POSITIVE EQUIVALENCES

Yu. L. Ershov UDC 517.11:518.5

The concept of a positive equivalence (an effective partition of the natural numbers into recursively
enumerable sets) is in a sense a "global" concept, corresponding to the "local® concept of a recursively
enumecable set. Many concepts connected with recursively enumerable sets, particularly classical ones,
can be naturally extended to positive equivalences. On the other hand, certain properties of positive
equivalences often imply nontrivial consequences for sets closed under these equivalences. The purpose of
this paper is to illustrate the possibility of such fruitful connections.

1. The Algebra of Positive Equivalences. We begin with the basic definition.

An equivalence relation Z on the set # of natural numhers is called positive if the set of pairs
{<.z.‘,5/>L xg7y} 1is recursively enumerable.

This definition agrees with A. I. Maltsev's definition [5] of a positive enumeration. (An enumera-
tion v is positive &= the enumerated equivalence ~ v is positive.) All notions pertaining to the theory
of enumerations may be found in [1].

Henceforth we will identify positive equivalences £ withthe recursively enumerable sets {<x, y>lzgy}.
We denote the family of all positive equivalences by @, . The usual inclusion relation < partially or-
ders 9, . Note that the family 9 of all (not just positive) equivalences on N , ordered by = , is a com-
plete lattice, as is well known., It so happens that 67,, is a sublattice of & . In other words, the following
assertion holds.

LEMMA 1. The family u/_ has a least element (under < ), which we denote @ ; 9/, contains a
greatest eler.nent 7;if 2,,7, € .9/, then 7,77, € :9,0 » and we denote g, 79, by 7,27, K A - 3/)
and g, vg, isthe least upper bound of 7, and 7, in J ,then oV, € QP.

Note that @ = {<z,x>| xe N} and 7= {<x,y>/x,ye/\/} ; i.e., @ is the equality relation on &
and 7 is the trivial equivalence.

Since I, is a family of recursively enumerable sets of pairs of natural numbers, we can try to find
a principal computable enumeration for it {4].

Let R, be the collection of all recursively enumerable sets of pairs of natural numbers. R, has a
principal computable enumeration 7, . (If one identifies A&, with the collection of all recursively enum-
erable subsets of A, using an enumeration of pairs of natural numbers, then %, induces a Post num-
bering @ by this identification.) We let #7,= (& , 7,). The following holds.

LEMMA 2. J, isan z-subsetof 77,.

Proof. Let Re/R, be an arbitrary recursively enumerable set of pairs of natural numbers. Let @~
be the set {<x,y>lx=y or there is a finite sequence <, ,x,,...,z, such that z,=x, z,=y , and, for
each f<r , <%, Ty >eR or <zy, ,z,>eR>}.

It is easily seen that #” is the smallest equivalence relation containing X . By definition, &% is
constructed effectively from 2 , so that °%e P, for any #e/, . Consequently, there is a one-place
general recursive function ¢ such that for any =, 72y (1) = %,9() . Having observed that for Re 3, ,
&= £, we obtain an enumeration &: A —- 9, , where &=7;g . Thus (:Z,,e) is a retract of 77,.
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The lemma is proved.

COROLLARY 1. The enumeration £ of &, constructed in the proof is a principal computable enum-
eration.

COROLLARY 2. (&,.€) is a completely enumerated set.

Remark. The enumerated set (8/,, &) is isolated and the relation <, coincides with the inclusion
relation =.

The injection mapping <: .9/, — @ is a morphism from ( ,&) into /7, ; the mapping »: K, — 3
is a morphism from /7, to (g,,e) and #i=Jd .

The above definitions of »~ and v give on 9,, the structure of a {modular) lattice. If will be shown
that the enumeration & agrees well with the operations A , v .

LEMMA 3. The lattice (3,,4,v) equipped with the enumeration £ is an enumerated algebra;
that is, the mappings A: 9 *3p > Jp and v: §y*I,— I, are morphlsms from (2,,€) x(9,,&) to
(9,,&) in that there are f:wo place general recurswe functlons f and f such that for any .r. yenN

E@INE(Y) = ef” (x.4). and E(XIVECY) = ef " (= y).

Proof, It is well known that the operations ~ and v are effective in 77, ; i.e., there are two-place
general recursive functions # and £ suchthat 7, cx)n 2= % f "y and =% 2EINT () =
ﬂ,fu(x,y) for any xyen . Note that &(x)A&(y)=Ex) NE(Y) =, g(X)NT,Gly) = % f (g(x) y(y» -
ef"(y(x) gcy1), since for any % suchthat 7,7ze &, , 7, £=&% and rf(;fx;y(y;)ea . Thus,
f (=, y) qf (5(.:4:),9@)) satisfies the reqmrement of the lemma. Furthermore &(x) s/e(_z/)a== (E@Ivey)=
(7, y(x)uu,y(y)) =@ f (g (=), gfy)))-af (g(x2,9(y1), since for any =, (7'17=5x . Thus _/ (x,y) =
F (9¢x), gcyn  will satisfy the requirement of the lemma,

The lemma is proved.

As has been already mentioned, the lattice ¥ of all equivalences on # is complete, i.e., for any
collection of elements of & there is a greatest lower and least upper bound. This is of course not true
for 9 . However, any enumerated (with respect to & , or what is the same thing, with respect to 7, )
couecmon of members of 5? has a least upper bound in .9 . More precisely, the following holds.

v
LEMMA 4. There is a one-place general recursive function F such that for any ~=,
v
5f(n) = sup {&(x)} ’
TE ()
where supo & = @.
Proof. As in the proof of Lemma 3, it is sufficient to see that there is a one-place general re-

o
cursive function /7, for # such that

v
g7 = |73
/sz(n) T, x

xg i ()

and that (U (7,z)") = (U ﬂx) The last statement is obvious and the first is well known. Then
Ten(n)
_7Z = f satisfies the conclusmn of the lemma.

Let 7 be an arbitrary (not necessarily positive) equivalence on # . The set M= N is called 7 -
closed if it satisfies the condition YxVy (xeM &<z.y>ep=>yeM). For an arbitrary set # the 7 -
closure of ¥ is the set

[M]Z = {:c}.f?y(yeM&cx,g,oeg)}.

The following elementary properties of 7 -closed sets and /# -closures are obvious:
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1) Mis 7 -closed M=CM] 7

2) [M) y is the smallest 7 -closed set containing A ;

3) I (de 7}7 are all Mg-closed, then &gMg and fgﬁé are y ~closed;

4) I M=Uwmg,then [AM] = ulme]

geT C ger z

Remark, For intersections, the last property does not hold; that is, it is not true in general that
E;Qer] .= _;C;)-[‘-Mﬂf ; but always [er Mf] , < ,;7 [.MjJ .

If & is recursively enumerable and £ is a positive equivalence, then [A’J is recursively enumer-
able. More precisely, the following obvious lemma holds.

