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Abstract. 

The purpose of this paper is to analyze Tikhonov regularization in general form by means of 
generalized SVD (GSVD) in the same spirit as SVD is used to analyze standard-form regularization. We 
also define a truncated GSVD solution which is of interest in its own right and which sheds light on 
regularization as well. In addition, our analysis gives insight into a particular numerical method for 
solving the general-form problem via a transformation to standard form. 
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1. Introduction. 

This paper is concerned with the numerical solution of linear least-squares 
problems, min ]IAx -- bllz, where the matrix A is very ill-conditioned. Such prob- 
lems typically arise in connection with the numerical treatment of linear ill-posed 
problems with a compact operator. Then it can be shown that the condition number 
of A must grow with A's dimension, and that the singular values of A must decay to 
zero without any particular gap in the spectrum [6,t9]. Linear data-fitting and 
parameter estimation are examples of other problems that may lead to least squares 
problems with a very ill-conditioned matrix. For all these problems, the standard 
least-squares solution is useless: it may be dominated by rapid oscillations due to 
errors, or it may simply not fit with the underlying mathematical/physical model. 

Let us first establish the notation: I1"tt denotes the 2-norm 11112, R(A) and N(A) 
denote range and null space, respectively, of the matrix A, and A ÷ is the pseudoin- 
verse of A. The ith singular value of A is denoted by ~i(A), and Ps is the orthogonal 
projection matrix onto the subspace S. 
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ported by the Danish Natural Science Foundation. 
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A well-known and highly regarded method for solving discrete ill-posed problems 
is the method of regularization due to Tikhonov [14]. In its general form, the 
regularized solution xz  is defined as the solution to the following least squares 
problem: 

(t. t) min {ItA x - bll 2 + 2 2 tlLx[12}. 

Usually, the matrix L is a discrete approximation to some derivative operator. 
Typical examples of such L are L 1 ~ N~"- I~ ×" and Lz E N~"- 2) ×, given by 

1 - t  
1 - 1  0 - 1  2 - 1  

1 - I  - 1  2 - 1  0 

( t . 2 )  L 1 = , L2 = 

0 0 
1 - 1 _  - 1  2 - 1  

Except for a scaling factor, these mamces are approximations to the first and 
second derivative operators on a uniform net. The idea of including the term 
: 2  I [ L x [ ] 2  in (1.1) is to control the smoothness or shape of the solution x. The 
regularization parameter 2 controls the weight given to minimization of IlLxlt 2 

relative to minimization of ][A x - bl] 2. 

We make the following assumptions about the problem (1.1): 

(l.3a) A~[R" ×" , L ~ P  ×" , m _ > n > p  , r a n k ( L ) = p  

For numerical reasons, it is also convenient to assume that L is scaled such that 
IILII ~ [IAll. Notice that we make no assumption about the rank of A. Assumption 
(1.3b) ensures that there is a unique solution xa to (1.1) for all 2 > 0. Once (1.3b) is 
satisfied, it is easy to show that the regularized solution xx is given by 

(1.4) x ~ =  A~b , A~=--(Ar A + )~2 l f  L ) - l  A'r • 

The matrix A t satisfies only Penrose conditions 3 and 4 [Remark 4.1] and it is ). 

thereibre not a generalized inverse of A. Eq. (1.4) should not be used for practical 

computations. 
If L = I,, the identity matrix of order n, then the regularization problem (1.1) is 

said to be in standard form. This is not always the optimal choice of L. An L ¢ t, 
may provide a better filtering of the errors and/or provide a better means for singling 
out a particularly attractive solution when A is rank deficient. An excellent example 
of the latter case is given by Cox [2] who considers data approximation by bivariate 
splines. Here, L = I, gives a spline that is not geometrically invariant (which is 
unsatisfactory). But ifL is taken as a discrete approximation to the Laplace operator 
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then the computed spline becomes geometrically invariant and thus independent of 
the origin of the axis system. 

