
P O S I T I V E  E Q U I V A L E N C E S  

Y u .  L .  E r s h o v  UDC 517.11:518.5 

The concept of a positive equivalence (an effective part i t ion of the natural  numbers  into r ecur s ive ly  
enumerable  sets) is in a sense a "global" concept, corresponding to the Wlocal" concept of a r ecur s ive ly  
enumecable set .  Many concepts connected with r ecu r s ive ly  enumerable  sets ,  par t icular ly  c lass ica l  ones, 
can be naturally extended to positive equivalences.  On the other hand, cer ta in  proper t ies  of positive 
equivalences often imply nontrivial  consequences for  sets closed under these equivalences.  The purpose of 
this paper is to i l lustrate the possibili ty of such fruitful connections.  

1. The Algebra of Posi t ive Equivalences.  We begin with the basic definition. 

An equivalence relat ion Z on the set  /V of natural  numbers  is cal led positive if the set  of pairs  
{ <~v,y>~ ~:~ 5/} is r ecu r s ive ly  enumerable .  

This definition agrees  with A. I. Mal tsev 's  definition [5] of a positive enumerat ion.  (An enumera -  
tion ~ is positive <- -7  the enumerated  equivalence " ~  is positive.) All notions pertaining to the theory 
of enumerat ions may be found in [1]° 

Henceforth we will identify positive equivalences ~ withthe recurs ive ly  enumerable  sets  t<x,~/>]-v~5~}. 
We denote the family of all positive equivalences by ~p . The usual inclusion relat ion c__ part ial ly o r -  
ders  $ p .  Note that the family ~ of all (not just  positive) equivalences on N ,  o rdered  by = , is a com-  
plete lattice, as is well known. It so happens that 3 :  is a sublatt ice of ~ .  In other words,  the following 
asser t ion  holds. 

LEMMA 1. The family ~'r has a least  element (under ~ ), which we denote O ; 9p contains a 
g rea tes t  element ~ ; if ?o, ?/ e ,_gp then ~o n ~, e ~ p ,  and we denote ?o ~ :  by ?o A Z, If Eo, ~: ~ ,9p 
and ZvvZ, is the least  upper bound of ~o and ?¢ in 3 , t h e n ~ o v ? ,  e ~p .  

Note that O = {<=c ,x> /~ce /¢}  and ~]={,=x,5.,>/x, y e N )  ; i . e . ,  @ is the equality relat ion on N 
and / is the t r ivial  equivalence. 

Since 9/, is a family of r ecu r s ive ly  enumerable  sets  of pairs  of natural  numbers ,  we can t ry to find 
a principal  computable enumerat ion for  it [4]. 

Let A~ z be the collection of all r ecurs ive ly  enumerable  sets  of pairs  of natural  numbers .  /R z has a 
principal  computable enumerat ion ~z • (If one identifies A~a with the collection of all r ecurs ive ly  enum-  
erable subsets of /V, using an enumerat ion of pairs  of natural  numbers ,  then ~z z induces a Pos t  num-  
bering ~ by this identification.) We let ~ =  (/R z , n- z ) .  The following holds. 

LEMMA 2. ~p is an ~ - s u b s e t  of 27 z .  

Proof .  Let  "qe//?z be an a rb i t r a ry  recurs ive ly  enumerable  set  of pairs  of natural  numbers .  Let  Z*  
b e t h e s e t  { < x , ~ / > l x = ~  or t h e r e i s  a finite sequence J%,~% ..... ~=a s u c h t h a t  xo=~c, x ,~=y , and ,  for  
each ~--~ , <~-,=z'~-+r>eZ or  < ~ , : , . z - e > ~ Z >  }. 

It is easily seen that A ~* is the smal les t  equivalence relat ion containing g . By definition, :?'* is 
constructed effectively f rom /? , so that Z ~  zg/, for any ZeA~; . Consequently, there  is a one-place 
genera l  r eeurs ive  function ] such that for any ~ ,  %(/z)*------ ~2( ,~ ) .  Having observed that for A ' e$ / , ,  
R % = ~ ,  we obtain an enumerat ion 6::V ----9/= , where 6 = % ]  o Thus (~: , ,s)  is a r e t r a c t  of FZ z .  
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The l e m m a  is proved.  

COROLLARY 1. The enumera t ion  £ of ~/, cons t ruc ted  in the proof  is a pr incipal  computable  enum-  
e ra t ion .  

COROLLARY 2. ~ogp,~) is a complete ly  enumera t ed  se t .  

R e m a r k .  The e n u m e r a t e d  se t  (,,gp, e~ is  i so la ted  and the re la t ion  "~e coincides with the inclusion 
re la t ion  ~ .  

The inject ion mapping g: 6~p : ~?~ is a m o r p h i s m  f r o m  (~p,~) into //7~ ; the mapping ~: ~$ --*- aq/, 
is a m o r p h i s m  f r o m  ~ to (,9~ ,~) and **i- Za/. 

The above definit ions of A and v give on ~p the s t ruc tu re  of a {modular) la t t ice .  It  will be shown 
that  the enumera t ion  ~ a g r e e s  well  with the opera t ions  ,a . v . 

LEMMA 3. The la t t ice  ( ;gp ,  ~, v )  equipped with the enumera t ion  ~ is an enumera t ed  a lgebra ;  
that  i s ,  the mappings  A:C~p ~,Ogp ~ ..gp and v:  ~,,,~p--..-ap are m o r p h i s m s  f r o m  (9p,e) x (gp ,e)  to 

A (9,,, ~) in that  the re  a r e  two-p lace  gene ra l  r e c u r s i v e  functions f and S v such that  for  any a-,z/e N 

A 
~(~r~^e(~) ~ ,~f (3c,~/). and ~(.ar)v$Cet,,) -- ~ f  (,~,,b~). 

Proof .  It is well  known that  the opera t ions  n and c/ a r e  effect ive  in R75 ; i .e . ,  there  a r e  two-place  

gene ra l  r e c u r s i v e  functions S "  and S u such that  ¢ r z c ~ ) n ~ z q / ~  ~ n ¢ ~ c . 5 / ) a n d  '~z~c~c)n~CZ/),.- 
~fU(x,3/)  for  any ~5¢~/v . Note that  ~(~c) ,~(!¢~-~)r~c~¢) -rcs~(a:)~erz~q/) ~. ~ f ' ( , 9 ( x~ ,  ~?q/fl"- 

i"# e~f (,,q~az~,~eZ¢,) , s ince  fo r  any ~ such that  % ~ r ~  ~p , , , ~ * = ~ r  and ~f~]{arZ.qq/O~agz. Thus,  

f~(~c..r¢~ ~ f ~ ( ] , ( x ~ ,  ~q/~)~ sa t i s f i e s  ,the requirementu of .the l e m m a .  F u r t h e r m o r e  ~(a:),/ecZp~Ceca:~u~cz¢O ~-* 
(¢r~,q~u~,~2(.~)) ~ ( ~  (~?¢az),~?c..y~))-*~f (]cx'),]Cy,), since fo r  any ~ , ~ a r ) # ~ : r  . Thus ~ Car, y)  --~ 

,,1""(]Ca:), ~7c~) will sa t i s fy  the r e q u i r e m e n t  of the l e m m a .  

The I e m m a  is proved.  

As has been a l ready  mentioned,  the la t t ice  9 of all equivalences  on ~' is complete ,  i .e. ,  for  any 
col lect ion of e l ements  of 09 the re  is a g r e a t e s t  lower  and l e a s t  upper  bound. This is of course  not t rue  
for  $/, . However ,  any e n u m e r a t e d  (with r e s p e c t  to ~ , or  what is the s a m e  thing, with r e s p e c t  to ~ ) 
col lect ion of m e m b e r s  of o~p has  a l e a s t  upper  bound in $/~. More  p rec i se ly ,  the following holds.  

LEMMA 4. I laere  is a one-p lace  gene ra l  r e c u r s i v e  function / such that  for  any ~z, 

where  st6o ~ --- O .  

Proof .  As in the p roof  of L e m m a  3, it is suff icient  to see  that  t he re  is a one-p lace  genera l  r e -  

curs ive  function /]7 z for  d e such that 
t /  

( U (¢r~a:,)~',) *~ ( U ~x)'*. The las t  s t a t ement  is obvious and the f i r s t  is well known. Then 
~r~ ~C.,z) ar~ctCrZ~ u 

sa t i s f i e s  the conclusion of the l e m m a .  

and that 

Let  ~ be an a r b i t r a r y  (not n e c e s s a r i l y  posit ive) equivalence on N .  The se t  M -~ A/ is cal led Z - 
c losed if i t  s a t i s f i e s  the condition Vx V/¢ (~c~M&<~c,~,>e~ ~ 5 / ~ h ¢ ) .  F o r  an a r b i t r a r y  se t  M the Z - 
c losure  of M is  the s e t  

The following e l e m e n t a r y  p rope r t i e s  of ~ - c lo sed  se t s  and ~ - c l o s u r e s  a re  obvious: 
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1) g is ~ -c losed  ~ M = _[- M]  f ; 

2) [M] ? is the smal les t  f - c losed  se t  containing M ; 

3) If (~ ~ r}-~ a re  all M~-closed, then (./M and /7 ~¢r ~ ~er ~ a re  -c losed;  

4) If M=UM~,then [M~ ~ U[N/~'] ° . 
~ r  L 2er 

Remark .  For  in te rsec t ions ,  the las t  p roper ty  does not hold; that is,  it is not t rue in genera l  that 

E mer:4~ 3 r = $~[MtJ f  ; but always E]~r N/2] g c /¢.Tr[/v/2~z. . 

If R is r ecu r s ive ly  enumerable  and ~ is a positive equivalence,  then [R] f  is r e c u r s i v e l y  e n umer -  
able.  More prec i se ly ,  the following obvious l emma holds. 

