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Divergence Rates for the Number of Rare Numbers
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Suppose that X,, X,,.. is a sequence of i.i.d. random variables taking value in
Z*. Consider the random sequence A(X)=(X,, X,..).- Let Y, be the number
of integers which appear exactly once in the first n terms of A(X). We investigate
the limit behavior of Y, /E[ Y,] and establish conditions under which we have
almost sure convergence to 1. We also find conditions under which we deter-
mine the rate of growth of E[ Y,]. These results extend earlier work by the
author.
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1. INTRODUCTION

The topic of rare numbers was first introduced in Key® in response to a
problem in density estimation formulated by Cuevas and Walters.""” In the
latter work, the authors addressed the problem of estimting generalized
densities (mixtures of discrete and continuous distributions), and they
needed to get a handle on the number of observed values which appear
only once in the data and which are from the discrete part of the dis-
tribution.

To this end, in the former work, the following situation was analyzed.
Suppose that X, X,,... is an i.i.d. sequence of positive integer valued ran-
dom variables, with p,=Pr(X,=k)> 0 and p, a nonincreasing sequence.
For a fixed positive integer n, the integers which appear once in (X,,.., X,,)
were called rare numbers. We are interested in the behavior of the number
of rare numbers, denoted by Y,, as n — 0.
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It will be useful to express Y, as follows. For each positive integer k
let I, , denote the indicator of the event that the integer k£ appears exactly
once in the n-tuple (X1,..., X,). We may then write

= Z Ik,n
k=1

from which we see that

Y, 1=n Y (1-p)" " 'ps (1.1)

It is clear that ¥, <» and that |Y,, ,— Y,| < 1. In fact, if we put m.n = the
number of positive integers which appear once in (X, ,., X,,), it was
pointed out in Key'® that Y,,, is a subadditive process. It follows from
Kingman’s subadditive ergodic theorem and Eq.(1.1) that Y,/n con-
vergerges almost surely to 0.

It is the point of this note to show how to improve upon the following
two results in Key‘®:

Theorem 1. If6e[0, 1/2) and ¥°_, pi~°< o then lim,,_,wn‘““”Y,,
=0 as. If 6e[1/2,2/3), ee(26—1,1—6) and ¥, p.~?"°< oo then
lim, ,  n=9-9Y,=0 as.

Theorem 2. Suppose that there is some positive integer XK
such that for all k>K, O0<p,<p,_,. Put r=limsup,_, o, ps,,/Pr and
s=liminf, _, o, pr.1/Pe Then

lim sup E[ ¥, ] <(log(1/r))~" +e"! (1.2)

n— o

—ls_ ,—s 1
lim inf E[ ¥, 25# (13)

The key to our improvements is

Theorem 5. Suppose that p<n is a positive integer. Then there is a
polynomial Q, of degree p—1 so that for alln > p

E[Y7]1<ELY,]”+(1+0(1)) Q,(E[Y,])

First we use Theorem 5 to show in Theorem 6 that the second part of
Theorem 1 may be improved to de[1/2,1). We then use it to establish
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Theorem 7 on the convergence of Y,/E[Y,]. The first corollary of
Theorem 7 is

Corollary 8. Suppose that 4 >1 and

1
< 0
nglE[Yn‘]
nl—(l/A)
B -
Jm Er g0
Then
Y
I LI s
Mmooy 8

We then derive a series of results aimed at determining the rate of
divergence of E[ Y, ]. For example,

Corollary 13. Suppose that for some C>0 and f>1 we have

log*(k)

pe=(C+o(1)) —7

For n>2 put g(n) =n"* log**(n). Then

E[Y,] C" (ﬂ/—}l)

Finally, we improve Theorem 2 by obtaining a complete description of the
limit points of E[ Y, ] if p,../p. converges to an element of (0, 1).

lim =
ner o g(n) ﬁ(a+ﬂ)/ﬂ

2. TWO LAWS OF LARGE NUMBERS FOR Y,

We know that in general that if g1 and R is a positive random
variable then E[ R]? < E[ R?]. For Y, something like the reverse inequality
holds. We begin with some simple observations.

