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Triangles I I I :  C o m p l e x  triangle functions 

JUNE A. LESTER 

Summary. This paper is the third in a series of three examining Euclidean triangle geometry via complex 
cross ratios. In the first two papers, we looked at triangle shapes and triangle coordinates. In this paper, 
we look at the triangle coordinates of the special points of a triangle, and show that they are functions 
of its shape. We then show how these functions can be used to prove theorems about triangles, and to 
gain some insight into what makes a special point of a triangle a centre. 

1. Introduction 

The geometry o f  the special points o f  Euclidean triangles has long fascinated 
many  mathematicians.  An  extensive inventory of  these special points (over a 

hundred in all) and their properties has recently been compiled by Clark Kimber-  

ling [6]. This catalogue is all the more  remarkable in that the au thor  also establishes 
that all pairs o f  these points determine fewer than 150 lines. These collinearities 

were discovered experimentally through numerical computer  calculations, i.e. with- 
out  proofs. In principle, o f  course, the requisite proofs  are just mechanical  calcula- 

tions on the trilinear coordinates o f  these points; in practice, however, the 

calculations can be very difficult, and best left to a computer  algebra program. (See 
the comments  in [3].) 

In  this paper, the last o f  a series discussing triangle geometry through complex 

cross ratios, we build on the notions o f  shape and triangle coordinate  developed in 

[7] and [8] to discuss these special points f rom a different perspective. The basic 
idea, developed in §2, is that  the geometric definition o f  any special point  can be 

encoded into a function o f  one complex variable. After comput ing  several o f  these 

functions, we show in §3 how to use them to discover and prove theorems about  

"AMS (1991) subject classification: 51M05, 51N20. 

Manuscript received January 22, 1993 and, in final form, February 8, 1995. 

4 



Vol. 53, 1997 Triangles IIl: Complex triangle functions 5 

special points, and illustrate the method by showing that the circumcentre, nine 
point centre and Fermat points of a triangle must be concyclic. The remaining 
sections deal with more theoretical considerations: symmetry and centre functions 
(~4) and Cevian centres (§5). 

As a source of information about special points and their properties, the 
catalogue of [6] is ideal. The requisite mathematical background from [7] and [8] is 
outlined below. 

Identify the Euclidean plane with the complex numbers C, and set 
C~:=Cu{oo}.  The c y c l e  n o t a t i o n  and its properties are given by 

1 z - - 1  1 
z '  . -  z "  - - 1 - - z "  = z ,  z z ' z "  = - 1 

I --Z' Z Z' 

for any z ~ C~. 
The cross ratio of any a, b, e, d in Co~ with at most two alike is the number 

( a  - c ) ( b  - d )  
[a, b; c, d] . -  

(a  - d)(b - c) 

("cancel" any terms involving ~) .  Cross ratios have the symmetry properties 

[a,  b; e, d] -1 = [a,  b; d, c] = [b, a; c, d], [a,  b; e, d ] ' =  [a, c; d, b]. 

Linear fractional transformations or conjugate linear fractional transformations 
(which have the form 

a z  + b a ~  + b 
z ~ . - -  or z ~ - -  f o r a d - b c ¢ O  

c z  + d c ~  + d 

respectively) preserve or conjugate cross ratios. They are similarities or anti-similar- 
ities respectively whenever they fix 0% i.e. whenever c = 0. For any distinct a, and 
b in C, the mapping z ~ [ oo, a; b, z] is a similarity. 

The s h a p e  of any (ordered) triangle Aabc is the number Aa~.-=[oo, a; b, e]. 
Two triangles are similar whenever they have the same shape and anti-similar 
whenever they have conjugate shapes. The shapes of other triangles with the same 
vertices may be found by cycling: triangles Abca and Aeab have shapes 
A~a = (Aa~) '  and Acab = (A~bc)" respectively. Equilateral triangles have shape 
09 : = e  i~/3 or  ~ ,  and isosceles triangles with equal angles at b and e have sh~ipes with 
modulus 1. 
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To define complex triangle coordinates, first fix an arbitrary, non-degenerate 
base triangle Aabc, then for any point z e C~, the triangle coordinate of  z with 
respect to the base triangles A abe is the number 

z~ := [z, a; b, c] ~ Co~. 

The vertices of the base triangle have triangle coordinates aA = 1, bA = 0 and 
cA = oo, and oo~ = A. Points inverse in the circumcircle of Aahc have conjugate 
triangle coordinates. The subscripts A '  and A" to refer to the cycled triangles Abca 
and A cab respectively, so 

zA,:=[z,b; e, a] = (z~) ' - -  - -  
1 zA - 1 

and zA . . . .  [z, c; a, b] = (zA)" = 
1 - - z  A ZA 

Then ZAZ~'ZA" : -- 1. 
We denote the angles of the base triangles by A:=  &bac, B:=  z~cba and 

C.'= & acb and its shape by A .-= A.b~. We then have the following useful relations: 

A A' A" 
e i A  = - -  e i B  = - -  e i C  _ 

IAI '  IA'[ ' IA"I  

and 

A A '  ' A "  
e 2 i A  e 2 i B  = ~ - -  e 2 i C  ~_. 

=-S' £"  S~"" 

2. Special  points and complex  triangle functions 

In our discussion of the "special" points of a triangle, we want to include points 
such as its vertices, the mid-points of  its sides, its circumcentre, the feet of its 
altitudes, its Brocard points, etc., etc. - -  any of  the hundreds of different points 
defined or discovered over the centuries. These points may be described as follows. 

First, each can be expressed in terms of the vertices of the triangle: if p is a 
special point of  A a ~ ,  then p = f ( a , b ,  c) for some function f :  ]]--,C~ (where ]l- 
denotes the set of  all non-collinear triples of  points in C). For  example, f may 
represent the result of some construction. Second, special  points are "similarly 
situated for similar triangles": if Aabe and Aabc are similar or anti-similar 
triangles, p ,=f(a ,  b, c) and ~.'=f(a, f~, e), then the similarity or anti-similarity which 
takes A a ~  into A a ~  takes p into l~. 
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This latter stipulation places a condition on f. Since any anti-similarity is the 
composition of a similarity and conjugation, we may express this condition in two 
parts. 

• For any similarity S: C ~ C ~ ,  Sf(a, b, e) = f (Sa ,  Sb, Sc). 
• f ( a ,  b, c) = f ( a ,  b, e). 

The following theorem translates these statements into terms of shapes and triangle 
coordinates. 

TRIANGLE FUNCTION THEOREM. (a) Suppose that f: -~--* Co satisfies the condi- 
tions 

• Sf(a, b, e) = f (Sa ,  Sb, Se) for all similarities S: C~ ~ C~, 
• f ( a ,  b, e) = f ( a ,  b, e), 

for all (a, b, e) ~ 1-. Define the function F: (C\R) --*C~ by 

F(z) ,= [f(O, 1, z), O; 1, z]. 

Then with respect to any base triangle Aabe with shape A, the point p:=f(a ,  b, e) has 
triangle coordinate 

PA = F(A) .  

Furthermore, F(z) = F(5) for all z ~ C\R. 
(b) Suppose the function F: (C\~)  -* C~ satisfies F(z) = F(£) for all z ~ C\~. 

Define f: -~-* Ca to be the solution of the relation 

[f(a ,  b, c), a; b, e] = F([ ~ ,  a; b, el). 

Then for all (a, b, e) ~ -g, f satisfies the assumptions of part (a) and F coincides with 
the F of part (a). 

Proof ( a ) F o r  any base triangle Aabc and p ,=f(  a, b, e), the similarity 
S: C~--*C~ given by Sz,=[oo, a; b, z] satisfies S a = 0 ,  S b =  1 and S e =  A. Then 

p• = [p, a; b, e] 

= [f(Sa,  Sb, Se), Sa; Sb, Sc] 

= If(O, 1, A), O; 1, A] 

= F(A) .  
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Furthermore, for any z e C \g ,  

F(z) = If(0, 1, z), 0; 1, 2] 

= [f(O, 1, g), O; 1, e] 

= F(e).  

