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In this paper we show that the weak solutions of the Navier-Stokes equations 
on any bounded, smooth three-dimensional domain have a global attractor for 
any positive value of the viscosity. The proof of this result, which bypasses the 
two issues of the possible nonuniqueness of the weak solutions and the possible 
lack of global regularity of the strong solutions, is based on a new point of view 
for the construction of the semiflow generated by these equations. We also show 
that, under added assumptions, this global attractor consists entirely of strong 
solutions. 
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1. I N T R O D U C T I O N  

One of the major recent applications of the modern theory of dynamical 
systems has been the development of dynamical theories for nonlinear par- 
tial differential equations which has led to a rigorous basis that the long- 
time dynamics of these infinite dimensional problems can be characterized 
by, or approximated by, the dynamics of  various finite dimensional 
systems. What is at the basis of much of this development are the various 
theories which have shown that the solutions of these equations can be 
represented in terms of a semiflow on a suitable phase space and that this 
semiflow has a global attractor in this space (see, e.g,, Babin and Vishik, 
1983, 1989; Billotti and LaSalle, 1971; Hale, 1988; Ladyzhenskaya, 1972, 
1991; Sell and You, 1994; Temam, 1988). 
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The very definition of the global attractor is an important technical 
issue. For the reasons given by Sell and You (1994) and in Section 3, the 
following concept is appropriate. We shall say that a set A in a phase space 
W is a global attractor of a semifiow S(t) on W, provided the following 
four properties are satisfied: 

(I) A is nonempty and compact. 

(2) A is invariant, i.e., one has S(t) A = A, for all t I> 0. 

(3) There is a bounded neighborhood U o f A  in Wwith the property 
that A attracts U, i.e., for every neighborhood V of A, there is a 
time T~>0 such that S(t) U= V, for all t >  T. 

(4) A attracts every point in IV. 

While the theory of global attractors for nonlinear partial differential 
equations has widespread applicability, there is one very important case 
that remains open, viz., the Navier-Stokes equations in three dimensions 
(3D). Even though it has been known for over 20 years that there is 
a global attractor for these equations in two dimensions (2D) (see 
Ladyzhenskaya, 1972), the 3D problem is essentially unresolved (see 
Navier, 1827; Poisson, 1831; Stokes, 1845; Leray, 1933, 1934a, b; Hopf, 
1951). Neverheless, one can find some papers which do address this issue) 
In particular, Foias and Temam (1987) have shown that the 3D problem 
does admit a universal attracting set for the weak solutions. However, this 
theory does not address the issue of whether Property (3) in the definition 
of a global attractor is valid. In another direction, for the Navier-Stokes 
equations on suitable thin 3D domains, it was shown by Raugel and Sell 
(1993a-c) that the weak solutions do have a global attractor, and that this 
attractor consists entirely of strong solutions. However, this theory is 
limited to thin domains. A third example is the related area of inertial 
forms for the Navier-Stokes equations (see Kwak, 1992; Kwak et al., 
1994). 

Recall that the Navier-Stokes equations on a suitable smooth 
bounded domain f2 in R 2, or R 3, have the form 

u , - v z l u + ( u . V ) u + V p = f  and V.u=O, onf2 (1.1) 

where the solution u = u(t) is to satisfy the initial condition 

u(0) = u0 (1.2) 

2 Comparisons between our theory, as developed herein, and the works of other authors are 
made in the body of this paper. 
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for an appropriate divergent-free function u0. The ordered pair (Uo, f )  is 
referred to as the data of the problem, and f is called the forcing function. 
We examine this problem with Dirichlet boundary conditions, where u = 0 
on at2, the boundary of t2. [The theory developed herein extends in a 
straightforward way to periodic boundary conditions by using the 
methodology of Temam (1983).] As usual, we let H denote the closure in 
L2(f2) of the vector fields in C~~ that satisfy V . u = O ,  and we let V 
denote the closure of the same set in H~(t2), (see Constantin and Foias, 
1988; Temam, 1977, 1983; von Wahl, 1985). In this paper, we assume that 
u0 ~ H and that the forcing function f satisfies f ~  L~~ oo; L2(t2)). 

In the 2D theory, it is known that for given data (uo, f ) ,  there is a 
unique weak solution u = u(t) of (1.1)-(1.2), that u(t) remains a weak solu- 
tion for all time t~>0. Moreover, this weak solution instantaneously 
becomes a strong solution at any time t = r > 0, and it remains a strong 
solution for all t I> r. Furthermore, the mapping S(t): Uo ~ S(t)  Uo = u(t) 
defines a semiflow on the phase space H, and that this semiflow is both 
compact and: point dissipative. 

In 3D one quickly encounters difficulties in trying to build a similar 
theory for the weak solutions. While it is the case in 3D that for given data 
(u0, f ) ,  there is a weak solution u = u ( t )  of (1.1)-(1.2), that u(t) remains a 
weak solution for all time t >1 0, it is not known whether this solution is 
uniquely determined by the data. As a result, one cannot conclude that the 
mapping S(t): uo-~ S(t) Uo = u(t) defines a semiflow. On the other hand, for 
good data (Uo, f ) ,  where u0 ~ V, the initial value problem (1.2) does have 
a unique strong solution on some interval [ 0, T). However, it is not known 
whether this strong solution continues to exists for a//times t/> 0, i.e., it is 
not known whether T =  oo, The global regularity problem (GRP) for the 
3D Navier-Stokes equations is to show that for all good data, the strong 
solution of the initial value problem (1.2) exists for all time t t> 0. This is 
an open problem in every sense. There is no known 3D Navier-Stokes 
problem in which GRP has been resolved. No proof. No counterexample. 

Thus there are two factors which appear as possible obstructions to 
the development of a theory of global attractors for the 3D Navier-Stokes 
equations. In the case of weak solutions, one faces the possibility of non- 
uniqueness, and in the case of strong solutions, it is the GRP. In this paper 
we develop a new point of view which bypasses both of these issues. In 
particular, we show the following: 

(1) for every smooth bounded domain ~2 in R a and for all suitable 
forcing functions f ,  the class of weak solutions of the 
Navier-Stokes equations on fl generates a semiflow on a suitable 
phase space; and 
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(2) under further regularity assumptions on f [for example, f is in 
L2(I2) and is independent of time], this semiflow has a global 
attractor. 

Since this theory is restricted to weak solutions, we avoid the GRP. The 
nonuniqueness issue is resolved by replacing H with another phase space 
IV, in which each point is a weak solution. Thus if a given datum Uo e H 
admits several weak solutions, then each of these solutions corresponds to 
a different point in the space IV. [ See Sell (1973) for a related construction 
for ordinary differential equations. ] 

This paper is organ~ed along the following lines. In Section 2 we pre- 
sent the essentials for the theory of semiflows on a Frech& space. It turns 
out, as we shall see in Section 3, that, for a suitable forcing function f ,  the 
weak solutions of the Navier-Stokes equations can be identified with the 
restriction of a semiflow on a Frech& space to an appropriate invariant 
subset W. It is this space W that forms the phase space for the weak solu- 
tions of the Navier-Stokes equations. By using the general theory of global 
attractors for semiflows on metric spaces (see Sell and You, 1994), we 
describe in Section 3 general sufficient conditions for the semiflow on W to 
have ~/global attractor. We also prove the existence of a global attractor 
when f ~  L2(f2). We argue in this case that, for any positive viscosity and 
any such f ,  one always has a global attractor in W. I f f  is time dependent, 
say that feL~(O, ~;L2(I2)), then one needs to incorporate a skew 
product semiflow into the problem (see Babin and Sell, 1995; Raugel and 
Sell, 1993a--c; Sacker and Sell, 1977, 1994; Sell, 1967a, b; Vishik, 1992). 
This time-dependent issue is addressed in Section 4. 