First, it i1s easy to show that:

Proposition 3. For distinct positive integers x,,.., X,, and a<n,

n! <
ol ] — w(1—py )"
1R SIPEEEY A (n—a)!ﬂ”/( Py
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Next, a technical lemma to help get a handle on the rate of growth of
E[Y,]

Lemma 4. For any b>a >0, if
Y pite<w
k=1
then

lim n* Y (1—po)"pt=0

n— o k=1

Proof. For n>0 and u€[0, 1] note that (1 —u)"u“ is bounded by
above by a“(n+a)~*, so Eq. (2.1) follows from the dominated convergence
theorem. O

Theorem 5. Suppose that p <n is a positive integer. Then there is a
polynomial Q, of degree p—1 so that for all n> p

E[Y?]1<E[Y,]?+(1+0(1)) Q,(E[Y,]) (2.1)

Proof. To prove this theorem we need some additional notation: N/
will stand for the set of ordered j-tuples of distinct positive integers.
Since

o«

Yr= Z Z Ik|.n"'1k,,.n

k=1 kp=1

and the I, , take only the values 0 and 1, there are non-negative integers
A, ;, independent of n, with 4, ,=1 so that

ve=% Ap.,-(k ) ,Ik.-~-1k,.> (22)
(ky

Jj=1

2.J?

From Proposition 3 we see that

E[(kl ) zk,...zk,.]

..... kj) e NI

n! J )
< m Z H Pr(l—pi)" ™7

(ki kpeN =1

n! - ; n—j /
n—j)!(n—j+l)j<k§|(’1_J+1)(1_pk) j“)

=(1+0(n~"))ELY,]+0o(1))

<
(
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Note that this last expression may be broken down into a sum of four
terms:

« E[Y,].

» A polynomial of degree j—1 in E[ Y, ] times o(1).

« O(n~")E[Y,).

« A polynomial of degree j—1 in E[ Y,] times o(1) times O(n~").
However, from Eq. (1.1} and Lemma 4 we see that

O(n~")E[Y,)=0(1) E[Y,])/""

J) o(1). Therefore the theorem follows by taking the expectation of both
sides of Eq. (2.2). O

The following extends Theorem 1 up to d < 1:

Theorem 6. If Je[1/2,1) and for some &>0 we have
e, pi? <o then lim,_ ,n~""?Y,=0 as.

Proof. By hypothesis and Lemma 4 we have E[ Y,]=o(n' ~°~%). Let
p be the smallest integer so that (2p —1)e>J. From Theorem 5 it is suf-
ficient to show that

P __ P
Y" E[ Yll
nt1—9e

lim

n— o

=0 as. (2.3)

Again using Theorem 5 we see that

Var(Y?)=n'!=2-9Cr=Dy(1)
so Eq.(2.3) follows from the Borel-Cantelli lemma and Chebychev’s
inequality. O

We would like to determine a normalization of Y, which gives an
almost sure limit which is finite and positive. To this end, we let k, 4
denote the largest integer whose A4 th power does not exceed n, and if x >0
is not an integer, we take Y, to be Y, where ¢ is the integer part of x.

Theorem 7. Let p be a positive integer and let 4 >1 be given. Sup-
pose that ¢(x) >0 for all x>0. Let /,=k;. ,. Suppose that

< 1
L o BT, < 4

n=1
E[Y,]>C >0 (2.5)
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IfA=1 orif
nl—(l/A)
lim —————=0 (2.6
n—voo(i)(l‘l) E[ Y,,] )
¢(1,) ELY,]
—r - LC,<® (2.7
o(n) BLY,] =2 ’
then

. 1 Yn _
2 5 (E[ Y.~ 1) =0 as

Proof. Tt follows from Chebychev’s inequality and Theorem 5 that
since E[ Y, ] is bounded away from O that there is a constant K so that

ENEA E[(Y,— E[¥,])”] K
Pquﬁ(n)(E[m ‘)’”]g R ELT,1)7 ~ (ehn))? ELY,]

Hence it follows from the Borel-Cantelli lemma and (7) that

1 [ Y. ~
)L“;m(ay,,,] 1)‘0 as.