LEMMA 5. The mapping ~" : R~ff ~ [ R3 Z is a morphism f rom /:7~ (~p, e)  to #7 2 . 

Let  Rg , where ~ is a posit ive equivalence,  denote the col lect ion of all  ~ - c losed  r e c u r s i v e l y  
enumerable  se t s .  Each collect ion ~qZ is a dis t r ibut ive lat t ice with r e s p e c t  to the usual operat ions of in- 
t e r sec t ion  and union. If ~o _ c ~ ,  any Z: -c losed  se t  is ?¢ -c losed .  So one has a natural  injection 

gZ.~° : /R~ --~/~?°  . This inject ion is an i somorphism of the  dis t r ibut ive lat t ice A~?, into the dis t r ibut ive 

lat t ice A°?o , The c losure  operat ion [ ] f, maps A~Zo onto R f l ,  and we denote this mapping /~.ff, . 

Note that this mapping is an upper semi la t t ice  homomorphism (see [4]) but in g e n e r a / i s  not a lat t ice 
homomorphism.  Thus, if ?,--_c Z, '  the re  are  upper semi la t t iee  homomorphisms  /'2,~: R?, ' ~'2~' 1°?,2,: 
/P2° - " -  A~f, such that the composit ion ~o?,  ~Z, f, is the identity mapping of /h~ onto i tself .  Hence % 

is a r e t r a c t  of ~ o .  If one introduces the principal  computable enumerat ion  ~': of the collect ion Rf  (pos- 

sible, since ev e ry  A~ is a r e t r a c t  of R~ ), then all  indicated mappings will be morphisms  (by Le mma  5). 

LEIVIMA 6. If f - [ o  v ~,,  then the set  M is both ~o - c losed  and ~, -c losed  if and only if M is ~ - 
closed.  

We will consider  s eve ra l  examples  of posit ive equivalences .  

1. Let  R be a r ecu r s ive ly  enumerable  se t .  [[hen the se t  of pai rs  

is a positive equivalence.  Note that 

a) ZR--- O ~ >  R contains at mos t  one element;  

b) If R has more  than one e lement ,  then the only nontrivial  equivalence class (i.e.,  not a unit class) 
of fR is R ; 

c) A s e t  M is ~z - c l ° s e d  if and °nly if e i the r  M n Z  = ~ or  ~ f ~  R ; 

d) ~z n~R, -'- ~ZonR,; 

g) M.~_ R, ~ Z R o _  ~ Z., ; 

h) The mapping ~ : ~ - ~  is a morphism f rom 27 to (~gp, 6) . 

Asser t ions  a)-h) a re  obvious. 

Remark .  ~@ " ident i f ies"  only the one-e lement  se ts  (by a)); ~. "nicely"  p r e s e r v e s  the operat ions 
m , i /  (by d), e), f)); ~o (27) is an n . - subob jec t  of (@.;,,5). Together  all of this shows that the theory  of 
r eeu r s ive ly  enumerable  sets  is in a well-defined sense  "nicely  imbedded" in the theory  of positive equiv-  
a lences .  
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2. Le t  ~ be a r e e u r s i v e l y  enumerable  se t  and le t  ~¢~, ~ .... be a s t rongly computable enumerat ion 
of all finite sets  [1, p. 122]. We le t  

( zl is the s y m m e t r i c  d i f ference) .  Then 

a) gff  is a posit ive equivMence.  If we le t  ~q w ~--~ {a: i~  c ~ N} and "~8~--,- tac l / :~n~¢¢#} , then 
¢d # 

b) R is an ~ -equivalence class;  

c) if S n R - - - ~  , t h e n  ~°S is an ~ 2 - c l o s e d s e t .  

We will ver i fy  these  a s se r t ions ,  a) ~ 2 , ~  ~ R is equivalent to the equality ~ x ~? ~-/~ ~ R, f rom 

which it  eas i ly  follows that ~2 is an equivalence.  The enumerabi l i ty  of f~  is c lea r  f r o m the definition. 

b) ~ce N ~ ~x~ R~--3 I x  -~? = 16 and so,  as r e m a r k e d  above, R w is the class  of e lements  equivalent 
to O (recal l  that ~o = ~) '  

c) . . ~ e a P , ~ , ~ < ~ , y > e , Z , ~ - . ) ~ c . r n g @ g Y & j ' ~ ' - ? = J ' g ' g  , b u t s i n c e  8 o g  = ~ ,  / . r ~ 3 =  

\Rd,'~S = (iF ,R.)/%~9"=~t mR e ¢, then ~/e-°S ; 

e) the mapping ~ : R ~  --~ ~ is a monomorphism f r o m  /7 to (gf, e). Asser t ion  d) and the fact  

that ~ is a morphism are  obvious.  The fact  that ~ is a monomorphism follows frofft b). 

3. Let  ~7 be a one-pIaee par t ia l  r ecu r s ive  function. Then 

2~ 
is a posit ive equivalence with the following proper t ies :  

a) A se t  M of natural  numbers  is f ig-c losed  ff and only if ~ - ~ ( ] ~ ) )  ~ M .  

b) If ~7 is genera l  r e cu r s ive ,  then M is ~r~-reduced by ~ to a part ic tf lar  se t  (any 8 such that 
~ ( M ) c  ~ _~ N ,  F (/V, h¢)) if and only if M is ~ -c losed .  

P ro pe r ty  a) is obvious f r o m  the definition and b) follows eas i ly  f r o m a). 

c) ~o= ~, ~.--~--~]o=_ ~ , .  
d) The mapping ~ : ] ~ ~] is a morphism f rom ~ to ( ~ ,  ~ ) .  

P ro pe r ty  d) follows eas i ly  f r om the ef fec t iveness  of the const ruct ion #2 f ro m ] . 

4. Let  ] be a one-place  par t ia l  r e cu r s ive  function. Let  jT~(~)= .v, ]z÷~(~c) .= ] ( ] z ( ~ ) ) ,  and de-  
fine the se t  of pa i rs  

rJ { ~.~, "~o oqz'(y ,) is defined 

and y 4o (~z:.) = y Jc'(y)} • 

Then 

a) ~ 7 is a posit ive equivalence.  

Remark .  If we le t  ~ denote the graph of the function ~ , then Z = ( ) where the operat ion ~* was 
defined in Lemrna 2. Thus ~ fg is the smal les t  equivalence containing tlie graph of ~ . 

i is a morphism f rom ~g to (Sp, ~) .  c) The mapping ~ : ~  ~g 

It will be shown that ~ is an ep imorphism.  Indeed, the following holds. 
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PROPOSITION 1. Let  ~ be an a r b i t r a r y  posi t ive  equivalence .  Then there  is a one-p lace  pa r t i a l  

r e c u r s i v e  function ] such  that  ~]  = : .  

P roof .  Since ~ is a r e c u r s i v e l y  enumerab le  s e t  of pa i r s  of na tura l  number s ,  t he re  i s  a s t rong ly  
#g ~i+t" :g 

computable sequence ~ o  ~ : . .  o f f in i t e  se t s  s u c h t h a t ~ ° = : : = . . ~  =-_~ _=... and ~ = ~  . Since 

is an equivalence the sequence ~ o 7 f may be so  chosen that  

2) <x ,~c>  e ~ ~ for , r ,~n;  

4) . : x ,  g > ,  < ~', g> e ~ ~ - : - - > . ~ z > e Z  "~. 

Thus one may suppose that Z ~ is an equivalence re la t ion  - ~  on the set  { o,~ . . . . .  n ] .  

Fo r  any ~c -~n let  u-z'(a:,/~; --~- :z  b: (~c ,,, ~ y ) ,  The function ~ will be defined as the union of functions 

with finite domains ]o_=.g,~ . . . ,where  ]o is the empty  function; if ~z,~ has  been cons t ruc ted ,  then ]n+¢ 
is defined as follows: f o r e a c h  ~..~:z+t with xe~]~ , ]n+,cx ; '~] , , c . ,=)  ; for  ~ /82 , , ,  , i f  f(.r,n+t;yLx: 
(note that  then f e z ,  n+~),:.r ), then ],.,~ (.v) --~ ,f'(x,n+¢) ; for  o ther  values  of x , ] :÷ t  is undefined. 

u) 

Clear ly ,  ] - ~  ]~ is a pa r t i a l  r e c u r s i v e  function, 

We note the following p rope r ty  of In : In  is undefined for  those and only those . r  which are  e i ther  
g r e a t e r  than n or  which a r e  the l eas t  e lement  in an ,~, -equivalence  c l a s s .  This p rope r ty  is obvious by 
construct ion.  

F r o m  this it is eas i ly  deduced that ] is undefined only on those e lements  which a re  min imal  in 
the i r  ~ -equivalence c l a s s e s .  We shal l  show that for  any . r  the re  ex is t s  a ~ with ] ~(x) the min imal  

e lement  in [_~'","}~ ~. In fact ,  f r o m  the cons t ruc t ion  of ] i t  is c l ea r  that  for  .reo~], ~'(~)-~ and 

<]Cx) ,x  > e . : .  By consider ing the s t r i c t ly  dec reas ing  sequence of ~ -equivalent  e l emen t s  ~: ~> ~z(,.r2> 
~vZ(-v)> . . . .  we see  that  for  s o m e  ,~,,o , jy$(.r.; is defined and ](~.zC..x=) ) is undefined. But s ince ,:@'~.r), 

i f  
. v > e ]  and ] is undefined on ] c ~ ,  ~/~ ~x) is the l e a s t  e l emen t  in the c lass  [ I x } J 2 .  Thus, if  

zx ,~ t>e~ and z o and :~, a r e  such  that  ]~o~x) and ]~ 'Qg)  a r e t h e  min imal  e l emen t s  in the c l a s s e s  
g Et=i]  and [t J]z respect ive ly ,  then [ t x J ] e  = [ { y J ] Z  , ]%(~9=]:'~ , and Z ~ .  The 

opposi te  inclusion follows f r o m  the a forement ioned  proper ty :  i f  ] ~(--9 is defined then ~ ~ , ]  " ( ~ ) > ~ .  