Even though we are successful in this paper in presenting a theory of 
global attractors for the weak solutions of the Navier-Stokes equations, 
and even though this theory is independent of the resolution of the GRP, 
it is of interest to do a simple thought experiment and ask how the theory 
presented herein would be affected by a favorable resolution of the GRP. 
As an outcome of this analysis, we show in Section 5 that, under additional 
assumptions, the global attractor consists entirely of strong solutions. For 
example, it has been shown by Raugel and Sell (1993a--c) that on suitable 
thin domains, the weak solutions are ultimately regular, i.e., there is a time 
to >0, where to depends on the data, such that the weak solution u--u(t)  
is regular for all t >I to. We show in Section 5 that the global attractor 
arising from the theory present in this paper agrees with the attractor 
found in the papers of Rangel and Sell cited above. As noted in these 
papers, this attractor for the thin domain problems consists entirely of 
strong solutions. 
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2. THE SPACE OF WEAK SOLUTIONS 

We begin with a description of the notation used in this paper. The 
Navier-Stokes equations are given in (1.1) and the spaces H and V are 
described above as well. Throughout this paper we assume that the forcing 
funct ionfsat is f iesfr  L~(0, ~ ;  L2(~)). We let H,,. denote the Hilbert space 
H with the weak topology. We use the semicontinuity property of weak 
convergence, which reads that if a sequence un converges to u0 weakly in 
H, i.e., u,--~ u0, then one has Iluo [I ~ lira inf [lu, II. The symbol H always 
denotes H with the strong topology. Let P denote the orthogonal projec- 
tion of L2(fl) onto H. By applying P to (1.1) we obtain the evolutionary 
equation 

u , + v A u + B ( u ,  u) = Pf, (2.1) 

where Au = - P du  is the Stokes operator and the bilinear term B satisfies 
B(u, v) = P((u. V) v), for suitable functions u and v. It is known that A is 
a positive, self-adjoint linear operator on H with compact resolvent. There- 
fore all the fractional powers A ~ of A are well defined (see Pazy, 1983). We 
let V 2 = ~ ( A )  denote the domain of A. One then has ~(A' / ' - )= V= V'. 
We let V ~ = H and let V- '  denote the dual space to V with respect to the 
L2-inner product ( . , .  ) = ( . , .  ) n on H. We also let I1" tl -- II" 11 ~ denote the 
L2-norm on H. One then has three compact imbeddings, 

V 2 ~  Vl = V ~  V o = H ~  V -~ 

We use the A%norms to express the norms on the space V 2~. Thus one has 

Ilull v' = Ilull v = Ilal/2ul[ and Ilvll v-, = IIa-'/~vll 

See Constantin and Foias (1988) and Temam (1977, 1983) for more details. 
We define the trilinear form b(u, v, w)=d~f (B(u, v), w),  where B(u, v) 

is given above. We use the following inequalities, which are derived by 
Constantin and Foias (1988), for the form b. There is a constant C, > 0  
such that one has 

Ib(u, v, w)l ~< C I Ilull i/4 ilAi/2ull3/4 Ilvll ,/4 IIA,/evII3/4 ilal/2wll (2.2) 

and 

IIA-I/2B(u, o)ll ~< C1 Ilull 1/4 Ilhm'ull 3/4 [lvll ,/4 ilAZ/2vll3/4 (2.3) 

for all u, v, w ~ V. 

2.1. Notation. Let X denote any Banach space, with norm I[" I[x. In 
our applications X denotes one of the three separable Hilbert spaces V, H, 
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or V-' .  For 1 ~<p< oo, we let L~(0 ,  oo; X) denote the collection of all 
functions ~b: (0, c o ) - , X  with the property that, for all r and T with 
0 < r ~< T < oo, one has 

f j  {{~(s)l{~ < oo 

We also let L ~ [ 0 ,  oo;X) denote the collection of all functions 
~b eL~(0 ,  oo; X) with the property that, for all Twith 0 <  T <  oo, one has 

fo ll@(s)ll~ds < oo 

Similarly for p=oo, we let L,~(0, oo;X) denote the collection of all 
#: (0, o o ) ~  X with the property that, for all r and T with 0 < r ~< T <  oo, 
one has 

ess sup II~(s ) l lx<  oo 
" r  

We also let L,~E0, oo;X) denote the collection of all functions 
@ aL~(0 ,  oo; X) with the property that, for all T with 0 < T <  oo, one has 

ess sup }l~(s)llx< oo 
0 < s < T  

For 0 ~<a < b  ~< oo and 1 ~<p ~< oo, the spaces L~(a, b; X) and L~oo[a, b; X) 
are defined in an analogous manner. See Dunford and Schwartz (1958) or 
Hille and Phillips (1957) for more details. 

For - o o  <~a<b<~ oo we let L~176 b; X) denote the usual Banach 
space of functions $: (a, b) --+ X, where 

ess sup I I~ (s ) l l x<  oo 
a<x<b 

For a given function feL~ oo; L2(~2)) we define the norm 

I[fl[ ~ ~f ess sup [{f(s)l[ L'(a) < O0 
0 < ~ < o o  

We let C(0, oo;Hw) and C[0, oo;Hw) denote the spaces of weakly 
continuous functions with range in Hw and defined, respectively, on the 
intervals (0, oo) and [0, oo). 
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Some spaces arise quite often in this theory, and it is convenient to 
adopt some special notation for this situation. In particular, we define 

d e f .  2 ~ ^  Y~f  L~(0, ~ ;  L2(Q)) and z = L~o3u, ~ ;  H) x Y 

and for any No i> O, we let 

Y(No) de=f { f ~  y: Ilfll ~ ~ No} and Z(No) def Li2o~[0, oo; H) x Y(No) 

The space R is the product space 

clef 2 
R = Lloe[0  , oo; H )  x t [ o e [ 0 ,  o0; L2(g'2)) 

In addition, we make use of other local notation throughout this paper. 
The spaces L~o~(0, oo; X) and L~r oo; X), for 1 ~<p < oo, are exam- 

ples of Frech& spaces. This means that they are metrizable, locally convex 
topological linear spaces, and they are complete (see Kelley and Namioka, 
1963; Dunford and Schwartz, 1958). The topology on each of these spaces 
is generated by a countable family of pseudonorms. In particular, on the 
space L~(0 ,  oo; X) one can use the pseudonorms No = Nt = 0 and 

( ;~  \l/p 
N . ( r  -, IIr , n = 2, 3, 4 .... (2.4) 

while on the space L~'~[0, ~ ;  X) one can use 

N.(~) = ( f~  +~ \~/" II~ll~ds) , n = 0, 1, 2,... (2 .5)  

An invariant metric on these spaces is then given by dp(~b~,~2)= 
d(~bl - q~2), where 

d(~b)= ~. 2 -"min(N. (~) ,  1) (2.6) 
r i m 0  

Recall that a set B in a linear topological space Z is said to be bounded 
if for every neighbourhood U of the origin in Z there is an r > 0 such that 
BcrU, where rU={ru: ue U} (see Kelley and Namioka, 1963). In the 
case of the Frech6t spaces L(~(0, co; X) and L ~ [ 0 ,  oo; X), for 1 ~<p < ~ ,  
it follows that a set B is bounded if and only if one has 

sup{N,(~b):~beB} <oo,  for each n=O, 1,2,... (2.7) 
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where N.(~) is given above. Recall that in a metric space a set B is compact 
if and only if it is sequentially compact. 

It should be noted that the concept of a bounded set given above is 
a topological concept. It does not depend on the metric used to construct 
the topology. In order to illustrate this point, let X be a Banach space with 
norm II" II x- Define Nx by 

Nx(u)~min{llul[x, 1}, for u~X 

Note that Nx(u-v) is a metric on 2", and that Nx and H" Ilx generate the 
same topology on 2". Furthermore, a set B is bounded in X if and only if 

sup{ Ilu- Vllx: u, v~B} < 

A similar characterization of boundedness in terms of Nx is not possible, 
since sup{Nx(u-v): u, vEX} ~ 1. Thus in terms of the invariant metric 
Nx, every set in X has a finite Nx-diameter, while a set B in X has finite 
]]" U x-diameter if and only if it is bounded. 

A special situation arises in connection with the topology on the 
spaces Y(No) and Z(No), where No t> 0 is fixed. Because of the continuous 
imbedding 

L~ oo; L2(~)) ~-~ L~o~[0, oo; L2(g2)) 

we see that Y(No) is a subset of L~oc=L~o~[O, oo; L2(~)). Moreover, for 
each N0>~O, the space Y(No) is a closed, bounded set in L~or in the 
L~oc-topology. Similarly, for each No 1> O, the space Z(No) is a closed set 
in Z in the R-topology. 