(b) For  all (a, b, c) e -U- and any similarity S: C~ ---, C~, 

[ f (Sa,  Sb, Se), Sa; Sb, Se] = F ( [ ~ ,  Sa; Sb, Se]) 

= F([ ~ ,  a; b, el) 

= [Sf(a, b, e), Sa; Sb, Se] 

from which Sf(a, b, c) = f ( S a ,  Sb, Se). Also 

If(a ,  b, e), a; b, c] = F([ ~ ,  a; b, c]) 

= F([ c~, a; b, el) 

= F( [  ~ ,  a; b, e]) 

= [f(a, b, c), a; b, e], 

so f (a ,  b, e) = f ( a ,  b, e). Since z = [ ~ ,  0; 1, z], F coincides with the F of part 
(a). [] 

The significance of this theorem is that it translates the geometric definition of 
any special point into a single function of  one complex variable. 

DEFINITION 2.1. A complex triangle function is any function F: ( C \ ~ ) ~ C ~  
satisfying F(z) = F(2). 

Thus if a complex triangle function F embodies the constructionfdefinition of  
some special point then, for any particular triangle with shape A, the triangle 
coordinate of its own particular special point p with respect to that triangle is 
p• = F (A) .  (We then call p the "F-point" of  the triangle.) 

We can use complex triangle functions to study the relations between special 
points and prove theorems about them. First, however, we must be able to find 
these functions. [Note: All triangle functions derived in this and the following 
sections are tabulated at the end.] 
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I f  we already have an expression for the special point  in terms o f  the shape of  

the triangle, the work is done for us. 

E X A M P L E  2.1. (a) The vertices of  the base triangle have constant functions O, 1 
and oo respectively. The point co has triangle function z. 

(b) The mid-points of  the sides of  the base triangle have functions - z ,  2 -  z and 
z(2z - 1) - l  respectively. 

(c) The circumeentre of  the base triangle has function O(z),= ~. 
(d) The centroid and symmedian points have functions 

z - 2  ~ - 2  
- - - -  , - - .  G(z),= 2 z -  l Z and L(z) 2 ~ - 1  

(e) The Brocard points have functions 

1 5 - 1  
BROCk(z) . '=U - and BROC2(z) -'=-~" - 

1 - - 5  5 

Proof. Collect f rom [81 the corresponding expressions for the triangle coordi- 

nates of  these points in terms of  A and translate them into triangle function form 

using the relation p~ = F ( A ) .  [] 

When  we know the triangle coordinates of  the special points in terms of  the 
angles A, B and C of  the base triangle, a little more  work  is necessary. 

E X A M P L E  2.2. (a) The orthocentre has function 

z + 5 - 2  
. _ _  Z 2 .  

H(z) 2zS - z - 

(b) The incentre has function 

zlz-II + Izl(1-z) 
I(z). '= / - l - - z [ = ( [ = ~  " 

(c) The nine-point centre has function 

z 2 - 2 z  +~  
N(z) .'= - z  2 _ 5 + 2z5 z. 
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P r o o f  From [8], the triangle coordinates for these points are 

1 + e-2iB 1 - -  e iC 1 + e-2iB - -  e2iC 

ha - 1 + e 2iC A ,  i~ 1 - e - i S  A ,  nA = 1 -- e-2iB _~ eZiC 

respectively. By using the relations 

A'  A "  A '  'A" 
e i B  : e iC = and e 2 i B  : -  - -  e 2 i C  : 

IA'I' IA"I' a "  ~" '  

A 

terms of A; the corresponding 

Some triangle functions can be found directly from the geometry. To simplify 
the calculations, note that, since z = [ ~ ,  0; 1, z] = Ao~,, we may replace any base 
triangle with shape z by the similar triangle A01z. Thus, if p = p(z) is the F-point 
of  A01z, then F is given by F(z )  = [p(z), 0; 1, z]. 

EXAMPLE 2.3. The foot of the altitude through the third vertex of the base 
triangle A01z is p = Re(z) = ½(z + ~). The function for this point is thus 

2 - - 7 .  - - F  
[½(Z + O, 0; 1, Z] -- Z. 

EXAMPLE 2.4. Any internal angle bisector of  a triangle divides the opposite side 
in the ratio of the remaining two sides. If  the bisector through the first vertex of the 
base triangle A01z meets the opposite side at p, then 

p - 1  1 

7 ` - p  Izl' 

so p has function 

(p - 1)(0 - z) z 
[p, 0; 1, z] - 

( p  - -  z ) ( 0  - -  1) = --]z]" 

Similarly, the external bisector at the same vertex meets the opposite side at a point 
with function + z/Iz  I. [] 

these coordinates may be expressed entirely in 
functions can then be calculated from the relation p~ = F ( A )  as before. [] 
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Many special points of a triangle occur in triples (e.g. the mid-points of the 
sides, the feet of the altitudes). These points result from "cycling" the same 
definition or construction around the base triangle. 

DEFINITION 2.2. For  any triangle function A, the A-triple of associated points 
of the base triangle consists of the points p, q and r, where 

PA = A(A),  q~, = A(A') ,  rA. = A(A").  

Triangle Apqr is then called the associated A-triangle of the base triangle. 

Note that, since qa = (qA') " =  {A(A')}" and ,~ = (rA,,)' = {A(A")}', the trian- 
gle functions of the A-triple are A(z), {A(z')}" and {A(z")}'. 

EXAMPLE 2.5. From Example 2.4, the internal angle bisectors of the base 
triangle meet the opposite sides at the points with functions 

Z - -  - -  A(z)- Izl' {A(z,)),,=ll 4+(1 z) zll-zl 
11_21 ' {A(z')}'-zll_z[_lzl(l_z). 

EXAMPLE 2.6: ASSOCIATED TRIANGLES. We give the triangle function of the 
first vertex of each; the functions for the other vertices can be found as in Example 
2.5. 

(a) the medial triangle (with the mid-points of the base triangle as vertices). 
From Example 2.1, (b) A(z) = - z .  

(b) the tangential triangle (with sides tangent to the circumcircle of the base 
triangle at its vertices). The tangential triangle is the inverse of the medial triangle 
in the circumcircle, so since inverse points have conjugate triangle coordinates, 
A(z) = -5 .  

(c) the anticomplementary triangle (with the base triangle as medial triangle). 
If p is the vertex of the anticomplementary triangle opposite vertex 0 of the 
base triangle A01z, then 01pz is a parallelogram, so p = 1 +z .  Then A(z )=  
[1 +z ,  0;1, z ] = z  2. 

(d) the orthic triangle (with the feet of the altitudes as vertices). Example 2.3 
gives 

m Z  - - 5  

{A(z")} ' -  z - Y  z=,F(z), 
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so (cycle) 

z + ~ - - 2  
A(z) _= [{A[(z ' ) " ] ) ' ] "  = [F(z ' ) l "  2 z Y  - z - z .  

AEQU. MATH. 

(e) the exeentral triangle (whose vertices are the excentres). From Example 2.1 
of [8], the excentre opposite vertex a has triangle coordinate 

1 + e  ~c 
- -  ~ .  

1 + e  ~n 

Put A = z, era= z[Iz' I and e~C= z"/]z"t; simplify to get 

A ( z )  - z l l  - z ] -  Iz[(1 - z) 

I1 - zl + (1 - z )  [] 

Some special points of the base triangle are defined to be other special points 
of some associated triangle (for example, [6] lists the circumcentre of the tangen- 
tial triangle, the centroid of the orthic triangle and others as special points). 
Functions for these "compound" special points may be found using the following 
theorem. 

THEOREM 2.1. Suppose that the F-point triangle is defined to be the E-point of  its 
associated A-triangle. Then F(z) is the solution of  

IF(z), A(z); {A(z')}", {A(z")}'] = E{[z, A(z); {A(z')}", {A(z")}'] }. 

