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Two groups G and G' are called elementarily equivalent if the truth of any closed formula of the group
signature on one group implies the truth of the formula on the other group. If each closed formula of the
group signature not containing existential quantifiers is true on G if and only if it is true on G', then G and
G' are called universally equivalent. The question naturally arises as to the preservation of elementary
equivalence when group operations are applied. It is for example well known that elementary equivalence is
preserved under the direct and cartesian group products. The analogous question for the free group product
is still open. The question regarding preservation of elementary equivalence for the group wreath product
was stated by M. I. Kargapolov in [1]. We give a negative answer to this question here. More precisely, we
construct groups A, B, A', and B' such that A is elementarily equivalent to A', B is elementarily equivalent
to B' but the discrete wreath product of A and B is not equivalent to the discrete wreath product of A' and
B'.

Iet A and B be additive groups, and G their discrete wreath produci. This means that for each ele-
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ment b€B there is an isomorphism a—‘-a” of A onto its isomorph A(b) and G = A - B, where H=‘/Z
&

50“”!5" = a(6,+5; for all aeA , 6,6, B . By the bearer of an elementh/—& we mean the set o (f) of b€B for
which the b -th component of 7, denoted f (b), is not equal to 0. Let Gp be the discrete wreath product of the
infinite cyclic group A and the direct sum Bp of three cyclic groups of simple order p. We take A to be the
additive group of integers and denote the elements of Bp by triples (n,m,s) of real numbers taken modulo p.

LEMMA. There exists an element g, belonging to the commutant of Gp which cannot be written in
the form

[f. (mr9)] +]g, (n'm!o)]

for any f +9€A and m,rm.9), (n!m!0)eB, . Here as usual [a, b] denotes the commutator aba 6.

Proof. We define the element g, thus:

9,(0.0,01=6 , §,(0.0,1="3, §,(0,1.0)==2, G, (1,0,0)==12and gtbry=0

for the remaining b€B. It is easy to see from Corollary 4.5 of [2] that g, belongs to the commutant of Gp.

We first note that g, cannot be written as

Cf.(nmp)l+(g, (i 011,

Otherwise we would have

el o=
:;jz=a %o (b,j,O)'—z’Zj:,a{[f, (., 0)1+0g . (2, m 001} (i), 0. @)

The left side is here equal to 3,as in evident from the definition of g,. It is easy to verify that
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where £' of A is defined by: f(¢,/,0)=f(,j.00 + fC.jx)=0 for g« i, j<p-1,14kép=1 . The right side of (2)
is equal to 0 by Corollary 4.5 of {2]. The right side of (1) is therefore also equal to 0. This means that
go cannot be written as specified in the lemma for s = 0.

Now let s = 0. We introduce the abbreviations
& ./: X,
J[("njl"‘/) -, Sz %)= F(‘zfa )
. .. e J, Ky
g k) - 9“2:/2"‘2): F(lz,jz, K,)

and examine the following sums:

p-1 -xr! —fn, —-xkm! —&mn, —£s
LA( )

om0 \—kr!'=(€+0n, —krm'~(€+1)m, ~(£+)) S @)
and
P rxn-n,-km —€m, —KS )
oLk p-1. 4)
e‘é:', F(—Kﬂ —({4—1)n’—1<m—(£+1)m,’—1<5 ! P
We note that & ( e 'jfm o 5) + /:'(L_,_L Form Z) is equal to ¢, (¢,/.%), provided g, is written as the sum

of the two commutators specified in the lemma. It is evident that (3) and (4) are equal to 0, so

p-t ,
h 70(—xn—2n’,—xm—£”","‘<5)=0
k(=0

But on the other hand this last sum is not less than 1. For the element (2/m/0) of Bp is not equal to 0;
—Km -~ KS

otherwise Z F’( (i(+f)n'—(l<+1)m _(K+,)S) would be equal to 0 onthe one hand and equal to 2"_, g, (—K,—Km, ~KS)
k=0

on the other, but this last sum is not less than 3, since s = 0. So (n/m’/g)+ ¢ and this means that the
system

—xn —én'=o0,

—km —fm'= a,

—KS =0

modulo p has the unique trivial solution ¢=«=0 . Therefore each of the three systems

~-kn —fn' =g,
—«km —fm'=¢,,
—KS =g,
where (&,.£,,€,)=(4,0,0).(0,1,0),(0,0,1) , has not more than one solution. In addition, not more than two of
these three systems are simultaneously compatible. From this and the definition of g, we find that

p-i
P g, (—xkn —lr! —xkm —em! —ks) 77,
K, €=0
This contradiction proves the lemma.