To finish off the proof we need to “fill in the gaps” in case 4 > 1. First note
that

1/ Y, _
) (E[ Y1~ 1>‘ 0 as

since /, increases to infinity and only takes values in the 4th powers of
positive integers.

Next, note that k, , is of the same order of magnitude as n'4, so

/A4
n—=1,<(k,+ 1) —ki=0n'~M) (2.8)
Since for any n we have |Y,— Y, .| <1 it follows from Egs. (2.6) and (2.7)

Y,—ELY,]

=0 a.s.
ElY,]

lim su L Y, —1|<limsup C !
et g | ELY,] | S et 240,

which proves the theorem. O
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Corollary 8. Suppose that 4 >1 and
& 1

(2.9)
LB,
l (1/4)
11m =0 (2.10)
n— o0 E[ ]
Then
Y,
"lirrio E[Y.] =1 a.s.

Proof. Set ¢(x)=1 in the theorem. Then Eq.(2.4) reduces to
Eq. (2.9) and Eq. (2.6) reduces to Eq. (2.10).

Next, note that Eq.(2.10) implies that E[ Y,] is divergent. Hence
Eq.(2.5) is satisfied. Thus we have the case A=1. If 4>1, since
|Y,— Y, .| <1, we have

E[Y,”]_1 < n—1I,
E[Y,] |TE[Y,]

Together with Egs. (2.8) and (2.10) this shows us that Eq. {2.7) holds as
well. O

Remark 2.1. The hypotheses of this corollary cannot be satisfied if

lim sup I% <
n-— oo n

while they are always satisfied if for some f(n) >0,
S <
2 nf(n?)

lim sup \é;{’ 1=

For example, f(n)=log(n+ 1)
In the next section we shall determine some condition on the p, under
which the hypotheses of Theorem 7 are satisfied.

3. THE BEHAVIOR OF E[Y,]

In order to better appreciate Theorem 7 we have to have a better grip
on the behavior of E[ Y, ] as n — co. Our goal is to describe the behavior
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of E[ Y,] in terms of the behavior of the p,. We already see from Lemma 4
that for ae (0, 1], if p{ is summable then E[Y,] =0(1) n". We have also
seen in Theorem 2 that in some circumstances E[ Y, ] may be bounded.
These results are not of much use to us in that what Theorem 7 indicates
to us is that we want E[ ¥, ] to be divergent. However, Lemma 4 does give
us a clue about how quickly we might expect E[ Y, ] to diverge. We will
now proceed to develop some results in that direction.

First off let us settle when E[Y,] is a bounded sequence. Here is a
companion to to Theorem 2:

Theorem 9. If there is a strictly increasing sequence of positive
integers, k(j), such that p,;,,,/py ;<1 and

jlingo pk(j+l)/pk(j) =1
then lim, E[ Y, ] = co.

Remark 3.1. For example, if the p, are strictly decreasing and
lim sup, p; . /P, =1 then such a sequence k(j) exists. What we have to
avoid is a sequence p, such as p,_; = p,, =2"%! for which the conclu-
sion of the theorem is false.

Proof. Let a;=p,,. Choose e¢€(0,1). Then there is a positive
integer M so that if j> M then a;/a;_, > (1 —¢). Then

@

E[ Yn] 2 Z n(l _aj)"-laj

=M
oo a'—l -1
>3 (l—a)'—(1—a,_,)") (—fa——l)
j=M J

1_
>—8—8(1—(1—aM_.)")