The propos i t ion  is  proved.  

Now we define some  fu r the r  opera t ions  on posi t ive equiva lences .  Le t  ~o, Y~ ~ ~ • Then 

where  ~ and e a r e  the Cantor  enumera t ing  functions [1]. 

If ~ e 5~p, then 

vJ 

LEMMAT.  F o r a n y  ~o,Z,,:e@f,Eo@Z,,:o~?,,Z/ and ~ ~ ,gp . Moreove r ,  the mappings 
¢O 

e" (~o, ~+).v---,- ~,,it~2,,.~ :(7o,Z,).,..-~. ~,,~1,co:/:F~..,.~ ' and w:  ::_+.~w a re  m o r p h i s m s  f rom,  r e spec t ive ly ,  

(~f,&),< (~p,:..), (~p,~) ,, (~p,$),(oop, e) , and (~p,$) to (~b,~). 
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This follows eas i ly  by definit ion. 

R e m a r k .  If we let  ~ ~x) --~ f(:~ t) then is an enumera t ion  of all  finite nonempty se t s ,  and, 

roughly speaking, l~  ~ and ~ ~ differ  only on the one equivalence c lass  belonging to ~ containing 
Only zero.  

2. P e r f e c t  Equiva lences .  In this sect ion,  we s tudy equiva lences  of i n t e r e s t  when applied to the 
p r o b l e m  of the ex is tence  of ~ - d e g r e e s  consis t ing of a s ingle / - d e g r e e  [6]. 

A posi t ive  equivalence ~ ~ is cal led pe r f ec t  if the re  does not ex i s t  a p rope r  (i.e., other than ;] 
or  w ) ~ - c l o s e d  r e c u r s i v e  se t .  

COROLLARY 1. If ~o~-fi, =~--.,~ and Z,' is per fec t ,  then so  is [ ,  . 

COROLLARY 2. If ~ is pe r fec t ,  then any ~ -equiva lence  c lass  is infinite.  

M of ~' is pe r f ec t  if M is a 2 - c l o sed  se t  for  some  appropr ia t e  pe r fec t  equiv-  A p rope r  subse t  
a lence ~ .  

PROPOSITION 2. The ~ - d e g r e e  of a pe r f ec t  s e t  cons is t s  of a s ingle  4 - deg ree .  

Proof .  Le t  ~ be a pe r f ec t  equivalence,  and le t  ~¢ be a p rope r  Z -c losed  set .  In o rde r  to prove  the 
l e m m a  it  is suff icient  to p rove  two a s s e r t i o n s :  

2) M~,.,,  A > M% A.  

We prove  a s s e r t i o n  1). Le t  f be a gene ra l  r e c u r s i v e  function which m - r e d u c e s  A to M .  F r o m  
f we will ef fect ively  cons t ruc t  a one-one  function f ,  such that  for  any ~ ,  < 2 ~ ; , f o  u~)> ~Z . We de-  

s c r ibe  the cons t ruc t ion  of ~ : So (o) ~ f ( o ) .  Suppose that  5fo Co),. . . ,  J'o Cn) have a l ready  been defined. 

Compute S(n+t)  . If fCa+d¢ {foC~') . . . . .  ~oC~)} , then se t  SoGz+t)-~SCn÷/) . Otherwise compute in 

sequence the infinite r e c u r s i v e l y  enumerab le  s e t  ~{f(n+t)}~q (Corol lary  2) and find the f i r s t  number  

( inthe o rde r  of calculation) in this c l a s s  which does not belong to { ~ ( o )  . . . . .  ~ in)} , and let  J ,  C n H ) - ~ .  

We will show that  fo  m - r e d u c e s  (and, in view of the one-oneness  of ~ , 4 - reduces )  A to M . 

If ~ceA , t h e n  S ( ~ ) ~ M .  But ~ ] ( ~ ) , ~ ( x ) > g ~  , a n d s i n c e  M is ~ - c l o s e d ,  Js(z)~M . Simi lar ly ,  

~c~ A --@Jodx)~(z~f . Thus a s s e r t i o n  1) is  p roved .  

We now prove  2). Le t  ~/ be a gene ra l  r e c u r s i v e  function which ~z - r e d u c e s  M to A . Consider  the 
equivalence ~ = ~  ,, ~ . Since ]'~(](/~)) = M ,  / J  is Z]  -c losed ,  and by L e m m a  6 M is ~ -c losed .  

Since M is  a p roper  subse t ,  ~ t  and by Coro l l a ry  i ~ ( ~ 2 )  is pe r fec t .  Let  /< be any p rope r  ~ -  

c losed se t .  Since K is  Z~ -c losed ,  ~"(]  CA')) = K .  Thus ]( /~)  is  not r e c u r s i v e  (and i s ,  in pa r t i cu la r ,  

infinite) s ince ] ~r~ - r e d u c e s  the nonrecu r s ive  se t  K to ] U ( ) .  

We ef fec t ive ly  cons t ruc t  f r o m  ] a one-one function ]~  such that fo r  any x , ] ° ( ~ c ) e ]  ( [ { ~ c } ~ )  • 

The construct ion is analogous to  the cons t ruc t ion  of f o  in the proof  of 1): ]o(o) ~ ]co) . Suppose 

~o(o) ..... ] ,  C~) , have been defined. Compute ] ( n + ~ )  . If  ] ( , z +  t) ~ {]o (o) . . . .  , ~o (n)},  we let  

~oGZ+/) --~ ~7(~z+~) . If ~'(a+¢)e {No(O) . . . .  , ~0 (n)} ,  then compute in sequence the r e c u r s i v e l y  enum-  

e rab le  set  ] (~t~z+v}] [ )  and find the f i r s t  (in the o r d e r  computed} number  A a ]  (E{ a +  ~}_3 ] ) in this se t  

which does not belong to ]~7o(o) . . . . .  ]o  (a )} .  Let ] o  (n+r) -~ ~ . The const ruc t ion  is comple te .  

We ve r i fy  that  ] ,  n ,  - r e d u c e s  (in fac t  ! - r educes )  M to A . 

a n d t h e n  ~ ( x ) e A  . I f _ ~ c ~ M , t h e n  ] (~a) ~ ~ (E{~c]~ ~- ) ~ N , A  and 
]oC~y~ A • 

The proposi t ion  is proved.  

F o ~ ) e ] ~ : J ] 2 ) _ ~ N , A  , so  

R e m a r k .  In [9] Young in 1966 gave an example  of an undecidable pos i t ive  equivalence ~ (of the f o r m  

z; ) ~ such that  any p r o p e r  ~ - c l o s ed  r e c u r s i v e l y  enumerab le  s e t  is  the union of a finite number  of 
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equivalence c lasses .  Thus, this is an example of a perfec t  equivalence, and consequently its equivalence 
c lasses  are  examples of r ecu r s ive ly  enumerable sets  whose ~ - d e g r e e  consists  of a single ! -degree .  

The following proposi t ion indicates severa l  methods of construct ing perfec t  equivalences.  

PROPOSITION 3. Let ~ be a positive equivalence and let  A and ~ be disjoint ~ -c losed  r e -  
curs ively  enumerable sets  not separable  by a r ecu r s ive  ~ -c losed  set  (i.e., there is no r ecu r s ive  ~ - 
c l o s e d s e t  R with A ~ R  and R n 2 ~ = ~ ) ;  then 

1) the equivalence ] - - - - - [ ;  v [ ~  ~' ~ , ~  is perfect ;  

2) the sets  A w and wD are  perfect .  

Proof .  F i r s t  notice that 2) follows f rom 1) and the fact that $~ 'and  ~ are  ~ -c losed  sets  . O n a c -  

count of I .emma 6, we need only verify that $ ~ and ~ a re  Z ~ - c l o s e d ,  ~ - c l o s e d ,  and ~ - c l o s e d .  

We check this for  A '~. Suppose that ~ : e A ~ a n d  < . - ~ ' , F > e ~ .  Then / ( . v ) ~ A  and Ecc(~)-]~=Ec¢(~/)~ . 

But since A is ~ - c l o s e d ,  / ( ~ ; ~ - - [ ~ ( ~ , ) ~ =  [ / E ~ ) 3 ~ A .  Hence I / e  A w . Prope r ty  b ) o f  Example 2 

shows that A ~ is ~ - e l o s e d .  Fu r the rmore ,  suppose that .z:eA '~ . Then ¢~(.z:J _ ~ .4 . But since 

A , " , i ~ = d  , ~ ' ( ~ ) , v B = d  and x~t~°~  . Thus A%W~ = d  a n d f r o m c )  of Example l ,  it  follows that A w 

is ~w~ -closed.  And so is ~- -c losed .  We leave it to the r eade r  to verify in an analogous way that ~8 

is ~- -c losed.  We note fur ther  that A w and ~D are ~- -equivalence c lasses .  

We now turn to the proof of 1). Suppose that it is false.  Then there  exists a proper  r ecu r s ive  ~ - 
closed se t  z o . Without loss of general i ty ,  we may suppose that w~ ~ A, ° . Since R~ is a proper  sub-  
set  of N ,  there is an ~=~e~/,R~. Consider the set  

Since 2o is r ecu r s ive ,  so is R .  We will show that R is ~ -c losed .  Let ~ce~' and < ~ , z > e  Z . 
Then for  ] ( / / t )  == ~](~o) u {~c} and g e  R a , suppose that ~/~ is such that ] ( ~ / ~ ) ~ / ( . ~ ) u  {z}. Consider 

the ~ -closed sets /(~4) and ~(~z). [/(y,)]~ = E/(~vo)u {~c}~Z= E/(xo)'J~g{Jc}]~ =E[C:ro)] 2 u[-{z}~ 

= E/(yz)7 z . Hence <yf,~>eZ;a~. Since Zo is {-closed, :~e~o and ~eR.  