For a given function f :  (0, oo)--. X, where Xis a set, we define the time 
translate f,  by 

f,(t)=f(z+t), t>~O 

where v>~0. Note that if f EL~176 ~ ;  L2(~)), then one has 

IIf~ II ~ < [Ifll 2 for all ~ I> 0 

Let ~" be a bounded set in Y. Thus ~ r ~  Y(No), for some go~> O. 
Define y + ( ~ ' ) =  { f , : f ~ r  and v/>0}, and set L~oo=L~oJ'0, oo;L2(g2)). 
Next define the hull as 

H §  ~f CIL~(? +(~')) 
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One then has H+(Y)  ~ Y(No) as well, i.e., H+(~ r) is a Y-bounded set and 
it is closed in L~o ~. We are especially interested in the case where the hull 
is a compact set in L ~ .  Recall that the hull H+(~ r) is a compact set in 
L~o ~ if and only if for every T with 0 < T < co, one has 

sup IIf(s+~+h)-f(s+~:)[[2ds:f~r,~>~O ~0 ,  as h-+0 

(2.8) 

see Dunford and Schwartz (1958, Part 1, pp. 298-301). Condition (2.8) will 
be satisfied if ~" is Y-bounded, ~" c C[0, oo; L2(g2)), and ~" is a uniformly 
equicontinuous family of mappings from [0, oo) into L2(f2). For example, 
the huU is compac t i f  ~" is a bounded set in the H61der space 
C~[0, ~;L2(f2)), for some ~>0.  For the remainder of this section we 
assume that the hull H + ( ~  ") is a compact set. 

2.2. Bubnov-Galerkin Approximations. We are now prepared to 
describe the space of weak solutions of the Navier-Stokes equations. In 
doing this, it will be helpful to recall the role of the Bubnov-Galerkin 
approximations. The construction of weak solutions is aecomplished by 
taking suitable limits of subsequences of the Bubnov-Galerkin approxima- 
tions. We do not give all the details of this construction here, although 
some aspects are incorporated into the Compactness Lemma; see below. 
The essence of the construction is given in the next paragraph (see 
Constantin and Foias, 1988; Sell and You, 1995; Temam, 1977, 1983). 

Let {e,} be an orthonormal basis in H of eigenvectors of the Stokes 
operator A, where Ae,=2,e , ,  for n =  1, 2, 3 ..... and the eigenvalues {2,} 
satisfy 0 < 21 ~< 22 ~ 43 ~< ..-. Let P = P,  be the orthogonal projection of H 
onto the finite-dimensional space PH= Span{el,..., e,}, for n = I, 2, 3 ..... 
An n th-order Bubnov-Galerkin approximation p = u~ of the initial value 
problem (1.1)-(1.2) is a solution of the ordinary differential equation 

Pt + yap + PB(p, p) = P P f  (2.9) 

with initial condition satisfying p(O)= P Puo. The solutions of (2.9) exist for 
all time t >t 0, and the Bubnov-Galerkin approximations satisfy 

Ilp(t)ll2<~e -'x'~176 llp(to)llZ+cgllfll~, for t>~to>>.O 

where c02= (vgl) -2, 

[Ip(t)ll2+2v [IAU2pll2ds~llP(to)l[2+2 <Pf, p> ds, for t >. to >. O 
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and for all v ~ PH one has 

(p(t)-p(to), v)+v f[ ( A1/2p(s), A1/2V) ds + ft'o b(p(s), p(s), v)ds 

= (Pf(s),v)ds, for t>~to>~O (2.10) 

As we shall see later, when one takes the limit of a suitable subsequence of 
the Bubnov-Galerkin approximations, it happens that the first two 
inequalities hold for almost all t and almost all to with t > to, while the 
equality (2.10) holds for all t~> to>~0. 

2.3. Weak Solutions. L e t f ~ L ~ ( 0 ,  oo; L2(~r2)) be given. We say that 
a function ~o ~ L~o~[ 0, oo; H) is a weak solution of Leray-Hopf class (Class 
L/-/), and write q~ r WLH(f), provided that the following four properties 
hold: 

(1) ~oeL*~(O, oo;H)c~L2o~[0, oo; V); 

(2) Dt~pEL~oc[O , oo; V-t) ,  f o r p = ] ;  

(3.) for almost all t and almost all t o with t > to > 0, one has 

II~o(t)ll 2 ~< e - 'a '"- '~ Ilcp(to)ll a + Co 2 fill ~ (2.11) 

and 

IIq~(t)ll2+2vy~ IIA mcPll2 ds ~< Ilcp(to)ll2 + 2 ~ ( P f ,  q~) ds (2.12) 

(4) and for all t t> to/> O, one has 

( 9(t)-~(to), V) + v f,'o ( A~f2q~' AV2v) ds + f~ b(~, q~, v ) d s =  J" i ( P f ,  v ) d s  

(2.13) 

for all v E V. 

Notice that since ~p~L~(0, oo; H) one has ep~Ll~[0, oo; H), for every r 
with 1 ~r~<oo. It is the Frech& space L~oc[0, oo; H) that is of special 
interest in this paper. 

The relationship in Item (2) in the definition given above deserves 
some explanation. What it means is that for every weak solution cp there 
is a function ~ ~L~oc[0 , oo; V-l) ,  with p = ~, that satisfies the equation 

cp(t)-gO(to)=It~(s)ds, for 0~< to~< t<oo  (2.14) 
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where the integral exists in the space V -~. In this case one writes ~k =D,~p 
[see Constantin and Foias (1988) for more details]. 

Let v ~ V and let cp be a weak solution of Class LH. Because of (2.2), 
it follows from Property (1) that b(go, r v)~L~or oo; R). Similarly one 
has (Al/2q~,Al[Zv) and (Pf,  v) in L~o~[0, oo; R). As a result, it follows 
from (2.13) that for to > 0 one has 

lim (~o(t)-q~(to),v)=O, foral l  v e V  
t - * t  O 

and for t o = 0 one obtains 

lira ((p(t)-~0(0), v) =0 ,  for all v~ V 
t ~ O  + 

Since V is dense in H, we see that if cp is a weak solution of Class LH, then 
one has 

~p e C[0, oo; Hw) (2.15) 

Notice that inequality (2.11) is actually valid for all t>>.to. This 
follows from (2.15) and the lower semicontinuity relationship Iko(/)ll2,< 
liminf,,~tlkp(tn)ll z. By using the Schwarz inequality and the Young 
inequality, we find that 

[2 f to(Pf,~p ) ds <~ llA-~/2pfll~ ~,'o IIA ~a~ll ds 

(~.  , , /2  
~ 2 i  -~/z Ilfllo~ ( t- to)  112 IIAV2~oll z ds) 

0 

' 1 
~< v fi0 IIA ~%,112 ds +~-~l ( t -  to) II/11 

By combining this with (2.12) we find that 

v I[Al/2q~ll2ds<~llgo(to)ll2-1-(t-to)Collfll2, for almost all to > 0 

(2.16) 

We do not require inequality (2.11 ) to hold for to = 0. However, since 
~p eL~ oo; H), it follows from (2.11) that one has 

]lgo(t)l[2~<e -'~'"-'~ IIgoll 2 +Co u [I fit 2 ,  for all t~> to>~0 



12 Sell 

Indeed, from (2.11) we see that the last inequality is valid on a dense set 
of to > 0. By taking limits in to, we see that it holds for all to I> 0. 

As explained in the next section, it is important for the theory of 
global attractors that the phase space for the semiflow be a complete metric 
space. Since the Frech6t space L~o~=L2o~[O, co; H) is complete, it would 
follow that WLH is complete in terms of the invariant metric given by 
(2.5)-(2.6) on L12o~, provided that WLH is a closed set in L2o~. Unfor- 
tunately, we are unable to prove that WLH is closed. Instead, we imbed 
WLH into a larger class W of generalized weak solutions and we will show 
that Wis closed. These new solutions reside in the space Li2o~[0, co; H), but 
we relax the other conditions somewhat to allow for the possibility of  a 
singularity at t = 0. 