Hence liminf, E[ Y,]=(1 —¢)/e, which implies the conclusion of the
proposition. O

Of course, to apply Theorem 7 we need some idea of the rate of
divergence of E[ Y, ].
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Proposition 10. Suppose that p: (0, co) — (0, 1) is decreasing and
S, plky=1. Put p,=p(k). Suppose that for some function
g: (0, 00) = (0, o) we have

plg(x)) _&tol)
X

for some positive constant ¢,. Then

lim inf ELY.)

=exp(—c,) (3.1)
n—w nZng(n)Pk &

If we can also find A: (0, 0) — (0, o0) so that

1
Pl =220

for some positive constant ¢, and for every x, g(x) <A{x), then

lim inf —E[ Y]

> mi T ce” .
m it ) — g () min(c e~ %, c,e” ") (3.2)

Proof. For Eq. (3.1), observe that
E[Y,1=n(1—p(g(n)" Y. pi

kzn

For Eq.(3.2), let W, denote the integers between g{n) and h(n). The key
to the proof is that on any closed interval in [0, 1], as a function of u,
the expression u(1 —u)"~! achieves its minimum at the endpoints of the
interval. Therefore

E[Y,]2 Y np(l1—p)!

ke Wy,
2 (h(n) —g(n)) min(np(g(n))(1 — p(g(n))", bh(n))(1 — p(h(n))"))
which implies Eq. (3.2). O

Equations (3.1) and (3.2) do not always yield the same estimates on
the rate of growth of E[ Y, ]. For example, it is easy to check that if

1 a
plx) = (C+o(1)) £
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satisfies the hypotheses of Proposition 10 then we can take g(x)=
x"# log*#(x) and h(x) = 2g(x). Equation (3.2) tells us that E[ Y,] grows as
least as fast as g(n). However, Eq. (3.1) tells us that the growth rate is at
least g(n) if B> 1, while if f=1, it is at least log(n) g(n).

We now turn our attention to describing a function g in terms of p,
so that lim, E[ Y,]/g(n) € (0, c0).

Lemma 11. Suppose that p: (0, o0) — (0, 1) is decreasing, >°_, p(k)
=1, and that there is a divergent sequence g(n) such that for all
x€ef[a, b] =(0, o), np(xg(n)) converges uniformly to a function f(x) which
is integrable on [a, b]. Put p, = p(k) for any positive integer k. Then

. I b
lim — Y n(l=p)"pi=] exp(—f(x)) f(x)dx
) k e [ag(n).bg(n)] a

Proof. Since 0 < p, <1 we have

2
np;

2(1=py)

so for ke[ag(n), bg(n)] we have that there is a constant C,, so that

k
exp (-np ((ﬁ g(n))) eXP(—Co s Pagin)

k
<(1—p)'<exp (—np <<@ g(n)>>

Since f(x) is Riemann integrable on [a, b], so is f(x) exp( —f(x)) and the
lemma follows from the pinching theorem. O

exp(—npy) €xp (— )<(1 —p ) <exp(—mpy)  (33)

Theorem 12. Under the hypotheses of Lemma 11 we have

tim inf 2o 5 [* exp(—f(x)) £ de
n—co g(n) a
im sup E—éE(Z;] <24 L” exp(—f()) /() d-+ lim sp I

Proof. We may write

=)

E[Y,1=n Y (1-po)" pe+o(l)

k=1
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and then divide the sum according to k <ag(n), ke [ag(n), bg(n)] and
k > bg(n). For the terms with k < ag(n) note that

n I\
1—p)"p<——(1-—
W Pi)" Pi n+1( n+1>

The lemma covers the middle values of k, and for the large values of k
overestimate (1 — p,)"” by 1. O

Corollary 13. Suppose that for some C>0 and f>1 we have

log*(k
pe=(C+o(1)) 20

For n>2 put g(n) =n'"?log*#(n). Then

E[Y,] CY r(ﬁ; 1)