Proof. Let d be the F-point of the base triangle, i.e. d is the E-point of the 
associated A-triangle Apqr. Then 

[d, p; q, r] = E(Apq,) = E { [ ~ ,  p; q, r]}, 

so since the coordinate map z ~ z~ preserves cross ratios, 

[d~,p~;q~, r~] =E{[A,p~;q~,r~]}. 

In terms of triangle functions (with A = z, d~ = F(z), PA = A(z), etc.) this becomes 
the relation stated. [] 
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EXAMPLE 2.7. The Spieker centre of a triangle is defined to be the incentre of 
its medial triangle [6, point 10]. From Example 2.2, (b), 

z l l  - z I + Iz](1 - z )  

From Example 2.1, (a) 

z 
A(z) = - z ,  {A(z')}" = 2 -- z, {A(z")}' - 2 - z" 

The cross ratio [z, A(z); {A(z')}", {A(z")}'] simplifies to z, since the medial triangle 
is similar to the base triangle, so we must solve 

SPK(z), - z ;  2 - z, = I(z). 

We obtain 

II - z l z  - lzl  + z ( z  - 2)  z SPK(z).-= =b - % 2  " [] 

Since much of the current work on triangles (e.g. [5] and [6]) is conducted via 
trilinear coordinates, it is useful to be able to convert trilinears to complex triangle 
coordinates. The trilinear coordinates of a point with respect to the base triangle 
are its signed distances from the sides. (A positive distance indicates a point on the 
same side of the appropriate side of the base triangle as the remaining vertex.) Since 
only the shape of the triangle is relevant (not its size), trilinears are taken to be 
homogeneous (so for instance, the incentre has trilinears (1. 1, 1), since it is 
equidistant from the three sides). The following theorem gives the conversion rule. 

THEOREM 2.2. I f  point p has trilinears (~, t~, 7) with respect to Aabe, then 

Proof. We may take ~, /3 and 7 to be the exact signed distances of p from the 
sides of Aabe. If Astu is the pedal triangle of p with respect to Aabe, then (MTST) 

p ~  = [ ~ ,  s; t, u] = [00 ,  - i ( p  - s ) ;  - i ( p  - t) ,  - i ( p  - u)]. ( * )  
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If ±abc  has positive angles, then the angle from b~ to sp is +½7c, where the 
sign is positive for p on the same side of  be as a. It follows that 

p - s ~ (c  - b) Ic - b I 
c - b  Ic -b l  i' i.e. - i ( p - s ) = ~  ic_b~-~(c_b~_~,  

and similarly, 

- Ib- al 
- i ( p - t ) = / 3  ]a c[ and - i ( p - u ) = ?  

( a  - e )  ( b  - a )  

Substitute into (*) and conjugate to get the required formula. 
If A abc has negative angles, then we need merely replace e - b, a - e and b - a 

by their negatives; this has no effect on the formula. [] 

EXAMPLE 2.8. The Steiner point is defined in [2], and, with respect to a triangle 
Aabc with sides of lengths 2 .'= [ e -  b[, ~ := [ a -  e I and v : - - I b -  a I, has trilinears [6] 

1 1 1 ) 
(~, #, Y)'= a(~22_ v2) , ~(v 2 -  , t2;  v( , t2-  ~2) • 

For z := Aa~, A01z is similar to Aabe, so we may assume that a = 0, b = 1 and 
e = z. Then 

Ic-bl  1 I z -  11_ 1 
( c -b )  Iz-ll{lzlZ-l} z - 1  (z2--1)(z--1) 

and similarly 

/3 la  - cl  1 Ib - aJ 1 
(a e ) - ( z ~ - z - 2 ) z  and Y ( b - a ) - l - z - 2 "  

Substitute into the formula of Theorem 2.2 and simplify to get the function 

z2(z + 2 - z f )  
STN(z) .'= p a - [] 

z + 2 - - 1  

If the trilinears are given in terms of  the angles A, B and C of the base triangle, 
then Theorem 2.2 can be reformulated as follows. (Caveat: our angles here are 
oriented, while those of the trilinear triangle are not. For  Im(A)  < 0, insert minus 
signs as necessary.) 
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COROLLARY 2.1. I f  p h a s  t r i l i n e a r s  (c~,/~, 7) w i t h  r e s p e c t  to  A abc, t h e n  

PA = [ ~ ,  --or; f l e  ic, 7 e - i B ]  • 

P r o o f .  Multiply each term in the cross ratio o f  Theorem 2.2 by - - ( c -  h)/Ic - h i :  

a)  Ic - b I ' ~' (b a) Ib - c I / 

= [oo, - ~ ;  ~ e gc, ~ e-~B 1. [] 

EXAMPLE 2.9. An  unidentified point  p (number  36 in the catalogue o f  [6]) has 

trilinears 

(1 - - 2 co s  A, 1 - 2  cos B, 1 --2 cos C) 

= (1 -- e iA - e - iA ,  1 - -  e m - e - m ,  1 - e ic = - e - i c )  

= ( 1 + e iB e iC + e - i ~  e - i c ,  1 - -  e iB - e - i8 ,  1 - -  e ~c - -  e i c )  

(since A = ~ - B - C). Then 

p~ = [oo, --(1 + e i B e i C - +  - e - iB  e - i C ) ,  (1 -- e ~B - e -/B) e iC, (1 - e ic  - - e  - i c )  e - m ]  

( 1 + e i B ) ( e  ic  - -  e i c e  - iB  + e m )  

-- (1 + e i C ) ( e i C - - e ~ C e - i B +  e - i B )  

( 1 + e iB) 

- (1 + e - i C ) "  

F r o m  Example 2.1 of  [8], this expression is the conjugate o f  i~, the triangle 

coordinate  o f  the incentre o f  A abe. We thus identify p as the inverse of  the incentre 

o f  A abc in its circumcircle. [] 

This method  works in general: if the trilinears o f  a special point  are given in 
terms of  tr igonometric functions o f  the angles, they can be written in terms of  e iA, 
e iB and e ic. After applying Corol lary 2.1, the resulting triangle coordinate may  then 

be converted to a triangle function in z using the relations e iA = z / I z  I, e 2iA = z / Y ,  etc. 
Strictly speaking, the function STN o f  Example 2.8 is not  a triangle i'unction: 

triangle functions have domain C \R ,  but since the Steiner point  is not  defined for 
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equilateral triangles, STN is undefined for ~o : = e  i'r/3 and & (we get "0f0"). Other 
points share this "deficiency": the Feuerbach point (the point of tangenay of the 
incircle and the nine-point circle) is also undefined for equilateral triangles. Still 
others may be undefined for isosceles triangles or for some other particular triangle 
shape. Rather than modifying our definition of triangle function, we simply note 
that, with caution, much of what we write is also valid for these points. (An 
exception: Theorem 4.1.) 

On the other hand, many of the formulae for triangle functions thus far derived 
also work for some real numbers (other than 0 and 1), so the domains of these 
functions may be extended to include these reals. Geometrically, this means 
extending the definitions of the corresponding special points to certain degenerate 
triangles. 

3. Discovering and proving theorems 

Using triangle functions, proofs of theorems about the special points of a 
triangle can often be reduced to verifications of algebraic identities in a single 
complex variable z. To illustrate this method, we prove the elementary theorem that 
the segment joining the mid-points of two sides of a triangle is parallel to the third 
side and half its length. 

Let p and q be the mid-points of the sides bc and ea of any non-degenerate 
triangle Aabc and s e t ~ ' , = ( q _ - p ) / ( a -  b); then since arg ~ and give the angle 
between the vectors pq and ab and the ratio of their lengths respectively, we want 
to prove that ~ = ½. Express ~ in terms of cross ratios: 

[ ~ ,  p; a, q] 

[ ~ ,  a; p, hi' 

Apply the coordinate map z - , z s  (which preserves cross ratios): 

~ _  [A ,pA;a~ ,qA]  
[A,  aA ; pA,bA]" 

Since all the points involved are special points, they have triangle functions: for 
A = z ,  we have a z = l ,  hA=0 ,  p ~ = - z  and q ~ = 2 - z  (Example 2.1, (b)). 
Substitute into z~ and simplify: 

[z, - z ;  1, 2 - z] 1 ~__= = 
[z, 1; - z ,  0] 2" 
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Since z = A ~ C \ ~  was arbitrary, this proves the statement for all non-degenerate 
triangles. 

