0. This consists of two substeps. If $s_o(t)=t$ the first substep is omitted.

First substep. We check if it is possible to redefine the functions of level $s_o(t)$ and extend the predicates to the values of these functions going beyond M_{z-t} in such a way that

- 1) the resulting 6-model is admissible,
- 2) the \dot{z} -contradiction at the level $s_{z}(t)$ disappears,
- 3) there arise no t-contradictions at levels below $S_2(t)$.

The further procedure depends on whether or not this is possible.

- a) It is possible. Let $\mathfrak Z$ be the least number of new elements needed for this, and let n be the greatest number of elements of M_{t-1} . We set $M_t' = M_{t-1} \cup \{a_{n+1}, ..., a_{n+q}\}$. We continue the predicates from M_{t-1} to M_t' , and also redefine the functions of level $\mathfrak S_g$ (t), assigning values from M_t' to them in such a way as to satisfy all three of the conditions above listed. This terminates the first substep.
 - b) It is impossible. We set $M_t' = M_{t-1}$, and the first substep terminates here.

Second substep. If, as a result of the first substep, $M_t' \neq M_{t-1}$, we set $M_t = M_t'$, and step t terminates here. If $M_t' + M_{t-1}$ we let n be the greatest number of elements of M_t' . We set $M_t = M_t' \cup \{a_{n+1}\}$.

We retain all the values of the functions, while continuing the predicates from \forall_t' onto M_t in such a way that

- 1) the resulting o-model is admissible,
- 2) $S_{\epsilon}(t+i)$ takes the greatest possible value. At this point the step t terminates.

Having described the process of constructing the model $\,m^{\star}\,$, our task is now to show that it satisfies all our requirements.

Conditions 1, 2, and 3 are obviously satisfied.

Let us show that every function $f_i(a_{\alpha}, a_{\beta}, \dots, a_{f})$ in fact becomes stabilized from a certain instant. Since only functions of the level $s_{\sigma}(t)$ may be varied at the instant t, we only have to show that, for every s there exists an instant t_{g} such that

$$t \ge t_s \implies s_\sigma(t) \ge s. \tag{4}$$

As t_o we can take θ . Assume that a t_s satisfying condition (4) has already been found. We set

$$t_{s+i} = max \{t_s, t(s)\} + i,$$

where t(s) is the function of Lemma 2.

Assume that $s_o(t_{s+i}-t)=s$. This means that, at the instant $t=t_{s+i}-t$, there are no contradictions at the levels $o,t,\ldots,s-t$ while there is a contradiction at the level s. Then, during the first substep of the step $t=t_{s+i}-t$ condition a) will be satisfied, since otherwise the theory $t=t_{s+i}-t$ would only have finite models of limited power. As a result, $t=t_{s+i}-t$, there are no contradictions at the levels $t=t_{s+i}-t$. We have thus ensured the possibility of continuing the predicates on to all the newly introduced elements, without obtaining contradictions at the levels $t=t_{s+i}-t$. In that case, at every subsequent instant t=t, whether as a result of the first substep or as a result of the second substep, the function $t=t_{s+i}-t$.

If $S_o(t_{s+1}-t) \ge s+t$, there will be no contradictions at the levels $0,1,\ldots,s$ at the instant $t=t_{s+t}-t$. In that case, we have $S_o(t) \ge s+t$ at every subsequent instant t.

Since every finite impoverishment of every finite submodel $m' \subseteq m'$ does not contradict \mathcal{T}^* and this theory is universally axiomatizable, m' must be a model of the theory \mathcal{T}^* . If we denote by m the 6-impoverishment of model m', (m, \vee) will be a constructive model of theory \mathcal{T} . QED.

LITERATURE CITED

- 1. Yu. Sh. Gurevich, "The problem of solution for the logic of predicates and operations," Algebra i Logika, 8, No. 3, 284-308 (1969).
- 2. Yu. L. Ershov, "Constructive models," in: Selected Topics in Algebra and Logic [in Russian], Novosibirsk (1973), pp. 111-130.
- 3. A. I. Mal'tsev, "Constructive algebras," UMN, 16, No. 3, 3-60 (1961).
- 4. A. Robinson, Introduction to Model Theory and to the Mathematics of Algebra, Humanities (1963).
- 5. S. O. Aanderaa and F. V. Jensen, "On the existence of recursive models for Krom formulas," Aarhus Univ., preprint series 1971/72, No. 33 (1972), 1-20.
- 6. A. Mostowski, "A formula with no recursively enumerable models," Fund. Math., 42, No. 1, 125-140 (1955).