LEMMA 5. The mapping £ : Rxp ~— [ /?JZ is a morphism from /7x(2p, &) to 17 ,.

et &, ,where Z is a positive equivalence, denote the collection of all 7 -closed recursively
enumerable sets, Each collection R? is a distributive lattice with respect to the usual operations of in-
tersection and union. If Jo = Jr» any 7r —-closed set is 7, -closed. So one has a natural injection

a'Z 7 /XPZ,—"W& . This injection is an isomorphism of the distributive lattice ﬁz, into the distributive
ré{g
lattice ﬁfa . The closure operation [ ]Z maps /?20 onto /?7, » and we denote this mapping PZ 7"

Note that this mapping is an upper semilattice homomorphism (see [4]) but in general is not a lattice

homomorphism. Thus, if p,& 7,, there are upper semilattice homomorphisms %, " A’Z — //Pﬂ s Pt
/PZa — /RZ
is a retract of A’?D . If one introduces the principal computable enumeration 7, of the collection /?i (pos-

such that the composition /Og,g, %s,7, is the identity mapping of /Pg, onto itself. Hence rﬂ’fr

sible, since every /?? is a retract of #, ), then all indicated mappings will be morphisms (by Lemma 5).

LEMMA 6. If 7=7,v 7, ,then the set M is both £, -closed and 7, -closed if and only if A/ is 7 -
closed.

We will consider several examples of positive equivalences.

1. Let & be a recursively enumerable set. Then the set of pairs
70 = {<x,:c> [xe/\/} u{<x,y>]_:c:ye/?}

is a positive equivalence. Note that
a) 7,= @ <> R contains at most one element;

b) If 4 has more than one element, then the only nontrivial equivalence class (i.e., not a unit class)
of 7= is R

c) Aset af is g, -closed if and only if either 7R = For M2 R ;
d) ’2;”?«? Zﬁanf?’

e) R,nR #¢ = e V70 = fouri

D RAPER*AS & 7z vg,'=glou;—l-—¢/?;-m<’, ~ &

g) R, R, = 04 S 7z

h) The mapping i Rv>7, is a morphism from /77 to (Ip,c) .
Assertions a)-h) are obvious.

Remark, f "identifies'' only the one-element sets (by a)); % "nicely™ preserves the operations
N, U (byd,e), ); %7 isan n -subobject of (&5,&) . Together all of this shows that the theory of
recursively enumerable sets is in a well-defined sense "nicely imbedded® in the theory of positive equiv-
alences.
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2. Let R be a recursively enumerable set and let J,, f,.. be a strongly computable enumeration
of all finite sets [1, p. 122]. We let

2: = {<x,y> Nx‘}({yg I?}
{ 4 is the symmetric difference). Then
w
a) 74 is a positive equivalence. Ifwelet S = {x|f S 9} and “9= {=lfenSF##} . then
b) R“) is an 2: -equivalence class;
¢) if SPR=¢ ,then “S isan ZZ -closed set.

We will verify these assertions. a) 4 Jy S R is equivalent to the equality Jx \R= / \ R, from
which it easily follows that Za is an equivalence. The enumerability of g,l is clear from the definition.

b) xe kX “= SRS Y R = # and so, as remarked above, 2“ is the class of elements equivalent
to O (recall that j,= ).

o) eSS k<x,y>e 7, & Y NSAL & fo %=y, R ,butsince AR = F . JonS=
(fu NRINS = (), \R)NS= {4, NR # #,then ye 98 ;
R, * *
d) oC,?’r—“%Ze‘EZ%, .
e) the mapping ¢ :Ra— 7, is a monomorphism from 77 to (9,0,5). Assertion d) and the fact
that # is a morphism are obvious, The fact that %, is a monomorphism follows from b).

3. Let ¢ be a one-place partial recursive function. Then
Z}:—. {<.:c,x>[xezv} U{<z,y> lxeé‘g&ye d‘f&;(x}=gty)}

is a positive equivalence with the following properties:
a) Aset M of natural numbers is /g -closed if and only if g"(g ) =M.

b) If g is general recursive, then M is rz-reducedby ¢ toa particular set {any S such that
gMmIs S < N~ g (NvM)) if and only if M is /4 -closed.

Property a) is obvious from the definition and b) follows easily from a).

)5S G =77 g

d) The mapping ¥, : vy is a morphism from X to (&, &) .

Property d) follows easily from the effectiveness of the construction Zg from g .

4. Let be a one-place partial recursive function. Let ;"(x)m z, g“’ (x) = g(g’(xj) , and de-
fine the set of pairs

g; 2= §<.z', y>]5zﬂ Tz, (gz,w) is defined and yz’(yj is defined
and g% (z) = g%y} .
Then
a) g; is a positive equivalence.

Remark. If we let /7 denote the graph of the function ¢ , then 7 * = (/3)" where the operation » was
defined in Lemma 2. Thus » ; is the smallest equivalence containing the graph of g -

£ ‘
b) 2, < g, =y, S Zg ©
c) The mapping ¢: g~ Z; is a morphism from K to (F,&).
It will be shown that ¢, is an epimorphism. Indeed, the following holds.

381



PROPOSITION 1. Iet 2 be an arbitrary positive equivalence. Then there is a one-place partial

recursive function ¢ such that g; = 7.
Proof, Since 7 1s a recurswely enumerable set of pairs of natural numbers there is a strangly
computable sequence g 2‘ .. of finite sets such that g”.: g’s Cfg’ g .. and 7= U g . Since ¢

zez
is an equivalence the sequence g .27... may be so chosen that
1} <z, y>€ Z” ﬂx,'z/‘/z;
2) <x,x>eg" foo zer2;
3) <x1y>eg’l..—:.—><y,x>eg”;
4)<x,y>,<y,z>eg”@<a:,z>egq.

Thus one may suppose that g"‘ is an equivalence relation ~, on the set {q7..., 7).

For any x=<n let f(x,2) =5 uy(x~,y) . Thefunction g will be defined as the union of functions
with finite domains g,=g,< ...,where g, is the empty function; if g, has been constructed, then g,,,
is defined as follows: for each wsr+7/ with zedy,, guy, @ =g, ; for =xddg, ,if fant)Fz
(note that then fex,7t7)<x ), then g . (x) == f(x,n+s) ; for other values of = ,9g,,, is undefined.

w
Clearly, ¢ = { g, is a partial recursive function.
=0
We note the following property of g.: ¢, is undefined for those and only those o« which are either

greater than ~ or which are the least element in an ~, -equivalence class. This property is obvious by
construction.

