LATTICES OF SUBMANIFOLDS IN MANIFOLDS OF ALGEBRAS

A, A, Akataev and D. M. Smirnov

Let »rz . = be fixed integers satisfying the inequalities 7 < -7z< = . We denote by @~ the mani-
fold of algebras A=< 4, &,,...,%,,<J,,..., &, > of the type <rrz,...,72, rz,...,7z> , definedby the identities

’z

LA CTINE FIRE 5 SR 7> B S o8 V=2, ({=9,...,72), }
(1)

‘3(% (Zpy s )ss oG (T, 'xm)7=$. (fl“:f---/m)’

Swierczkowski (1] established that when »7z < the manifold ., , contains only a finite number of iso-
morphic types of free algebras of finite rank, In the earlier article of Jonsson and Tarski [2] they consid-
ered the case 77=v, ==2 and proved that in the manifold c7,, all free algebras of finite rank are in gen-
eral isomorphic. In view of these results A, 1. Mal'tsev posed to the authors the problem of studying the
lattices £ (¢z,,, ) of submanifolds in the manifolds &%, ~ (r2<rz) . It was expected that for some pairs of
numbers r7z< 7z these lattices might be foreseeable, In particular, A. I. Mal'tsev observed that the mani-
folds 0?;,, r (7T>7) are equationally complete (or minimal).

In the study proposed it is proved that the class of manifolds 07,,,‘ n (772 < 72) contains no other mini-
mal manifolds and that when 7z >7+>7 the lattice 4 (<%, ) has the power of the continuum and does not
satisfy a single one of the termination conditions for increasing and decreasing chains,

We study also the lattices £ (C¥,,,) of submanifolds in the manifolds ¥, (/z=12,..). This
class of manifolds differs in principle from the class of manifolds &7, , (r7z< ), since each manifold

¥, . possesses a complete spectrum {723,...} of orders of finite algebras and by the Jonsson-Tarski-
Fujziwara theorem (see [2]) ¢¥, , —freealgebras of different ranks—are not isomorphic. We have estab-

lished that when 7 > 2 the manifold <¥,, has a continuous set of equationally complete submanifolds and
so the lattice 4 (c¥,, ,,) when ~ > 2 also does not satisfy the termination condition for decreasing chains.

The lattice £ (¥, ) is isomorphic to the lattice of positive integers with the relationship of divisibility,

completed by the external zero 0 and the external unit I, For arbitrary rzz7 the lattice £ ¢cr,,) does
not satisfy the termination condition for increasing chains.

The main method of the study is the method of modelling identities, which is altogether natural in the
study of arbitrary manifolds given by a system of defining identities. The most important part of this meth-
od is establishing the rational equivalence (in the sense of A, 1. Mal'tsev [3]) of one or another manifold
which is being studied to an appropriate manifold of algebras for which the lattice of submanifolds has al-
ready to some extent been studied. The following have proved to be the appropriate manifolds for our pur-
poses; the manifold of totally symmetric quasigroups (briefly, TS-quasigroups) defined by the identities

zy.y = r = y.y_r R
and also the class of all infinite and single-element TS-quasigroups, which can be enriched with new opera-
tions and transformed into a manifold of universal algebras, We use as the principal result the theorem of

A. D. Bol'bot [4] to the effect that a lattice of submanifolds of a manifold of TS-quasigroups has a continu-
ous set of atoms (or points),

The authors dedicate the present work to the enduring memory of the unforgettable Anatolii Ivanovich
Mal'tsev,

Translated from Algebra i Logika, Vol. 7, No. 1, pp. 5-25, January-February, 1968. Original article
submitted November 15, 1967.



1. CONSTRUCTION OF AUXILIARY MODELS

In what follows we shall repeatedly be using the following Jonsson-Tarski resuit (see [2], p. 100),
which we formulate in the form we need:

LEMMA 1. For an arbitrary integer > 2 every infinite set # admits the system of operations
G (L), DXy, n ., Tr) (=72, ..., ,
satisfying on this set the identities
D(CHX), s Ly (AN =X, B(OD(E s Ty)) =X (€57, 20

To make the exposition complete we shall prove this statement. Since the power s« = | 4¢! is infi-
nite, it follows that =z = #*= ... =% (see, for example, [5]). So there exists a one-to-one mapping
,:.d(x,,---,xszz"'M of the Cartesian power /¢ ¥ of the set .4/ onto ¢ , We put

G (DL yse o, ) =L (£=1...,2).
Since each element of 47 is uniquely representable in the form
DLy -y Ty )
for suitable elements x,,...,&, of A7 , it follows that the ¥ (¢=7 ..2) are operations on the set /% .