This method works for any geometric statement about  special points that can be 
expressed in terms of  cross ratios. The following theorem lists some applications of 
the method to angles, ratios of  lengths, collinearity, etc. 

THEOREM 3.1. Let p, q, r and s be the P-, Q-, R- and S-points of  any 
non-degenerate triangle with shape z. 

(a) Set 

~ , =  [z, S(z); P(z), R(z)] 

[z, P(z); S(z), Q(z)]" 

I f  p ~ q and r ~ s then ~ I gives the ratio of  the length of ~ to that of  pq, and arg 
gives the angle from pq to rs .  In particular, the vectors are parallel when ~ is real 
and positive, anti-parallel when .~ is real and negative, and perpendicular when ~ is 

imaginary. 
(b) I f  p, q and r are distinct, then 

22 qpr = arg[z, P(z); Q(z), R(z)]. 

(c) Points p, q and r are collinear whenever [z, P(z); Q(z), R(z)] is real. In this 
case, p divides segment qr the signed ratio - [z ,  P(z); Q(z), R(z)], so p is between q 
and r whenever [z, P(z); Q(z), R(z)] is negative, and is the mid-point'of qr whenever 
[z, P(z); Q(z), R(z)] = - 1. 

(d) Points p, q, r, s are concyclie or collinear whenever [P(z), Q(z); R(z), S(z)] is 
real. In this case, the pairs p, q and r, s separate each other whenever 
[P(z), Q(z); R(z), S(z)] is negative, and p, q are harmonic conjugates with respect to 
r, s whenever [P(z), Q(z); R(z), S(z)] = - 1. 

Proof The statements are direct translations into triangle function terms of  the 
corresponding statements about  triangle coordinates in Theorem 3.1 of  [8]. [] 

EXAMPLE 3.1: THE EULER LINE. The Euler line of  a triangle is the line through 
its centroid g and its circumcentre o. Many  other  special points lie on this line: for 
example, f rom part  (c) of  Theorem 3.1, the identity 

[z, G(z); N(z), O(z)] =- 
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for 

z - 2  z 2 - 2 z  +Z  
G ( z ) -  2 z ~  z, N ( z ) -  _ z 2 _ ~  + 2zfZ, and O(z) =~ 

(as in Examples 2. l and 2.2) shows that the nine-point cen t re ,  is also on this line, 
and that g divides the segment no internally in the ratio 2:3. Another identity 

[z, N(z); O(z), H(z)] : - 1 

for 

z + f - - 2  
H(z) z 2 

2ZZ -- Z -- 

(Example 2.2) shows that the orthocentre h also lies on the Euler line, and that n 
is the mid-point of the segment oh. [] 

In principle, we could use Theorem 3.1 as in the above example to verify any of 
the many collinearities of [6]. Instead, for the remainder of this section, we focus on 
a theorem about concyclic points. We begin by finding the triangle functions of the 
isodynamic points and the Fermat points. 

The isodynamic points are the intersections of the Apollonian circles of the base 
triangle [6, points 15 and 16], and are inverses in its circumcircle. From Example 
4.2 of [7], they have triangle coordinates ~o :=e ~is and oh; however F~(z):=~o and 
F2(z)-'= cb are not triangle functions, since neither satisfies F(z) = F(~). The difficulty 
lies with the orientation of  the base triangle (i.e. the sign of its angles, given by the 
sign of Im(z)), and may be resolved as follows: any triangle function can be defined 
on all of C\R by defining it first for Ira(z) > 0. Then for Im(z) < 0, we have 
Im(~) > 0, so F(z) = F(~). 

Thus, for the isodynamic points, the appropriate functions are 

ISD,(z). '=~, (Im(z) > 0) and ISD2(z),=co, (Im(z) >0).  

(so for Im(z) <0 ,  ISDl(z).-=~o and ISD2(z ) :=~b). Furthermore, since 

f 

[z, ISDj (z); O(z), ISDz(z)] = ~ - 4  

[ +4  

Im(z) Ira(z) 
< 0 (Im(z) > O) Iz 

Im(z) Im(~) 
<0  (Im(z) < O) Iz 
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then (Theorem 3.1, (c)) the first isodynamic point is always between the second and 
the circumcentre, and so is always the "inner" isodynamic point. 

A similar ambiguity occurs for the Fermat points. The first Fermat point is the 
point of concurrence of the lines drawn from each vertex of the base triangle to the 
apex of an equilateral triangle constructed "outward" on the opposite side. The 
second Fermat point is defined similarly, but for "inward" directed equilateral 
triangles. The triangle functions for the Fermat points may be calculated directly 
from the complex version of Ceva's theorem (see Example 5.3). Alternately (and 
mere efficiently), since the Fermat points are known to be the isogonal conjugates 
of the isodynamic points [6], their functions may be calculated directly from the 
isogonal conjugate formula [8]: the isogonal conjugate ~ of any point p has triangle 
coordinate 

Ira[A, oo; 1, P a ]  A p ~ .  

PA - Im[A, 0; 1, pz] 

Thus if p is a special point with function F, its isogonal conjugate has function 

P(z) . -  Ira[z, oo; 1, F(z)] zF(2). 
Ira[z, 0; 1, F(z)] 

Apply this formula to the isodynamic points and calculate: the Fermat points have 
functions 

(1 -z)  +,~(1 -~) 
FERI (z) . -  z, (Ira(z) > 0) 

- co~(  1 - z )  + oSz( 1 - f )  

and 

(1 --z) + ~o(1 - ~ )  
FERz(z)--  z, (Im(z) > 0). 

- ~ ( 1  - z )  + , o z ( 1  - ~) 

Denote the isodynamic points by i I and i 2 and the Fermat points by f~ and f2 
respectively. It has been discovered [4, 6] that the lines i~f~ and i2f 2 are parallel to 
the Euler line go. (If  the triangle is isosceles, the three lines coincide with its axis.) 
As preparation for the theorem which follows, we prove a somewhat more precise 
version of this statement. 

---) 

LEMMA 3.1. For any non-degenerate triangle, the vectors i~f~ and i2f2 are 
respectively anti-parallel and parallel to the vector go. I f  the triangle is not isosceles, 
then neither of the lines i~f~, i2f2 coincides with the line g o .  
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Proof W i t h o u t  loss o f  genera l i ty ,  Im(z)  > 0. F o r  i = 1, 2, def ine 

[z, O(z) ;  ISDi  (z), G(z)] 
¢ti (z) - 

[z, I S D i  (z); O(z), F E R i  (z)]" 

F r o m  T h e o r e m  3.1, ( a )  we m u s t  p r o v e  tha t ,  for  all  n o n - r e a l  z, #/~(z) is real  a n d  

nega t ive  a n d  ~ '2(z)  is rea l  a n d  pos i t ive .  

The  n u m e r a t o r  o f  ~ ( z )  w o r k s  ou t  to  

(z - o5)(2z~ --  ~ + z 2 - 2z) 

3z( l  - z)(~ - ~ )  

F o r  the d e n o m i n a t o r ,  we get  

2 z ~ - - ~  + z  2 -  2z 
I S D I  (z) - FER1  (z) - 

- ~ o ( 1  - z ) ~  + ~ ( 1  - ~ ) z  

and ,  us ing  the  r e l a t i on  o5 + 1 = -~o ( to  - 0 3 ) ,  

z( 1 --  z)(to --  tb)(f  - -  to) 
- -  F E R n ( z )  = 

- o~( 1 - z ) f  + ~ ( 1  - ~ ) z '  

so the  d e n o m i n a t o r  o f  ~ l ( z )  is 

(z - -  ~) • (2z~ - ~ + z 2 - 2z) (z - -  ~)(2z~ --  ~ + z 2 --  2z)(z --  ca) 

~(1 - z ) ( ~ o  - @ ( f  - ~ o ) .  ( ~  - @ ~ (  1 - z ) ( ~ o  - ~ ) ( ~  - ~)1~ - ~o ]~ 

T h e n  

~ , ( z )  = 1 ~ -  t o ( ( ~  - ~ )  
3(z - 0 

which  is real  a n d  nega t ive .  