We say that a function cpcL2o~[0, co; H)  is a generalized weak solu- 
tion, and write q~ ~ W(f), provided that one has 

(1) cpcL2o~[0, c o ; H ) n L ~ ( 0 ,  2; H)  c~ L~~ co;H)taL2o~(0, co; V); 

(2) Dtq~eL~(O, co; V-I), f o r p = 4 ;  

(3) for almost all t and almost all to with t>to inequalities (2.11) 
and (2.12) are valid; and 

(4) for all t>~to>0, Eq. (2.13) is valid, for all ve  K 

The condition that cp r Ll~(0 , 2; H ) n  L~176 1, co; H)  is one of many ways of 
saying that cp ~ L ~ ( 0 ,  co; H) and q~r176 co; H), for every a > 0 .  

It follows from the definitions that one has WLn(f)  C W(f), for every 
f e  Y. As argued above, one shows that if q~ is a generalized weak solution, 
then (2.13) implies that 

cpr C(0, co; Hw) (2.17) 

Also, inequality (2.11) is valid for all t t> to. 
Next we define ~ to be the collection of all ordered pairs (cp, f )  in Z 

such that q~ ~ W(f), and ~LH is defined to be the collection of all such 
ordered pairs satisfying q~r Let ~t/'(No)=~/'c~Z(No) and 
~fLH(No) = ~/fLH N Z(No). We show below that ~f'(No) is a closed set in 
Z(No). This in turn implies that, for each f ~ Y, the fiber W(f) is a closed 
set in L~o~[O, co; H). 

The issue of the long-time dynamics is treated in the next two sections. 
Here we present some additional properties of the weak solutions in a 
series of lemmas. First, note that it follows from the definition that a set 
B c W(f)  is bounded if and only if 

} sup [[cp[[ 2 ds: ~ r B < co, for each n = 0, 1, 2 .... 
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Consequently, if B is a bounded set in W(f), then 

sup { ~  I,~oll2ds:~oeB}<oo 

Among other things, the first lemma establishes the converse of the last 
implication. We define the set 

B(M~ No) def {(q~' ]')~'~t/': ~o } = lt~oll2 ds~<M 2 and Ilfll~ ~<N g (2.18) 

for nonnegative numbers Mo and No. 

Lemma 1. The following statements are valid: 

(1) For each (~o,f)~B(Mo, No) one has 

ii~o(r)l[2 < z - i M 2  + coNo , 2  2 0 < r~<l (2.19) 

and 

1 1 ~ o ( ~ ) l l 2 < e - ~ , c ~ - l ) ( n g  ,_ 2 , 2 + coNo) + c~No, r >1 1 (2.20) 

(2) For each (~, f )  e B(Mo, No) one has 

r 2 2 |r+l 11~ll2ds<<-e-VX'tr-~(M~+cgNg)+coNo, Z>>. 1 (2.21) 
~ T  

(3) The set B(Mo, No) is bounded in ~lV. 
(4) For each z and T with 0 < �9 <<. T< ~ ,  there exist positive con- 

stants M~=M~(r, T), for i= 1, 2, such that the following two 
inequalities are valid: 

sup{~llA'f2~oll2ds:(9, f ) eB(Mo,  No)}<<.Ml(r,T) 2 (2.22) 

(5) 

(2.23) 

I f  in addition, one has r ~L2or oo; V)nL~(0 ,  oo; H), then the 
constants MI and M2 in Property (4) can be chosen to be 
independent of ~, for 0<lr~<l, and the limits Ms(O, T)= 
lim~_.o+ M~(r, 1") exist, for i= 1, 2. 
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Proof. Let (~o,f)eB(Mo, No). For 0 < r ~ < l ,  one has ]~ 11~ll2ds~< 
~ Ilcp]l 2 ds ~< Mo 2. Consequently the set 

{re (0, r): Ucp(t)ll 2 ~< r - l M  2) 

must have positive measure. By using inequality (2.11) one then finds that 
there is a time t*,, with 0 < t~, < r such that [l~o(t*,)U2 ~< l r - tM 2 and 

II~(t)ll2~e -vattt-t,) I[~p(t*,)l[2+c2N 2, for t>~t*, (2.24) 

As a result we obtain (2.19) and (2.20). Also, inequality (2.21) is a direct 
consequence of (2.20). The fact that B(Mo, No) is a bounded set in W" now 
follows from (2.21). 

In order to derive (2.22) and (2.23), there is no loss in generality in 
restricting to the case, where 0 < ~ 1 ~< T <  oo. For inequality (2.22) with 
t=T, we let to=t,, be chosen so that one has 0 < t o < r  and 
II~(to)[I 2 ~<r-lM2. Then (2.16) implies that 

t 

v f~ IIA 1/2~,112 ds .< ~-1M2 + ( T -  r) Co N 2  (2.25) 

which implies (2.22). 
In Order to prove (2.23), we argue that the equality 

is valid in the space L~(O, co; V-l), forp  = ~. The bound in (2.23) follows 
from the Minkowski inequality, which implies that 

(y~,,A-'/2D,~IIPds) '/" 

is bounded by 

v IIA'/2cpllPds) +(f~IIA-'/2B(q~,r +(T--r)l/'No (2.26, 

Now the Hrlder  inequality implies that for p = ~ one has 

T 1 T 2/3 fr 'IA /2r d$<~ (T-~)I/3 (~r 'lhl'/2~l'2d$) (2.27) 

Next we note that (2.3) implies that 

~ll A-lnB(~,~)llPds<~efesssupllg(s)ll 2/3 ItAl/2~pll2 ds (2.28) 
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By combining the last inequality with (2.24), (2.25), (2.26), and (2.27), we 
obtain (2.23). 

Property (5) follows from the argument of the last paragraph along 
with the two observations: (i) that inequality (2.27) remains valid with 
r = 0  and (ii) that one can replace the term ess sup~<~,~ r II~(s)ll 2/3 in (2.28) 
with I1~11~ 3. [] 

As a corollary to the last lemma, we show that if B is a bounded set 
in ~ ' ,  then B is bounded in other spaces as well. 

Lemma 2. Let B be a bounded set in ~ ( N 0 ) ,  for  some No >>- O. Then 
the following hold: 

(1)  B is a bounded set in L~or ~ ;  V) x Y(No). 

(2)  The set {(D,cp, f ) :  (cp, f ) ~ B }  is bounded /n L ~ ( 0 ,  ~ ;  V-~)x  
Y( No), for p = ]. 

Proof. Since B is bounded, it is contained in B(Mo, No) for some 
nonnegative number Mo; see (2.18). Lemma 2 then follows from Lemma 1 
and the definition of boundedness. [] 

The next lemma gives a sufficient condition for a generalized weak 
solution to be a solution of Class LH. 

Lemma 3. Let (cp, f ) e ~ / "  and assume that cp~L~o~[0,~;V)c~ 
L~(O, ~ ;  H). Then one has (~, f )  ~ ~rLn. 

Proof. In reference to the definitions, we need only to verify that if 
(cp, f )  satisfies the hypotheses of this lemma, then one has 

(1) Eq. (2.13) is valid at to=0 ,  and 

(2) Dtq~Lfor , oo; V- ' ) ,  forp=.~ .  

Since one has cpeL~or , oo; V)nL~176 oo; H), it follows from (2.2) that 
b(q~, cp, v) and (Al/2cp, Ai/2v) lie in L~or oo; R), for every ve  V, which 
establishes Item (1). Item (2) follows from Lemma 1, Property (5). [] 

The next result, which is a compactness lemma, is a key step in our 
theory. Since one has Ilul12~<2F 2 IIA~/2ull 2, for all u e  V, we see that if 

e L ~ ( 0 ,  ~ ;  V), then ~ ~ L~or ~ ;  H). Since the forcing function f plays 
no direct role in this lemma, we make no assumptions on f .  

[.,emma 4 (Compactness Lemma). Let q~" be a sequence in 
L~or oo; 1I), with the properties that (1)  q~" is bounded in Lt2o~(0, oo; V), 
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and (2) the sequence Dt(p" is bounded in L~(O, ~;  V-I),  for some p with 
1 <p <<. ~ .  Then there exists a subsequence o f  (pn, which we relabel as (p~, 
and a function (peL~oc(O , oo; V), Dt(peL~(O , ~ ;  V-I),  and the following 
properties hold. 

(1) One has (pn--~(p weakly in L2~(O, ~;  V). 