The case L = I, has been studied by means of the sinoular value decomposition 

(SVD), see e.g. [16]. Further, it is shown in [5, 7, 8] that the truncated SlID (TSVD), 
an alternative method to regularization, is very similar to regularization in standard 
form. Along this line, we  shall in this paper use the generalized S VD (GSVD) to 
analyze regularization in general form, and our analysis sheds new light on this 
method. Also, we shall introduce a new method, truncated GSVD (TGSVD), which 
generalizes the TSVD method. Finally, we shall demonstrate how existing methods 
for standard-form regularization and TSVD can be used to solve the general 
problem (1.1) effectively. 

In Section 2 we introduce the GSVD as a convenient tool for analysis of(l, 1), and 
we define the TGSVD solution. In Section 3 we explain why Tikhonov regulariz- 
ation and TGSVD produce 'smooth' solutions, and we demonstrate why it is 
important that the matrix L be well-conditioned. Section 4 gives the perturbation 
theory for Tikhonov regularization and TGSVD, and in Section 5 we discuss 
generalized cross-validation as a method for choosing the regularization and trun- 
cation parameters. Finally, in Section 6 we show how (1.1) can be solved efficiently 
via a transformation to standard form as suggested by Eld6n [3], thus avoiding 
explicit computation of the GSVD. 

2. The GSVD of (A, L) 

In this section we introduce the GSVD of the pair of matrices (A, L), write xa in 
terms of the GSVD and define the truncated GSVD solution. We also prove several 
important relations associated with the GSVD. 

THEOREM 2.1: Let the matrix pair (A, L) satisfy (1.3a-b). Then there exist matrices 
U ~ ~"  × n, V ~ ~P × p with U r U = In, V r V = lp and a nonsingular X ~ ~ × n such that 

(2.1) A = U S X  -~ , L =  V [ M , O ] X  -1, 

M = dia9 (#1 . . . . .  Up) ~ ~P ×', 

where 

(2.2a) S = diag (al . . . . .  %, 1 . . . . .  1)~1~ "×" , 

and such that 

(2.2b) 0_<a 1_<. . ._<%_<1 , 1 > _ # ~ _ > . . . > / ~ > 0  

(2.2c) a ~ + # ~ = l  , i = l  . . . .  ,p. 

PROOF: The existence of the GSVD was originally proved in_[15] with a slightly 
different notation. The present notation is based on [1, Theorem 22.2]. II 
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REMARK: It is convenient to partition the matrices U, S and X as follows: 

(2.3) U=[Up'U°]' Z = [  ZvO Io0]' X=[Xp,  Xo ] 

where Up and Xp have p columns, and where Sp is p x p. The subscript 'o' is 
a short-hand notation for n - p. The quantities y~ = a~/#i, i = 1 .... ,p are termed 
the generalized singular values of(A, L). Due to (2.2c), both a i and #i can be computed 
from the ratio ~,~: 

(2.4) a~=),~(7/2+ 1) -~ , # , = ( 7 2 +  1)-{ , i =  1,.. . ,p. 

I lL  = I,, then X-  1 = M- t V r and A = U S M -  1 V r, and-except  for the ordering 
- the generalized singular values 7~ are equal to the usual singular values of A, while 

#i # 1 due to (2.2c). 
Using the GSVD of (A, L) it is easy to derive the following expression for A t in 

(1.4): 

(2.5) A'=XIFo  1 o0] X + U r = X p F r ; U f  +X°Ur° 

where the matrix F = diag (f3 e R p × p has diagonal elements given by 

(0"i/~tl)2 i = 1 . . . . .  p .  
(2 .6)  f~ - ( . i / ~ ) 2  + ,~2 , 

A straightforward extension of truncated SVD (TSVD) [5, 7, 8, 16] to gen- 
eral-form regularization is easily derived from Eqs. (2.5) and (2.6). We introduce the 
truncated GSVD solution Xk by substituting for F in (2.5) a diagonal matrix with 
k unit elements corresponding to the k largest o-~ in Sp and otherwise 0, thus simply 
neglecting the contributions corresponding to the p - k smallest a~. 

DEHNITION 2.2: Define the matrix 2+ by 

(2.7) X~ - diag(0,. -1 . . . , a~ l ) .  . .~O,(Tp-k+ I ,  

Then the truncated GSVD (TGSVD) solution Xk to (1.1), defined by neglecting the 
components of X v S + U r corresponding to the p - k smallest % is given by 

(2.8) Xk=A~ , A~=-X[2~O IoOJu r =  x,22 + xo 

The matrix A~ satisfies Penrose conditions 2 and 3 [1, Remark 4.1]. 
The following results are important tools for the analysis and understanding of 

TGSVD and Tikhonov regularization is general form. 