We note that
C (L) =F ()& . . & FY ()= (V)= u =, V.

For let «u=w,,...,r.), o= a)(y,,...,yz),where T, Y. €M, Then ¥.(w)=x,, ¢ (¥V)=y, ,whence

=Y Xy
and so w=v.
Now let 2 (4..x),-. , Gu)=gy . Then « )= v czx) for all ¢ = 4...,T and, by what has been proved,
} =X .
The following obvious proposition also holds:

LEMMA 1'. For an arbitrary integer -7z » 7 every nonempty set /% admits the operations
(T s Tpg) 3 O (Tyyo ey ) s (=4, 77T) which satisfy on this set the system of identities (1) when

=777,

For as ¢, o, it is sufficient to take the selector (or trivial) operations

e (@, L) = T, (=1,
We shall assuine given the integers =, ~ , satisfying the inequalities 7< =< 7= . In the sequel we
shall find useful the following.
THEOREM 1. Let £ be an associative ring with unit 1 and §,,§2,. ...¢ .+, fixed elements of that

ring of which the element %, is invertible. If on the set & it is possible to define the system of operations

‘a/:(f,,...,l'

”z),u)/.(xf,...,_z‘a) (4‘: AR < 2 /'=/,...,m),

connected on 42 by the identities (1), then putting

(s s Ty )= §,r, + 541}+- AR TR AN

'</2-H (I-,...,_Tm+{)=')€~(.1:2,...,1'/.’,_,_,)(4':/,...,/‘z),

— a7 _ - -

CD/ (‘rf""*’rn-f-/)_g/ ('rf gzc‘)f('zé"“rzni-l) ot §rn>1“/37<1z‘""{w))’

u"):/.+/(:c,,,.,,xflw)=u;.(vz:z_,..,_rn+{) (/-=/,...,m),



we obtain the model <.2, ¢, /- > for the system of identiti&s

G (D (X, Zpgay s s By Eprvo) Kigg o N =F; (=, 2+ 1),
a;-(&, 18° FPUNDIV: NS DR ~ ST C S e = T T AR L

Analogously, if A =<4, ,_,ag > 1is an algebra of the manifold &7,

. » then the algebra defined by the
set A~ and the system of operations

Py s Zoppey) = Xy,
By (Kpen e Kot ¢ ) L (T, I (=7, ),
D, (X e Ty ) Ly
Dt @ Ty ) = Ly (o Tppg)  (Jtoeer)

belongs to the manifold £,

Yo L XA

Proof. Let x,. x,,... be arbitrary elements of the ring £ . Direct calculation gives

‘7/(&_)7(1"1""' n+¢)'”"‘_‘jfrz+4('t/"' 7Kg ) = 5 O, (%00,

ey O
""*f’mwamﬂ(‘{;»“vz;zﬂ) z, 4,4z, Tt O, )
+6,e0, (e, Ty Y E L QT B )= T,
cT),(J;(z,,...,:c,,zH),...,t?;”,(r.,ﬂ..,xmﬂ))=§:’24{x,,..., retrr) =

§m, DBy s Ty Dovss gy Ty D= ¥ E & .

=7
5{ oy my—g,52‘4(“3(%:~-'-xm+r)'-~-. “Z;(‘zé""’ rrr+f))~"'

—’
B i Do (BT e s By Dy s B (Tg sy Ko N =, .

The remaining identities are obvious,

The second part of Theorem 1 may also be verified by direct calculation.

§2. THE SERIES OF SUBMANIFOLDS &z
OF THE MANIFOLD oz, , («<rme<n)

Let = >7 ., We form the terms

Pz, ) =5 ( T, 1 1)
¢n(::z[x)=¢(x, Dex,..., P (x,x))...),

where the letter & has 4 entries (s4=72,...) . The identity

93() (x) = x (3)

defines within the manifold &, , (r<z<n) a submanifold which we shall denote by ozﬂ(t’f,
THEOREM 2. If 2¢~z<7 and 7< 4<Z then the manifolds ¢z}, and o/  are distinct and the
inclusion 7)), < crfZ, . holds if and only if 1/Z .