Proof. The hypotheses of the theorem are satisfied for any
0<a<b<oo with f(x)=CB~*x % It is easy to check that

lim =
noc g(n) ﬂ(a+ﬂ)/ﬂ

n
lim sup — Z (1= pi)" P
n—w g(n)k>bg(n)

converges to 0 as b — oo, so letting ¢ — 0 and the b — oo gives

. ElY, ©
tim ZLYal_ [ 7() exp(—7(x)) ax
n—+ o0 (n ) 0
Making the substitution u =x~# allows us to compute the integral. O

To see what happens when f=1 we formulate the result slightly dif-
ferently to avoid some technical problems about sums of series.

Corollary 14. Suppose that for some C>0 and for all #u>1 we have

Y. pe=(C+o(1))log*(u)

k>u

Then

E[Y,] _
n— oo 1 log®(n)

860/9/2-11
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Proof. It is straightfoward to show that g(n) =n""log*~'(n) satisfies
the hypotheses of Theorem 12 with f(x)= C'/x for some positive constant
C and [a, b]=[1, 2]. Therefore

lim sup ZLYad oo ELYa]
P log*(n) " n= i g(n) log(n)
<lim sup(C+ o(1)) <log(2) + log(n) + (e —1) log log(n)>
n— oo log(n)
=C

On the other hand, if in Proposition 10 we take b>0 and g(n)=
bnlog®~!(n) we have

lim inf ﬂ
n—o nlog*(n)

=lim inf(C + o(1))

n— o0

= Cexp(—C'/b)

<log(bn) +(x—1)log log(n)>°‘ E[Y,]
log(n) g(n) log(n)

Since we may take b to be arbitrarily large we have

.. . ELY,] . E[Y,]
1 f———=C=1 —_—
lnn_l.lcg n log*(n) ¢ lin_’sgp 1 log*(n)
which is what we wanted to show. D

The next corollary gives us an idea of the rate of convergence of
Y,/E[Y,] to 1:

Corollary 15. Suppose that

log*(k)

pe=(C+o(1) =5

as k- oo for some =1 and that p is a positive integer. Put
x=2p+1)B/(2pB—2p+1) and g(n)=n'?log*’(n). If u(n) is increasing
and divergent, and

log n)(ZP—l)o://f

-
El nu®(n*)

< 0
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then

=0 a.s.

n‘z"’"’“”*””’(log Yy, —~E[Y,]
lim ( - - >
n— cc u(n) g(”)

Remark 3.2. Notice that the factor
n2—A2p+ "”’(log n)"‘/”/u(n)

may be taken to be divergent if fe[1,2) or if $=2 and a>0. For
example, if f=1 then we must have a < —1. If we set p=1, we get
n'(log n)*#/u(n) and we may take u(n) to diverge as slowly as we like.

Proof. Take A=x and ¢(n)=n¥-2C2+DB(og m)*Pu(n) in
Theorem 7. Theorem 12 allows us to verify that the hypotheses of
Theorem 7 are satisfied by these choices. O

Finally, let us look at a sharpening of Theorem 2, where it was shown
that under certain conditions E[ ¥, ] was bounded.

Lemma 16. Suppose that lim, _, . (pr, /P =p€(0,1). Let k(n)=
min{k: p,<1/n}. Let L denote the limit points of np,,,. Then

(p,1]=Lc[p,1].

Proof. Tt is relatively straightforward to establish the upper inclusion.
Observe that

Prin

< npk(n) < 1
Primy—1

The lower inclusion is a little more unpleasant. Choose xe(p, 1], and
define the positive integer sequence n; by n;=max(l, [x/p;]), where [ y]
stands for the integer part of y. Observe that for all large positive integers
j we have

l< Py _Pi—1 Py
< =
n, XxX—p; X—p;pi

p.
Pj$?'l<

Therefore, for all range j, since x> p and p; converges to 0, py,,= p;.
Therefore,

.hm njpk(,,j) =X
J—=

which finishes the proof of the lemma. a



426 Key

Eisenberg, Stengle, and Strang'® analyze the behavior as n — oo of
=] <<} n—1
Pr(Sn)En Z pk(l_ Z p]>

k=2 Jj=k
For geometric distributions, we will see that E[ Y,] and Pr(S,) have the
same asymptotic behavior.