From this it is easily deduced that is undefined only on those elements which are minimal in
their 7 -equivalence classes. We shall show that for any . there exists a @ with lg'(a:) the minimal

element in [ {<]] pe In fact, from the construction of ¢ itis clear that for xeé‘y, g(x)<zx and
<g(x),x>ep . By considering the strictly decreasing sequence of 7 -equivalent elements x > g(x»

g%x)>..., we see that for some 230, y (x) is defined and g(g %x) is undefined. But since <g ez,
r>ey and g is undefined on ymy g %(x) is the Ieast element in the class [ {x} JZ « Thus, if

<x,y>€y and %, and 2, are such that g‘ﬂ(x) and 9 ( 3/) are the minimal elements in the classes
[ . Z .

xﬂf and [{ y}]z respectively, then [ xj]g m[{y}] g °x) =g" () , and 7S ZI
opposite inclusion follows from the aforementioned property if g “(x) is defined then <.z, g Yyxr>e VE

The proposition is proved.

Now we define some further operations on positive equivalences. Let 70,7, € 95 » Then
269 = {<2z,2y> <zy>eglui<zxtiigtizl<zy>ep};
7
T %7 = {<x.9'>f <é(xy, e(y»ega ,< T, TCY) > ez} ,

where 7 and ¢ are the Cantor enumerating functions [1].

It geﬁp,then
24 S{<my>Ily@N, = gl )
7% {<x y>ILyx+0], = [y g+0], }.
LEMMA 7. For any 201710 € Qp,gaeg,,gox?,, g;) and 7“’€ 9/:, . Moreover, the mappings

O:(7,, 7))~ Zo @7, % 1(7,,2,)-* f,'?,,“y:?w g;, and w: /_?“) are morphisms from, respectively,
(Zp,e1x (Dp,e), (Fp.8) X (8p,£),(@n¢) ,and (P e) to (&)
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This follows easily by definition,
’
Remark. If we let J"(x) = J’Cx+/) ,then J  is an enumeration of all finite nonempty sets, and,

roughly speaking,| Z:/ and g“’ differ only on the one equivalence class belonging to 7 ;," containing
only zero,

2. Perfect Equivalences. In this section, we study equivalences of interest when applied to the
problem of the existence of ~ ~degrees consisting of a single / -degree [6].

A positive equivalence p7 7 is called perfect if there does not exist a proper (i.e., other than o
or &~} 7 -closed recursive set.

COROLLARY 1. If y,= o, % and 7, is perfect, then sois g, .

COROLLARY 2. If y is perfect, then any 7 -equivalence class is infinite.

A proper subset 4/ of # is perfectif # isa 4 -closed set for some appropriate perfect equiv-
alence 7 .

PROPOSITION 2. The ~ -degree of a perfect set consists of a single 7 -degree.

Proof. Let 7 be a perfect equivalence, and let 47 be a proper 7 -closed set. In order to prove the
lemma it is sufficient to prove two assertions:

2 M<,, A = Ms, A,

We prove assertion 1). Let # be a general recursive function which ~= -reduces A to A . From
F we will effectively construct a one-one function F» such that for any =, <#tx7, Fotmr>epz o We de-
scribe the construction of 7 : A (0) =5 #(0). Suppose that f; ),..., £, (n) have already been defined.
Compute £ (n+) . If £+ g {foca), ...,f,, (w)} , then set #o (2+7)Sf(n+7) . Otherwise compute in
sequence the infinite recursively enumerable set [ {f (/z+/)}] 7 (Corollary 2) and find the first number £
(inthe order of calculation) in this class which does not belong to {,(0,..., 5w} s andlet £, (at) =4,

We will show that £, m ~reduces {and, in view of the one-oneness of # , 7 -reduces) 4 to M,
I zeA ,then feoe M. But <fx)j@>€, ,and since # is p -closed, Ffy@eM . Similarly,

g A =>4 )¢ M . Thus assertion 1) is proved.

We now prove 2), Let 4 be a general recursive function which = -reduces Af to A . Consider the
equivalence ; =y v7g Since g"(;(/v)) =M, M is s -closed, and by Lemma 6 A/ is f -closed.
Since M is a proper subset, Z" #4 and by Corollary 1 Z‘(ag ) is perfect. Let 4 be any proper ?‘_
closed set. Since K is 75, -closed, ?"(5 (k) = & . Thus y(K) is not recursive (and is, in particular,
infinite) since g -reduces the nonrecursive set & o g(«).

We effectively construct from & a one-one function Fa such that for any =< , Fo(xIEG (x| x}] ) .
The construction is analogous to the construction of fa in the proof of 1): 51 0= gca) . Suppose
9;,(0),... 4, (), have been defined. Compute 9(/; +7) . ¥ gt ) ¢ { 90 (0),. G, (n)} we let
g (2t1) = gr+ys) I 9‘(rz+f)€-{ ,(9),- v 9o (ra)} then compute in sequence the recursively enum-
erable set ¢ ([{/z+/}] ) and find the first (Ln the order computed) number £ < g ([{ 2+ 7} 5 ) in this set
which does not belong to 190(0).- - Go (W} . Let g, (n+7) =4 . The construction is complete

We verify that o m -reduces (in fact 7 -reduces) &7/ to A . If xeM , then g e g([{:c S A,
and then y(x)eA If xg M, then g(x)ey([{x}]— JEN-A and yogr)e;{}_‘{x}] JENA so
PACY g£A

The proposition is proved.

Remark. In [9] Young in 1966 gave an example of an undecidable positive equivalence 7 (of the form
g’? ) #4 such that any proper z ~closed recursively enumerable set is the union of a finite number of
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equivalence classes, Thus, this is an example of a perfect equivalence, and consequently its equivalence
classes are examples of recursively enumerable sets whose sz -degree consists of a single 7 -degree.

The following proposition indicates several methods of constructing perfect equivalences.

PROPOSITION 3. Let # be a positive equivalence and let A and A be disjoint 7 -closed re-
cursively enumerable sets not separable by a recursive 7 -closed set (i.e., there is no recursive Z -
closed set R with A& ® and R1B = @); then

1) the equivalence j =z ;’ v g; v Jw, is perfect;

2} the sets 4 “ and “B are perfect.

Proof. First notice that 2) follows from 1) and the fact that A « and “B are 27 -closedsets. Onac-
count of Lemma 6, we need only verify that 4 “and G are g; ~closed, g;-
We check this for 4. Suppose that zeA” and <x:y>€g’:. Then J@)=A and [/(;c)jf= [‘y@x;j? .

closed, and 7 wp -closed.

But since A is 7 -closed, J(z)= r J (y/] = {7 (x)JZ_:' A . Hence yeA v Property b) of Example 2
shows that 4 “ is 7 :~closed. Furthermore, suppose that zeA“. Then PUCIES A. But since
AnB=4d , /(a:)ﬂ5=¢' and x¢ “s ., Thus /l“;; “B = & and from c) of Example 1, it follows that Aw
is g, -closed. And so A is 7 -closed. We leave it to the reader to verify in an analogous way that “
is 'Z' -closed. We note further that 4“ and “3 are g— -equivalence classes.