7L,

COROLLARY. If 2< 7z < 7 the manifold ¥, ,, possesses an infinite, strictly increasing chain of
submanifolds, for example



) 24) 2%)
7SS S~ Sl U
where 4 is an arbitrary positive integer.
Before proceeding to prove Theorem 2, we shall construct a special model for the system of the iden-

tities (1), (3), defining the manifold o by assuming that 7< 7z<- and 4 27 .
rr1,rt

We put T=rz~rmz+ 4 ., Since ~ > , it follows that z>7 . By Lemma 1 the set of all complex
numbers X is a support of some algebra K,= <A, «.,w,> of the type < 7,...,7,=> , belonging to the
manifold <z, .

Let 4 be a fixed complex number. Putting § =7 .4,= ¢ . $,=4 = .= and using Theorem 1,
we construct the sequence of algebras K,$)=K, . K,(4),...,K  (4) possessing the following properties:

) K, B)ecH, oo, (E=A....m)

2) The principal set (or support) of the algebra K. (4)«=s.,~0 is the set of all complex numbers A .,

3) The principal operations of the algebra K-, (4) may be expressed in terms of the ring operations

in K and in terms of the principal operations of the algebra

K, (&) (&=1,...,2—7)
by the formulas (2).
Since t=m-st+ r , the algebra X, (4) is of the type

S mrT,me,. .., 77T, 2T >
and belongs to the manifold ¢v, , .

LEMMA 2, If »z>.2, the value of the term (D,;’r’l ¢y in the algebra K. (¢) when z=cex is

a(/+5‘+§,zf- Y SN
Proof. By the construction, the value in the algebra K, () of the first principal operation
« x ...,y 1is calculated from the formula

i4 LA e £ 4

4 -
$ig,....e=x,+*4r,

whence we obtain
4
¢,,,‘:,,)(a) =g+ dlar.. . tha+ dan
=a (1+&+8%+. ... +&?),
Proof of Theorem 2, let 7¢ 3 <Z and €s m<~ , If Et is a t-th power primitive root of 1, then
by Lemma 2 the value of the term «D:; (x) in the algebra A (s) when x=7s is 7+&,+.. .+e; #* 7 . So

the identity @”‘;‘; = 2 does not hold in the algebra K, (¢£,) and so K, (&,) does not belong to the

manifold cz¢*) . However,for an arbitrary element « € A (&) the value of the term @) () in K )

when z=a is a('+ée+"'+éf)=a and so K, & )€ oz_ﬁf’n . Thus it has been proved that 0?';‘:' = af:’ﬂ .

It ol = o’ , 4> 7,and &, isa 3-th primitive root of 1, then X, (&) e 2 . So the value
of the term @;f’a (xy in &Ko (£,) for an arbitrary element x of it must be equal to = . In particular,
when z=7 we obtain, in view of Lemma 2: 7+ £, + ¢‘f*—...+6: =/ , whence é§= 7 andso 4/# .

Conversely, if 7+ 4<Z and i1/# , then it is clear that

(1) &)
02’,,"” - O[rrz,rz °

This proves Theorem 2.



§3. RATIONAL EQUIVALENCE

The class of algebras £ is said to be rationally equivalent to the class of algebras £’ (see [3], [6])
if there exists a finite chain of classes of algebras £,= X .&,,....X,=Z’ , which starts with £ and fin-
ishes with the class &’ and in which each successive class &,_, may be obtained from the preceding
class & either by joining on one terminal operation from the principal operations of the class <, or by
omitting one principal operation of <, which must in this context be expressible termally in terms of the
other principal operations of %, . This transition from &, to &, will be called simple enrichment in
the one case and simple contraction in the other.