Fur the rmore ,  if ~ve B ,  then for  ~ J , Y : = )  ;~- '~.i  ~:~ • ~'~'~:-,H-~ ~" and • ~: ""3 ~ q~ , so that ~veR .  
And so  3 ~ C  . If ~ e A ,  t h e n f o r  f~[;=-~(%~c.~.~c~ we have j~C~/}j / (x  o ) - - { ~ }  ~ A .  Hence 

< U , ~ o > a g ;  -~ Z • Since ~'o is ~ - c l o s e d a n d  Z o ~ R ~ ,  it follows that y ~  '5  and thus  : c ~ J z  and 

A n R = ~  . Hence A ~ is an [ -c losed  r ecur s ive  set separat ing A and 2~. We have obtained a con- 
t radict ion and proved the proposit ion.  

COROLLARY 1. Under the conditions of the proposition, ~A and B ~ are  perfect .  

This follows since the conditions on A and B are  symmet r i c .  

COROLLARY 2. I ~ t  A and 5 be disjoint r ecurs ive ly  i n s e p a r a b l e r e c u r s i v e l y  enumerable  sets .  Then 

WA Aw ~A, and ~ w  , , are  perfect  se ts .  

In place of ~ one may take @. 

Recall that for 0 , ~ - -  ~ N C a ~  denotes the set  { 2 ~ ] : z : e C }  u { 2 . ~ +  ~l x e , ~ } ,  

COROLLARY 3. If C is a (no tneces sa r i l y r ecu r s ive lyenumerab le )  perfects  set and ~ is a n a r b i t -  

r a r y  subset  of /¢ , then (C e , ,D)  w " ~s perfect .  If ~ is r ecu r s ive ly  enumerable,  then w ( C e , ~ )  is also 
a perfect  set .  

Suppose that ~o is a perfect  equivalence such that ~ is Z~ -c losed  and that ~ and ~ are  num-  

bers  s u c h t h a t  ~c~eC,  .~:,~(~. We let A~o~ k.{z~}~ ~, , ~ o - - ~ , . ~ a , } ~  2° ' ~"~ Z~ ~ ~ " ,4 ~Ao@ )~ , 

~q -'; ~ ~ # . It is not hard to check that 1) the equivalence ~ and the sets  4 and 2~ sat isfy  the hy-  
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potheses  of the propos i t ion  and that 2) (C ~,~)~ wfl] be ~ -c losed ,  where  Z is defined by the fo rmula  

in the propos i t ion .  To p rove  that  w(C ~ ,,~) is pe r fec t ,  one mus t  take the s ame  ~ and in place of 

and ~ take the se t s  ~o ~ ~ and d o e ~ , r e spec t i ve ly .  

R e m a r k .  Coro l l a ry  3 was proved  e a r l i e r  in the case  where  both C and ~ a r e  r e c u r s i v e l y  e n u m e r -  
able .  

COROLLARY 4. If C o is a pe r f ec t  s e t  and ~ ' ~ ¢ ~ , , ,  then the ~6 -deg ree  of C, contains a pe r f ec t  
se t .  If Co and C~ a re  r e c u r s i v e l y  enumerab l e ,  then the co r respond ing  pe r f ec t  s e t  may  be chosen r e -  
cu r s ive ly  enumerab le .  

As such a se t ,  one may  take ( ~ C , )  ~. 

The following c o r o l l a r y  is f o rmu la t ed  as  a s e p a r a t e  propos i t ion .  

PROPOSITION 4. E v e r y r e c u r s i v e l y  enumerab le  Turing degree  ~ o  contains a pe r f ec t  r e c u r s i v e l y  
enumerab le  se t .  

P roof .  Suppose that  A is a r e c u r s i v e l y  enumerab le  non recu r s ive  se t .  Then A may be wri t ten  as 
the union of two disjoint  r e c u r s i v e l y  enumerab le  r e c u r s i v e l y  inseparab le  se t s  t 4  and A, [10]. 

ad 

It  is well  known that ~g "~r A , b - a , ¢ .  By Coro l la ry  2, A o is  pe r f ec t  and, by Corol la ry  3, 

( , 4 ~ A )  w is pe r fec t .  C lea r ly ,  /t =-- r ( A ~  ~ A)  w 

The proposi t ion  is p roved .  

COROLLARY [6]. Eve ry  r e c u r s i v e l y  enumerab le  Turing degree  > a contains a r e c t t r s i v e l y e a u m e r -  
able n v - d e g r e e  cons is t ing  of a s ingle  1 - d e g r e e .  

The r e s u l t s  obtained above na tura l ly  lead to a s e r i e s  of quest ions and conjec tures :  

1. Will any ( r ecu r s ive ly  enumerable)  r n - d e g r e e  which consis ts  of a single 1 -deg ree  be a pe r fec t  
se t?  

In connection with th is  quest ion,  i t  is na tura l  to check whether  any known nontr ivia l  f r~-degrees  
a r e  pe r fec t .  

F o r  c rea t ive  se t s  this will  be noted in the next sec t ion .  

We cons ider  an example  given by C. Jockusch  [6]. 

PROPOSITION 5. If ,9 is a s imp le  nonhypers imple  set ,  then S ' °  is pe r fec t .  

P roof .  Let  fo ,  ~ .... be a s t rongly  enumerab le  l ist ing of finite se t s  which shows that  S is not hy p e r -  
s imple ,  i . e . ,  

a) for 

b) ,c~n (N,.S)¢=d for  all  ~ .  

Consider  the se t  8 -~ {=c 13• (~-~ x ~ ( = c ) ~  s ) }  . This se t  is r e c u r s i v e l y  enumerab le  and consis ts  
of those number s  of finite se t s  which except  for  the m e m b e r s  of 3 contain some e lements  of the l is t .  It 
is  not difficult  to check f r o m  the definit ion that  2~ is Za - c losed .  We will show that  ~qW and ~ a r e  d i s -  

joint  and inseparab le  by a r e c u r s i v e  ~ - c l o s e d  se t .  If ~ce  ~ w,  then ,/(x)~--S. Thus if ~ \~'(~c)~S 

then ~ a  ~ 5 , which is  imposs ib le  by b). Hence 5w~23  = ~ .  Suppose that R is a ~s - c lo sed  r e c u r s i v e  

s e t s u c h t h a t  5%R---~ and B ~ R  . Let  A ~ {.~ I.~e,~ ~ V~' (~(~/)~ f(:~)==> 5/~ Z }. 

The se t  A is r e c u r s i v e .  Note that , for  . ~eA ,  jC.~)fi d and ]( .x~f~ Z = d -  Indeed, if  ] (~c )=  d , 

x=oe ,V  w . Suppose that  dc(=c)f~q~ ~ .  Then,  i f ~ e j ' ( ~ = ) n h , f o r  ~/ s u c h t h a t  0¢(/ / )=~/(x) ' .{gJ we 

have <.x',g>eE~ , a n d s i n c e  R is  ~ ; - e l o s e d a n d  ~ v e Z ,  then z / e ~ ' .  But ~((~,)~0¢(~=2 , a n d s o  ~cCA. 

Fo r  each  /z the re  is ~ a e A  s u c h t h a t  Q c ( ~ ) ~ .  Since f z . f ~ . -  fl/ , ~/(.v-i),",}'(~)')=~. It follows that A 

is infinite and the r e c u r s i v e l y  enumerab le  se t  T ~  d / / ( ~ c )  is infinite and l ies  in the complement  of ~ ,  

which is  imposs ib l e .  By applying Propos i t ion  2 to the equivalence ~s and the se t s  ~ and , 6 ,  we see  

that  (hw)  w is pe r fec t .  But it is  e a s y  to see  that (,Sw) w is r e c u r s i v e l y  i somorph i c  to ~qw. Thus S w 

is pe r fec t .  
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The proposi t ion is proved.  

R e m a r k .  One may avoid using Propos i t ion  2 and the i s o m o r p h i s m  of ~ wjw and S u) since it is  
poss ib le  to prove  that  ~$ v ~ 8  is pe r fec t .  

Coro l l a ry  4 makes  probable  the hypothesis  that any ( r ecur s ive ly  enumerab le )  ~ - d e g r e e  contains a 
( r ecur s ive ly  enumerable)  pe r f ec t  se t .  

Note that an a f f i rma t ive  answer  to this hypothesis  in the r e c u r s i v e l y  enumerab le  case  would be i m -  
plied, in view of the previous  r e s u l t s ,  f r o m  an a f f i rma t ive  answer  to e i ther  of the following two quest ions:  

2. For  any r e c u r s i v e l y  enumerab le  nonrecur s ive  se t  • ,  can one find disjoint  r e c u r s i v e l y  e n u m e r -  
able r e c u r s i v e l y  inseparab le  se t s  ~ and ~ such that S o ~ g  R ? 

3. Fo r  any r e c u r s i v e l y  enumerab le  non recu r s ive  s e t  • ,  can one find a s imp le  nonhypers imple  se t  
such that 5 ~ e  ,~ ? 

With r e g a r d  to the l a t t e r  quest ion,  one should r e c a l l  that  if one does not r equ i r e  the absence  of h y p e r -  
s impl ic i ty ,  a t h e o r e m  of Dekker  [10] gives  a posi t ive answer .  Moreover ,  ins tead of ~ - reduc ib i l i ty ,  
Dekker ' s  t h e o r e m  obtains posi t ive  reducibi l i ty .  