THEOREM2.a:IfZ=[L3, then 

(2.9) I I X - a [ I  = !1211- - I IAI I  + Ilgll , IlXtl = t l Z + l l - / / f i x  
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where lip is defined by 

~min {IlL + [[- 1, inf(A PNtL))} , P < n 
(2.10) Hp- - -  /IIL+II_ x , p = n .  

Here, inf (A PNtL)) denotes the smallest nonzero singular value of A PN~I~r 
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PROOF: It follows immediately from [1, Theorem 22.2] that @i(X-1) = ~b~(Z). The 
bound for tIX-111 then follows trivially from the definition of Z. Concerning the 
bound for HXII, the interlacing inequalities for singular values [1, Theorem 3.5] 
immediately lead to: 

~ ( z )  > ~,, = 
- , i = p +  1 . . . . .  n . 

?1 To obtain nonzero bounds for i -- p + 1,..., n, we can consider 0 a perturbation 

of/R |. Then it follows from [13, Eq. (4)] that 

• ) 01(Z)-> lnf 0 PN([~]) = inf(APN~L~), i =  1 . . . . .  n 

where inf (.) is defined above. Hence, a lower bound for tl X ]t - ~ = ~, . (Z)  is 4, . (L) for 
p = n, and min {0p(L), inf(A PN~L))} for p < n. • 

This means that if H e is sufficiently large and if tl A I! ~ flL]], then X is guaranteed 
to be wellconditioned. A large lip also ensures that there is no unit vector z such that 
ttA x It and IlL zll are small simultaneously, and we can say that Eq. (t. 3b) is satisfied 
numerically. We return to the magnitude of lip in the next section. 

We can now relate o" i and/~i in (2.1)-(2.2) to the usual singular values of A and L: 

THEOREM 2.4: Let ~, ~( A ) and O i( L ) denote the singular values of A and L, respectively, 
ordered such that Ol(A) > O2(A) >_... > O,(A) > 0 and OI(L) > O2(L) > . . .  
> Op(L) > O. Then for all ai # 0 and for all #i: 

1 4 / . - i + 1 ( A )  
(2,11a) Hp _ < ~  < -< IIZ[I-< [IA[[ + I[L[[ 

O'[ 

1 ~i(Z) ~ I[Zll ~ IIa[I + IILll (2.11b) Hp<__ i i - ~ _ <  #~ 

w h e r e z = I A ] a n d I I p i s d e f i n e d i n ( 2 . 1 0  ). 

PROOF: For a product of two matrices, ~i(A B) <_ ~i(A) [IBI[ [12, p. 89-1. This relation 
and Eq. (2.1) lead to @i(A) = qJi(UZX -1) < qJi(~:)LIX-111 = ~r._i+ 1 IIX-111 and 
cr,_~+~ = ~p~(y,) = ~, i(UrAX) < ~(A)I[Xt[ (where the identity a,_~+ 1 = ~'i(Z) is 
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due to the ordering in (2.2b)), and thus IIX [I - 1 _< ~O~(A)/a,,_ i + ! < IJX- ~ II. The same 
bounds for ~i(L)/#~ are derived analogously. The upper and lower bounds in 
(2.11 a-b) then follow immediately from Theorem 2.3. III 

3. Understanding regularization and truncation 

In this section we use the GSVD of (A, L) to analyze the regularized solution xx 
and the TGSVD solution x~. First of all, it follows immediately from Eq. (2.5) that x~ 
is given by 

(3.1) x z = x ~ l ' + x ~  z, , x ~ l ' = X p F Z ; U r p b ,  x~2 '=XoUfb .  

The latter component, x~ z~, lies in N(L), and it vanishes for p = n. It is an intrin- 
sic property of a discrete derivative operator L that its null space N(L)= 
span {xp+ 1 . . . . .  x,} is spanned by vectors which are very 'smooth' (in the sense: few 
sign changes). For example, for L~ and LE given by (1.2) we have 

(3.2) N(L1) = span{[1, 1 . . . . .  1] T} , N(L2) = span{J1, 1 . . . . .  1]T, El,2 . . . . .  IT}. 