THEOREM 3, For arbitrary integers

/& 7S

contains a proper submanifold ¢z ‘% rationally equivalent to the manifold

Mty

the manifold ¢z, ..,
%4 B

7,07

., unequivocal-

Proof. We shall denote the principal operations of algebras belonging to the class ¢z,
ly by

T ) (e=A s e,

q-(r,,...,r,n), u‘)/-(x,,..

and the principal operations of algebras belonging to <%, .+, by

&72 1€ STPP S (D/ (Zpor s Ty ) (5 (A1 f= o, ret),
Let o7 ., be asubmanifold of the manifold ¢z, . defined within 7, , ., by the identities
G Xy s Zppyp )= X =D, (Zyyoos Xy g )
G Ty on o, Ty V=B g, 2, X ) (C=2,.. . 2k 7), (@)
Wy (X, Ty ) S G (S Ty s Ty ) (f=2, ¥ )
We shall show that the manifolds ¢%,,, and cz /) ,me, are rationally equivalent.

In the first place, if the algebra A=< 4, &, > belongs to the manifold ¢z, , , then relative to the

term operations

BT,y L ) = X,
By (T ooy T )= L (Ty e, X ) (C=A,..., 1)
D, (Zy, X pyy) =X,
uj/.ﬂ(_z-f,,,,,xn+4)=a)’-(—rz,...,-r,”.,) =t..., m

the algebra A=<~, &, <> belongs to the manifold ¢, @

vy, .+, DY the second part of Theorem 1.

Secondly, the operations 7 ,cQ/- of A are in their turn clearly expressible by means of terms de-

rived from &. , oJ- .
¢ /

Thus it is vossible by a finite number of simple enrichments and simple contractions to pass from the

manifold &%, , to a subclass of the class 02:1), ~+, - Butin fact this subclass coincides with the mani-
o)
fold er =, .., -
For let the algebra A=< ~#, <., cD/ > belong to the manifold OZ,.(:L' ~+y + By identities (4) it is pos-

sible to define on the set 4 the term operations



C(Zy e s L )=, (X, X, Xy, %) (64, 2),

(_d.(x _z-ﬂ) =€.+‘{

/ g (I,,-Z',,.r ""Ixf[) C/:=/,"')/TZ))

relative to which the algebra < #, ¢, “Q/ > will belong (as can easily be checked) to the manifold ¢z, . .

The rational equivalence of the manifolds <%, ., and ¢Z,5), .. , has thus been proved.

Since the identity
¢ (x,x,...X)=x

is true in the manifold cx

re4v, 2+y» iv follows that when r >~z the inclusion

0{(0) = w(f)

o, r1ts o, bt

holds and by Theorem 2 of §1 the submanifold (/l,:,ﬂf,’”ﬁ is distinct from the manifold &7_,

. But
if s=/7 , then on the set of all complex numbers A we prescribe the selector functions €™ (/=4... )

and put

Tty

=&z, X)) =

G (Ko X )= (X, K ) £

Then by formulas (2) we define in the set A the operations

by Dy (=AM EL)

’

with &,=4,=r, 4,=4,=...=0 . By Theorem 1 we obtain the algebra <4, &, &, > of the manifold

@ pe vy 4 in which the value of the operation ¢, can be calculated from the formula Z(x,,...,z, Jr=z,+x

and depends in essence on two arguments. Consequently, this algebra does not belong to the manifold
or @ . Theorem 3 has thus been completely proved.

Note: In view of the inclusion

or o) = o )

laa b XV 2 24 mr+of, s

for = >= , the question naturally arises of whether these manifolds coincide, We shall show however,

that the manifold <2,  is distinct from the manifold ¢’ ~ forall m,z , 7¢ /e <rz.
mtd, lsah s A5 24

In § 2 we constructed the algebra X, on the set of all complex numbers 4 and belonging to the mani-
fold or,, , where z=s-/ts . Starting from it and using Theorem 1, we construct the algebras &,.4....

with the common support A and such that A, belongs to the manifold ¢z and the principal oper-

C+oe, T

ations of A may be expressed in terms of the principal operations of A, by formulas (2) for §,=2 ,

Ct+s
2=77 .4,=4,=~ ..=o0 . Then the algebra X,,,, belongs to the manifold ¢, 7 . since the value of

the first principal operation ¢, in this algebra is given by the formula

G, oy Ky ) =2, — T,

from which it can be seen that the identity «, (... x»== holds in 4&,,, . At the same time the algebra
K, , does not belong to the manifold ¢ _ = since in it the operation ¢, depends essentially on two

variables.

We recall that a groupoid with the identity relationships
(xy)y= xa = y(yx)

is said to be a totally symmetric quasigroup (briefly a TS-quasigroup). The class of all TS-quasigroups
coincides with the class of all quasigroups in which the three principal operations of multiplication and left
and right division coincide.