To emphas ize  the difficulty of obtaining a pos i t ive  answer  to P r o b l e m  3 we point out that  the analog 
o£ this p rob l em for  posi t ive  reducibi l i ty  has  a negat ive answer .  

R e m a r k .  After our paper  had been completed,  negative answer s  to Questions 2 and 3 were  obtained. 
Indeed, A. N. Degtev proved that  no s imple  nonhypers imple  se t  is ~ - reduc ib le  to a hype r s imp le  se t  
with a r e t r a c e a b l e  complement .  La te r  S. D. Denisov proved  that  no pe r f ec t  se t  is g g - r e d u c i b l e  to a hy-  
p e r s i m p l e  se t  with a r e t r a c e a b l e  complement .  

PROPOSITION 6. If S is a s imple  nonhypers imple  se t  and / "  is a h y p e r s i m p l e  se t ,  then ~q is not 
posi t ively reducible  to F .  

Proof. .  By reducing fo rm u l a s  to conjunctive no rma l  fo rm ,  it is eas i ly  shown that  S is posi t ively  r e -  
ducible to . r  if and only if ~ is r n - r e d u c i b l e  to the s e t  ( w / " ) w .  

Now we prove  an aux i l i a ry  l e m m a .  

LEMMA 8. If C is  hype r s imp le ,  so  is w/~. 

p roof .  Suppose not. Le t  Foo , ,~  . . . .  be a s t rongly  enumerab le  l is t  'of  finite se t s  such that 

~ (N~ w F ) ~  ~ for  all  z~.. Without loss  of genera l i ty ,  we may suppose that o ~  ~ . We will e f fec -  

t ively  cons t ruc t  a l is t  of finite se ts  q~o, ~ , . . "  as follows: ~o * c / { ~ ( ~ c ) ] ~  e ~-o} • Suppose that ~ ,  ~ ,  
#o 

• . . ,  ~ have been cons t ruc ted .  Let  #,z-~ L~ ~ and find the l e a s t  ~ such that ,  for  any =ca ~ , d¢~), ~ ~ #  

(i .e. ,  ~ ( ~ )  --d ~ ). Note that  one can find such a ~4 because  #~  is a finite se t ,  it has a finite number  
of subse ts ,  and the se t s  ~ a re  pa i rwise  disjoint.  Let  ~ , ~  E L/{~ (~c)] x e ~-~ } ~ \ ~ .  Thus ¢ o ,  ~ . . . .  

is a s t rong list ing of finite s e t s .  We will show that for  any n . ,  q ~ D  ( N , F J  ~ ¢~. Fo r  ~z~ o : s ince 

~o~(A/,w/')fi~ there  is ~ c e ~  s u c h t h a t  ~ : ~ w F .  Hence 2'(~c)~f'=qJ . But : z : ~ o . f ( : v ) ~  , a n d  

ijtQ'--~Jc.~ ~ • S O  i~oi"~(AIxF,),.--~i(,...~,)~-¢, For  q~a+¢ : s ince ~ - C / ¢ , w C ) # ~ t h e r e  is .~eF/~ s u c h t h a t  

The l e m m a  is proved.  

Remark .  It is eas i ly  shown that  if / "  is s imple ,  so  is w/-.  However,  it is imposs ib le  to show that  
if C is hype rhype r s imple ,  so  is ~/~.  Indeed, suppose that / "  is a hype rhype r s imp le  noncomplete  se t .  

Suppose that  w/~ is hyperhypers impleo .  Note that  /7.=--- wC. F u r t h e r m o r e  cons ider  the s u p e r s e t  R of w/~ 
1" 

defined by: R ~  ~Cul~c]](~:)e/(}, where  K is a c rea t ive  s e t  and ] ( x )  denotes the number  of e l e -  
merits in ]~x) Since R -~ wF and w/~ is hype rhype r s imp le ,  i t  follows [2] that  R ~- w / -  In p a r -  

t i cu la r ,  ~ ' " r  w/" and ~ r / ~  . The following equivalence holds: n £ ~  ~ for  the f i r s t  m e lements  of 

the complement  of /~ ,  . ~  .... -~rn ,and ~c such that  ¢~(x)= {m,,...,.~c,z ] , ~ e R  . This equivalence shows 
that  K is r e c u r s i v e  in /~ ,  which is imposs ib le .  
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We now re tu rn  to the proof of Proposi t ion  6. It is sufficient to show that if S is a simple non- 
hypers imple  se t  and /~ is hypers imple ,  then S is not m - r e d u c i b l e  to /"  "J . Suppose the contrary ,  and 

let  f rn - reduce  S to / . w  Let Fo, ; , , . . .  be a s t rong listing of finite sets  such that for any r~ 

/:nn (iV, S)#~6 . Let  ¢~ -~ U { ~ (~c) I ~c e .~c (~ )  ] .  We note the following: 

1) Fo r  any n , ¢Pnn(zC, f')~9~. Indeed since ~nC/v',S)¢~. then for  :re Fnn(zV, 5), f(~c)qfZ ~ 
Hence ] / ~ . ~ ) n  (IV,/") ¢ 9~ , but / / d ~ c ) _ ~  . 

2) For  any 5ze/V~/" there  is only a finite number of z~ with F e ¢ , z  . Suppose otherwise.  By 
letting 

we have / - t(y)c_A/,S , since Vc--NXF w But s ince , for inf in i te ly  many /7. , Fnni-'(Y)¢= ~ , S - ' (Y)  
is infinite. But ¥ is a r ecu r s ive  set ,  and consequently f - ' ( y J  is an infinite r ecu r s ive  set  lying in the com-  
plement of S , which is impossible.  

We now effectively const ruct  a s t rong listing of finite sets  ~o, ~ . . . .  as follows: 9~o -~ ~ . Sup- 

pose 9~o, ~ , . . . ,  ~A,~ have been constructed.  Compute in turn the elements  of / ' ,  obtaining F ~ z F h . . .  ; 

then find the f i r s t  pair  (d,~n) such that 

¢z 

z,,..---O 

One can always find such a pair ,  since for ~ sufficiently large no elements of CC~ ~.w)/v (A / , / " )  occur  

in ¢~e [such an ~ exists by Proper ty  2)], and for  r,z sufficiently large  every  number in Ce ~ / "  is 

a l ready in /.,m U g ~ i  . ~ , s o  that C~e \ / - ' ~ )  ~ ( ) =  ~ we  let . ~ i ~  f ° we  see at once that 

¢~e, ~ C~ ~, 3 = ~ and ~ + , n  (A/,i") =~en(/¢,[')~ ~ . Thus ~o,~,, . . .  i s a s t r o n g l i s t i n g o f  

finite sets  such that ~ n  (zc, P )  ~ 9¢ for all , z .  Hence /" is not h y p e r s i m p l e - a  contradiction.  

The proposit ion is proved.  

In the conclusion to this section we explain the behavior of perfect  equivalences with respec t  t o t h e  
operations introduced in Sec. 1. 

LEMMA 9. If ~ is a perfec t  equivalence, so is ~ w .  

Proof .  Suppose otherwise,  and let R be a proper  ~W-closed  recurs ive  set .  We define R,z for 

m = ¢ , Z  . . . .  as follows: ~.'a~ {Jcloce_R,)J(~=)=zv}. Then A~=C/AL, and Rt.nl~f--¢,£~f. Every A~ a 

is a r ecu r s ive  set .  By passing to the complement  of A ~ if necessa ry ,  we may suppose that ~ # g¢ . 

Fur ther ,  if A/--% {~=lJZ(~c?=z~} let A be the least  number such that 2a~/V a (since 2 ~ / ¢  , such a 

exists) .  Note also that since A?~ @ ~ , A'a ~ ~ for all zz. 

We consider  two cases :  ~=! and i > / .  

A = 4 . Let Z ~ { x l - g S / ( b z e ~ & ] ~ y ) = t x } ) } .  2 is a r ecur s ive  set  and, since ~ g ~  and ~ , ~ ,  , 

~- ' is  a p roper  subset  of N .  We show that  ~ is ? - c l o s e d .  Let ~ r e ;  and . ~ c , z > e ]  . Then for ~/o,~ 

such that /'(9,o)=tx},/z(y,)=tz J , we have L-]'Q/o)~f= [{~cj3?= [{gJ38--[-[~Y,)A 8, and hence z~,J4> e ?  w . 

But yoe~? r , andhence  ~/,e.q, , since Z is ? W - c l o s e d .  But then z e [ .  And so 2 is a p r o p e r  ? -  
closed r ecu r s ive  set  - an impossibi l i ty .  

A=n~-~, / z > o .  Then ~'/z=A/~, h P / w r ~ , a n d  A~m./d/Va, f .  Suppose that yeA/n+ r \A~+ r and 

z~6~/~/) , a n d l e t  Yo be suchthat/Z~o)=~#(y)x[zoi • Since /-~o~Yo)=/z, //oeA~n=/Va. Define Z ~ 

{~c/_gu(~zekv~/z(u) = ~'(9,o)uix})} . Note that g o d Z  , but Z ~  g~, since if x : e d ' r ( ~ )  , then z e Z  • 

So A ~ is a proper  r ecu r s ive  set.  It is easy  to check (as above) that R is ~ -c losed  - an impossibil i ty.  

The l emma is proved.  
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Remark .  The equivalence Z ~  has a p roper  closed c lass ,  consist ing of only o .  Thus Z~  is never  
per fec t .  

LEMMA 10. Suppose that Zo and Z, are  positive equivalences.  The product  Z=Zo xZ¢ is p e r -  
fect  if and only i f  both Za and [1 a re  per fec t .  