We now turn to the proof of 1). Suppose that it is false. Then there exists a proper recursive 7 -
closed set #,. Without loss of generality, we may suppose that “8 < &, . Since Kk, 1s a proper sub-
set of A, there is an z, e\ R, . Consider the set

R = x|Fy(y =)z} &yer,}.

Since A, is recursive, sois & . We will show that < is ¢ ~closed. Let xeA and <rz>e€y .
Then for y(y,) = y(=,) U {x} and ¥ e &, , suppose that y, is such that j(y;)=y(x,)v {2}. Consider
the 7 -closed sets y(z) and y(y). [ y(y)],= Ly v iz)l,= [/(xo)j?u[{x}jg =Ly, u[’{z}jf
= f__g’(g{z)]g . Hence <5/,,%>eg;;’£g_. Since g, is ?—closed, 4 ek and ze R .

Furthermore, if re 8 ,thenfor y.y =)z vz} .yiygi25%C and ~ ™3 € ¢ ,sothat cer.
Andso &< . If xed, thenfor yiz'= yiz,)¢ fr} wehave yry)ayix,)={x}< A. Hence
<yz>epy S 7 . Since £, is 7 —closed and =, & 4, , it follows that y¢ %, and thus = & @ and
AnR=g ., Hence X is an 7 -closed recursive set separating 4 and 5B . We have obtained a con-
tradiction and proved the proposition.

COROLLARY 1. Under the conditions of the proposition, “4 and 3 are perfect.

This follows since the conditions on 4 and & are symmetric.

COROLLARY 2, Let 4 and B be disjoint recursively inseparable recursively enumerable sets. Then

“A4 . AY %3, and B“ are perfect sets.
In place of £ one may take @ .
Recall that for £, SNV C&D denotes the set {2x[xeClu{2x+/| xe D}.

COROLLARY 3. If C is a (notnecessarily recursively enumerable) perfects set and & isanarbit-

rary subset of &, then (C e.@)“’ is perfect, If £ is recursively enumerable, then “}(C &) is also
a perfect set.

Suppose that ¢, is a perfect equivalence such that € is Zo —closed and that =z, and &, are num-
bers suchthat =,eC .z, €C. Welet A,=[ {=,}] 7, B=Li= 1] 9,1 050,90, AS4,® £,
3+:4,0 & . Itis not hard to check that 1) the equivalence ¢ and the sets +4 and B satisfy the hy-
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potheses of the proposition and that 2) (C@£)“ will be 2 -closed, where 7 is defined by the formula
in the proposition. To prove that “’(C &) is perfect, one must take the same , andin place of 4
and B take the sets 5,0 ¢ and 4,6 % , respectively.

Remark. Corollary 3 was proved earlier in the case where both £ and & are recursively enumer-
able.

COROLLARY 4. If C, is a perfect set and (,%,,C, then the £Z -degree of (, contains a perfect
set. X G, and C, are recursively enumerable, then the corresponding perfect set may be chosen re-
cursively enumerable.

As such a set, one may take (G, & C,).
The following corollary is formulated as a separate proposition.

PROPOSITION 4. Everyrecursively enumerable Turing degree >0 contains a perfect recursively
enumerable set.

Proof. Suppose that A is a recursively enumerable nonrecursive set., Then A may be written as
the union of two disjoint recursively enumerable recursively inseparahle sets A , and A , {10].

. @
It 1s well known that .4 <= /4 , ©=0,7, By Corollary 2, A , 1s perfect and, by Corollary 3,
(A“’GA) is perfect. Clearly, =_ = _(Al@A4)"

The proposition is proved,

COROLLARY [6]. Every recursively enumerable Turing degree > ¢ contains a recursively enumer-
able /7t ~degree consisting of a single 1-degree,

The results obtained above naturally lead to a series of questions and conjectures:

1. Will any (recursively enumerable) ~z-degree which consists of a single 1-degree be a perfect
set?

In connection with this question, it is natural to check whether any known nontrivial ,m-degrees
are perfect.

For creative sets this will be noted in the next section.
We consider an example given by C. Jockusch [6],

PROPOSITION 5. If .9 is a simple nonhypersimple set, then S “ is perfect.

Proof, Let £,.A,.. be a strongly enumerable listing of finite sets which shows that S is not hyper-
simple, i.e.,

a) A rky =@ for i/ ;

b) £,n (N S)~d forall fen.

Considertheset 8 = {x|F2 (7, y(x=) < S)} . This set is recursively enumerable and consists

of those numbers of finite sets which except for the members of S contain some elements of the list. It
is not difficult to check from the definition that 8 is 7 -closed We will show that S“ and B are dis-

joint and inseparable by a recursive /7 ¥ -closed set. If ze &%, then J)<S. Thus 1f ANJEI=S
then ~#, €8 ,Wthh is impossible by b). Hence S /75 @ . Suppose that < is a Zs —closed recursive
set such that & %e= # and BER . Let A% [x|xeR& Yy YIS y(x)=yg R}

The set A is recursive. Notethat,for xeAd, Jm# & and Y(aynS = ¢ . Indeed, if f=) = g,
x=0eS ¥ ., Suppose that /{x}nﬁ'?é ¢ Then, if 2 € y(xnS, for y suchthat J(y)=ylx)~{r} we
have <=, y>egs , and since K is Zs -closed and x ek, then yeX . But Y5 =) s and so x€A4.
For each 2 there is «,eA suchthat /( )& A, . Since 4 /‘hf' ,d /(x,)n/(.r =@, It follows that A
is infinite and the recursively enumerable set 7 :x(é;f/ (=) is infinite and lies in the complement of 5,

which is impossible. By applying Proposition 2 to the equivalence g‘; and the sets S “ and 8 , We see

that (S “))“} is perfect. But it is easy to see that (S “’)“) is recursively isomorphic to S “. Thus S «
is perfect.
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The proposition is proved.

)
Remark. One may avoid using Proposition 2 and the isomorphism of < w) and S since it is
possible to prove that g;v 78 is perfect.

Corollary 4 makes probable the hypothesis that any (recursively enumerable) #Z -degree contains a
(recursively enumerable) perfect set.

Note that an affirmative answer to this hypothesis in the recursively enumerable case would be im~
plied, in view of the previous results, from an affirmative answer to either of the following two questions:

2. For any recursively enumerable nonrecursive set 4 , can one find disjoint recursively enumer-
able recursively inseparable sets &; and 57 such that S’a < R?

3. For any recursively enumerable nonrecursive set &, can one find a simple nonhypersimple set
such that S=<,, < ?

With regard to the latter question, one should recall that if one does not require the absence of hyper-
simplicity, a theorem of Dekker [10] gives a positive answer. Moreover, instead of ## -reducibility,
Dekker's theorem obtains positive reducibility.

