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The Index of Lyapunov Stable Fixed Points 
in Two Dimensions 
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In this paper, we prove that a stable isolated fixed point of an orientation 
preserving local homeomorphism on R 2 has fixed point index 1. We also give 
a number of applications to differential equations. In particular, we deduce that 
a number of existence methods for producing periodic solutions of differential 
equations in the plane always produce unstable solutions. 
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1. INTRODUCTION 

The index of a periodic solution of a system of differential equations (peri- 
odic in time) is an integer that is well defined whenever the solution is 
isolated. It can be constructed by means of degree theory and it is usually 
employed in the proofs of existence and multiplicity of periodic solutions. 
In this paper we are interested in the conncctions between the index and 
the properties of stability of a solution and the main question is, what 
is the value of the index of a stable periodic solution? It is well-known 
that if the solution is asymptotically stable, then the index is always 
one. However, when the solution is only stable this question is more 
delicate and the answer seems to depend on the dimension of the system 
(Krasnoselskii and Zabreiko, 1984, p. 342; Erle, 1993). In this paper we 
prove that if the system has two dimensions, then every stable and isolated 
periodic solution has index one. 

This result was stated without proof by Krasnoselskii (1968, p. 192). It 
is possible to give an elementary proof, based on Poincar6-Bendixson theory, 
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for the special case of a stable equilibrium of an autonomous system 
(Krasnoselskii et aI., 1966, p. 143; Thews, 1989). In the general case it seems 
that the proof must br based on the use of nonelementary topological 
properties of the plane. [Note that by Erle (1993) and Krasnoselskii 
and Zabrciko (1984), the corresponding result is false in more than two 
dimensions.] We present a complete proof based on Brouwer's lernma on 
translation arcs. Several proofs of this Icmma have been published recently 
and we shall follow the approach of Brown (1984). In the topology 
literature Brouwer's lemma is stated for orientation-preserving maps that 
are homeomorphisms of the plane (in particular, they are onto). In the 
applications to differential equations the map is not always onto but it is 
a homeomorphism from the plane to a part of it. For this reason we have 
employed a modified version of the lemma. We remark that Brouwer's 
lemma has been applied previously to periodic differential equations 
to prove the theorem of Massera on second-order systems and the same 
difficulty appeared. [See Massera (1950) and Pliss (1966, p. 152).] 

The main result of this paper can be applied to obtain instability 
criteria by computing degree. In particular, we show that two classical 
methods in the theory of periodic solutions of second-order equations 
(upper and lower solutions, minimization of the action) usually lead to 
unstable solutions. We present our result in an abstract setting, in terms of 
Brouwer's index and stability of fixed points of orientation preserving local 
homeomorphisms of the plane. This presentation is suitable for applica- 
tions not necessarily related to periodic solutions and we illustrate this fact 
giving a new proof, based on degree theory, of a classical instability 
criterion due to Levi-Civita (1901; Siegel and Moser, 1971). 

2. MAIN RESULT 

Let Uc R 2 be open and connected and denote by L(U) the class of 
mappings f: U~R 2 that are continuous, one-to-one and orientation- 
preserving. [A precise definition of orientation-preserving map can bc 
given using the concept of orientation of a topological manifold (Spanier, 
1989, p. 294).] 

We remark that each f r L(U) is a homeomorphism from U onto f(U). 
In particular, f(U) is open by the invariance of the domain. 

Theorem 2.1. Assume that OeU and let f ~L(U)  be such that 
f(O) =0. I f  O is stable and isolated as a fixed point o f f ,  then 

i n d e x ( I - f ,  O) = 1 
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The proof is given at the end of the section. There are many results on how 
to compute the index of fixed points of planar maps (see Krasnoselskii 
et aL, 1966). These results can be combined with the theorem to obtain 
instability criteria. We present two examples of such criteria. 

Example 2.2 [An Instability Criterion of Levi-Civita (1901)]. Let 
f ( x ,  y) = (xl ,  Yx) be a C 2 map defined in a neighborhood of the origin with 
the Taylor expansion 

X t . ~ x + a t x 2 - t - 2 d 2 x y - i - a 3 y 2 - t  - . . .  

Yl = y + bl x2 + 2b2xy + b3 y2 + . . .  