S imi l a r l y  ( i n t e r c h a n g e  ~o a n d  oh), 

~ ( z )  = I~ - ~ [ 2 (  6~ - ~)  
3(z - ~) 

which  is rea l  a n d  pos i t ive .  

1 i f _  2 Im(°J )  
= - - 3  w Im(z)  ' 

1 1~ - 2 I m ( @  
= - 5  - t o  I m ( z ) '  
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Since o, i I and i 2 a r e  collinear (i~ and i 2 a r e  inverses in the circumcircle), if one 
lies on the Euler line, then both do. In this case, g, i~ and i2 are collinear, so the cross 
ratio [z, G(z); e3, e)] is real. This cross ratio simplifies to E 3 for E := (z --63)/(z - 0 ) ,  
so E 3 --/~3 = (E -- fT)(E + O/~)(E + eo/~) = 0. The three eases E - / ~  = 0, E + e3E = 
0 and E +~oE = 0 simplify to ]z"] 2=  1, ] z ' r =  1 and ]z]2= 1 respectively, so the 
triangle must be isosceles. Thus if the triangle is not  isosceles, neither of  the lines i~ f~, 

i2f2 coincides with line go. [] 

Our theorem is unexpected; the known properties o f  the points involved give no 
hint of  the result. 

THEOREM 3.2. For any scalene triangle, the circumcentre, the first Fermat point, 
the nine-point centre and the second Fermat point are concyclie, and the first pair 
always separates the second. 

Proof From Lemma 3.1, the points cannot  be collinear. In light of  Theorem 
3.1, (d), we must  show that,  for all non-real  z with ]z] 4: 1, ]z'[ 4:1 and ]z"] ¢- 1, the 
cross ratio Y/(z),=[O(z), FER~(z);N(z), FER2(z)] is real and negative. A brute 
force calculation of  this cross ratio is just that: brutal. Hindsight shows that the 
expression 

[Oz(Z,'), N(z'). FERI(z ' )  F E ~ ( z ' ) ]  
l - N ( z ' ) =  z '  ' z '  ' 

is more amenable to calculation: since z ranges over all non-real numbers whenever 
z' does, we must now show that  1 - ~ ( z ' )  is real and greater than 1. 

Without  loss of generality, Im(z) > 0 (and hence Im(z') > 0). We calculate that 

O(z') 1 - z N(z') TN FER~ (z') T~ 
- - - -  i =  1 , 2 ,  

z' 1 - 5' z' BN' z' B i' 

for  

TN'= --Z2+2Z2--Z, BN'=Z2--5 

T~:=--coz+e)zS+d)5--(gz5 B~:=z + o55 

T2.'= c~z + eSzY + co5 -- ~oz2 B2 := z + cot 
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and that 
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[ (  1 - -  z )B ,  - -  ( 1 - -  z ) T  1 ][TNB 2 --  T2BN] 

[( 1 - z ) B 2  - ( 1 - g ) T 2 ] [ T N B 1  - T1 BN]" 

F u r t h e r  c a l cu l a t i on  gives 

( 1 - z ) B  l - -  ( 1 - ~ ) T  1 = ( 1 + oo)z - z 2 - -  2 t n z i  + (co - ~3)52z + th£ 2 

a n d  

T N B  2 - -  T 2 B  u = - z { ( 1  + o3):? - ~2 _ 2~3~z + (& - c0 ) z25  + ~oz 2} 

= - z { ( 1  - ~ ) 8 , ( 1  - ~ ) T , } ,  

so the  n u m e r a t o r  o f  1 - ~ ( z ' )  b e c o m e s  - z ] ( 1  - z )B~  - (1 --  i)T~ [2 S imi la r ly  ( in ter-  

c h a n g e  co a n d  ~5) the  d e n o m i n a t o r  o f  1 - ~ ( z ' )  b e c o m e s  - z ] (  1 - z ) B 2  - ( 1 - ~)Tzl 2, 

SO 

l( 1 - z ) &  ( 1  - e ) T ,  12 

1 - = - 7eT l 2 '  

which  is real .  

T o  s h o w  tha t  1 - ~ ( z ' )  is g rea te r  t h a n  1, we s h o w  tha t  its n u m e r a t o r  is g rea te r  

t h a n  its d e n o m i n a t o r .  A b r u t e  fo rce  ( c o m p u t e r - a s s i s t e d )  ca l cu l a t i on  shows  tha t  

[(1 - z ) B ,  - (1 - -~)T~ ]2 _ [(1 - z )B  2 - -  (1 - -~)T 2 ]2 = 4 Im(z)  Im(~o)~@, 

whe re  

,= [2(z + e) 2 + ze] ( l  + ze )  - ( z  + e)[(z + e) 2 + 5zz-]. 

Since  Im(z)  a n d  Im(a~) a re  pos i t ive ,  we  need  o n l y  s h o w  tha t  ~a > 0. Pu t  z = r e *° (so  

z + ~ = 2r  cos  0 a n d  zY = r 2) and  r ea r range :  

r - 2 g  a = (8 cos  2 0 + 1)r 2 - 2 cos 0(4 cos 2 0 + 5 ) r  + (8 cos 2 0 + 1). 

A s  a q u a d r a t i c  in r, the  r i g h t - h a n d  side has  d i s c r im inan t  

,@..= - 4  sin 2 0(4 cos 2 0 - 1) 2 < 0. 
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The case ~ = 0 is easily shown to imply that Iz[ = 1, contrary to hypothesis, so 
< 0 for all non-real z. Since the coefficient of r in the quadratic is positive, this 

implies that ~ > 0 for all appropriate z, and we are done. [] 

A few comments: not only was this theorem proven by triangle function 
methods, it was also discovered using triangle function methods, with the aid of a 
computer (a Macintosh IIcx running Theorist [$3], with Geometer's Sketchpad [$2] 
for checking and visualization). In brief, the trilinears of the special points listed in 
[6] were entered, together with the conversion formulae of Theorem 2.2 and 
Corollary 2.1 and formulae relating angles and side lengths to shapes. Then, for an 
arbitrary numerical shape, the triangle coordinate of each special point was 
calculated, and the list scanned for concyclic points (using Theorem 3.1, (d)). 

We report some additional discoveries; see [6] for definitions of the points 

involved. 

• The centre of perspective of  the orthic triangle and the triangle of alternate 
interior tangents appears to be concyclic with the symmedian, Feuerbach and 
crucial points. 

• The segment joining the circumcentre and the symmedian point is known to be 
a diameter of a circle through the Brocard points. Two other point pairs on 
the same line appear to share this property: the inner/outer isodynamic point 
and the isogonal conjugate of the second/first Napoleon point. 

Unlike the collinearity search of [6], the abovementioned investigation was neither 
systematic nor exhaustive. The list of [6] may contain other concyclic quadruples 
- -  the reader is invited to explore further! 

A further comment: complex triangle functions also have potential applications 
to dynamic computer geometry software such as [S1] or [$2]. If  the graphics 
window is identified with a region of the complex plane, then, given the vertices of 
any triangle (input by three mouse clicks, say), the command "plot the F-point of 
the triangle" need only invoke the (previously stored) function F and a few simple 
calculations, rather than an elaborate geometric construction. Specifically, the 
F-point of Aabc is the solution p of F ( [ ~ ,  a; b, e]) = [p, a; b, c]. 