To emphasize the difficulty of obtaining a positive answer to Problem 3 we point out that the analog
of this problem for positive reducibility has a negative answer.

Remark. After our paper had been completed, negative answers to Questions 2 and 3 were obtained.
Indeed, A. N. Degtev proved that no simple nonhypersimple set is ZZ -reducible to a hypersimple set
with a retraceable complement. Later S. D. Denisov proved that no perfect set is £%£ -reducible to a hy-
persimple set with a retraceable complement.

PROPOSITION 6, If S is a simple nonhypersimple set and /7 is a hypersimple set, then S is not
positively reducible to /.

Proof. By reducing formulas to conjunctive normal form, it is easily shown that & is positively re~
ducible to /7~ if and only if S is m -reducible to the set (“/7)

Now we prove an auxiliary lemma.

LEMMA 8. If / is hypersimple, sois “/7.

Proof. Suppose not. Let #,, %, ,... be a strongly enumerable list -of finite sets such that
Er(NM“r)# & forall r, Wlthout loss of generality, we may suppose that o & £ . We will effec~
tively construct a list of finite sets ,, & , ... as follows: & = ¢ {y(x>]xe #,} . Suppose that &, %,

..,%, have been constructed. Let 55,1@(} &. and find the least # such that,forany xe £, ,/(x)\s//,,%;ﬁ

(f.e., ¢ x) %z }. Note that one can find such a £ because ;é,t is a finite set, it has a finite number
of subsets, ‘and the sets #, are pairwise disjoint. Let & “[U{{)’(x)}xe ¢ Thus & ,&,...
is a strong listing of finite sets. We will show that for any /'L D (NA)F# ¢ For Qb since

£ (VA ¥4 there is x &/; such that x/{ “r . Hence SN = ¢ . But x#0 /(xﬁé?f

S = @ . So an(A/\/')DJ’(x) +4 . For &, + since Fy (M “r") # & there is x€&F, such that

o
x g Ll JEISNVTL But ylx)~g, £ S s0 AN 2y IS, #F .

n-t»f
The lemma is proved.

Remark. It is easily shown that if /7 is simple, so is “/. However, it is impossible to show that
if /7 is hyperhypersimple, so is “r. Indeed, suppose that /7 is a hyperhypersimple noncomplete set.

Suppose that “/ is hyperhypermmple. Note that /7= f Furthermore consider the superset R of “/
defined by: £= v vix | 7= x|y(=)e K}, where &« isa creatwe set and / (x) denotes the number of ele-
ments in f(x). Since & = “7 and “r is hyperhypersimple, it follows [2] that /"?ém /~ . Inpar-
ticular, R=_ “/ and R« /7. The following equivalence holds: €A <= for the first -~ elements of
the complement of /7, .xy4....x, ,and o such that /(:zr)- " ..,x,.L], xek . This equivalence shows
that 4 is recursive in /" , which is impossible.
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We now return to the proof of Proposition 6. It is sufficient to show that if S is a simple non-

hypersimple set and /7 is hypersimple, then S is not m-reducible to /~ “ ., Suppose the contrary, and
let # m -reduce S to /° “. Let #,s#4,... be a strong listing of finite sets such that for any ~

Fon (NSP . Let @, = Uy )| zef(F,)}. We note the following:

1) Forany n, ¥ (M/#F. Indeed since £n (W 3)#g, then for xe £, n(W\S), ftorg 17
Hence JF(=)n (N /M) # g ,but JAsPE, .

2) For any y&W\/ there is only a finite number of ~ with ye ?5,2 . Suppose otherwise. By
letting

Y& {xlyef(o},

we have f'/(Y)g/s/\S , since YEN/“ . But since,forinfinitely many 2, A4, 7f (V)= & , f"(Y)

is infinite. But Y is a recursive set, and consequently # "( y) is an infinite recursive set lying in the com-
plement of S , which is impossible.

We now effectively construct a strong listing of finite sets ¢,,%,... as follows: ¢, = & . Sup-

o

pose ¢,,¢,,..., ¥, have been constructed. Compute in turn the elements of /”, obtaining /" &/°E... ;
then find the first pair (€,7) such that

(BN AL b= B

I3

One can always find such a pair, since for £ sufficiently large no elements of ((/ Y ) (N~ T) oceur
=0
in &, [suchan ¢ exists by Property 2)], and for 7 sufficiently large every number in %, » /7 is
already in /7" ,sothat (&, /") " (‘(7¢,;)= #. Welet & =@/ ™. We see at once that
=0
Prags 7 (,;22 Y) =& and Gad P (M) =B, n(NAM)FF - Thus ¢, ¢,... is a strong listing of
finite sets such that ¢, 7 (Wv/") #+ ¢ for all ~ . Hence / is not hypersimple —a contradiction.
The proposition is proved.

In the conclusion to this section we explain the behavior of perfect equivalences with respect tothe
operations introduced in Sec, 1.

LEMMA 9. If 7 is a perfect equivalence, sois ;“.
Proof, Suppose otherwise, and let & be a proper Z“}-—closed recursive set. We define #~, for
= 42,... as follows: R = {x}xep,ﬁ)=fb} . Then /?=qu,‘ and ’Qi” /2j=¢ z#;/ . Every 2,
is a recursive set, By passing to the complement of < if necessary, we may suppose that & # & .

Further, if A, = {x|j%x)=nr} let £ be the least number such that & ##, (since R#A ,sucha 4
exists). Note also that since £,# ¢ , £,*¢ forall .

We consider two cases: 4=/ and £>7.

b =1.Let R={x|Ty(yek &y ly={x})}. & is arecursive set and,since R,#g and &+ ,
& is a proper subset of A . We show that R is 7 -closed. Let xe# and <=,z>ey . Thenfor 7,.Y,
such that y{y,)={z}, y(3)={%} , we have f/’(.%)]2= [{x}]?=[{zj_l ;l/(y,)_lz, and hence <y, y>€7% .,

But ye 4, , and hence 7,€4 , since £ is g")—closed. But then zeZ . And so #Z is a proper 7-
closed recursive set — an impossibility.

b=nt{, n>0. Then £,=AN,, £ #¢ ,and £, #~, . Supposethat yeA,, ‘A, and
z,e¢(y) ,andlet g, be suchthat yiy)=y(y" {z,] . Since ) =17 Yo Ry=N,. Define B=
[z |Fu(ueR & y(u) = J"(yo)u{xp} . Note that @, ¢ Z ,but R ¢, since if :z:ed»’(y;,) ,then zxed .
So # is a proper recursive set. It is easy to check (as above) that # is 7 -closed — an impossibility.

The lemma is proved.
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Remark, The equivalence # ;2) has a proper closed class, consisting of only <. Thus Z;; is never
perfect.

LEMMA 10. Suppose that 7, and 7, are positive equivalences. The product g=7g,*77 is per-
fect if and only if both 7, and 7, are perfect.