(2) One has D,(p ~---~Dt(p weakly in L~(O, ~;  V-l).  

(3) One has (p~--, (p strongly in L2o~(O, ~;  H) and in L2o~(O, ~;  V-l).  

(4) For each t~(O, oo) one has (p~(t)--,(p(t) strongly in V -I. 

(5) There is a set E in (0, oo) o f  Lebesgue measure zero with the 
property that (p~(t)--, (p(t) strongly in H, for each t ~ (0, oo )\E. 

Proof. For all practical purposes, this compactness lemma is known 
(see, e.g., Constantin and Foias, 1988, pp. 66-71; Lions, 1969). However,  
since this lemma is not usually formulated in the manner given above, we 
give an outline of the proof here. 

Let z and  T be given, where 0 < z < T < oo. Then it follows from the 
hypotheses that the sequence (pn is bounded in L2(3, T; V) and the 
sequence Dr(p" is bounded in LP(3, T; V-l).  As a result, the seven conclu- 
sions stated above follow from the argument of Constantin and Foias 
(1988) or Lions (1969) subject to the following changes. 

(1) The spaces Ll~(0, ~ ;  X) are replaced by Lr(3, T;X), for the 
appropriate choices of r and X. 

(2) The convergence statement in Property (5) is restricted to 
t e (3, T), and E is a set of measure zero in (3, T): 

Next for m = 1, 2, 3 ..... we construct subsequences (p~m and functions (Pro 
with the following properties. 

(1) One has (Pl = 0  and (p'~=(p~, for all n, where (pn is the sequence 
described in the hypotheses of this lemma. 

(2) For m = 1, 2, 3 ..... each sequence (P~,+I is a subsequence of  (p,~, 
and is chosen so that this subsequence and the function r 
satisfy the conclusions of the last paragraph on the interval 
I,,, = ((m + 1) -1, m +  1). 

(3) One has (P~+I -- ~,~,, for n = 1, ..., m and m= 1, 2, 3,.... 

Finally, the diagonal subsequence (p~ and the function (p defined by 
(p(t) = lira,, _. = (p,,(t), for t e Ira, satisfy the conclusions of this lemma. [] 

Lemma 5. Let ((p', f " )  be a convergent sequence in Z with limit 
((po, fo) in Z. Assume that (pne W ( f  ~) and that f ~ r  Y(No),for some N0>~0 
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and for  all n. Then there is a function qo ~ W(fo) such that qo = ,.e. q~o. In par- 
ticular, f o r  each No >>- O, the space qC'(No) generated by the weak solutions 
o f  the Navier-Stokes equations is a closed set in Z. 

P r o o f .  Let (~p', f ' )  and (~P0, fo) be given as in the hypotheses, where 
q~'E W( f " )  and Ilf 'll~ ~<No, for all n. Note that, since ( o ' ~  ~o strongly in 
L~or oo; H), the function cpo satisfies 

Cpo ~e-- lim ~o", on (0, r (2.29) 
/,i -..~ oo 

Since (~p", f " )  is a convergent sequence, it is bounded in Z. Therefore, there 
exists a nonnegative number Mo such that ((o ~, F ) ~  B(Mo,  No), for all n, 
see (2.18). It then follows from Lemma 2 that the hypotheses of the com- 
pactness lemma 4 are satisfied. After a relabeling, we let r denote the sub- 
sequence and we let ~p e L~o~(0, oo; V) denote the limiting function given by 
Lemma 4. It then follows from Property (5) of Lemma 4 and (2.29) that 
cp =,.e. cpo. We n o w show that cp ~ W(fo). 

Since one has ~po~L~oc[0, oo;H), it follows that cpeL~o~[0, oo;H). 
By using Property (5) of Lemma 4 and the inequalities (2.19) and (2.20) 
[as applied to the sequence (cp" , f ' ) ] ,  we see that r 2; H ) n  
L~[1 ,  oo;H). Also, one has Dttp~Lfor oo; V -1) by Property 2 of 
Lemma 4. Thus the first two conditions in the definition of a generalized 
weak solution are satisfied. It remains to verify (2.11), (2.12), and (2.13). 

Because of Properties (1) and (5) of Lemma 4, we claim that Eq. 
(2.13), which is valid for each r is valid (almost everywhere) in the limit 
as n ~ oo. Indeed, one has 

~ ( (A~/2q~" - A~/2q~), A~av)  ds 

= l ;to (At/2~On- AI/2cp) ds, A' /2V) -'* O, a s  n ~  

by Property (1) of Lemma 4. In order to show that 

f '  (b(~o", ~o", v) - b(~o, ~o, v)) ds--, O, as n ~ oo (2.30) 

we note that the trilinearity of b implies that 

b( ~o", q~", v ) - b( q~ , q~, v) = b( qf' - ~o , qf', v ) + b( ~o , ~o" - q~ , v) 

Since the solutions ~o" satisfy (2.19) and (2.20), it follows from Property (5) 
of Lemma 4 that ~ satisfies (2.19) and (2.20) almost everywhere. By 

865/8/1-2 
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using this fact, inequality (2.2), and Property (3) of Lemma 4, we see that 
both 

t,(go"- go', ,,) and b(go, go" - go, v) ds 
0 

converge to 0, as n --, m, which implies (2.30). In order to show that 

f,i ( <Pf", go'>-<Pfo, go> ) ds--,O, as n ~ m  (2.31) 

we note that 

< Pf ' ,  go~) --< Pfo, go> = < P ( f ' - - fo ) ,  go'> + <Pro, ~ ' - -  go> 

As a result, (2.31) follows from the convergence of the sequence f" ,  the 
Schwarz inequality and Property (3) of Lemma 4. By restricting t and to to 
be in the set (0, m ) \ E  and using Property (5) of Lemma 4, we see that 
(2.13) holds almost everywhere in the limit as n ~ oo. By changing go(t) and 
gO(to) on a set of measure zero, if necessary, we see that (2.13) is valid for 
all t~> to>0 .  

inequality (2.11) follows from Property (5) of Lemma 4. Also, 
inequality (2.12) is valid for the sequence go'. As n --* oo, the right side of 
(2.12) has the limit 

Ilgo(to)ll2+2 (Pro, go) ds, 
0 

for to ~ (0, oo)\E 

From Property (1) of Lemma 4 and the lower semicontinuity property for 
weak convergence, one obtains 

ftl [tA1/2go[] ds ~ lim infft  [IA t/2qo'[I 2 
" --* c~  "*tO 

Therefore, for t, toe (0, m)\E,  we see that inequality (2.12) is valid for go. 
Consequently, we have go r W(fo). [] 

3. THE SEMIFLOW ON W 

In this section we describe the global attractor for the 3D 
Navier-Stokes equations in the case where the forcing function f is time- 
independent and f r L2(H). The time-dependent case is given in Section 4. 
Before we describe the dynamical properties of this mapping, it is helpful 
to review the basic theory of semiflows and global attractors (see Conley, 
1978; Hale, 1988; Sell and You, 1994). 
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3.1. Semiflows and Global Attractors. Let W be a metric space. A 
semiflow on W is defined to be a mapping a(t, w ) = S ( t ) w ,  where 
a: [0, oo)x W ~  W satisfies the following three properties: 

(1) S(O)w=w, for all w~W. 

(2) The restricted mapping a: (0, ~ ) •  W ~  W is continuous. 

(3) The semigroup property 

S ( s ) S ( t ) w = S ( s + t ) w ,  for w ~ W ,  s , t ~ [ 0 , ~ )  (3.1) 

is valid. 

In order to describe the general theory of global attractors, as it will 
apply in our case, we assume that W is a closed subset of a Frech6t space. 
As a result, W is a complete metric space. 

One says that the semiflow S(t) is compact for t > 0, provided that for 
every bounded set B c  W and every t > 0 ,  the set S ( t ) B  lies in a compact 
set in W. Als0, S(t) is said to be point dissipative if there is a bounded set 
U in W with the property that for every we  IV, there is a time T =  T(w) 
such that S(t) w ~ U, for all t > T. In this case, the set U is referred to as 
an absorbihg set for the semiflow S(t). The proof of the following result on 
global attractors is given by Billotti and LaSalle (1971). [Also, see Hale 
(1988), Sell and You (1994), and Temam (1988).] 