4. Symmetry and centre functions 

In general terms, a centre is a special point with symmetry, i.e. one whose 
definition is independent of the order of the vertices of the base triangle. Suppose 
that, as in §2, p = f ( a ,  b, c) is such a special point of the base triangle Aabe. The 
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symmetry requirement on f may then be split into two parts: 

• cyclic symmetry: for all (a, b, e) e ~-,f(a, b, c) = f ( c ,  a, b), 
• bilateral symmetry (with respect to side bc): for all (a, b, e) ~ T, 

f (a ,  b, c) = f ( a ,  c, b). 

(Thus a n y f w i t h  both types of symmetry is totally symmetric in its arguments.) The 
following theorem translates these conditions into triangle function properties. 

CENTRE FUNCTION THEOREM. For any triangle function F: (C\~)  --* Ca, define 
the function f: T ~ C~: by 

If(a ,  b, e), a; b, e] = F ( [ ~ ,  a; b, e]). 

Then 
(a) f ( a ,  b, e) = f ( c ,  a, b)for all (a, b, c) c Y i f  and only i fF(z ' )  = {F(z)}'for all 

z ~ C\~ ,  
(b) f ( a ,  b, c) = f ( c ,  a, b) for all (a, b, c) ~ ~- /f and only i f  F(z-1) = {F(z) } -1 for 

all z ~ C \ ~ .  

Proof. We prove only (a); the proof of part (b) is similar. From the triangle 
function theorem, f must satisfy the calculation rule 

)f(a,  b, e) + # =f(Aa +/~, 2b + #, 2c + #) 

for all (a, b, c) ~ ~- and all similarities z ~ S z  :=2z + #, 2, # ~ C, 2 ~:0, Since 

r(z) := [f(0, 1, z), 0; 1, zl, 

if f is cyclically symmetric, then for all z s C\N, 

F(z') = [f(0, 1, z'), 0; 1, z'] 

= [(z')-~f(z', O, 1), 0; (z') -1, 1] 

= [f(1, O, 1 - z ) ,  0;1 - z ,  1] 

= [ - - f ( l ,  0, l - - z )  + 1, 1; z, 0] 

= If(0, 1, z), 0; I, z]' 

= {r(z) )'. 
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Conversely, if F(z') = {F(z)}' for  all z ~ C \ E ,  then for  all (a, b, c) e T 

[ f ( a ,  b, c), a; b, el = F([ ~ ,  c; a, b]') 

= {F([ 0% c; a, b])}' 

= I f (c ,  a, b), c; a, b]' 

: I f (c ,  a, b), a; b, c]. 

Thus f ( a ,  b, e) = f ( e ,  a, b). [] 

In general terms, this theorem states that centre functions preserve the symmetry 
properties o f  cross ratios. 

DEFINITION 4.1. A triangle function F: ( C \ ~ ) - - ,  Ca  and its associated F-point  
a r e  

• cyclically symmetric whenever F(z') = {F(z)}' for  all z ~ C \ ~ ,  
• bilaterally symmetric whenever F(z -1) = {F(z)} -1 for all z ~ C\•.  

The function is a centre function and its F-point  a centre whenever they are both 
cyclically and bilaterally symmetric. 

Some examples: the Brocard points are cyclically symmetric but not  bilaterally 
symmetric, the excentre opposite the first vertex of  the base triangle is bilaterally 
symmetric but not  cyclically symmetric, and the centroid, circumcentre, incentre 
and or thocentre  are bo th  cyclically and bilaterally symmetric, as are most  of  the 
triangle centres listed in [6]. Note  that we define bilateral symmetry with respect to 
the first side only; the conditions for bilateral symmetry with respect to the second 
and third sides may be found by cycling: F[(z-1)  '] = {[F(z)]-l} ' and F[(z-1)  "] = 
{[r (z)] -  1} " . 

There are clearly many  more  centre functions than there are identified geometric 
centres o f  a triangle. We give some examples, most o f  which correspond to as yet 
unidentified centres; we leave the proofs that they actually are centres to the reader. 
(The complex identities (z -1), = (z") -1 and (z -l),, = (z') -1 may  be useful.) 

EXAMPLE 4.1. Let g:  12 --, C be a non-trivial, odd, multiplicative function which 
preserves conjugates, i.e. for  all Zl and z2 in C, g ( - z ~ )  = - g ( z l ) ,  
g(zl z2) = g(zl )g(z2) and g(zl ) = g(zl). Define F: (12\[t~) --, 12o by 

1 +g(1 - z )  
F(z) . -  g(z) - g( 1 ~2 z)  g(z). 

For  example, if g(z) = z, then F is the centroid function (Example 2.1, (d)). [] 
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EXAMPLE 4.2. For any bilaterally symmetric triangle function A: (C\R) ---, C~, 
define F: (C\[R) --* C~ by 

F ( z )  := [z, A(z); { A ( z ' )  }", {A ( z " )  }'1. 

Note that A(z), {A(z')}" and {A(z")}' are the functions of a triple of associated 
points (Definition 2.2). If these points lie on the sides of the base triangle, then the 
right-hand side gives the shape of their triangle, so F is the centre function of the 
Miquel point of this associated triangle. [] 

EXAMPLE 4.3. Let B: (C\[R)--*C~ be any triangle function not identically 1, 
and assume that B satisfies B ( z ) B ( z ' ) B ( z ' )  = 1 for all z ~ C \ N .  Define 
F: (C\N) ~ C ~  by 

F ( z )  := {B( z ' )  } " { B ( z  ") }'. 

Then F is cyclically symmetric, and is bilaterally symmetric if B is. For B ( z )  = z - 2 ,  

for example, we get the centroid function once again, while for B ( z )  = z 2, we get the 
(as yet unidentified) centre function 

z - 2  
F ( z )  = - - - -  z 3. [] 

2z - 1 

EXAMPLE 4.4. Let H: C -o C be a homogeneous function which is symmetric in 
its last two arguments and which preserves conjugates, i.e. for all a, b, c in C, 

• h(2a,  2b,  2c) = 2"h(a,  b, c) for so integer n and all complex 2 ~ 0, 
• h(a, b, c) = h(a, c, b), 
• h(& b, ?) = h(a, b, c). 

Define F: (C'\R) ---* C.,: by 

F ( z )  := [ 0% h(1 - z, z - 1); h(z ,  - 1, 1 - z), h(  - 1, 1 - z,  z)]. 

For example, h(a, b, e) = ti gives the symmedian function (Example 2.1, (d)). [] 

EXAMPLE 4.5. For any 0 s I~, define Fo : (C\[R) --, C~ by 

Fo(z) ,= [e ~°, z; z ' ,  z"], (Im(z) > 0). 
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For  0 = 0, co and 05, we get the point  at infinity and the first and second isodynamic 
points. In general, if P0 is the F0-centre of  A01z,  then 

[P0, 0, 1, z] = [e i°, z; z', z"], (Im(z)  > 0). 

For  a fixed z, the left- and right-hand sides are linear fractional t ransformations of  

P0 and e i° respectively, so P0 is a linear fractional t ransformation of  e i°. Then, since 

all ei°'s lie on a circle, all p0's lie on the line through the isodynamic points. [] 

It is intuitively clear that  the centres o f  an isosceles triangle lie on its axis; the 

algebraic manifestation o f  this fact is the fact that, for non-real z with Izl = 1 and 
any centre function F, the cross ratio [z, Z; 1, F(z)] is real (exercise). The centres of  

an equilateral triangle then lie on all three of  its axes, and thus coincide with either 
the circumcentre or the point  at infinity. To distinguish the cases, we have the 
following theorem. 

THEOREM 4. I. Every cyclically symmetric triangle function F either fixes co and 
~b or interchanges them. I f  it interchanges them, then the F-point of any equilateral 
triangle coincides with its circumcentre. I f  it fixes them, then the F-point of any 
equilateral triangle is the point at infinity. 