By Lemma 1 we can, for each integer z>s in an arbitrary finite quasigroup G, define the system of
equations

BT, ooy Pp(X), (X, ... L)

in such a way that the algebra < &, #,,...,%4,«w> belongs to the manifold ¢7,, . On the other hand, by the

theorem of Swierczkowski and the Jonnson-Tarski-Fujiwara theorem, both mentioned in the introduction,
the manifold ¢z, for arbitrary z >z contains no finite algebras of order greater than 1. So the class of

all infinite one-element TS-quasigroups may be regarded as a manifold of universal algebras of the type
<2,4%...,7,2 > (zz2> with the system of defining identities

xy-y=.z=§/-;/.r, )

W(F (X)), ..., P (XN)=, (X, . T N=Z, (=4,...,T).

We adopt the convention of denoting this manifold by c, 2 (75)

THEOREM 4. For arbitrary integers sz >/7z » 2 the manifold .z,
rationally equivalent to the manifold az, ., (TS), where z=rn—mz+7¢ .

~ contains a proper submanifold

Proof. By Theorem 3 each preceding manifold in the sequence of manifolds

Kyyo Py gy Py g s PFomy
is rationally equivalent to the following one. Since ~< > 2, it is sufficient to prove Theorem 4 for the mani-
fold or

2,7+7 °

Let us agree to denote the principal operations of the algebras of the manifold ¢Z, ., by

";-(:r,,xz),%- (X, s Zgay) (€=4..,Tt+4 j=142) . We recall that in Ozz,zw they are linked by the system
of identities (1) for m=2, ~=z+7s, Let £, .,, be the submanifold of ¢, ., defined within cz, ..,

by the identities

G XYL GyI=X , G &, Gx,g)=Y.

oy CGV=byy (By) (£4.... %), )
W (FyXyyoioy Ly ) = (G K se e ey Ty ) ),
LD (Tpynny, Lyy )= C (R, 60 (X o, 0, L))

We shall show that the manifold ¥, ,,, is rationally equivalent to 7, .z (TS).
In the first place, if the algebra A=<A4 ¥, @z belongs to the manifold £ 2 z+s then, putting
Xy = %, (z,y),
G =Ly (X)) (=1, F),

Ty, Ty V=D, (X, Ty Ty, o0y T ),

we obtain the algebra A=<¢#, -, <. :Z} > which clearly belongs to the manifold x,, (TS), i.e., it satis-
fies the system of identities (5).

Secondly, the operations ., «; of A are in their turn expressible termally in terms of the opera-

tions °, %, .
4

CT, )= T tf, By (E )=y (BYI=F () (E=7,..0, 2,

a)Z (), Ty yenos Loy y) = &, (}/,_rz,...,r

) = (G, Xy ,)

L 4 2 A

W (g s Tgg ) =X (L, -, Ty, J-



Thirdly, if the algebra <4, -, &.,& > belongs to the manifold C¥,, (TS), then, putting
P x,y)= x4,

bopy (X, Q)= F:(y) (&=1...,T)

uJ,(r,,'...,:r

24 r) =X Wy, Ty )

We Ty, Tpy ) ) =D (s ovi) Ty )

we obtain in view of identities (5) the algebra <4, ¢, a{/ > of the manifold $ 2,7+¢ » For the identity

relationships (6) are obvious in <4, &, cc’)/- > , and the identity relationships (1) for m==2 , z=7z+7 can

be verified without difficulty.
The rational equivalence of the manifolds £, ,,, . C%,, (TS) has thus been proved.

We shall show by means of Theorem 1 that Ia »s 18 a proper submanifold of cr, . In view of

, T+
Theorem 3 it will be proved that ¢¥, , (TS) is rationally equivalent to a proper submanifold of the manifold
o SN

By Theorem 1 there exists in the set of all complex numbers 4 a model of the system of defining
identities (1) of the manifold (%, ., in which the value of the principal operation ¢, may be calculated
from the formula ¢, (x,y) = 2x—¢ . In this model ¢, (¥ z.41.¢)=4%x-34 and so it does not belong to the
manifold £, ,,, , in which the term ¥, c¢, =, ¢7.¢> is identically equal to = . Theorem 4 is thus com-
pletely proved.