Proof~ Necess i ty .  Suppose that Z is pe r fec t  but Zo is not. Then there  is a p rope r  2o -c losed  

r e c u r s i v e  se t  ~ .  Define ~-~t_~cl E~c )e  R } .  since ~ is a p rope r  r e c u r s i v e  se t ,  ~ is a lso.  It r ema ins  

t o s h o w t h a t  R is ~ - c l o s e d .  Let  t o e ' a n d  <~c,~/>~.  Then C~v)eR and <~'(~c?,C(y~>~Za. But R 
is Za -c losed  so that ~( / / )eR and y e ~ - .  The necess i ty  is proved.  

SufficiencY. Suppose that Zo and Z, are  per fec t .  Suppose that  t he re  is a p roper  r e c u r s i v e  Z - 

c l o s e d s e t  Z .  Let  Rn--~{~I~zeR , [C~cJ=~}. Then R--~R~ ,~.~Rj. = d ,  ~ ] '  • Each X>~ i s a r e -  

curs ive  set .  By passing to the complement  of Z if n e c e s sa ry ,  we may suppose that R o ~ .  Let  ~ be 

the leas t  number  such that A'~ y~ N~ (~ t~c /gcx)=  ~}).  If ~'~ ~ d  , then by letting R -~ t:c]BE (~/e A'~ & 

x=~(g))}  weobta ina  p roper  r e cu r s ive  se t  which is ]~ - c losed  and which, as is not difficult  to check, is an 

impossibi l i ty .  If ~'~----d , t h e n  ~>o .  Then le t  Z-~{~.L~//e~'(~c=/¢~/~)}. Since ~ > o ,  o ~ W , b u t  A d W .  

Hence ~ is a p rope r  r e c u r s i v e  se t .  We check that  R is ~o -c losed .  Let  ~ r¢~  <x.~/>~£a . Then there  
is a ~ such that  z ~  and ~r=d'(z). Let 2 be such that ~ E ) = ~ /  and z(~2--~(~)~,i.e., ~=cCE,~(~)). 
Then < ~(z~, ~(~)>=<~ y > e ~ a ,  < z C~), e(2)>= < ~(z), ~(z)>~fi,, and hence < z , ~ > ~  , ~e ~?, and ~/= 
Z(E/e~.  So R is a p roper  r e c u r s i v e  Eo -c losed  set  - an impossibi l i ty .  This contradict ion proves  the 

l emma.  

Remark .  The sum Z°m ~ of any posit ive equivalences Zo and ~¢ is never  per fec t .  Moreover ,  
in a well-defined sense  (the following section) the i r reducib i l i ty  to a direc~ sum is cha rac t e r i s t i c  of p e r -  
fec t  enumerat ions .  

3. The Category ~ #  of Pos i t ive ly  Enumera ted  Sets.  An enumera ted  se t  ~ - ( ~ ,  ¢) is called pos i -  

t ively enumera ted  if the enumerable  equivalence ~ ~ ~.~.~, y >  l v~v = #~/} is posi t ive.  The total i ty of all 
posit ively enumera ted  sets  with the usual defintion of morphism const i tutes  the ca tegory 3Zp of posi t ively 
enumera ted  sets ,  which is a full subcategory of the ca tegory 2Z of all enumera ted  se t s .  

We formulate  some basic p roper t i e s  of the ca tegory ~Tp in the next  proposi t ion.  

PROPOSITION 7. 1) The ca tegory Fzp admits (finite) d i rec t  sums and products;  2) if 3 'e ~ p  

and (~,2~) is a subobjeet of ~ (in the ca tegory  ~Z ), then ~¢o e ~ p  ; 3) the notions of subobject,  p r in-  
cipal subobject,  w,z -subobject  and ~ -subobject  coincide for  posi t ively  enumera ted  se ts .  

Proof .  Asser t ion  1) is eas i ly  ver i f ied;  one need only notice that the d i r ec t  sum Jo e~ ]¢ and the d i rec t  

product  ~v~ ~ / ,  for posi t ively enumera ted  se ts  ~o and ] ,  in the ca tegory  F3 are  posi t ively  enumera ted .  

Let  ~ =  ( S , ~ ) e  ~ p  , i .e . ,  ~ - - - { - ~ y > ]  ~ x = ~ } -  is r ecu r s ive ly  entuuerable .  Let  (So,/.z) be a sub-  

object of ~ and le t  f be a one-place  genera l  r e c u r s i v e  function such that /~¢o = ~2 z • Since /~ is a 

monomorphism then go (~zr) = ~ ( F J ~ / Z ¢ o  (~c)=/~(5~). Hence 

so E~ is recursively enumerable. Assertion 2) is proved. 

Let (#J,,/.z) be a subobjeet of the positively enumerated set / ; we w~]l show that (~o,/~) is an e - 
subobject. Let S be a one-place general reeu_rsive function such that 2z~=~f . Let ~ ~ S ( > / ) ~ 2 v  , A~ 
berecursivelyenumerable,and ~ =  ¢-~,~(S~)). Suppose that ~ ~ E¢ ~ "'" is a strongly computable 

~z 
sequence of finite sets  of pairs  such that U E~ =Ev • Let  

/ z , - o  
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It is easy  to  check that $]=A ~ and for  m~ M , ,/z~](..v)~](.r). F r o m  L e m m a  3, §4 of [1], it  follows that 
(~, /~)  is an e -subobject .  Since the implicat ions 

e - subob jec t  ~ w,z-subobject  ~ principal  subobject  ~-~ subobject  

always hold, a s se r t ion  3 is proved.  

The proposi t ion is proved.  

We note that any posi t ively enumera ted  se t  ] = (S. ~) is isolated and its ~ - o r d e r  coincides with 
equali ty.  Thus if ~q is not a single e lement  set ,  ] cannot be completely enumera ted .  Never theless ,  
p recomple te ly  enumera ted  se ts  exis t  in ~Zp . 

PROPOSITION 8. Suppose ~ is a one-place universa l  par t ia l  r e c u r s i v e  function, i .e . ,  such that for  
some two-place  genera l  r e cu r s ive  function f ,  ~:~,~(~(z~,:y~) is a two-place universal  function for the 

one-p lace  par t ia l  r e c u r s i v e  functions.  Let  ~g ~--- A//~; ,/~--. ( 5 , ~ ) ,  where v,~)  ~- ~ {~:}~g;. Then 

1) f ig is a p recomple te ly  enumera ted  set ;  

2) any posi t ively enumera ted  se t  is a subobject  of / .  

P roof .  The f i r s t  a s se r t ion  was proved in Propos i t ion  5, §8 [1]. We will prove the second.  But f i r s t  
we es tabl ish  an auxi l iary  a s se r t ion  which is in teres t ing  in i t se l f  when cons idered  as p roper t i es  of the pa r -  
t ia l  r e c u r s i v e  a lgebra .  

LEMMA 11. ~ ] is a one-place  universa l  par t ia l  r e c u r s i v e  function, for  any onecplace par t ia l  r e -  
curs ive  function ] one can find a one-place  one-one genera l  r e c u r s i v e  function f such that 

~cf~i ' ( .x : )  -- ~ i ¢ ~ )  ; i .e . ,  the domains S i S '  ,~] )c  of the functions f ~ '  and ] f  are the same 
and, for  ~ 8 f ~ , / f c = ) - ] / ~ ) .  

Proof .  F r o m  the definition of the universal  functions ] it is easy to prove that for  any one-place 

par t i a l  r e c u r s i v e  function A one can effect ively  find a one-one genera l  r e c u r s i v e  function f such that 

A-=~7 • Suppose that ~ }  a ~  is a computable sequence of one-place  one-one genera l  r e c u r s i v e  func- 

t ions such that  for  any n e N ,  ~,~:T[=].,J~,, where ~ -  is the one-place  p a r t i a l - r e c u r s i v e  function with 

Kleene number  n . By the f ixed-point  t heo rem there  is an rr o 

w e h a v e  f j = ~ f  . 

The l em m a  is proved.  

We r e t u r n  to the proof  of the proposi t ion.  Suppose that Z 

such that %--~¢o.  If we le t  dC~e%----f%, 

is an a r b i t r a r y  positive equivalence.  Then 

by Propos i t ion  1 the re  is a one-p lace  par t ia l  r e c u r s i v e  function ~ i  such that [ = ~ ] ~ .  

one-one ons-place genera l  r e c u r s i v e  function such that ~ - - - ~ f .  We will ver i fy  that 

d 

Since ~--Z~ / , i t  is necessary to cheek that 

k 
<.,~-, ~>e e,~, ~ </(~c"/(~/)'e d" 

Let  f be a 

We show by induction that for any .~ , Jk2O'~U..~cj=]'~f(..,c). If z=o ,  ./(~t)o(=) = f ( = ) = ] T ( =  ) . 

If ~=~+/ and i~J:'(.~;~]=~.), then 

f ~  ") ~,÷Isc) ~- / / ,  ¢, "*ocsc)) ,,7,~],'?= ;) _4_, ] ¢~, "o/ cx:;) = ] =o+ ' / c = ) . 

__  Iz, C . z,/~ . ~ . ,  if <~y>.G i, . d  ] ' : 7~= ] ' " c~ ; ,  then f9"%=2=/:'fc=2 =2 ~'~= yl a=l .iC=J, fc~>'~,]. 
Conversely,  if <f~v.Lr~j/2>~7; ] and q =°f(~cj = 7 ~ i ( F ) ,  then S ~ : C = ? = f ~ T i ~ O , ) .  But since f is one-one,  

~tzoC~c J =~t~C~/) and <=v,y>e Z ; ,  " The equivalence is proved.  
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If we let  ~ /¢/Z'  ~ ( ~ c ) ~ t = r ] ~  Z ' we see  that the mapping ~z defined by /~([tac}~ e ) -~  

[~S(-~)}] ~ is a m o n o m o r p h i s m  f r o m  J -~  (ff,~) to ]=(S,~) . But any posi t ively  e n u m e r a t e d  se t  is 

i somorph ic  to a se t  of the f o r m  ] , so any posi t ively  enumera t ed  se t  is a subobject  of ] . 