Thus, we are guaranteed that the component x~ 2) is actually 'smooth'. 
Consider now the component x(~ ~. Regularization obviously corresponds to 

damping the terms (ufb/ai)xiin x~ 1) corresponding to small a~, via the matrix F (2.6). 
It is easy to see that this prevents any problem associated with division by the very 
small cry. The reason why this damping, in general, also gives a 'smooth' x~ ~ is 
because the number of oscillations (or sign changes) in the generalized singular 
vectors xi tend to increase with decreasing a~, such that the matrix F filters out the 
most oscillating contributions to x~. ~). The success of this approach to producing 
a 'smooth' solution relies on the following heuristic: 

HEURISTIC 3.1: The number of oscillations in the left and right singular vectors of 

A tend to increase with increasing i. 

Although this oscillation property of the singular vectors has only been proved for 
totally positive matrices A, experience with discrete ill-posed problems suggests that 
it is in fact satisfied for a much broader class of matrices. To see why the oscillation 
property carries over to the vectors xi - in reverse order - we need the following 

theorem. 

THEOREM 3.2: Let Vk(A), k = 1 . . . .  , n denote the right singular vectors corresponding 
to the singular values ~lk(A ) in the SVD of A, and express xi in terms of these vectors a,s 

(3.3) x i =  ~ ¢~iVk(A) , i =  1 . . . . .  p. 
k = l  
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I f  a~ :# 0 then the coefficients ~k~ are bounded by 

~min {ai/Ok(A),Hp ~} , Ok(A) ~ 0 
(3.4) I~k~l <- ~ll  l , Ok(A) = O. 

PROOE: It is trivial that i~kil < Ilxill <- IIXll <- H/~ .  The other bound in (3.4) 

follows from the relation 

or/2 _ ~ ~i(A)2 ~j2 [ <~, "X 2 

02 = [iAxill2 = ~ 0j(A)2 ~j2/ ~ ~k2i = j~-k <; [ ] [] 
/=1 0k(A) 2 --  \ ~ / ]  " 

This theorem shows that xi is dominated by those vectors Vk(A) for which 
Ok(A) < O'i. Roughly speaking, x l  is dominated by v,(A), x2 is dominated by v,_ I(A) 
and v,(A), etc. If X is well-conditioned, then all its columns must be significantly 
linearly independent, such that the highly oscillating Vk(A) cannot dominate xi for 
i ~ n - p. This explains why the oscillations in x~ tend to decrease with i, provided 
that A satisfies Heuristic 3.1. 

Heuristic 3.1 also lets us elaborate on the quantity Hp defined in Eq. (2.10). 
Remember that N(L) is spanned by n - p yery 'smooth' vectors. Thus, the matrix 
A PmL) will be dominated by the n - p 'smoothest' singular vectors u~(A) and v~(A) of 
A, and A PN<L) will resemble a truncated SVD of A of rank n - p, 

n--p 

A PI"(L) "~ ~ ui(A@i(A)vi(A) r, 
i = l  

and therefore inffA PN(L)) ~ O,-p(A) - Since n - p is always a very small integer, it 
readily follows that O,-p(A) ~ 0 i ( A )  = IlAli, such that inf(A PmL)) ~ NAIl. Thus, if 
L is reasonably scaled such that JlLtl ~ ]lAiD, then ilL+HI-1 < inf(A PmL)), and it 
follows that Hp is equal to it L+ II- 1. Due to Theorem 2.3 we can therefore say that 
llXl] is approximately bounded by tlL+li. The conclusion is that L should be 
a well-conditioned matrix in order to ensure that Eq. (1.3b) is satisfied numerically 
and also - as we shall see in the next section - to ensure a small condition number. 

Returning to the TGSVD solution Xk (2.8), we now see that the neglection of the 
contributions (u[b/ai)xi, corresponding to the smallest ai, is simply another way of 
achieving a regularized 'smooth' solution having basically the same properties as xa. 
For  more details about this, we refer to [10] where a careful analysis of the exact 
conditions in which xk and xa are similar is carried out. 