THEOREM 5. When ~z2>2 the manifold ¢z, contains a proper submanifold which is rationally
equivalent to the manifold of all totally symmetric quasigroups.

Proof. By Theorem 3 it is sufficient to prove this statement for ~=2 . Each algebra # € cz,,
has four principal operations, let us say ¢, . ¢, . <« . ¢J, , which are binary and are connected by the
system of identities (1) when ~z=x~=_2 . We distinguish in o, , the submanifold £ by means of the addi-

tional identities
KT GY) =x= ¢ (.9 2,9,
W (x,g) =, cx, i),
w, (x,y)=y'= ¥, (X, 4.
We shall show that the manifold £ is rationally equivalent to the manifold of TS-quasigroups defined by
the identities zy-y=x=¢ ¢z .
Let the algebra < 4, « , <, > belong to the manifold ¥ . Putting
Xy = L (x40 (x,4€A),

we clearly obtain a TS-quasigroup. Here the operations ¢ ,<J. in the set # are in their turn termally ex-

pressible in terms of a quasigroup multiplication operation. Finally, if the groupoid <4, > is a TS-quasi-
group, then, on putting

¢, (.z,y)=a), (X, q) = XY (X, YI=u), (.z-,y)=y,
we clearly obtain the algebra <&, ¢,¢, w,, «’, > of the manifold € .

It only remains to note that £ is a proper submanifold of the manifold ¢r,, . For by Lemma 1' and
Theorem 1 there exists an ¢7,, -algebra <K ,¥.% .w,, «), > given on the set of all complex numbers A
with the operation ¢ cz¢»=x+y . This algebra obviously does not belong to the manifold £ .



Theorem 5 is thus proved.

§4. EQUATIONALLY COMPLETE MANIFOLDS AND THE POWER
OF THE POINT STRATUM OF THE LATTICE 4ceex,,) WHEN <3m>2

The system of identities y of the signature 2 is said to be equationally complete if it is compatible

(that is its corollaries do not include the identity z=¢ ) and for an arbitrary identity ¢ of the signature
£ either y+~Z or {y,t} + x=¢ . A manifold of algebras is said to be equationally complete if the set
of all its identity relationships is equationally complete,*

Let us denote the lattice of submanifolds of the manifold of algebras ¢ by 4¢@x) . In L(Cr) atoms
or points (cf. [8], p. 24) correspond to equationally complete submanifolds of ¢r . So we shall call the set
of all equationally complete submanifolds of ¢% the point stratum of 4(¢7) and denote it by £ L(c%) .

THEOREM 6. In the class of manifolds
0(,,_,,” (1< < r)
the manifolds cz,, , and only they, are equationally complete.

Proof. When ~=>7 the manifolds oz
ready been noted, the equational completeness of the manifolds ¢z, was discovered by A. I. Mal'tsev. For

are not equationally complete by Theorem 3. As has al-

T

n=2 this fact was given by Mal'tsev as an illustrative example in a course of lectures on the theory of
manifolds and guasimanifolds of algebraic systems which he delivered in 1966 at Novosibirsk University.
The discussion is the same in the general case. To make our exposition complete we now give that discus-
sion,

Let ~ be a fixed integer, 7 >s . We shall prove the equational completeness of the following system
of identities:

L) =K, (B (K)o, P (TN=X (A1), (7
By Lemma 1 the system of identities (7) is compatible and it is only necessary to show that every identity

Plx,..,x)=¥(x,..»x,) (8)

4

in the functional symbols «,...,«, ,w is either a corollary of the system of identities (7) or is such that the
identity x=y. can be deduced from (7) and (8).

We shall assume that the terms @, %¥ are reduced, thatis, do not have subterms of the form
LD, 0, T,0), L), ..., %, (x) ,and are graphically distinct. We shall show that with these assump-
tions the identity == can be deduced from (7), (8). We prove this by induction over the number €,
which is the sum of the number of entries of « in ¢ and the number of entries of «w in # .