Theorem A. Let S(t) be a point dissipative, compact semiflow on a 
complete metric space. Then S(t) has a global attractor A in W. Further- 
more, A attracts all bounded sets in W. 

It turns out that under the assumptions of Theorem A, the global 
attractor is the omega-limit set of the absorbing set U. As shown by Sell 
and You (1994), the global attractor A has additional properties, including 
the following: 

(1) A is maximal in the sense that every compact invariant set in W 
lies in A. 

(2) A is minimal in the sense that if B is any closed set in W that 
attracts each compact set in W, then one has A c B. 

(3) For each bounded set B in W, the omega-limit set og(B) satisfies 
o~(B) c A. 

(4) A is a connected set, 

(5) A is Lyapunov stable, i.e., for every neighborhood V of A and 
every r > 0, there is a neighborhood U of A with the property 
that S(t) U= 1I, for all t~>r. 
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3.2. Navier-Stokes Dynamics. Let p satisfy 1 ~<p ~< ~ .  Then for each 
~ L ~ ( 0 ,  ~ ;X) ,  the time translate ~b~ satisfies ~b~eL~(0, ~ ;X) ,  for all 
z 1> 0. As an application of Lemma 3, we now prove the following. 

l.emma 6. Let f ~ Y and q~E W(f).  Then for every 3>0,  the time 
translate q~ is in the space WLH(f~). 

Proof. Let fp ~ W(f),  and fix z > 0. Note that the time translate q~ is 
a solution of (1.1), wherefis replaced byrd, i.e., one has q~,~ W(f,). It then 
follows from (2.19) and (2.20) that the time translate tp~ is in L~(0, ~ ;  H). 
Also, (2.22) implies that ~p, EL2~[0, ~ ;  V). The result now follows from 
Lemma 3. [] 

For the remainder of this section we assume that fEL2(s As a 
result, f does not depend on time, and one has W= ~f W ( f ) =  W(f~) and 
WLn =~f  WLN(f)= WLH(f,), for all z~>0. We let S(t) be the mapping 
given by 

S: (3, ~p) -~ S(z) ~p = ~p, (3.2) 

As shown in Lemma 5, W is a closed set in L2o~[0, oo; H). Hence W is a 
complete metric space in the metric given by (2.6). In order to apply 
Theorem A to this situation, we need to verify the following properties. 

(1) The mapping S(t) given by (3.2) is a semiflow on 
L2o~=L2o~[0, oo;L2(~)) and that L2o~[0, oo;H) and W are 
positively invariant subsets of L~o~. 

(2) The restriction of the semiflow S(t) to W is compact for t > 0. 

(3) The restriction of the semiflow S(t) to W is point dissipative. 

In addition to these properties, which will then imply that there is a global 
attractor A in IV, we will prove the following properties. 

(4) The global attractor A lies in WLn. 
(5) For every bounded set B in W and for every t > 0, the compact 

set ClwS(t) B lies in WLH. 

s 7. Let fr and set W= W(f)  and WLn= WL,(f). 
Then the mapping 3(t) given by (3.2) is a semiflow on L~oc= 
L~o~[0 , oo; L2(~)). Furthermore, the sets L~oc[0, oo; H), IV, and WLH are 
positively invariant sets in L~o ~. 

Proof. In order to show that (3.2) defines a semiflow on L2o~, 
the main issue then is to verify the continuity of the mapping 
(~, ~o)~ S(~) ~p = ~o,, for (r, i f )e  (0, oo)x L~o~. Let rn and t f  be convergent 
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sequences where ~o" ~ q~ in L~o~ and 3. ~ 3 in (O, ~ ) .  Since ~o" is convergent 
in L 2 it is bounded. Since 3 > O, there is no loss in generality in assuming 
that 0 < �89 -..< 3. ..< 23. Let I .  denote the closed interval between 3. and 3. 
Thus the length of I .  is [ 3 . - r [ .  

We now show that 

d(~o," - ~o,,) --* O, as n ~ o o  (3.3) 

where d is the invariant metric given by (2.6). Let a and b be given where 
0 ~< a < b < oo. It will suffice to show that  

b 
fa Ilq~" - ~o~, II 2 ds ---, 0, as n - - , ~  

Now for �89 ~< a ~< r one has 

f~ t'b +~ 
11~o~-~o.ll2ds=Jo+~ 11~o"-~oll2ds~<~ 0+2~ II~o--q, ll2ds 

a+(I/2)r 
2 2 Since q~"---,cp in Lio r it follows that  ~p~,--, ~0. in L1or uniformly for 

�89 23~ This implies (3.3). 
Next we show that  

d(~pu - ~p~) --, 0, as n --, ~ (3.4) 

Let e > 0  be given. Since the C I functions of time are dense in 
L2(a + 3/2, b + 2z; H), there is a function 

~b~L2(a+r/2, b + 2 r ;  H) c~ Cl([a+3/2, b + 23]; H) 

with the property that 

b 
~a It~o~- ~,~ 112 ~< e, for all a ~  [3/2, 2r]  (3.5) 

Since ~O is a C I function, then for a ~< t ~< b one has 

Jlq/(r. + t) - ~O(r + t)l[ ~< ft. IjD,~b(s + t)ll ds <~ K It .  - 31 

where K is chosen to satisfy IID,~(s)II ~< K, for a + �89 ~< s ~< b + 23. It follows 
from the last inequality that  

S~ ll~O~ -~,+ll2 ds <~ K2(b-a) 13.-312 
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Therefore, there is a N such that one has 

for all n >1 N (3.6) 

It then follows from (3.5) and (2.65) that 

f [  IlcP~ - go~ll 2 ds ~ 9~, for all n/> N 

Since e, a, and b are arbitrary, this implies (3.4). It then follows from (3.3) 
and (3.4) that 

~0," --* r in L~or as n ~ o o  

which completes the proof of continuity. Finally, the positive invariance 
of the spac~ L~oc[O, oo;H)  follows from the continuous imbedding 
H~.-~LZ(I2), and the positive invariance of W and WLH follows from 
Lemma 6. [] 

Lemma 8. Let fELZ(I2)  and set W = W ( f )  and WLH=WLH(f).  
Then the restriction of  the semiflow S(t) to W is compact for t > 0 ,  i.e. for 
each bounded set B in W and for each z > O, the set S(z) B lies in a compact 
subset in W. Moreover, one has Clw S(~) B c WLH. 

Proof. If S(r) B lies in a compact set in Wfor  some 3 > 0 ,  then by the 
semigroup property (3.1) S ( ~ + t ) B  lies in a compact set in W, for each 
t > 0. Let r be fixed where 0 < z ~< 1. Since W is a metric space, it suffices 
to verify that S( z )B  is sequentially compact in IV. Let q~n be a bounded 
sequence in W. Then one has (<p",f)r llfll~), for all n, and for 
some M0 > 0. As a result, it follows from (2.19) and (2.20) that 

IIS(~) g0"ll~ <~z-'M2o+2C~ llfll~, for all n (3.7) 

From (2.22) one finds that 

y~,+l IIA1/2S(~) go'll 2 ds<~Ml(z+m, z + m  + 1) 5, for all n (3.8) 

for m--0 ,  1, 2 ..... From Lemma 2 we see that the hypotheses of the 
Compactness Lemma 4 are satisfied. After a relabeling, we let en and 
cpeL~or , oo; V) denote the subsequence and the limit function given by 
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the conclusions of Lemma 4. It then follows from Property (5) of Lemma 
4 and (3.7) that 

]IS(r) ~P[I ~ ~< z-~M~ + 2c~ Ilfll ~ (3.9) 

Likewise, from Property (1) of Lemma 4 and (3.8) one obtains 

~,, fm+1 ,,+1 IIAmS(r)~Pll2 ds<~ liminf IIAI/2S(r) ~P"I[ 2 ds 

<...Ml(v+m, z+rn+ 1) 2 (3.10) 

for m = 0 ,  1, 2 ..... Now (3.9) and (3.10) imply that 

S(z) ~p eL~(0 ,  ~ ;  H) c~ L ~ J 0 ,  ~ ;  V) (3.11) 

and from Lemma 6 we conclude that S(r) ~p ~ Wt.n c IV. Hence S(z) B lies 
in a compact set in I4,'. 