Proof. Necessity. Suppose that 7 is perfect but 7, is not. Then there is a proper y, -closed
recursive set <. Define @%{xc|fcx)e R}. Since R is a proper recursive set, % is also. It remains
to show that & is / -closed. Let e and <x,y>€7. Then &x)eR and Z(x), &(y)>eps. But R
is 7, -closed so that Z(y)e R and ye,?—. The necessity is proved.

Sufficiency. Suppose that 7, and g, are perfect. Suppose that there is a proper recursive 7 -
closed set #. Let Paﬁ,{a:,xe.r?, fxs=n}. Then Q=g @, ,QLnAj =dJ, ¢# . Each £, is are-
cursive set. By passing to the complement of & if necessary, we may suppose that £,%#d . Let 4 be
the least number such that R, # A, (S{x|fw=4}). I &,7#@# , then by letting R={z|Iy(ye R, &
x=7(y»} weobtaina proper recursive set which is », -closed and which, as is not difficult to check, is an
impossibility, I £,~¢ ,then £>0. Thenlet @={x|7yeR(x~Ly»}. Since £>0, 0ek ,but beR.
Hence X is a proper recursive set., We check that % is /, -closed. Let ek <xy>ey, . Then there
isa # suchthat =eX and =&=z). Let Z be such that Z(E) = y and 2(Br=2(%),1.e., Z=ccy, 'z(z)) .
Then < f(m, (R)>=<x, Y>€ P, < T (8), UZ)>=< ("), T(RI>€Y, and hence <Z,E>eg %€ £, and y=

{(Z)eR. So R is a proper recursive 7, -closed set —an impossibility. This contradiction proves the
lemma.

Remark. The sum 7,® 7, of any positive equivalences 7, and 7, is never perfect. Moreover,
in a well-defined sense (the following section) the irreducibility to a direct sum is characteristic of per-
fect enumerations.

3. The Category @2, of Positively Enumerated Sets. An enumerated set (;'-==( S,v) is called posi-
tively enumerated if the enumerable equivalence 7y = fex, y>|vx= J_z/} is positive. The totality of all

positively enumerated sets with the usual defintion of morphism constitutes the category 47 ~ of positively
enumerated sets, which is a full subcategory of the category 7z of all enumerated sets.

We formulate some basic properties of the category 7%, in the next proposition.

PROPOSITION 7. 1) The category 72, admits (finite) direct sums and products; 2) if J€ s

and (f,,~) is a subobject of } (in the category 7}, then j, e 7z 3 3) the notions of subobject, prin-
cipal subobject, w~ -subobject and & -subobject coincide for positively enumerated sets.

Proof. Assertion 1) is easily verified; one need only notice that the direct sum y, & y and the direct
product Jo S for positively enumerated sets /a and J, inthe category 2Z are positively enumerated.

Let j= (8 v)e ZZP , 1.e., g,,z{«r, 7y >| \’x=v’y}- is recursively enumerable. Let (i,,«) be a sub-
object of ) and let / be a one-place general recursive function such that Y, =YF . Since w isa
monomorphism then V,(x) = », (y) &= pv, ()= J,(y) . Hence

<L Yr€p V@) IS, ()=, () VAT = RS fyrg »
(4

so 7, is recursively enumerable. Assertion 2) is proved,
(-4

Let ( /‘,,/z ) be a subobject of the positively enumerated set / ; we will show that (/,,«) isan e-
subobject. Let # be a one-place general recursive function such that /u‘/,=>’f . Let & ‘—;Ef (/V)j 200 R
berecursively enumerable,and K= V"{c‘z(Sa ) . Suppose that gfc 7y < ... is a strongly computable

[
sequence of finite sets of pairs such that gf= 7y « Let
n=o

g=) = £ (=Z [<f£(zf), x>e g:(é)_] b))
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It is easy to check that d‘;=k’ and for €eR , wY,g&)=Yx) . From Lemma 3, §4 of [1], it follows that
(fo,;«) is an e -subobject. Since the implications

e -subobject = wrz-subobject —» principal subobject = subobject
always hold, assertion 3 is proved.
The proposition is proved.

We note that any positively enumerated set j= (S, v) is isolated and its ¥ -order coincides with
equality. Thus if .S is not a single element set, ) cannot be completely enumerated. Nevertheless,
precompletely enumerated sets exist in 7Z, .

PROPOSITION 8. Suppose g isa one-place universal partial recursive function, i.e., such that for
some two-place general recursive function f, AxAyg(Fixy) is a two-place universal function for the

one-place partial recursive functions. Let 3 = N/g; /= (S,v), where vimy=[ {x}jg }f . Then

ny é is a precompletely enumerated set;
2) any positively enumerated set is a subobject of 7.

Proof. The first assertion was proved in Proposition 5, §8 [1], We will prove the second. But first
we establish an auxiliary assertion which is interesting in itself when considered as properties of the par-
tial recursive algebra.

LEMMA 11. I g is a one-place universal partial recursive function, for any one-place partial re-
cursive function y’ one can find a one-place one-one general recursive function # such that

Ax fglx)= Axcg f (=) ; i.e., the domains dfg’ .é‘;f of the functions #g’ and gF are the same
and, for xedfg’, f9lomgf@).

Proof. From the definition of the universal functions ¢ it is easy to prove that for any one-place
partial recursive function 4 one can effectively find a one-one general recursive function 7 such that

A,=57f . Suppose that {£} ,es is 2 computable sequence of one-place one-one general recursive func-

tions such that for any ~en, aeng"a g#,» where &, -is the one-place partial-recursive function with

Kleene number » . By the fixed-point theorem there is an sz, suchthat 2= =# . If we let F==z,= ]f, )
(4 a L4 2

we have f?l’—‘ff .

The lemma is proved.

We return to the proof of the proposition. Suppose that 7 is an arbitrary positive equivalence. Then
by Proposition 1 there is a one-place partial recursive function y’ such that 7=7. ‘. let F bea
one-one one-place general recursive function such that £¢’=g#. We will verify that

<xmy>eyp & <f ) f(Y)>€ f;"

Since g=g;, , it is necessary to check that
<zy>e 'Z;} &= <fefipregg.

We show by induction that for any =, Fo)eo=g% (<) . ¥ =0, f@) (=) =f@ = gF ) .
If z=2,+7 and F@)%z~g"%), then

PG ¥ £y ") <gfig ") 2 g (g f =) = g ().