When €=0 the terms @ |, ¥ do notcontainthe symbol « and identity (8) has the form

)=E P (s T '
1 3 23] /e g Yovs 89

Since @ and ¥ do not coincide graphically, it may be assumed that either «> g or «=g, but in this
context ¢ ~==,/'1 forsome 3 . When «>g,substitutionsofthe form .x—.0(x,..., ) andappropriate cancel-

lations by means of the identities (7) can be used to reduce the identity (8') to the form « ...« ()= x or
t4 ~

$....¥ (x)=¢ (k20 . Replacing x in the first of them by «:=,,....x,) and operating on both sides

<

7

of the identity so obtained with the operator «- ,with ¢#¢, ,we obtain anidentity of the form b vz.h )=y

So when « >¢ identities (7), (8') imply the identity =y . When «=g¢ the argument is analogous.

Let the statement be proved for identities with the number & less than some value & , where & >o,
and let (8) be an identity with £=¢, . Since both sides of (8) are reduced, it must be of the form:

* Other equivalent definitions of an equationally complete manifold are to be found in Tarski's article [7).

10



(P, ... P )= 0T (D, ..., @)= (¥, .., %, ) ,Where the term & does not contain the sym-
bol « , and the terms ¢ and & are graphically distinct for at least one value of ¢, let us say ége In
the second case, operating on both sides with the operators "2’1 , we arrive at the reduced identity ¢;=¥;

with a smaller value of £. In the first place, operating on both sides with the operators ¢,,...,«_,we obtain
@, =4(¥),..., = (¥

If in at least one of these identities the two sides are graphically distinct, then by the induction hypothesis
the identity x=¢ 1is deducible from (7), (8). It remains to note that the term ¢.(%) cannot coincide
graphically with the term ¢7L for each ¢=1...,~, since otherwise the term w(@,,.. ., %, ) would have been
graphically equal to the term

WP (W), . .., &, ()],

which is not reduced, and we would have obtained a contradiction with the assumption. Theorem 6 is thus
proved,

THEOREM 7. When ~ » 7> 2 the point stratum £. (cr,, ) of the lattice of submanifolds
Lo, ) of the manifold O¥_, ., has the power of the continuum,

Proof. Let ~>~t. By Theorem 4 it is sufficient to calculate the power of the point stratum of the
lattice 4(cr,, (7 §)), where 7= rz— sz + ¢/, and the manifold <, ., (7 §) is of the type <27..77>, and
is defined by the system of identities (5), A, D, Bol'bot [4] has proved that the point stratum £Z (7 S) of

the lattice of submanifolds of the manifold 7§ of all totally symmetric quasigroups has the power of the
continuum. But this power is also possessed by the set

M={TeEL(TS): AT, 14l > 1=21A1> K}

of those equationally complete manifolds of 7S -quasigroups of which all the nontrivial quasigroups are in-
finite., By virtue of the observations made in §3 in the course of defining the manifold ¢¥,, (7.5) each

manifold 7 € A7 may be considered as the manifold <, @) of universal algebras of the type

<2, 4...,7,7 > defined by identities {5) and by the quasigroup identities which give the submanifold 7
within the manifold 7.5 , Since the different manifolds of quasigroups from A/ do not intersect, the mani-
folds ¢%,, (7) are also pairwise nonintersecting. It is known that each nontrivial manifold of algebras

possesses at least one equationally complete submanifold. Distinguishing in each manifold &7, (7)
(7 &eM) an equationally complete submanifold, we obtain a continuous set of equationally complete submani-
folds of the manifold ¢, , (7.S) . On the other hand, the power of the point stratum £ £ (¢r,, (78)) obvi-

ously does not exceed the power of the continuum, So this power is in fact precisely equal to the power of
the continuum,

When rm=r> 2 Theorem 7 immediately follows from Theorem 5 and the theorem of A, D, Bol'bot
cited above. This completes the proof of Theorem 7.

COROLLARY 1, If > /2 2, then

lzeox,, A= |ELcor, =X .

COROLLARY 2, If « »= » 2, then the lattice £ (o%,, ) does not satisfy the termination condition
for decreasing chains,

For since the set of finitely axiomatizable submanifolds of the manifold €%, is no more than denu-

m,
merable, it follows that when ~ » 7z »2 there exists a submanifold in ¢z, which does not have a finite
basis of identity relationships. So when ~»mz2 there also exists an infinite strictly decreasing chain of

submanifolds of <, . .