Lemma 17. Suppose pe(0, 1). Then for every x e (0, o)
fx)=x Y exp(—xp*) p*
k= —o0

defines a continuous function on (0, co) with the property that f,(p*)
defines a nonconstant infinitely differentiable function of period 1 on
(— o0, ).

Proof. This is a restatement of Theorem 3 of Eisenberg, Stengle, and
Strang [ 1993]. O

Theorem 18. Suppose that lim, _, ,,(pi.1/px)=p€(0,1). Let f, be
as in Lemma 17. Then the range of f, is equal to the set of limit points of
ELY,].

Proof. Let k(n) be as in Lemma 16. Observe that
E[Y, . ]=n ), (I=p)'pet+n ), (1=p)'peto(l) (34)
k <k(n) k= k(n)
Now, suppose that n - co in such a way that np,,, = x<[ p, 1 ]. Then
K Dikm 1\ T Prkon 41
n z (1= pi)" Pi = NPy Z <1 — Py H '_I‘L) H SR
k> kin) k> k(n) j=0 Pj+rm k=0 Pi+km

so it follows from the dominated convergence theorem that along that
same subsequence

no Y, (1=pe)'pi—x ), exp(—xp*) p*
k= k(n) k=0
Next, we will show that the dominated convergence theorem implies that

) (l—pk(,,)_k)"M—»x > exp(—xp ) p~*

k <k(n) k(n) k=1
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along any sequence where np(k(n)) converges to x. This is rather easy to
see: For k bounded away from 1 and all large n, since k(n) — oo, there are
g;€ (0, 1) such that

(1= Peim—&)" ﬂp‘(’—)s (1 =47 “Pem) g5 * <exp(—g;*p) g5*
Since this last function of k is summable, the dominated convergence
theorem is applicable. Therefore we have shown that if np,,,— x along
some subsequence, then E[Y,] converges to f,(x) along that same sub-
sequence. Hence the range of f is contained in the limit points of E[ Y,].
(Here we use that f(p)=f(1), just in case x = p and p is not a limit point
Of npk(n)')

The reverse inclusion is easy: The preceding part of the proof shows
that E[ Y,] is bounded (as does Theorem 2). Along any convergent sub-
sequence we can restrict to a subsequence along which np,,, > x€[p, 1],
so the convergent subsequence of E[ Y, ] must converge to f{x). a

If Theorem 2 is applied when the hypotheses of Theorem 18 are
satisfied, then the difference in the error bounds of Theorem 2 increases
from 1/e to 3/e as p increases from 0 to 1. Numerical evidence suggests that
the diameter of the range of f,(-) decreases from 1/¢ to 0 as p increases
from 0 to 1. Furthermore, for any pe (0, 1), for any positive integers M
and N, for all xe[0, 1],

N N+1 M—1
. . P exp(—(1/p)" 1)
0< ( .\)__ k+x exp(— (k+.\))<
)= 2 r ? T=p" log(l/p)
Choosing p=1/2 as in Key,® for xe[0, 1] we can numerically estimate
the diameter of the range of the partial sum
20

Y (1/2)* exp(—(1/2)**)
k=-5

to be no more than 3 x 10~° and the error in replacing f,5((1)*) with the
partial sum for x € [0, 1]) to be no more than 1.12 x 10 5. The value of the
partial sum at x=0 is approximately 1.44270. All that Theorem 2 tells us
is that the limit points of E[Y,] lie between 0.7629 and 1.8106. Corol-
lary 2 of Eisenberg, Stengle, and Strang® shows | f,(p™) — (1/log(1/p))| <
0.0002 for all x and p > 0.3.
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