4. Perturbation analysis 

In this section we give the perturbation bounds for the TGSVD solution Xk (2.8) 
and for the regularized solution x~ (1.4). For  simplicity, we restrict ourselves to the 
case when only the right-hand side is perturbed. This is not an unusual situation in 
applications such as data fitting and numerical solution of integral equations: 
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THEOREM 4.1: Let e denote the perturbation of the rioht-hand side b = b + e, and let 
Xk and ~ denote the perturbed TGSVD and regularized solutions. Then the relative 

perturbations Of Xk and xa are bounded as 

l[~k - xkll IIAII IlXtl Ilel[ II~z - xx[l 
(4.1) t l x ~ l ~  <- x ( X ) - - ,  

where b~ = A x~, bz = A xz, and q~z is defined by 

1 for 
(4.2) ,h 

i ( 1 1  _ 2z)_ ÷ for 
,ZA 

In particular, if p = n the bounds simplify to 

llell 
~,~ [IAI[ t l X l l - -  

libel[ 

;~ > 1/,/2 

_ 1/,/2 

(4.3) I I ~ - x k l l  ~ [Ihll IIZ~Xll Ilell I I ~ - x z l l  < Ilhll IlL-'l[ lien 
llXklj 7v-k+ 1 llbkll ' lfx~ll -- 22 tlbzll " 

PROOF: The norms ofbk  and ba satisfy Ilbkll ~ tIAII Ilxkll and  Ilbatl ~ HAll I[xxl[. 

F rom (2.8) we have ~k -- Xk = A~k e =~ I1~ - xkll -< [ISll max {112/~ II, 1} IlUrll tlell 
1 

-- IlSll ~ llell. This immediately establishes the left part of Eq. (4.1). For  
tYp-k + 1 

the regularized solution, (2.5) yields ~ - x~ = Atze ~ Ilx~ -- x~lI < 
tlXtl max {ItFS~II, 1} llell in which 

+ = d i a g (  (°J/~')2 1 )  ( 7~ ) 
F Z p  (ai/[2i) 2 ÷ 22 " = diag 72 + 22 (7~ + i) ½ 

where 7~ = a~/#i and we have used (2.4). If we define the function ¢(7, 2) = 7(72 + 1) ~ 
(72 + 22)-1, then lie I:+ II -< max q5(7, 2) for all 2 > 0. It is straightforward to show 
that max q5(7,2) = q~z given in (4.2), and since ~bz _ 1 we have proved the right 
part  of (4.1). To prove (4.3), we use L = V M X  -1 "¢~ X = L -1 V M  to obtain 

IIh~l]-< liE-~11 IIM2~-tl = IIL-~ll/Tp-k+X and llh~ll < IIZ-Xll IIFI:~II-< IIU~11/(22). 

REMARK: The bounds  in (4.1) become much more  complicated if also A is 
perturbed, cf. [5, Theorem 3.4] for the case L = I,. 

COROLLARY 4.2: The condition numbers associated with TGSVD and regulari- 

zation satisfy 

llxk - ~k II ~ x )  
(4.4a) ~c k = lim sup < ~ , 

tlett~O [tXk[t - -  a v - k + I  

(4.4b) x~ = lira sup ~lx~ --__~[[ < @~(X) .  
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REMARK: For  L = I,, these condition numbers simplify to Xk = tP~(A)/qlk(A) and 
K~ = ffl(A)/(22) as obtained in [7, Corollary 4.3]. 

Since IlStl is approximately bounded by ILL + 11 (cf. Theorem 2.3 and the remarks 
about  Hp in Section 3), we see that it is always possible to choose parameters k and 
2 that improve the condition of the problem, i.e. that improve h: k and ~cz compared to 
the condition number ~(A)/tp,,(A) of the original least-squares problem: min 
II A x - b II. It is interesting to notice that if we choose 2 ~ %_ k + ~ such that xz ~ xk, 
cf. [10], then Theorem 4.1 shows that both solutions xa and Xk are approximately 
equally sensitive to perturbations in b. 