Thus, if <x,y>eggf and ;’xzr)=;’z'(y) , then fg”"(_x}=?z’ﬂx) #g’z’(y}-‘-‘gz'f(y) and <fc.r),f(y7>€2;-

Conversely, if <Alx, Ay>€ £ and g %f(x) = g%f(y), then Foix)=#g"7(1y . But since F is one-one,
7€, g F= =g fly. g 7 &

9"”(9:) =g™(y) and <x,y>e 74, + The equivalence is proved.
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If we let S = ”/Z . V=) s[ix}] y » We see that the mapping z defined by ({=}], )=
[{fe}] Z; is a monomorphism from J= (5,7) to J=(8.¥) . But any positively enumerated set is

isomorphic to a set of the form ¢ , so any positively enumerated set is a subobject of .
The proposition is proved.
Now we characterize those positively enumerated sets whose enumerated equivalences are perfect,

LEMMA 12. Let y = (S,v) be a nontrivial positively enumerated set. The enumerated equivalence
7y is perfect if and only if )/ is not a direct sum.

Proof. If (j,,#) and (/,,x,) are subobjects of /4 and } is their direct sum, then A (S
is a completely recursive subset of S, ¢=o0,s. Hence Y-’(/ul- (8:7)) are g, -closed (proper, clearly) re-
cursive sets. Thus 7, is not perfect. Conversely, let & be a proper|[recursive] gz, -closed set. Then
5v(R) and S,5v(vg) are completely recursive subsets of S, If we provide them with enumerations
v, and + which are principal with respect to v , then the enumerated sets ( S,,v,) and (S8, v,) together
with the natural injections ¢,:S,~+ S and ¢, : S~S form a pair of subobjects of J and J is their
direct sum.

Remark. No precompletely enumerated set is a direct sum (Rice's theorem [1]). Furthermore, any
equivalence is precomplete and a positively enumerated set is clearly creative. Thus by Proposition 8 and
Lemma 12, a creative set is perfect.

4. Description of the Functor 4°(y) . In the preceding paragraph it was noticed that subobjects of
positively enumerated sets are also positively enumerated. However, artf,, is not closed under epimorphic
images because MNe 7%, and each enumerated set may be represented as a factor-object of A/, In this
section a certain "compactness" of the subcategory 7, in ¢ will be proved.

This "compactness® will be shown by the fact that by using an appropriate representation of the
enumerated set ¢ as a factor object of a positively enumerated set, one may "compute® the sublattice

Z o(/) . We recall that LD(/) (see [1], pp. 35 and 45) is the set of all subobjects of J modulo equivalence
under J' induced by the following partial ordering < : if ( Jo, Mo and (f,, x4, ) are subobjects of ¢,

then (/{, Sho) £ (fupy,) & there is a morphism fo > ¢, suchthat u = . 1, i.e., the following
diagram is commutative:

Yo \&\
A J
il 4/
First we describe the "construction® of .4,0(// for a positively enumerated set / =(5,v/.

. LEMMA 13. If /=(S; v) is a positively enumerated set and 7 1is the enumerated equivalence, then
47/ 1is isomorphic to the totality 2~ of all nonempty 7 —closed recursively enumerable sets with the
relation of inclusion.

Proof. As has already been mentioned in the preceding paragraph, for positively enumerated sets
the notions of subobject and e -subobject coincide. Thus, any subobject (fo, 47 may be uniquely rep-
resented by its image ., (S,), which in turn may be represented by the nonempty ; -closed recursively
enumerable set y’"(,u‘, (3,7). This correspondence gives a mapping of 4 °(y) into A& , which is the de-
sired isomorphism, as may be verified without difficulty.

The lemma is proved.

If s:f, — 4, is a morphism of enumerated sets, there is a mapping £ %w): L "(/o) — 0(/,)
(see [1], p. 46), denoted for short by 4, , possessing the following properties:

1) K, is an upper semilattice homomorphism;
2) u, is a monomorphism if and only if M is;

3) pu(L°(f,)) is an ideal in £ (/) ;
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4 (fofh)e=Houfom'

5) Hx is an epimorphism if and only if « is a factorization.

Properties 1)-4) are easily checked using the definitions. We check 5). Suppose that s, : 4 °(f,) —
L°(4,) is an epimorphism. Since L"(/) has a greatest element 7 (= ( fId), then  w, @)=/ This
means that «($,) = .5, and the enumeration of S, defined by v, : ¥ — 8 is equivalent to + .
Actually this also implies that « is a factorization. Conversely, if « is a factorization, then . (#)=7
and, by Property 3), x, maps L°(,) onto £ a(/,) , l.e., f, is an epimorphism.

I w0 fo—4 and x:),—) are two factorizations we will say that 4, is finer than x, (> 11)
if there is a morphism «¢: ), —j such that w, = «,#¢ . Note that the morphism ., if it exists, is
unique and is a factorization. If 44<4 and x,<x, ,then «, and &, are equivalent under /.

Let { bean arbitrary enumerated set. Consider the family A of all equivalence classes of fac-
torizations 44 :f, —) such that y, is a positively enumerated set. 4 may be identified with the family
of all positive equivalences y, such that 7= 7 , where 7 is the enumerated equivalence of the enumer-
ated set y=(S,v). In fact in each equivalence class of a factorization there is a unique factorization of
the form 7 ((’V/Za)' %, ) ——y, where N/Za is the collection of z,-equivalence classes, VY, is the

~

enumeration defined by v, (x)ﬁ-»[{x]]% and V is the morphism induced by the enumeration v:¥ — 8 ,
We note further that the inclusion relation = on equivalences corresponds to the relation 2 on fac-
torizations. Similarly, let A% {/,|7, is a positive equivalence and 4, S 7}. On A the relation =

is directed, i.e., for 7,.5€ A thereis a 7 €A suchthat ;,< g, and g S 7. This follows from the
fact that 7,.7, € A = VAT A.

Suppose that gac/I and gc: g~ J is the corresponding factorization. Then by Lemma 13 £ "(gg}z’
J?Z: and the mapping 44 induces an epimorphism &, : '&,f: L. ¥ g,< AL B then the
homomorphism /og,g, defined in Sec, 1 of this paper maps ,ﬁif;‘homomorphically onto £, . It is
easy to see that the diagram ’

is commutative.

The system {WZ Pz, ]70 2 6/7} forms the direct spectrum of the upper semilattice. Let A’/

denote the limit of this spectrum and let P/ denote the unique homormorphsim from W?: to ﬁi—.

Remark, If / is a positively enumerated set, then / is a positive equivalence. In this case, the

meaning of /P!_ is not ambiguous since the two objects denoted are naturally isomorphic.

Since all homomorphisms /”, 7, are epimorphisms, /% is an epimorphism. Furthermore, the com-
mutativity of the above diagrams implies the existence of a unique homomorphism (indeed, epimorphism)
&, K’Z— —- L% y?  suchthat for any se A4 the diagram

P, L. R

z
“7\ o / 62
° 4 (J’)

commutes.

The fundamental assertion of this section is that éZ is an isomorphism.