The proposi t ion  is proved.  

Now we c h a r a c t e r i z e  those posi t ively  enumera t ed  se t s  whose enumera t ed  equivalences  a re  pe r fec t .  

LEMMA 12: L e t f  ----- (5, ~) be a nontr iv ia l  pos i t ively  enumera t ed  se t .  The e n u m e r a t e d  equivalence 
~ is pe r fec t  if and only if ] is not a d i r ec t  sum.  

P roof .  If (aco,/z,,) and ~0¢~,/1, ) a r e  subobjeets  of a ¢ and ~¢ is the i r  d i r ec t  sum,  then /a t (~.)  
- ¢  

is  a comple te ly  r e c u r s i v e  subse t  of ~¢, ~;~-a, ~. Hence e (/~i (~ '))  a r e  ~ - c lo sed  (proper ,  c lear ly)  r e -  
curs ive  se t s .  Thus Z¢ is not pe r fec t .  Converse ly ,  let  ~' be a p r o p e r [ r e c u r s i v e ]  Ze - c lo sed  se t .  Then 

S~v(/e) and $1~ ;(,¢,R) a r e  comPlete ly  r e c u r s i v e  subse t s  of ~ .  If we provide  them with enumera t ions  
;0 and ,~ which a re  pr inc ipa l  with r e s p e c t  to V , then the enumera t ed  se t s  ( S  o ,Vo) and (~,,, v,) together  
with the natura l  inject ions go : So ....... S and ~) : S--~S f o r m  a pa i r  of subobjects  of ~ and ~ is the i r  
d i r ec t  sum.  

R e m a r k .  No p recomple t e ly  enumera t ed  se t  is a d i rec t  sum (Rice ' s  t h e o r e m  [1]). F u r t h e r m o r e ,  any 
equivalence is p r ecomple t e  and a posi t ively  enumera t ed  se t  is c l ea r ly  c r e a t i v e .  Thus by Propos i t ion  8 and 
L e m m a  12, a c rea t ive  se t  is  pe r fec t .  

4. Descr ip t ion  of the Functor  / o ( / )  . In the p reced ing  p a r a g r a p h  it was noticed that  subobjects  of 
posi t ively  enumera ted  se t s  a r e  a lso  pos i t ive ly  enumera t ed .  However ,  ~/ ,  is not c losed  trader ep imorph ic  
images  because  2V~ 3z/~ and each enumera t ed  se t  may be r e p r e s e n t e d  as a f a c t o r - o b j e c t  of /A/. In this 
sect ion a ce r ta in  " c om pac t ne s s "  of the subca tegory  ~Zp in ~ will be proved.  

This " compac t ne s s "  will be shown by the fac t  that  by using an app rop r i a t e  r e p r e s e n t a t i o n  of the 
enumera ted  se t  ~' as a fac tor  object  of a posi t ively  enumera t ed  se t ,  one may  "compute  n the subla t t ice  

Z o(f) . We r eca l l  that  L o(p (see [1], pp. 35 and 45) is the s e t  of all  subobjects  of J~ modulo equivalence 

under ~' induced b y t h e  following par t ia l  o rder ing  ~ :  if ( / o , / ~ ;  and (],,z%) a r e  subobjec ts  of ~ ,  

then (}',,,Fo) ~ (f,,/-<,; <~--~--> the re  is a m o r p h i s m  /~: ~o-"~ ,  s u c h t h a t  / z o = y , / z  , i .e . ,  the following 
d i ag ram is commuta t ive :  

F i r s t  we desc r ibe  the "cons t ruc t ion  n of L~/ ]  fo r  a pos i t ive ly  enumera t ed  se t  f = CS, ~) . 

LEMMA 13. If 0¢-~(~ ~) is a posi t ively enumera ted  se t  and ~ is the enumera t ed  equivalence,  then 
o~,; is i somorphic  to the total i ty  p -  of all  nonempty f - c l o sed  r e c u r s i v e l y  enumerab le  se ts  with the 

re la t ion  of inclusion.  

Proof .  As has a l r eady  been mentioned in the preceding  pa rag raph ,  fo r  posi t ively  enumera t ed  se t s  
the notions of subobject  and e - subob jec t  coincide.  Thus,  any subobject  (~o,fo; may be uniquely r e p -  
r e s en t ed  by i ts  inaage Yo (So),  which in turn  may  be r e p r e s e n t e d  by the nonempty ~ - c lo sed  r e c u r s i v e l y  
enumerab le  se t  ~'~(yo ( 5  o )) .  This co r respondence  g ives  a mapping of L °(t'} into /R , which is the de -  
s i r e d  i s o m o r p h i s m ,  as may be ve r i f i ed  without difficulty.  

The l e m m a  is proved.  

If /~:  ~o ' fi  is a m o r p h i s m  of enumera t ed  s e t s ,  the re  is a mapping ~ ~C/u.) : Z "(]o) --'~Z. °(d', ) 
(see [1], p. 46), denoted for  shor t  by ~z~ , posses s ing  the following p rope r t i e s :  

1) /u s is  an upper  s emi l a t t i ce  hom om orph i sm;  

2) /u~ is a m o n o m o r p h i s m  if and only if /z is;  

3) /Lz, (/. °([o}) is an ideal in Z °01,) ; 
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4) (#o#,)# = # o . ~ , .  ; 

5) /d~ is an ep imorph ism if and only if # is a fac tor iza t ion .  

P rope r t i e s  1)-4) a re  eas i ly  checked using the definit ions.  We check 5). Suppose that /~# ; Z °(~o ) " 

L ° (~ )  is an ep imorphism.  Since L o(~) has a g r ea t e s t  e lement  ~ (~= (jJ, icL)), then / ~ . ( f ) ~ l  This 

mesn~ that  /~  ( ~ )  ~ ~ and the enumerat ion  of ~q/ defined by  /~ co :/V --*- ~ is equivalent to ~ . 

Actually this also implies  that /~ is a fac tor iza t ion .  Conversely ,  ff /-~ is a factorizat ion,  then / ~ # ( ] ) ~  

and, by P r o p e r t y  3), / ~  maps L ~(~o) onto Z #(~) , i .e . ,  /~e is an ep imorphism.  

If /Xo :~ - -~ - /  and H / ] , - * - /  a re  two fac tor iza t ions  we will s a y t h a t  #~ is f iner  fJ~n /.z~ (/~z. ~/a~r) 
if  t he re  is  a m o r p h i s m / z  : /~ - " - ~  such that  / z ,  ~ / Z o y  . Note that the morphism / x ,  if i t  exis ts ,  is 
unique and is a fac tor iza t ion .  If /~o-$/% and /~,<¢Ho , then /z~ and /z, a re  equivalent under ~¢ . 

Le t  ] be an a r b i t r a r y  enumera ted  se t .  Consider the family ~ of all equivalence c lasses  of fae-  
tor iza t ions  /Zo. ~¢o - - ~ /  such that ~ is a posi t ively enumera ted  se t .  A may be identified with the family 

of all  posit ive equivalences ~o such that ~ ] , where Z is the enumera ted  equivalence of the enumer-  

ated se t  / - - - - ( ~ v ) .  In fact  in each equivalence class of a fac tor iza t ion there  is a unique fac tor iza t ion of 

the fo rm ~. ((N/[o), ~o ) - - . - [ ,  where N/[o is the collection of ~o-equivalence  c lasses ,  % is the 

enumera t ion  defined by Vt'o ~x)~[~.v}~ and g is the morphism induced by the enumera t ion  q:/¢ ~ ~ . 

We note fu r the r  that the inclusion re la t ion  ~ on equivalences cor responds  to the re la t ion  ~ on fac-  

to r iza t ions .  Similar ly ,  let  ~ -~ ~ ~1 ~ ,  is a posit ive equivalence and ~, ~ ~}. On A t4ae re la t ion 

is d i rec ted ,  i .e . ,  for  ff~,~ e A there  is a ~z • A such that ~ ~ ~ and ~, ~ ~ .  This follows f ro m  the 
fac t  that  ~ o , ~  • A ---~ ~ v ~ :  e / / .  

Suppose that ~ / ¢  and /x:~--~-ov i s t h e  co r r e spond ing fac to r i za t ion .  T h e n b y  L e m m a t 3  L~(]~)~ 

A:' i and the mapping /cz~ induces an ep imorph ism e~o : 2F~ *' L °Q¢). If ffo~ if: e A , then the 
homomorphism defined in 1 of paper maps @ :  homomo hica   onto @ /  It 
easy  to see that the d iagram 

is commutat ive .  

The system t ~ . : ~ o : ,  I~o:, ~A~ forms the ~ e c t  spectrum of the upper s e ~ a ~ c e .  ~et R /  
de~ote the l i ~ t  o~ this spec~um and let % denote the unique homormorp~im from R~ to ~-. 

Remark .  If f is a posi t ively enumera ted  set ,  then ~ is a posit ive equivalence.  In this case,  the 
meaning of ~ -  is not ambiguous since the two objects denoted a re  natural ly i somorphic .  

Since all  homomorphisms  ~ F ,  a re  ep imorph isms ,  PZ- is an ep imorphism.  F u r t h e r m o r e ,  the com- 

mutativity of the above d iagrams implies  the exis tence of a unique homomorphism (indeed, epimorphism) 

~7: R /  ' £ ° ( p  such that for  any ~E A the diagram 

L°(]) 

commutes .  

The fundamental a s se r t ion  of this sect ion is that ~Z is an i somorphism.  