5, The choice of 2 and k 

This section takes its basis in a brief discussion of the behavior of the solutions Xk 
and x~ under the influence of errors appearing linearly in the right-hand side. Thus, 
we are given a perturbed right-hand side/~ = b + e, where b represents underlying 
exact data while e denotes the errors. We assume that e is a random vector that 
appears as 'white noise' in the sense that the expected value of all the quantities 

lufbl, i = 1,..., n is a constant independent ofi. We also assume that the coefficients 
lufbl satisfy the Discrete Picard Condition as defined in [7,10]; i.e., on the average 
they decay to zero faster than ai. This means that, for increasing values of k, the 
TGSVD solution Xk will contain increasing amounts (u[~/ai)x~ of both the 'signal' 
from b and the 'noise' from e. For  small k, the 'signal' dominates. When k is 
increased, the contributions (uTe/ai)xi from the noise eventually tend to dominate, 
and then Xk starts to oscillate and IlL Xk If grows rapidly. The proper choice of k is 
obviously the one for which lu~'bl is approximately equal to the average noise-level 
set by all the lufel. Then the signal-to-noise ratio in the solution is optimal. 

Consider now the regularized solution x~. As long as /~ satisfies the above 
assumptions, for any k there always exists a 2 ~ %-k+1 such that x;~ ~ xi and such 
that the behavior of x~ under influence of errors e is similar to that of Xk - this is 
a consequence of the fact that the filter properties of regularization and TGSVD are 
roughly the same for 2 ~ %-k+~; see [10] for more details. Thus, when 2 is 
decreased, x~ behaves similarly to Xk when k is increased as described immediately 
above. 

Concerning the behavior of the residuals fk = / ~ -  A xk and fz = /~  - A ~x, the 
relevant quantities to consider are the functions: 

II~kll 2 II~k[I 2 (5.1) V(k )  = 
trace (I,, - A A~) m - k - (n - p) 

(5.2) V(2) = trace (I,, - A A ~) = tlr~.ll 2 m - n + ~= ~ (a~/l~i) z + 2z- 

In (5.1), k + (n - p) is the number of nonzero terms in the expression (2.8) for Xk, and 
rn -- k - (n - p) is therefore the number of degrees of freedom in the residual rk. 
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Thus if /~ satisfies the assumptions made above, then V(k) will be an overall 
decreasing function ofk until it settles at a level where it stays almost constant. Then, 
most of the 'signal' is extracted, and V(k) becomes an estimate for the variance 
IteH2/m of the noise. The function V(2) behaves similarly when 2 is decreased. The 
optimum parameters k and 2 are exactly those for which V(k) and V(2) start to level 
off. For more details on these aspects, cf. [8]. 

A computationally attractive method for determining these optimum values of 
k and 2 is to compute the minimizers of the generalized cross-validation (GCV) 
functions [4] which, except for a constant factor, are defined as: 

V(k) V(;O 
(5.3) ~(k) - 6(23 - 

m -- k - (n - p) ' trace(Ira - A A ~ )  

Since the denominators of these functions are increasing functions of k and 2, G(k) 
and G(2) will have minima at the optimal k and 2 where V(k) and V()0) start to level off. 
Notice that there are several other statistical reasons for choosing k and 2 as the 
minimizers of the GCV functions, cf. e.g. [17, 18]. 

6. Solution via transformation to standard form 

We conclude this theoretical investigation by analyzing a particular numerical 
method for solving (1.1) via a transformation to a standard-form problem: 

(6.1) min {IIA~ - / ; t i  2 + 2 211~tl2}. 

The transformation is due to Hilgers [11] and Eld6n [3], and it is performed by the 
following numerically stable algorithm [3]: 
1) Compute the QR factorization of Lr: 

(6.2) LT=[Kp, Ko]fRoPl , Kp~R ~ p  , K o ~ . ~ . - ~ ) .  

2) Compute the QR factorization of AKo: 

(6.3) 

3) Solve the standard-form problem (6.1) with 

(6.4) A = H  r A L  + , L + =KpR~ T , ~ = H r b .  

4) Compute the solution to (1.1) as 

(6.5) x = L+~ + KoTo-IHT(b -- A L  + Y,). 