Let G be the semidirect product of the Abelian groups A and B with a normal subgroup of A. We shall
hereafter require the following easily verifiable relations in G. For any a€A and b€B and any integer m
there exists an element 4'€A such that

(e, 6™1=(a" 61]. (5)
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The following hold for any &, .a,e A, 4,6,e8:
(2,6 1a, . 6,1=la,qa, . 61[ab 6,67, 6)

[a, 4, a,6,1=[.6,](a; .61 ™
Using (5), (6), and (7), we obtain the following

COROLLARY. Let G be the discrete wreath product of the infinite cyclic group A and the direct sum
B of n infinite cyclic groups. Then each element of the commutant of G can be written as the sum of more

than [ 1}1] commutators.
Proof. According to (7) each commutator of G can be written as the sum of two commutators of the
n
form (f,61, fe 4, e 8. But it follows from (5) and (6) that [f,43 =Ll ,6;1 , where #;€A, & isthe
=

generator of the i-th direct sum of B. The corollary follows from this by easy computation. We note that
the corollary remains true and with almost the same proof if the cyclic sums of B are replaced by locally
cyclic ones.

THEOREM 1. If groups A and B are elementarily equivalent to A' and B' respectively, it does not
follow that the wreath product G of A and B is elementarily equivalent to the wreath product G' of A' and B'.

Proof. Let A, A', and B be infinite cyclic groups and let B' be th. direct sum of an infinite cyclic
group and two isomorphs of the additive group of the rational numbers. It is easy to see from the criterion
for the elementary equivalence of Abelian groups that B and B' are elementarily equivalent. By applying the
corollary we find that each element of the commutant of G is a commutator, i.e., the following

Vx,x,xy%, Fxcx, (Lx,2,)0x,, 2, ]=0x,,2,1)

is true in G. On the other hand we can find in G' a gj from the commutant which is also not a commutator.
For let

90 (0.00)=6, §,(0,0,0=3, §,(0,1,0)="2, g, (1,0,0)=~1

and 70’”5,)=0 for the remaining §'€ 8. (The elements of B' are triples (ry,ry,n), where ry,r, are rational
and n is an integer.) By Corollary 4.5 of [2], g belongs to the commutant of G'. We assume that ga isa
commutator, i.e.,

9,=0f, (z,7;, ]+ [g, (9,90 +22],

where £, ge A', (z,,7,,r). (g, g, rmes’ . Using (5) and (6) we rewrite g; as:

go=Lf (2, 25,01+ g’ 7/, g;.m"]
where £/, g'e d', (1/,7;.0), g/, m') € B!
We examine the finite set
6(fu g(g’)oé (7a)u{(z,’, z;_,g),(%:'% )

of triples of rational numbers. Let R be the common denominator of these numbers. We consider gy from
the wreath product G of the infinite cyclic group C and the direct sum B of the three infinite cyclic groups
specified by

§,(0.0,00=6, §,(0,0,R)==3, ,(0,R0)==2, 9, (R,0.0)=—1
%(€,=a for the remaining 6€ 8 .

We easily note that g, can be written as
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7= [f, (k.93 + Lg,xl€, 0],
where f_ge €, bsy (xielo)eB,

We map B homomorphically onto the direct sum of three cyclic groups of simple order P, where P
satisfies g=/ (mod” . We extend this homomorphism in a natural manner to 2 homomorphism ¢ of G onto
Gp and find that g, ¢=g,e G,- This contradicts the lemma, and the theorem is proved,

THEOREM 2. If group A is universally equivalent to group A' and group B is universally equivalent
to group B', then the discrete wreath product G of A and B is universally equivalent to the discrete wreath
product G' of A' and B'.

Proof. We note that two groups are universally equivalent if and only if each finite submodel of the
first group has an isomorphic submodel in the other group and conversely.

Let M={g,,....9,} be an arbitrary finite submodel of G'. By using multiplication notation we can write
each element g €M asg.=a 5ec , where aéeif, 6, €B. Further, let

Y ia) =166}

We can correspond the finite submodel {....45.6,....6..} of G' withthe isomorphic submodel {6..-,6,.6,.... ,
6.} of G, b; beingplaced in correspondence with b; and b:: with bi;. We now consider the finite submodel
J J ii ii

{a-(g-)} (¢=1,..., n, j=/,..,,5)

of A and find the submodel {(a; (6)) } 1n A'isomorphictoit. Itiseasy to verify thatthe mapping «: 9["% =g 6“
will be an isomorphism of M onto M= [91. ,gn} if we set

I I3 .
. 1</<
a{(é') = (aé(gj)) for 1€i<n, 1€/£5,
{ otherwise.

This proves the theorem.

The author wishes to thank M. I. Kargapolov for stating the problem and providing valuable advice.
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