PROPOSITION 9. For  any enumera ted  set  ] the homomorphism ~ : • /  ...... ' Z °(// constructed 

above is an i somorph i sm f r o m  R i into Z °~ )  . 
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Proof.  That ~ is an epimorphism has a l ready been noticed in its definition. Thus it remains  
to show that dg is an monomorphism. Suppose ~ and Zo is a positive equivalence. We will 

describe the epimorphism ~ o :  P ~  " Z~/)  explicitly. Let ZeA~j:  andpu t  ~ o - ~ ( ~ ) .  Suppose 

that J is a one-place general  recurs ive  function such that p f l = ~ '  . Let  ¢o-~ ~J  and ~,o-~(~qo, ¢o ) - 
Then (~ ,Z~/ is a subobject of / . This subobject [more precise ly ,  the class of subobjects equivalent 
under ] to ( ~  Y~/) ] is ~Fo (~') . Now that we know the explicit  form of the mapping ~ ,  we will prove 
the following asser t ion:  

Suppose that ~o ~ A ~  , A ~ e ~  , and tha t  ~o( -~ ) .  ~, ( - ~ )  are  positive equivalences.  If 

&]P~o (~o) ~' egp2, (~) , then there is a positive equivalence ~z such that ~oV~lm~,~ Z and 

Note that Proposit ion 9 follows f rom this asser t ion  since it means that ~p~o (~)-~ $2p2, (~,) 

~o(4~)~PF,  ( /~) ; i .e. ,  for any elements  c ¢ , p e / ~ [ %  (cr) ~e2(/~)~/z] and, in par t icular ,  

[ ~  (oc) ---- ~ (/3) ~ ~ ---- /3 ]  . Thus &2 is a monomorphism. 

We re turn  now to the proof of the above asser t ion.  Consider the two commutative diagrams:  

The commutativity of these diagrams and the hypothesis of the asser t ion  show that  a~  (Zo) ~ ~2, ( z ' ) "  
Suppose that #co and ~ are  subobjects of / (together with the identity injections Z,z" into / ) which 

define the classes ~ o  (Ro) and $~, (~,) respect ively,  and let  ~'o and ~ be general  recurs ive  functions 
s u c h t h a t  ~o = ~fo , ~ .  Then /o7~=,¢ o and p ~ = ~ ,  . The inequality 8 ~ o ( R O ) ~ ,  (~',) im-  
plies that there is a morphism ~ : /o  -- ' - f i  such that the d iagram 

/o 

commutes.  

Let ~ be a one-place general  recurs ive  function such that / d ~ - ~ ]  . But since 5 o and S r are  sub- 
sets  of S ,  it follows that 5o~ 5, and /~ is the identity injection, i.e., ~ -~ ~ F" Let /z be a one- 

place partial recursive function whose domain ~/z is R o sunh that for any ~¢Ro,  :r~o~(~rJ-- ~ .  Let 

~/~--mh~ , ] / l  . /-/ is a partial recursive function with domain R o . We will show t]mt for any ~e  ~o , 

~c =4H(~c) . Iudeed, ~ c - -  ~'fo/L(~c)~'o~(~c)---- #]/~(~c2=¢~/~(~)  ~ ~/-/C~c). We will also show that 

x e  Ro ~ /C(xje Z,  . Indeed, zC e Zo -~ 3/-/ ~ /-/(~c) --~(]A(~c))e p ~  ~ R~. 
£ 

We consider the positive equivalence g~  . The implication proved ea r l i e r ,  x a Z  o ---- aH ~ (d~c 

~/¢c~=)) , showsthat  Z ~  ( ~ is the enumerated equivalence of the enumerat ion V ). Since for any 

~cek~o , , ~ c , H ( v c ) > Q ~  and H { ~ ) ~ , t h e n  ~'R,]Z~ ~ .  W e l e t  ] 2 - ~ h Y ~ , v ~  . Then flz--~2 , 

[ ~ , - - ~ ' ~ ] ~ =  ~'~ . Recalling the definitions of the mappings ~o]~, ~ , ~ ,  we have 

which we had to prove. 

The proposition is proved. 
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We will  cons ider  a typica l  case .  Le t  M be a p rope r  subse t  of N .  We will consider  the e n u m e r a -  
tion ~ :  N , {o,¢} , the c h a r a c t e r i s t i c  function of M .  Let  ¢ ¢ ~ C { ~ Y } , ~ )  • Then Z°(],,¢) , as is easy  

to  see ,  coincides with the s e t  of ~ - d e g r e e s  l e s s  than or equal to the m - d e g r e e  dmCM ) of M (including 

the m - d e g r e e  of the empty  se t  N ) .  The mapping • : ~PO-~Z,°(/M) of the s e t  of all  nonempty r e c u r s i v e l y  

enumerab le  s e t s  onto Z o(¢¢ ) is identical  to the ope ra to r  ~ defined by Lachlan in [7, 8]. 

If Z is a posi t ive  equivalence such that  M is Z -c losed ,  hen  the mapping gZ : /R2---~'L o(Q¢~ ) 

is  the r e s t r i c t i o n  of the o p e r a t o r  ~ (--8@) to the fami ly  of z - c l ° s e d  r e c u r s i v e l y  enumerab le  se t s ,  and 

the re la t ion  8Zfl'o~-- ~o  co r r e sponds  to the e q t ~ i t y  ? ~ R )  = ~ (  Z Z ) '  p roved  in [8]. Propos i t ion  9 

shows that  by using appropr i a t e  posi t ive  equivalences  Z such that  M is ~ -c losed ,  one can Wapproximate" 

Z o(/~) by the semi l a t t i c e s  ~ :  . In ce r t a in  cases ,  it is  easy  to calcula te  the l imi t  [ ~  ~ - .  F o r  ex-  

ample ,  when M is a max imal  se t ,  this  l imi t ,  c lea r ly ,  is i somorph ic  to the semi la t t i ce  k d c  ( ~ c o r r e -  

a 8 
sponds to a r e c u r s i v e l y  enumerab le  s e t  _ M  ; v z co r re sponds  to one disjoint  f r o m  M ; c to one which 
is r e p r e s e n t e d  in the f o r m  of the union of two nonempty r e c u r s i v e l y  enumerab le  se t s  one of which ~_ M 
and the other  of which is disj oint f r o m  M ; c~ co r r e sponds  to /V ). 

S imi la r ly ,  one can prove  that  if  M is Z - c lo sed  for  a posi t ive equivalence such that any ~ - c lo sed  
r e c u r s i v e l y  enumerab le  se t  cons is t s  e i ther  of a finite number  of equivalence c l a s se s  or  is s epa rab l e  into 
a finite number  of c l a s s e s  f r o m  A / , then the : n - d e g r e e  of M is min imal  (when M is not r e c u r s i v e ) .  

In pa r t i cu l a r ,  as  we r eca l l ,  Young gave  an example  of a posi t ive  equivalence with this  p rope r ty  and 
an equivalence  ~ for  a m ax i m a l  s e t  M .  Moreover ,  eve ry  example  known to the author for  a r e c u r -  
s ive ly  enumerab le  se t  with a min imal  ~ - d e g r e e  [3, 6, 8, 9] is ~, - c lo sed  for  a posi t ive equivalence Z with 
the above-ment ioned  p rope r ty .  

The p r o p e r t i e s  cons idered  he re  and above show that  a l a rge  number  of p rope r t i e s  and concepts in 
the theory  of r e c u r s i v e l y  enumerab l e  se t s  can be r e l a t iv i zed  to appropr i a t e  posi t ive equivalences .  We 
will introduce as examples  s o m e  definit ions and s e v e r a l  p r o p e r t i e s  of these  definit ions.  

Le t  Z be a pos i t ive  equivalence .  

A Z - c lo sed  se t  z is ca l led  2 -f ini te  if Z cons is t s  of a finite number  of equivalence c l a s se s .  

A r e c u r s i v e l y  enumerab le  non recu r s ive  Z - c lo sed  s e t  R is cal led ~ - s i m p l e  if  any ~ - c lo sed  
r e c u r s i v e l y  enumerab le  subse t  of the complemen t  of ~7 is  ~ - f in i te .  

A r e c u r s i v e l y  enumerab le  non recu r s ive  E - c l ° s e d  se t  Q is cal led Z - h y p e r s i m p l e  if  there  is no 

s t rongly  enumerab le  sequence of finite se t s  ~ , : , , .  such that [ F i ~  ~ n ~ ]  z = ~  for  i ~ "  and, for  

a l l  g , [ ~-~2 n(,v,,Q)~d 
We state without proof the following aD~1og of Proposition 5. 

PROPOSITION 5'. If S is a Z-simple non-9-hypersimple set, then ~ is perfect. 

A reettrsively entt~erable no~eotLrsive g -dosed set R is called ~ -ma.ximal if for any re- 
curs ive ly  enumerab le  Z - c l o s e d  subse t  R / ,  e i ther  RI,.R or N ~  ~ is ~ - f in i te .  

The previous  r e m a r k s  show that the ~ - d e g r e e  of a ~ - m a x i m a l  se t  R is min imal .  

S imi la r ly ,  one may  define the concepts  ~ - immune ,  ~ - h y p e r i m m u n e ,  ~ - h y p e r h y p e r s i m p l e ,  ~ - 
hype rhype r immune  se t s ,  e tc .  Many of these  concepts  may (mus t? )  be defined not only for  ~ - c lo sed  
se t s  but a l so  for  the r e l a t i on  ~ i t se l f .  Thus, for  example ,  one may  define the notion of a maximal  equiv-  
a lence Z as an undeeidable equivalence such that for  any [ - c l o sed  r e c u r s i v e l y  enumerab le  se t  Z ,  
e i ther  Z is ~ - f i n i t e  or  N , ~  is d~-f in i te .  

The impor tance  and neces s i ty  of the concepts  jus t  in t roduced evidently needs fu r the r  just i f icat ion.  
However ,  even now they appea r  suff icient ly na tu ra l .  
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