One might suppose that there is a connection between the standard-form regular- 
ized solution Xz to (6.1) and the regularized solution x~ to (1.1). One may also expect 
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a connection between the TSVD solution Xk to (6. 1)and the TGSVD solution Xk to 
(1.1). That this is indeed the case is demonstrated by the following theorem. 

THEOREM 6.1: Let the SVD of A (6.4) be 9iven by 

(6.6) /T = U ~ ~T 

and let the GSVD of(A, L) be given by (2.1)-(2.3). Then 

6.7 [ 7 = H r U p E  , ~ = E X p M - 1 E  , 1/= V E  

where E = antidiag(l . . . . .  1) is the p x p exchange matrix. Further, let £k and £~ 
denote the TSVD and regularized solutions to (6.1), 

(6.8a) Xk "42 b , "42 =- ~ ' d i a g ( 0 ~ , ,  -1 0 = . . ,  Ok . . . . . .  0 )  C7 r 

(6.8b) . ~ x = A [ b  , ~ t _  Vdiag 0~ z + 2 2  

Then the solutions obtained by inserting these Xk and xz into (6.5) are exactly the 
TGSVD and regularized solutions Xk (2.8) and x;~ (1.4). 

PROOF: Eq. (6.7) is proved in [9, Theorem 2]. The relations between Xk and x k, and 
between 2~ and x~, follow immediately by insertion of(6.7) into (6.8a-b) and noting 
that ~i = %-i+ 1/1%-i+ ~ such that E diag (~2/(q/~z + 22))E = F. • 

Theorem 6. t shows that when (6.1) is solved by means of standard-form regulari- 
zation, then the solution obtained via insertion of 2a into (6.5) is exactly the 
regularized solution x~ to (1.1)- and not just some 'similar' solution. Likewise, when 
the TSVD solution £k is inserted into (6.5), one is guaranteed to obtain the TGSVD 
solution Xk as defined in (2.8). We remind that in both ~k and x k, p - k is the number 
of neglected (generalized) singular values. 

Another important implication of Theorem 6.1 is that it lets one compute the 
GSVD of(A, L) stably from the SVD of A, without actually performing the compli- 
cated GSVD computation, when L is well-conditioned: 

THEOREM 6.2: Let H = [14o, H1] denote the matrix in (6.3), and let U ~ VTbe  the 
S VD of,4. Then the matrices L'p and M in the GS VD (2.1) of(A, L) can be computed from 

~//= diag (ap i + 1/~p- J + 1 ) via Eq. (2.4), while the remaining matrices in the GS V D are 
given by 

(6.9) [M -1 VT L]  1 
U = [ U p ,  U o ] = [ H l t T E ,  Ho] , V = I / E ,  X =  L H f A  

PROOF: The expression for U is proved in [9, Theorem 2], and the expression for 
V follows trivially from (6.7). Concerning X, we introduce X -  1 = W r = [Wp, Wo] r, 
such that 
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U~A=LU~oAJ=ZW~= Lo = ~ W°r=UT°A=H'°rA ZoJkW J L Wo r J 

where we have ued (6.9a). Also, 

V T L = [ M , O ] W r = [ M , o ] F W T 1  MWp r ~ W p r = M I V r L .  
Lworj = 

Inserting these results into X - ~ = !,V ~, we obtain the third identity in (6.9), • 
The crucial computations involved here are the QR factorization in (6.2) and the 

inversion in (6.9b), and if L is well-conditioned then both of these computations are 
numerically stable. The outlined method is not applicable in general when both 
A and L are ill-conditioned [9]. 

In order to determine the optimum parameters k and 2, one may of course 
compute the GCV-ftmctions G(k) and G(2) (5,3) via insertion of Xk or J~. into (6.5). 
However, the optimum parameters can be determined directly from the problem 
(6,1) and the corresponding GCV function G(') without reference to the original 
problem. This is an attractive feature that substantially simplifies the numerical 
procedure for solving (1.1) via (6,1). The result relies on the following theorem: 

THEOREM 6,3: Let r k and r;~ denote the residuals correspondin 9 to Xk and xz, 
respectively. Similarly, let Xk = I~ -  A 2k and f z = l~ -  A xa denote the residuals 
corresponding to Xk (6,8a) and ~ (6.8b). Then 

(6.10) IlfklI = [lrkt[ , tiff.it = Ilr~tl. 