Proof The numbers  co and 05 are the only solutions o f  the relation z = z '  = z". 
Since F preserves this relation and preserves conjugates, it either fixes co and 05 or  
interchanges them. Suppose it interchanges them; then the F-point  p of  any 

equilateral triangle ( A  = co or A = 05) satisfies Pzx = F ( A )  = A = oA, so p = o. I f  
F fixes co and 05, then p• = A = oeA, so p = or. [] 

We adopt  the terminology of  [6] and call a centre function centripedal if it 

interchanges co and 05, and centrifugal if it fixes them. A centre function is 

centripedal if and only if its conjugate is centrifugal, so the inverse o f  a centripedal 
centre in the circumcircle o f  the base triangle is centrifugal and vice versa. 

5. Cevian centres 

In addition to allowing near-mechanical proofs o f  theorems about  special 

points, triangle functions may  be used to provide more theoretical insights into the 
relations between triangle centres and the points involved in their construction. (See 

also [5] for a different theoretical perspective on triangle centres.) Example 4.2, for 
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instance, relates the functions of  associated points on the sides of the base triangle 
to that of their Miquel point. 

For  simplicity, we restrict our attention to one particular type of  centre: cevian 
centres. Suppose we have a triangle Aabc and some construction or definition 
which produces a point p "opposi te"  vertex a. We may "cycle" this same construc- 
tion around the triangle to produce points q and r opposite vertices b and c. If  the 
construction is a "good"  one, then for any Aabe, the cevians ap, I~l and cr are 
concurrent at some special point. (A cevian is any line through a vertex other than 
a side.) The point is bilaterally symmetric if the original construction was, and is 
automatically cyclically symmetric. 

In triangle coordinate terms, p, q and r are a triple of  associated points 
(Definition 2.2) corresponding to some triangle function A: ( C \ ~ ) ~ C ~  which 
embodies their definition or construction. The problem of finding those construc- 
tions which produce concurrent cevians then becomes the problem of finding 

appropriate conditions on the functions A. 
I f  we know their side-points (the points where each cevian meets the opposite 

side) a complex version of Ceva's theorem tells us when the cevians are concurrent. 

COMPLEX CEVA'S THEOREM (CCEV) [8]. Suppose that cevians through vertices 
a, b and c o f  Aabc haue side-points s, t and u respectively. Then these cevians meet 

at some point m ~ Coo. i f  and only i f  sAtA'u:~" = l, in which case ma = t~ua.  (We 
include the case m = oo, when the cevmns are parallel.) 

Note  that any point m not on a side of  the triangle is always the intersection of  
cevians; from Corollary 5.1 of [8], the corresponding side-points are given by 

mA mA, mA,, 
sA = ~ ,  tA, = - - ,  HA,, = 

We now translate these statements into triangle function form. 

THEOREM 5.1 (CCEV FOR SPECIAL POINTS ON SIDES). Suppose S: ( C \ ~ )  ~ C~ 
is the triangle function for some special point on the first side o f  the base triangle. 
Then the cevians through the associated triple of  points corresponding to S are 

concurrent i f  and only if  

S ( z ) S ( z ' ) S ( z " )  - 1. 
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In this case, the po&t o f  concurrence has triangle function 

M(z)  := {S(z') }"{S(z ") }' 

and is cyclically symmetric. I f  S is bilaterally symmetric, then so is M.  
Conversely, let M : ( C \ [ ~ ) - - . C ~  be any centre function; then for any triangle 

Aabe,  the corresponding centre m is the intersection o f  the cevians ap, b¢l and cr, 
where p, q and r are side-points with triangle functions S(z) = M(z)/ff'l(£), {S(z')}" 
and {S(z") y .  

Proof  The formulas  are direct t ranslat ions of  those of  C C E V  and the corol lary 
cited above for  z = A,  using s:_. = S ( A ) ,  tA, = S ( A ' )  and uA,, = S ( A " ) .  The  symme-  
try propert ies  are those of  Example  4.3. [] 

F o r  instance, the median  f rom vertex a has side-point with function S(z) ,= - z  
(Example  2.1, (b)), so since S(z )S(z ' )S (z" )  = ( - z)( - z')( - z") = 1, the medians  are 
concurrent  at  the point  with function ( - z ' ) " (  - z " ) '  = G(z), i.e. at  the centroid. 

No te  that  the second par t  o f  Theorem 5.1 implies that  every centre is cevian, 
even though it may  not  have been defined that  way originally. 

As in Theorem 2.1 o f  [8], point  p lies on side be of  A a b e  if and only if 
p ~ / A  = [ ~ ,  p; c, b] is real. The triangle function S of  any point  on the first side o f  
the base triangle must  thus satisfy S(z) / z  ~ ~ for all z e C \R .  

THEOREM 5.2. Let  S: ( C \ R )  ~ Coo be a triangle function with tr(z) ,= S(z) /z  E 

for  all z ~ C \ ~ .  Then for  all z ~ C \ ~ ,  i f  a(z) v ~ O, ~ ,  
• ~(z) = ~(e), 
• S(~- ' )  : {S(z)}- '  Vand only V~(z  -~) = {~(z)}- ' ,  
• S(z)S(z ' )S(z")  = 1 i f  and only i f  tr(z)a(z')a(z") = 1. 

Furthermore, when all three conditions hold, the centre function M:  ( C \ R )  ~ C~ given 

by M ( z ) , =  {S(z ' )}"{S(z")] '  takes the form 

1 + ( 1  - z ) a ( l  - z )  
M(z)  - za(z). 

z~r(z) - (1 - z)o(1 - z) 

Proof. The proofs  are s t ra ightforward calculations f rom the definition of  o-. [] 

The  new formula  for  M makes  it easier to find some centre functions. 

EXAMPLE 5.1: THE NAGEL POINT. The  Nagel  point  is the intersection o f  the 
cevians f rom each vertex to the point  o f  tangency of  the opposi te  side and opposi te  
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excircle. From Example 2.4 of [8], the point of tangency has triangle coordinate 

1 - ~ e - i ~  2 
1 - - e i c ;  ' 

so, using the relations e 'B = z'/Iz'l and e 'c = z"llz"l as in Example 2.2, this point has 
function 

1 - I z l -  I1 - zl 
1 IzlTI1 zl z' 

whence 

1-1z l - I I -z  I 1-1zl- la-z  I o-(z) = ~r( 1 -- z) = 
1 --Izl + I 1 - zl' 1 + I z l -  I1 -- z l  

A straightforward calculation verifies that (r(z)a(z')cr(z") = 1, so the cevians inter- 
sect, and another calculation gives the function 

zll - z  l -  ( 2 - z ) l z  I - z  
N A G ( z ) . -  (-i ---2z) ~ 2 / z / ~ S ~ Z ~  z. 

[] 

In light of Theorem 5.2, the problem of determining all the bilaterally symmetric 
side-points which produce concurrent cevians reduces to the following functional 
equations problem: characterize all functions o-: (C \~ )  --* ~\{0} which satisfy 

• c r ( z )  = ~ ( i ) ,  

• ~ ( z - ' )  : { ~ ( z ) } - ' ,  

• a(z)cr(z')a(z") = 1. 

There are many functions satisfying this condition, most with no obvious geometric 
interpretation. We give a few examples. 

E X A M P L E S  5 .2 .  

• Define a: ( C \ ~ ) ~ R \ { 0 }  by tr(z).'=lzl ~ for any real a. 
• For  any g : ( C \ R ) ~ R \ { 0 }  with g ( z ) = g ( i )  and g ( z - ~ ) - { g ( z ) }  -1, define 

a: (C \~)  --* It~\{0} by a(z ) :=g(z ' ) /g (z" ) .  

Note that the functions satisfying the three conditions above form an abelian 
group under multiplication; the identity is ~r(z) - 1, corresponding to the centroid. 
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This raises some interesting questions about interrelations among centres; for 
instance, given two such functions corresponding to known centres, what centre 
corresponds to their product, and how is it related geometrically to the first two? 
For example, it is not difficult to show that if ~(z)~2(z) = Izr, then the centres 
corresponding to a~ and o'2 are isogonal conjugates of each other, furthermore, 
reciprocal o.'s correspond to isotomic conjugates (see the definition in [1]). 