§5. THE LATTICE L(x,,)

The manifold ¢¥,, is of the type <7, 7> and is defined by the system of identities (1) when me=r=/¢,

that is by the identities
PO (x) = x=DT). (9)
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Let )’Z be a lattice of positive integers with the relationship of divisibility. Joining zero 0 and unit 1
to it externally (cf. [8]), we obtain a new lattice which we shall denote by #*.

THEOREM 8. Each submanifold of the manifold ¢z, , may be defined within or,, by a single identity
and the isomorphism

L) = #*°

holds.

Proof. For the operators ¥ <« we adopt operator notation, and we shall first show that every sub-
manifold of ¢, can be defined within &%,, only by one of the identities

x=z, z=y, xeP=x (431 (10)

We shall denote a submanifold of Or,, ,whichconsists of single-element algebras,by £ . It may be

defined by the identity =y , and the manifold ¢r,, itself (within itself) by the identity x=x= . We shall

3)

denote by ¢r,," the submanifold defined in ¢z , by the identity x¢*=xr 320 .

Let £ bea ¢, -free algebra with one free generator = . We shall also consider the absolutely

free algebra 4, of the type <+7> over the set {x} . The algebra # will be a factor algebra of #, with
respect to the verbal congruence & corresponding to the system of identities (9). We recall thatthe terms

@, 4 € f, are in the relationship & if and only if it is possible to pass from one of them to the other by a

finite number of transformations of the form «e¢w = «,«cwv=c. It follows from this that every term

zxo o, ..., Of «cw is comparable in relation to @ with a term of the form x«® or xw?* 42 0) .

Since what we are interested in is identity relationships in ¢z, -algebras which are not corollaries

of the system (9), we may restrict ourselves to considering formal equations in elements of # , that is
equations of the form:

=20, zwl=zxddt, zvi=zI®,
xvt= y‘/r, zwt= g, xw‘=yw’,
where 1 » Z » 0o . Relative to (9) they are equivalent respectively to the identities

- -2
xe? t=,r, ¥ T=x | z¢*t=r
- -z
x? t=y, x¥ =y, xe?

’

+r __
=y,
which in there turn can be reduced by means of identities (9) to identities of the form
Iﬁf’i:x, xﬂ’i:y (4 20)-

Since the identity relationship xv*= & implies the identity z= 2 it follows that every submanifold
of ¢¥,, which is distinct from ¢ can be defined within <, only by a system of identities of the form

%
XY = (4720 .

Let £ = % be an arbitrary submanifold of ¢z,, . If it does not have identity relationships of the
form z¢*=x >0, then by what has been proved &= cx,,

Let & be distinct not only from & but also from ¢%,, . We shall denote by 3, the least positive
value of the number 1 for which the identity z«*=x holds in & . Then for an arbitrary identity relation-
ship zw’=z in % we shall have 3,/4 . Thus the submanifold % may be defined within oz,, only by
the single identity xev*= x , thatis S=or®,

We shall show that if s =2, then o}’ = o7 . Let 2>4 , @={12,....2) |, ¢=ce2...2)
be a cyclic permutation over the set 4, =« ', Then the algebra A=<, «w> belongs to the manifold
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¢3)

oz;f’ , Since xww=xwe¢=x and x¢ %= for arbitrary xe 7 . However,# & ox 7

1ed=a+1 ¢,

since, for example,

Clearly, if 3/z,then oz’ € cx/® | Conversely, let O’t‘:t) < dz’/‘f’ . We shall consider the alge-

bra <A, ¥ w>, where
A={12,...,3}, L=¢12,..,3

14

is a cycle of length 3, w=¢"’, Since this algebra belongs to the manifold <%, and the inclusion

oefY < cr/¥ holds, r«®= < forall xe 4, whence 3/#, since the element ¥ in the permutation group
over the set 4 is of order 4 ., Thus the mapping oz, —~ 7, or;j’ - 4, & o is an isomorphism of the
lattice £ (¢x,,) onto the lattice F* .

This proves Theorem 8,

COROLLARY 1. The manifold &¢ ,‘;’ of the type < # 7> defined by the identities

¥ = r = ruwd,
and only it among the submanifolds of the manifold ¢¥,, , is equationally complete.
From Theorems 3,and 7 we obtain

COROLLARY 2. For an arbitrary integer /¢ >7 the lattice of submanifolds <4(cr, ) of the mani-
fold ¢%,,,, does not satisfy the termination condition for increasing chains. )
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