The corresponding GCVfunctions (7(k) and (7(2) satisfy 

(6.11 a) G(k) ~ ]117k I12 
[ t race( l , ._ ( ,_p)-  ~ / ~ ) ] 2  = G(k) 

(6.1 lb) 6(2) - I1¢~ II 2 
[trace(l,, ~ , _ , ) - / L 4 [ ) ]  z = G()o). 

PROOF: First, we extend the matrix U = [Up, Uo] in(2.3) with U o to an orthogonal 
matrix: /) -- [Up, Uo, Uq]eW "×m. Eq. (6.9a) shows that 14o = Uo, and therelbre 
HTuo = 0. Since H r 0  is orthogonal, the matrix Hr[Up, Uq] must also be orthog- 
onal. If we define b = [/31 . . . . .  tim] r then insertion of (2.1) and (2.8) into rk yields 

r k=  (J[fi, . . . . .  tip k,O .. . . .  O, fl,+, . . . . .  tim] T 

2 2 llrk[lz = f12 + . . .  + flp-k + fl,+~ + . , .  + f12,,. 

Concerning rk, Eqs. (6.4), (6.7) and (6.8) lead to / lxk  = HrUpEO0~ grb ,  where 
0 ]  = diag(01 -t . . . . .  ~ [~ ,0  . . . . .  0) and 0T/~= (HrU,  E)rHrb = E(H~HrUp)Tb = 

E Urvb, such that/l-~k becomes/IXk = Hr  0 [0 . . . . .  0, tip_ k + 1 . . . . .  tip, 0 . . . . .  0] r. Insert- 
ing this relation and b = Hrb  = Hr~Ofl into fk, we get: 
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ek = n ~ O [ ~ l ,  . . . .  ~ , _ , , o , . . . , o ,  [~,+ , , . . . , ~ . ] T  = 

H~ Eu,,  uq] EtJ, . . . . .  [~,- k, o . . . .  , o, ~. + ,  . . . . .  f t . ]  ~ 

because nr~Uo = 0. Since n~Eup, Uq] is o r t h o g o n a l ,  we  see tha t  II~kll = Ilrkll. The 
same argument and the expression (6.8) for ~ lead to the second result II ~ II -- IIr~ II. 
Eqs. (6.1 la-b) follow immediately from insertion of(6.7), (6.8a-b) and (6.10) into the 
expressions for (7(k) and (~(2). • 

Theorem 6.3 shows that the minimizer of (7(-) is identical to the minimizer of G(-). 
This means that the truncation parameter k or the regularization parameter 2, 
chosen by the GCV method applied directly to the standard-form problem (6.1), is 
identical to the parameter that would be obtained by application of GCV to the 
original problem (1.1). The same argument shows that the variance Ilell 2/m of the 
errors can be estimated directly from (6.1). 

In this connection we would like to emphasize the use of the TSVD method for 
solving (6.1) because of its simplicity and because the SVD of the transformed 
problem sheds light on both ~k and the original problem, due to the strong 
connection between the SVD of,4 and the GSVD of(A, L). We stress that the success 
of TSVD relies only on satisfaction of the Discrete Picard Condition [7,10], and not 
on the existence of a particular gap in the singular value spectrum of A. See also [8] 
where several efficient methods for computing 2k are discussed. 

7. Conclusion 

The first part of our investigations deals with the properties and similarities of the 
regularized solution and the TGSVD solution to (1.1). The main conclusion is that if 
A satisfies Heuristic 3.1 and if the matrix L is well-conditioned, then both Tikhonov 
regularization and TGSVD lead to "smooth' solutions which are approximately 
identical and approximately equally sensitive to perturbations. 

In the second part of our investigations we show that if(1.1) is transformed into 
standard form (6.1), then it is not necessary to transform the solutions back to the 
form (1.1) in order to determine the appropriate regularization or truncation 
parameter, since these parameters can be determined directly from the stan- 
dard-form problem. Hence, any numerical method for solving a standard-form 
problem can immediately be used to solve the problem in general form. 
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