Define 

I I I I bla'l a l  , D 2  --- , D3  - -  
a 2 a 2 d 3 a 1 

D 1 ~-- b l  b2 b2 b3 b3 

and D = 4/)1D 2 - D32. It follows from Theorems 8.1 and 8.4 of Krasnoselskii 
et al. (1966) that if D # 0, the origin is isolated and the index can take only 
the value 0, 2, or - 2 .  In consequence 0 is unstable if D # 0. 

Example 2.3 [Instability at the Third Root of  Unity (Siegel and Moser, 
1971, p. 222)]. We now use complex notation and assume t h a t f = f ( z ,  ~) 
is a C 2 map with expansion at O given by 

f ( z ,  ~ )  -~ 03Z + a z  2 -I- bzY~ + c~ 2 + . . .  

where co is a primitive third root of unity, co 2 + • + 1 = 0, and a, b, c ~ C. 
The third iteration f3 has the expansion 

f3(z, ~) -- z -t- 3c~-z 2 + .-. 

If c #0 ,  0 is an isolated 3-periodic point o f f  and i n d e x ( I - i f ,  0 ) =  - 2 .  It 
follows from the theorem that 0 is unstable with respect to f3. As a conse- 
quence, if c # 0, the origin is unstable with respect to f .  

The following lemmas and definitions are useful for the proof of the 
theorem. 

Lemma 2.4. Under the assumptions 
f c L ( R  2) such that 

:i) fix(7)= {o}. 
(ii) 0 is stable with respect to f .  

(iii) I n d e x ( l - f ,  O) = i n d e x ( I - f ,  0). 

o f  Theorem2.1. there exists 
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Proof. In view of the assumptions we can choose two open disks 
centered at the origin, D I = D 2 c U ,  such that D'-~2r~Fix(f)ffi{O} and 
f~(-~l)~D2, for each n>~O. Define V=U,~,of ' (DI) .  Then V is a domain 
and f ( I t )  ~ V. We now fill in the possible holes of V by considering the 
simply connected domain 

W ffi U {/~: F is a Jordan curve in IF} 

Here /~ denotes the bounded component of R 2 - F .  Since f maps 
homeomorphieally D 2 onto f(D2), it is clear that f ( W ) c  IV. We now 
consider a homeomorphism ~ from W onto R 2 and define f =  ~ o f o  qr-~. 
(i) and (ii) follow from the construction and (iii) is a consequence of the 
commutativity theorem for the degree. 

Remark. The same technique to fill in the holes is employed by Siegel 
and Moser (1971, p. 185). 

Let f cL(R2) .  We say that f i s  locally free ff for each x r  R 2 - F i x ( f ) ,  
there exists an open disk D with x ED and such that f P ( D ) o f f ( D ) f f i  
for each p, q >i 0, p ~ q. This definition was introduced by Brown (1985) for 
the case of homeomorphisms. 

Lemma 2.5. Let f c L ( R  2) be locally free and assume that 0 is an 
isolated and stable fixed point o f f .  Then 0 is asymptotically stable. 

Proof. [It follows along the lines of the proof of Lemma 3.4 of 
Brown (1985).] Let U~ be a bounded positively invariant neighborhood of 
the origin such that F / x ( f ) n ~ = { 0 } .  We prove f"(x)--}O for each 
x r  Given a small open neighborhood of 0, U2 c U~, by compactness 
we can find a finite cover o f ~ -  U2 of the form {D,}k=l, where each D, 
is a disk such that fP (D)c~fq(D)=  O if p, q I> 0, p # q. (We have here used 
the local freeness o f f . )  The semiorbit {fn(x): n~>0} can intersect Di at 
most once and therefore f ' ( x ) e  U2 for large n. 

L e t f c L ( R  2) be given. A translation arc fo r f i s  an injeetive arc 0t= R 2 
with extremes Po, Pl such that f ( p o ) f p l  and ac~f(o~)= {Pl}. We now 
state a variant of the classical Brouwer's lemma on translation ares. 

Lemma 2.6. Let f c L ( R  2) and assume that for each Jordan curve 
J c R 2 -  Fix(f),  

deg[ l -  f ,  J] ~ 1 

Then i f  oc is a translation arc for f ,  fn(~) c~ oc ffi 0 for each n >t 2. 
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A proof of a very similar result is given by Brown (1984) for the case 
where f ( R  2) = R 2. The proof of our result is a simple modification of the 
proof there. 