PROPOSITION 9. For any enumerated set J the homomorphism eg : A’Z— -/ °(/} constructed
above is an isomorphism from A’Z' into 2°¢/ .
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Proof, That 52 is an epimorphism has already been noticed in its definition. Thus it remains
to show that ég is an monomorphism. Suppose 7,57 and Jo isa positive equivalence. We will

describe the epimorphism 5& : A?g: — 4 DQ’) explicitly, Let Qeﬁz: and put 3 = v(K). Suppose
that f is a one-place general recursive function such that pf=#® . Let ¥, =Vf and 2,5(5,%,) .
Then (), ,Z<) 1is a subobject of / . This subobject [more precisely, the class of subobjects equivalent

under J to ( 1 Zd) ] is £, (R) . Now that we know the explicit form of the mapping 524 , we will prove
the following assertion:

Suppose that &2, € Kjf: . & ek’z— , and that g, &p). 7,&y) are positive equivalences. If
&/, K,) < &, /2, (€) , then there is a positive equivalence g, such that p,vy<2,<7 and
Prg, Ro) S Ppp B

Note that Proposition 9 follows from this assertion since it means that £, (&)= &/, )=

A, (@)‘/’Z (/) ;i.e., for any elements o, g€ /A’Z_Cég @) =&, 08)=> x<5] and, in particular,
ES,? =) =&, (2 == o = sl , Thus ¢, is a monomorphism.

We return now to the proof of the above assertion. Consider the two commutative diagrams:

VI A S o L R
% 7 2 z
&\ /"‘z 5;\ /52

L%y £%y)

The commutativity of these diagrams and the hypothesis of the assertion show that éZa (©,) < 52: (R, 7.
Suppose that o and /7 are subobjects of / (together with the identity injections Z<« into / ) which
define the classes 620 (%k,) and 62' (®, ) respectively, and let Fo and 7, be general recursive functions
such that ¥,= v/, ., =V£. Then pf=R and pf =4& . The inequality &,,(R)< ¢, () im-
plies that there is a morphism 4y, — ), such that the diagram

Jo ~ o
g
A I

commutes,

Let g be a one-place general recursive function such that ,u>g=>’,y . But since S, and S, are sub-
sets of .5, it follows that S,& 8, and x is the identity injection, i.e., v, = v,¢. Let A be a one-
place partial recursive function whose domain J4 is &, such that for any xeX,, £A@x/= =, Let

= £ y/b . /4 is a partial recursive function with domain &,. We will show that for any xe#, ,
v =vH(x) . Indeed, vo=vEAE)=Y,h(x)= »’,gfi (x)=s’17’9/a(x) == y/7¢x). We will also show that
xeR,=>H(zx)e £, . Indeed, xeR,=3H = Hix)=Ff (ph(x)E pf =R,

We consider the positive equivalence 57,: . The implication proved earlier, r e&,= d4 = (Vx =
V4 (x)) ,shows that Z; 7 ( 7 isthe enumerated equivalence of the enumeration v ). Since for any

[

‘ ‘ _ g
xeR, , <x Hx)>e 7, and Hi=)e R, then [;:?,3?; 2 L. Welet 7,=9,v7,v7, . Then g,S7 ,
(<] 2 =2[#,],72 4, . Recalling the definitions of the mappings /7,5, £y, 2+ We have

Fpg, Ro?) =LR,] 2, SLR1, = py, (R),

which we had to prove.

The proposition is proved.
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We will consider a typical case. Let M be a proper subset of & . We will consider the enumera-
tion v,: # —~{0,7} , the characteristic function of /. Let ., ({a7}.,) . Then £°({,,) ,as is easy

to see, coincides with the set of m~-degrees less than or equal to the m-degree a,’m(M ) of & (including
the m-degree of the empty set ). The mapping &, : R,— 1%, of the set of all nonempty recursively
enumerable sets onto 29( /) 1is identical to the operator ¢ defined by Lachlan in [7, 8.

If 7 is a positive equivalence such that ¥ is 7 -closed, then the mapping £Z R —L Y V)
is the restriction of the operator ¢(= éw) to the family of Z—closed recursively enumerable sets, and
the relation 52,00 /= &, corresponds to the equality (@) = (&R 2 ), proved in [8]. Proposition 9
shows that by using appropriate positive equivalences 7 such that A/ is 7 ~closed, one can "approximate®
A a(/,,,) by the semilattices /\"’Z— . In certain cases, it is easy to calculate the limit &m K’Z— . For ex-
ample, when A/ is a maximal set, this limit, clearly, is isomorphic to the semilattice /1{; ( @ corre-

a 8

sponds to a recursively enumerable set =AM 4 corresponds to one disjoint from 47 ; ¢ to one which

is represented in the form of the union of two nonempty recursively enumerable sets one of which <M
and the other of which is disjoint from A ;  corresponds to A ).

Similarly, one can prove that if A is 7 -closed for a positive equivalence such that any 7 -closed
recursively enumerable set consists either of a finite number of equivalence classes or is separable into
a finite number of classes from A, then the i -degree of M is minimal (when A is not recursive).

In particular, as we recall, Young gave an example of a posifive equivalence with this property and
an equivalence 7, for a maximal set # . Moreover, every example known to the author for a recur-
sively enumerable set with a minimal ~z-degree [3, 6, 8, 9] is 7 —closed for a positive equivalence 2 with
the above-mentioned property.

The properties considered here and above show that a large number of properties and concepts in
the theory of recursively enumerable sets can be relativized to appropriate positive equivalences. We
will introduce as examples some definitions and several properties of these definitions.

Let 7 be a positive equivalence.
A 7 -closed set « is called 2 -finite if < consists of a finite number of equivalence classes.

A recursively enumerable nonrecursive 7 -closed set R is called 7 -simple if any 2 -closed
recursively enumerable subset of the complement of < is 7 -finite,

A recursively enumerable nonrecursive y-closed set < is called 7 -hypersimple if there is no
strongly enumerable sequence of finite sets 4,,4,... such that [ F; ] p n[/j:]Z =@ for ¢ 76' and, for
all £, [/-;:]2 (N \RI~AD

We state without proof the following analog of Proposition 5.

PROPOSITION 5'. If S isa 2 -simple non- 7-hypersimple set, then S“ is perfect.

A recursively enumerable nonrecursive z -closed set # is called 7 -maximal if for any re-
cursively enumerable 7 -closed subset RI, either R/“R or MR is 7 -finite.

The previous remarks show that the s-7z-degree of a 7 -maximal set & is minimal.

Similarly, one may define the concepts 7 -immune, 7 -hyperimmune, 7 -hyperhypersimple, 7 -
hyperhyperimmune sets, etc. Many of these concepts may (must?) be defined not only for 7 -closed
sets but also for the relation 7 itself. Thus, for example, one may define the notion of a maximal equiv-
alence 7 as an undecidable equivalence such that for any g -closed recursively enumerable set &,
either XK is 7 ~-finite or A~ R is Z ~finite,

The importance and necessity of the concepts just introduced evidently needs further justification.
However, even now they appear sufficiently natural,
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