In order to show that the set C l w S ( r ) B  lies in I'VLH, we let 
q~o ~ Clw S(r) B be given. Then there is a sequence ~ e B with the property 
that S ( r ) r  q~o in W. Now each of the functions ~p" satisfies (3.9) and 
(3.10). By using the argument in the last paragraph, we see that inequalities 
(3.9) and (3.10) remain valid when one replaces S(r) q~ with ~P0- As a result, 
one has r176 oc; H)c~L~or oo; V). It then follows from Lemma 3 
that q~o e WLn. [] 

Lemma 9. Let feL2(12)  and set W = W ( f )  and WLH= WLH(f)- 
Then the restriction of the semiflow S( t) to W is point dissipative. 

Proof. In order to verify the point dissipative property, we define U 
to be the set of all ~pe W such that ~,,+l iiq~ll2ds<2collfll 2, for all 
m=O, 1, 2 ..... It follows from (2.7) that U is a bounded set in W. Let 
(~p, f ) e  B(go, IIfll ~). From inequality (2.20) one finds that 

f2 + IlS(~) ~,11 • e + Ilfll 
1 

2 ds �9 K 2 C20 2 

for all z i> 1 and all m = 0, 1, 2 .... 

where K 2 = e~t(M~ + c~ Ilfll 2). Let ro i> 0 satisfy e-V~"OK2 ~< c~ Ilfll 2. One 
then has 

~:r+l  HJ"~(r) (~H 2 ds ~.2C 2 llfll~, for all z >/ro and all m = O, 1, 2 .... 
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This implies that S(r) ~p r U, for all z I> re, i.e., the semiflow S(r) is point 
dissipative. [] 

Theorem 1 (Main Theorem). Let f e L 2 ( f l )  and set W =  W( f )  and 
WLH = WLH(f). Then there exists a global attractor A for the weak 
solutions of  the Navier-Stokes equations on ~,  and one has A c WLH. 
Furthermore, A attracts all bounded sets in W. 

Proof. The existence of the global attractor A in W and the fact that 
it attracts all bounded sets in W now follow from Theorem A and Lemmas 
5-9. Since A is invariant, it follows from Lemma 6 that A c WLH. [] 

As is usual, the global attractor A consists entirely of solutions of the 
Navier-Stokes equations which are defined for all t e R. It follows from the 
arguments in Lemma 1 that if ~p E A, then there are constants c~ and c2 
such that one has 

(1) II~p(t)'ll2~<Co 2 Ilfll~, for all tE R; 

(2) S', +~ IIa~/2~pll2ds<~v-'Co Ilfllo~, for all tER; and 

(3.) S',+~ IIa-t/2D,~ll~ds~(c~ Ilfll| +c2 Ilfll~) p, for all t~R,  where 
p = ~ .  

Let us now compare our results with a related theory developed by 
Foias and Temam (1987). They show that there is a universal attracting set 
in H, that is, there is a set F in H with the following properties. 

(1) The set F is defined as the collection of all Uo e H for which there 
exists a globally defined weak solution r r L~~ - oo, oo; H) with 
q~(0) = uo. It is shown that F is nonempty and bounded in H. 

(2) Every weak solution r WLH satisfies r F i n  Hw, as t--* ~ .  

(3) The Set F is compact in Hw. 

(4) One has F c  V if and only if F is a bounded set in K 

(5) The set Fc~ V is weakly dense in F, i.e., it is dense in the weak 
topology Hw. 

(6) The set F contains a set Fro,  where F,~g is weakly open and. 
weakly dense in F, and for every Uo e F ~  there is an a > 0 such 
that, for any weak solution r with r for all t e R  and 
r =Uo, the restriction ~ I c-~.~ is uniquely determined and 
~( t ) r  V, for all t r  

In our notation, we note that if r ~ A, then one has ~ ~ C ( -  oo, oo; 
Hw). Furthermore, the set {r is compact in C ( - o o ,  oo;Hw) in the 
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topology of uniform convergence on compact sets (see Constantin et al., 
1985, Chap. 1 ). As a result, the evaluation mapping of/~ into Hw given by 
q ~ 0 ( 0 )  is continuous, and the set To= {~o(0): ~o~A} satisfies the six 
properties listed in the last paragraph. 

We now have the global attractor A with two topologies. First, one 
has 

a =  w =  = L[o [0, 

with the L~o~-topology, and second, one has 

A =  C ( - ~ ,  c~; Hw) 

with the metrizable topology of uniform convergence on compact sets in 
( -  oo, oo). It follows from the compactness property of the last paragraph 
and our Lemma 8 that the two topologies agree on the space A. By using 
the fact that :Fo is the continuous image of the global attractor/~, which 
is compact, one can show that the two sets F and Fo are the same. 

Let us conclude this section with a summary of the four principal 
advantages of the point of view based on dynamical systems and developed 
in this paper. 

(1) This approach includes an overall framework for the study of the 
weak solutions of the Navier-Stokes equations in the context of 
dynamical systems, or semiflows. 

(2) In this framework we are able to apply Theorem A to the study 
of weak solutions, and thereby show the existence of a global 
attractor •. 

(3) The global attractor A attracts all bounded sets of weak solu- 
tions. 

(4) The global attractor A satisfies the five properties listed at the 
end of Section 3.1. 

The importance of the fact that the global attractor attracts all 
bounded sets in W cannot be overemphasized. It is this feature, along 
with the Lyapunov stability of the attractor, that is the source of various 
robustness theories of global attractors. One can show, for example, that 
the global attractor A = A(f) ,  which depends on f ~  L2(~2), is upper semi- 
continuous in f (see Sell and You, 1995). As simple examples in the plane 
R 2 show, this property is not shared by an attracting set that is not an 
attractor. (Recall that an attracting set in a semiflow is a nonempty, 
compact invariant set that attracts every point in a neighborhood of itself.) 
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4. THE TIME-DEPENDENT CASE 

In studying the time-independent problem in Section 3, we did use the 
fact that if (p is a weak solution of the Navier-Stokes equations, then for 
every r I> 0, the time translate cp~ is also a weak solution. When the forcing 
function depends on time, this conclusion is no longer valid. Instead, cp~ is 
a solution of the translated problem 

u, + vAu + B(u, u) = Pf~ 

In order to develop a dynamical theory to handle this situation, we use the 
traditional approach of skew-product flows (see Raugel and Sell, 1993a-c; 
Sacker and Sell, 1977, 1994; Sell, 1967a, b, 1973; Vishik, 1992). 

Let ~" be a set in Y(No), for some No t> 0, and let H+(~, a~) be the hull 
of ~ .  Then H + ( ~  ") c Y(No), and it follows from the general theory of 
semiflows (see Sell and You, 1994) that the hull is a positively invariant set 
for the semiflow on L2o~=L2oc[O, oo;L2(D)) given by. (3.2). For the 
remainder of this section we assume that the hull H + ( ~  ") is a compact set; 
see (2.8). Since the time-translation mapping S(z) given by (3.2) is a semi- 
flow on the hull, and since the hull is compact, it follows from Theorem A 
that there is a global attractor A2 c H+(~') .  

Define ~r(H+(~r)), and ~LH(H+(~')),  to be the collection of all 
(~, f )  in ~/', or in ~LH, respectively, with the property that f ~  H+(~ ' ) .  
Define the mapping 

S(z)(q~,f)=(qJ, f,),  for r~>0 (4.1) 

where ((p, f ) e R .  From the comments made above, we see that S maps 
[0, ~ ) •  into R. 3 From Lemma 6 one has S(r)(q~,f)~LrX, whenever 
(~, f ) e ~  r and z>0.  The argument of Lemma 7 now extends in a 
straightforward manner to establish the following result. 

Lemma 10. Let H + ( ~ )  be a Y-bounded set that is compact in 
Li2oc[0, oo; L2(O)) .  Then the mapping S given by (4.1) is a semiflow on R. 
Furthermore, the sets ~/ '(H+(~'))  and ~Ln(H+(~ ' ) )  are positively 
invariant subsets in this semiflow. 

Likewise the argument of Lemma 8 establishes the following result. 