Proof of Theorem 2.1. In view of Lemma 2.4 it is not restrictive to 
assume that f e L ( R  2) and 0 is the unique fixed point. We distinguish two 
cases. 

(I) f is locally free. It follows from Lemma 2.5 that 0 is asymp- 
totically stable, and in such a case it is well-known that 
index(I-f, 0) = 1 (Krasnoselskii and Zahreiko, 1984, p. 235). 

(2) f is not locally free. The same proof as in Lemma 4.2 of Brown 
(1985) shows that there exists a translation arc = = R 2 - { 0 }  
such that fn(~) n �9 ~ O for some n >i 2. Lemma 2.6 implies the 
existence of a domain in R 2 where the degree of I - f  is one. 
Since O is the only fixed point off, this degree must coincide with 
index(I-f, 0). 

3. THE INDEX OF PERIODIC SOLUTIONS 

Let us consider the differential equation 

X' = G(t, X) (3.1)  

where G: R x R: ---, R 2 is continuous, T-periodic in t and such that the solu- 
tion of the initial value problem is unique. The Poincar6 map is defined by 
P(x) =X(T, x), where X(t, x) is the solution of (3.1) satisfying X(0, x) =x.  
Let U be a connected component of the open set O = {x~ R2: X(t, x) is 
defined in [0, T] }, then P e L(U) since X(t,.) defines an isotopy between 
I and P. 

The index of an isolated T-periodic solution ~ is defined by 

~,(q,) = i n d e x [ Z -  P, ~(0)1 

and Theorem 2.1 says in this context that ?(tp)= 1 if ~o is isolated and 
stable. 

We now consider the second-order equation 

y" =F(t, y) (3.2) 

where F: R x R--, R satisfies the same kind of assumptions previously 
imposed to G. 
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In the first place we analyze the method of upper and lower solutions 
for this equation. A strict lower solution of (3.2) is a T-periodic function 
0~e C2(R) such that 

="(t)>F(t,o~(t)), V t e R  

The concept of strict upper solution is defmed by reversing the inequality. 

Proposition 3.1. Assume that (3.2) has strict upper and lower solu- 
tions, fl and a, respectively, satisfying o~( t) <fl(t), Vt r R. In addition, assume 
that the number of  T-periodic solutions satisfying ~( t) < x( t) < fl( t), Vt r R, is 
finite. Then at least one o f  them is unstable. 

Proof. The proof of Lemma 3.2 by Ortega (1990) shows the existence 
of a T-periodic solution of (3.2) with negative index and lying between 0c 
and p. In consequence this solution is unstable. 

Remark. It is possible to extend the results to equations depending 
also on y' and satisfying a Nagumo condition. [ For example, the proofs of 
Mawhin (1985) can be adapted]. 

Equation (3.2) has a variational structure and can be seen as the Euler 
equation of the action functional 

A [ y ] = S  {�89 + V(t, y)} dt, y ~ H I ( R / T Z )  

where V(t, y )= ~ F(t, z)dz. It is well-known that the critical points of A 
coincide with the periodic solutions of (3.2). 

Proposition 3.2. Let q~ be an isolated T-periodic solution of(3.2)  such 
that A reaches a local minimum at ep. Then ~p is unstable. 

Proof. We use the following notation: H is the Hilbert space 
H~(R/TZ) with product ( y , z ) = ~ y ' z '  + yz. C~---C~(R/TZ). Given 
y e C(R/TZ), Ky = u is the unique T-periodic solution of the equation 

- - u  # + u = F ( t ,  y ( t ) )  - y ( t )  

It is easily verified that the gradient field VA: H ~  H is given by VA(y)= 
y+K(y ) ,  y e l l .  Since K is compact we can apply the results of Amann 
(1982) to conclude that /ndex(VA,r  The operator T: CI--*C l 
defined by T(y)= y + K(y) has a common core with VA. The invarianee 
principle of Krasnoselskii and Zabreiko (1984, p. 141) or the com- 
mutativity theorem for the degree implies that index(T, f f ) = l .  The 
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principles of relatedness developed in Chapter 3 of Krasnoselskii and 
Zabreiko (1984) allow us to conclude that 7(~o)= - index(T,  ~o)= -- 1 and 
therefore r is unstable. 
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