In general, cevians are defined by special points not on the sides of the base 
triangle. When this is the case, we may find their side-points by the side-point 
formulae [8]: if the cevian ap intersects side be of Aabe at s, then 

PA Im[A,0;  1,pA] 1 

PA Im[A, oo; 1, PA] A" 

Thus if p is a special point with function P: (C\R) ~ Ca, the side-point of cevian 
ap has function 

P(z) Im[z, 0; 1, P(z)] 1 
S ( z )  . -  - 

p(~) Im[z, oo; 1, P(z)] 5'  

EXAMPLE 5.3: KIEPERT'S HYPERBOLA. On each side of the base triangle, 
construct isosceles triangles with apex angle 0. The cevians from each vertex to the 
apex of the isosceles triangle on the opposite side are then known to be concurrent. 
We verify this statement, and find the function for the intersection. 

Assume that Im(z)> 0; then for 2,=e/°, the apex of the isosceles triangle 
opposite vertex a has function P(z):= 2z. The corresponding side-point then has 
function 

SO 

S ( z )  = 
Im[z, 0; 1, 2z] 1 
Im[z, < ;  1, 2z] 

( z  - ~ )  - ( ;~z - 2 ~ )  + (;~ - 2 )  
Z~ 

( z  - e )  - ( ;~z - £ e )  + (J~ - 2 ) z e  

( z  - ~)  - ( ,~z  - 2 ~ )  + 0 - £ )  
o . ( z )  = 

( z  - ~)  - ( 2 z  - 2 ~ )  + (,~ - £ ) z ~ "  
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A direct calculation now gives a(z-  l) = {~(z)}-l, 

~r(z') : (z  - ~) - ( i z  - £~)  + (4  - 4--)zz 

( z  - ~) + , ~  - £ z  

and 

G(z" )  : 
( z - ~ )  + 2 ~  £z 

( z  - ~)  - ( 4 z  - £ ~ )  + ( 4  - £ ) '  

so a(z)(z')cr(z") = 1 and the cevians intersect. Further calculation using the fomula 
of Theorem 5.2 then gives the function of  the point of intersection: 

( 2 - 4  -2)  - (1  -,%z (z - e )  -(4z -£e /+ (4  -,% 
K o ( z )  . -  z ,  

( 2 - 2  -;T)z - ( 1  - 2 )  (z - ~ )  - ( 2 z  -,T~) + ( 2  -Z)zz  

(2 = e i°, Im(z) > 0). 

The points of intersection above are known to lie on a rectangular hyperbola, 
called Kiepert's hyperbola. (See [1] for a proof  and further interesting discussion.) 
Several values of  0 give well-known triangle centres: for example 0 ~ 0, 0 = 7r and 
0 = _+7r/3 give the orthocentre, the centroid and the Fermat points respectively. 
Kiepert's hyperbola also contains the Napoleon points: erect equilateral triangles 
"outward" on the sides of  the base triangle, then the cevians through each vertex 
to the centre of  the equilateral triangle on the opposite side meet at the first 
Napoleon point. We now have 0 = 2zr/3, so 2 = e 2~i/3:- --~ and direct calculation 
gives 

w / 3 i  + chz ~oz + ~ -- 1 
NAP1 (z) := K2,/3(z) = ~ z - - -  ~"  oz  + ~b~ - z~'  (Im(z) > 0). 

If the equilateral triangles are directed "inward", we get the second Napoleon 
point. This time 0 -- - 2 ~ / 3 ,  and we calculate that 

(Im(z) > 0). [] , 4 / 3 i  - ~oz ~z + ~o~ - 1 
NAP2(z) .'= K_2~/3(z ) -- ~ ;  ~'b-~" a]z + c,o~ - zz z, 

We may use the side-point formulas to generalize Theorem 5.1. 

COROLLARY 5.1 (CCEV FOR SPECIAL POINTS). Suppose P: (C\R)  --, Coo is the 
triangle function for some special point. Then the cevians through the associated triple 
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of  points corresponding to P are concurrent if and on:y if  

P ( z ) P ( z ' ) P ( z " )  - ff(~)/~(_+,)/6(_~,,), 

or equivalently, if and only if 

Ira[z, 0; 1, P(z)] Im[z', 0; 1, P(z')] Im[z", 0; 1, e(z")] 
--- 1. 

Im[z, ~ ;  1, P(z)] Im[z', ~ ;  1, P(z ')]  Im[z", oo; 1, P(z")] 

In this case, the point of  concurrence has triangle function 

(P(U) ) (P(U') ) 

and is cyclically symmetric. It is bilaterally symmetric if P is. 

Proof. The s ta tements  are direct  consequences o f  Theorem 5.1 and  the side- 

po in t  formulas .  [] 

Thus the p rob l em o f  character iz ing cons t ruc t ions  which give intersecting cevians 

reduces to a much  more  compl ica ted  funct ional  equat ions  p rob lem when the special 

po in ts  defining the cevians no longer  lie on the sides. 

To conclude our  discussion o f  t r iangle  funct ions,  we tabula te  all the funct ions 

der ived in this paper .  

Table 1. Triangle functions for associated points 

Associated triangle Triangle function A(z) of first vertex 

base 0 

medial - z 

tangential - 

anticomplementary z: 

z + ~ - 2  
orthic 2z~ - z - ~ z 

~11 - ~1- PI(I -~ )  
excentral 11 - z l  + ( 1 -~ )  
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Table 2. Centre functions 

J. A.  L E S T E R  A E Q U .  M A T H .  

Centre Function 

z point at infinity 

circumcentre 

centroid 

O(z) =~ 

z - 2  
G ( z )  - -  z 

2 z  - 1 

~ - 2  
symmedian point L ( z ) -  

22 -- 1 

z + ~ - - 2  
orthocentre H ( z )  - - - - -  z 2 

2z~ - z - 5 

incentre I ( z )  = z[1 -- z I + I z l ( l  - z )  

I i - z l - ( 1 - z )  

Z 2 - 2 z  + 
nine-point centre N ( z )  

- z 2  - ~ + 2 z ~  z 

Spieker centre SPK(z) = 

Steiner point 

isodynamic points 

Fermat  points 

Nagel point 

Napoleon points 

the centres on 
Kiepert's hyperbola 

11 - z l z  - I z t  + z ( z  - 2) 
l1 -zlz -Izl(2z - 1) - z  2 z 

z ~ ( z  + ~ - z ~ )  
STN(z) 

z + ~ - I  

ISDl(z):=eh, ISDz(z):=to, ( Im(z )>O)  

(I --z) +o5(1 - 5 )  
FERI(z) - z, 

- to2(1 - z )  +aSz(l - 2 )  

(i  - z )  + m ( 1  - ~ )  
FERz(z) 

-05~(1 - - z ) + c o z ( l  --~) z, 

NAG(z) z l l - z l - ( 2 - z ) l z [ - z z  

N A P  1 (z) v/3i  + &z toz + 05~ - 1 z 

w f 3 i z  - -  to ~oz + (5£, - z f f  

x f  3 i  - -  t o z  chz  + to2  - -  1 
NAPz(z ) _ _ z 

x / ~ i z  + & ~ z  + toz  - z z  

Ko(z)  - 

(lm(z) > 0 )  

(Im(z) > 0 )  

(Im(z) > 0 )  

( 2 - 2  -)7) - ( 1  - f ) z  

(2-~. -2)z -(1 -~) 

(Im(z) > 0) 

(z -~) -(~z -£~) +CA -,% 
(z  - e)  - (,tz - Xe) + (,~ - £ ) z z  

(2 = e i°, lm(z) > 0) 
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Table 3. Miscellaneous triangle functions 
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Special point Triangle function 

Brocard points 

intersection of first interior 
angle bisector and first side 

intersection of first exterior 
angle bisector and first side 

BROCI (z) = U - 

Z 

Izl 
Z 

Izl 

1 ~ - 1  
B R O C 2 ( z ) = ~ " -  

1--~ '  f 
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