Lemma 11. Let H+(~ r) be a Y-bounded set that is compact in 
L~oc[0 , oo; L2(D)). Then the' restriction of  the semiflow S( t ) to ~r 

This semiflow is a skew-product semiflow (see Sacker and Sell, 1977, 1994; Sell, 1967a, b, 
1973). Indeed, the time translatef~ does not depend on the choice of the solution ~ ~ W(f). 



Global Attractors for 31) Navier-Stokes Equations 27 

is compact for t > 0, i.e., for each bounded set B in "tr H + ( ~ )  ) and for each 
z>0,  the set S ( z )B  lies in a compact subset in "tf'. Moreover, one has 
C1R(S(z" ) B) = ~/FLH(H+(~)), for z > O. 

Lastly, the argument of Lemma 9 now establishes the following fact. 

1.emma 12. Let H+(~  r) be a Y-bounded set that & compact in 
Ll2oc[0, oo; L2(~2)). Then the restriction of  the semiflow S(t) to ~/ ' (H+(~) )  
is point dissipative. 

It then follows from these lemmas and Theorem A that we have the 
following result. 

Theorem 2. Let H+(~ r) be a Y-bounded set that is compact in 
L2oc[O, ~ ;  L2(~2)). Let A2 denote the global attractor generated by the semi- 
flow (r,f)---,f~ on H+(.Jr). Then there is a global 
~V(H+(~)) ,  and the following hold. 

(1) 
(2) 
(3) 
(4) 

attractor A in 

A c '/~LH(]~2) = "]~LH(H+(,.~)). 

A attracts all bounded sets in "r162 

I f  ( q~, f )  ~ A, then one has f 6 A 2. 

For every f 6 A2, the set {~p6 W(f): ( ~ , f ) e A }  is a nonempty, 
compact set in W(f) .  

5. REGULARITY OF THE GLOBAL ATTRACTOR 

Now that we have established the existence of a global attractor for 
the 3D Navier-Stokes equations, the next issues are to analyze the analyti- 
cal and dynamical properties of this attractor. On the analytical side, one 
would like to know, for example, to what extent are the weak solutions in 
the global attractor actually strong solutions (see Foias and Temam, 1987). 
The results described in this section represent a preliminary study into the 
analytical properties of the solutions. We focus here on the case where the 
weak solutions satisfy an ultimate regularity property, and we show that a 
number of interesting consequences follow in this case. 

Recall that a weak solution r of Class LH is said to be a strong solu- 
tion on an interval [0, T), where 0 < T<~ oo, provided that one has ~o(0) e V 
and 

r ~L,~:[0, T; Y)c~ L~oJ-0, T; V "2) (5.1) 
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(see Constantin and Foias, 1988; Sell and You, 1995; Temam, 1977, 1983). 
For all data (uo, f ) ,  where uoe V a n d f e  Y, one always has a maximally 
defined strong solution on an interval [0, T), where 0 < T~< co, and this 
solution is uniquely determined on any subinterval of [0, T). As a matter 
of fact, a strong solution go of the Navier-Stokes equations has additional 
properties, including the following. 

(1) The derivative Dtg O satisfies 

DtgoEZ.L[O, H)=L, oolO, V- ' )  

(2) The function go satisfies (1.1) almost everywhere on the interval 
(0, ~ .  

(3) The solution go satisfies the variation of constants formula, 

! ~oe--~Att--~)[pf_ B(go, go(t) = e-~att-to)gO(to ) + go) ] ds, 

for O<~to<~t<T 

where the integral exists in the space H. 

(4) The function go is in the H61dcr space C~o~[0, T; H), for an 0c 
satisfying 0 < 0~ < �89 

In this section we restrict the Navier-Stokes equations to the case 
where the forcing function satisfiesfe L'(g}). By using the methodology of 
Section 4, one can extend many of the features described in this section to 
the time-dependent problem, 

Let fEL2(f2) be fixed and set W= W(f) and WEn = WLH(f). For 
each go ~ W we define 

L(go) deal ess sup IIA  ago(t) ll 
0 < t < o o  

The function L assumes values in the extended interval [0, co]. This 
function is monotone nonincreasing, i.e., one has L(go~)~<L(go~,)~<L(go), 
whenever 0 ~< a ~ z. Furthermore, the function L is lower semicontinuous 
on the space W. As a result, if go"--go in W, then one has 

L(go) ~ lim infL(~ ~) 
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To put this another way, for every r e W and every e > 0, there is a 
= 3(~0, e) > 0, such that one has 

L(q~)<~L(~)+e, whenever d ( tp -  $) < ~ 

where d is the invariant metric on Ll2o~[0, oo; H) given by (2.6). 
We say that a weak solution r is ultimately regular if there is a time 

t = t ,  > 0 such that 

L(~p,) < ~ ,  for all ~/> t~, (5.2) 

If a given weak solution 9 is ultimately regular, then the following proper- 
ties are valid. 

(1) Each point $ in the omega-limit set ~o(9) lies in the global attrac- 
tor & and one has 

L($) ~< lim inf L(~o,) < oo (5.3) 

(2) The set w(tp) defined by 

co( o)} 

is a bounded set in V and it consists entirely of strong solutions. 
In particular, if Uoe w(q~), then there is one and only one weak 
solution ~b with $(0)=  Uo, and this solution is a strong solution 
for all t e R. Moreover, one has ~b ~ &. 

(3) There are constants K 1 and K2 such that 

[[AI/Z$(t)[[2<<.K~, for t ~ R  and ~a)(~o)  (5.4) 

and 

yf +l for t e R  and (5.5) Ila~(t) ll2<~g 2, 

Recall that the lower semicontinuous function L attains its minimum 
value on the compact set A (see Maufin, 1967), Define Lo by 
Lo =a'finf§ A L($), We assume that Lo is finite or, equivalently, that there 
is at least one weak solution ~o e W that satisfies (5.2). For any L~ with 
Lo ~< L~ < oo, we define 

A1 d,f {# ~A: L(#) ~L1} 
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Then, in addition to properties (1), (2), and (3) given above, the set A~ 
satisfies the following properties. 

(4) The set A~ is a nonempty, closed, positively invariant set in A. 

(5) The omega limit set co(At) is a nonernpty, compact, invariant set 
with 

A3 ~ co(A,) c A~ c A 

(6) The set Fa=der {~b(0): ~beA3} is a bounded set in V, and (5.4) is 
valid for all ~b ~ A3 with K~ = Ll.  

We say that the weak solutions are ultimately regular on a set U in W 
if for each cp e U, the weak solution cp is ultimately regular. Notice that in 
the case of an infinite set U, the concept of being ultimately regular on U 
does not imply in any uniformity in (5.2), even when the set U is compact, 
or when U is the global attractor A, or when U is the entire space IV. 

Assume now that the weak solutions are ultimately regular on a set U, 
where U is a neighborhood of the global attractor A in IV. There are two 
points to be made. 

(1) For  every point ~0 e U, the omega limit set co((p) is nonempty and 
compact and consists entirely of strong solutions. Furthermore, 
one has c o ( c ) c  A by the maximality property; see Section 3.1. 
(We caution the reader that, in general, the attractor A is larger 
than the union of the omega limit sets in it, i.e., there may be a 
point ~b E A, where ~b does not lie in any omega limit set.) 

(2) It is our conjecture that under this assumption, the set 

to-- 

is a bounded set in V and it consists entirely of strong solutions. 
If this were the case, then it would follow that there are constants 
K1 and K2 such that (5.4) and (5.5) are valid for all ~b e A. 

While we are unable to prove this conjecture, there is an interesting 
case where it is valid. Specifically for the Navier-Stokes equations on thin 
3D domains, as studied by Raugel and Sell (1993a--c), it is shown that 
there is a constant L2 > 0, such that for every weak solution ~a ~ W, one has 

lira sup L(c?,) ~< L2 (5.6) 
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It then follows from (5.6) that one has 

L(cp) ~< L2, for every cp e A 

which implies that (5.4) is valid for every ~ ~ A with K 2 = L2. A standard 
argument then establishes (5.5) (see Constantin and Foias, 1988). As a 
result, the set F0 given above is a bounded set in V, and it consists entirely 
of strong solutions. 

The results described in this section show the importance, from a 
dynamical systems point of view, of the concept of ultimate regularity. We 
believe that this concept is worthy of further study. 
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