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Suppose that Xt, X2,... is a sequence of i.i.d, random variables taking value in 
Z +. Consider the random sequence A(X)= (Xi, X2,...)- Let Y, be the number 
of integers which appear exactly once in the first n terms of A(X). We investigate 
the limit behavior of Y,,/E[ Y,,] and establish conditions under which we have 
almost sure convergence to 1. We also find conditions under which we deter- 
mine the rate of growth of E[ Y,]. These results extend earlier work by the 
author. 
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1. I N T R O D U C T I O N  

The topic of rare numbers was first introduced in Key r in response to a 
problem in density estimation formulated by Cuevas and Walters. ~ t~ In the 
latter work, the authors addressed the problem of estimting generalized 
densities (mixtures of discrete and continuous distributions), and they 
needed to get a handle on the number of observed values which appear 
only once in the data and which are from the discrete part of the dis- 
tribution. 

To this end, in the former work, the following situation was analyzed. 
Suppose that Xl,  X,_ .... is an i.i.d, sequence of positive integer valued ran- 
dom variables, with Pk =- P r ( X ; = k ) >  0 and Pk a nonincreasing sequence. 
For a fixed positive integer n, the integers which appear once in (X~ ,..., iT,)  

were called rare numbers.  We are interested in the behavior of the number 
of rare numbers, denoted by Y,,, as n ~ oo. 
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It will be useful to express Y,, as follows. For each positive integer k 
let Ik.~ denote the indicator of the event that the integer k appears exactly 
once in the n-tuple (Xt ..... X,,). We may then write 

k = l  

from which we see that 

E[Y,,]=n ~, (1--pk)"-lpk (1.1)  
k = l  

It is clear that Y,, ~<n and that [ Y,,+~ - Y,,[ ~< 1. In fact, if we put Y,,., =the  
number of positive integers which appear once in (X,,§ X,,), it was 
pointed out in Key t2) that Y,,., is a subadditive process. It follows from 
Kingman's subadditive ergodic theorem and Eq. (1.1) that Y,,/n con- 
vergerges almost surely to 0. 

It is the point of this note to show how to improve upon the following 
two results in Keyt2): 

XT~oo _ l - - J <  oo Theorem 1. I f J ~  [0, 1/2) and ~k=lPk O0 then lim,,_, n - t t -~Y, ,  
=0  a.s. If J ~ [ I / 2 , 2 / 3 ) ,  e e ( 2 J - l , l - J )  and Z~~  then 
l i m n ~  oo n - " - ~ l y ~  = 0  a.s. 

Theorem 2. Suppose that there is some positive integer K 
such that for all k>K, O<pk<Pk-l .  Put r=limSUpk_~pk+l/pk and 
s = lim infk_ o~ Pk+ l/Pk" Then 

lim sup E[ Yn] ~< (log(l/r)) - '  + e -  
n ~  oo 

(1.2) 

e - l / s - e - S +  1 
lira in fE[  Y,,]/> (1.3) 
,, ~ oo - - l o g  s 

The key to our improvements is 

Theorem 5. Suppose that p ~< n is a positive integer. Then there is a 
polynomial Qp of degree p - 1 so that for all .n >/p 

E[ r~]  ~<E[ Y,,'IP + (1 + o(I)) Qp(g[ r, ,]) 

First we use Theorem 5 to show in Theorem 6 that the second part of 
Theorem 1 may be improved to J e [ 1/2, 1). We then use it to establish 
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Theorem7 on the convergence of Y~/EEY,].  The first corollary of 
Theorem 7 is 

Corollary 8. Suppose that A 1> 1 and 

.=I E[ Y.A] < ~ 

n I -- ( l / A )  

lim = 0 
. -  ~ E [ Y . ]  

Then 

lim Y" 
, , ~  ~ El- Y. ]  

= 1 a.s. 

We then derive a series of results aimed at determining the rate of 
divergence of El- Y,]. For example, 

Corollary 13. Suppose that for some C > 0 and fl > 1 we have 

log~(k) 
p ~ = ( C + o ( 1 ) )  ka 

For n >/2 put g(n) = n ~/p log~/P(n). Then 

l i m E [ Y , ]  C lip ( ~ _ )  
, , ~  g(n) fl(~,+p)/------~pF 

Finally, we improve Theorem 2 by obtaining a complete description of the 
limit points of E[  Y~] if Pk+ ~/Pk converges to an element of (0, 1). 

2. T W O  LAWS OF LARGE N U M B E R S  FOR Y. 

We know that in general that if q >1 1 and R is a positive random 
variable then E[ R] q <~ E E Rq]. For Y, something like the reverse inequality 
holds. We begin with some simple observations. 

First, it is easy to show that: 

Proposition 3. For distinct positive integers x~ ..... x , ,  and a ~< n, 

n! f i  pxj(1-pxj)  . . . .  E[ I~t., , ...I:,.o.,,] ~< ( n - a ) ! j = ~  
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Next, a technical lemma to help get a handle on the rate of growth of 
E[  Y.]: 

then 

Lemma 4. For any b > a/> 0, if 

k = l  

co 
lim n ~ ~ (1 - -pk ) "p ,b=0  

n ~ o o  k = l  

Proof For n > 0  and u e [ 0 ,  I ]  note that (1-u)"u" is bounded by 
above by a~ + a ) - " ,  so Eq. (2.1) follows from the dominated convergence 
theorem. [] 

Theorem 5. Suppose that p ~< n is a positive integer. Then there is a 
polynomial Qp of degree p - 1 so that for all n >i p 

E[  r~ ]  ~<E[ Y,,]P + (1 + o(1)) Qp(E[ I:,]) (2.1) 

Proof To prove this theorem we need some additional notation: N J 
will stand for the set of ordered j-tuples of distinct positive integers. 

Since 

/,-~= l kr=1 

and the Ik.,, take only the values 0 and 1, there are non-negative integers 
Ap.j, independent of n, with Ap.p = 1 so that 

( ) Y~ - Ap j Y'. Ik, "" Ik, (2.2) 
j = l  {kl...., kj) ~ NJ 

From Proposition 3 we see that 

r ~ NJ I k l  " ' "  

n !  J 

- -  ~ ~=l Pk,( I - Pk, )" -j 
<~ (n--j)! ~k,.....k:)~W i= 

n, y 
(n- - j ) ! (n- - j+ 1) y ( n - - j +  1)(1 --Pk)"-:Pk 

k I 

=(1  + O(n-l))(E[ I:.] + o(1)) j 
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Note that this last expression may be broken down into a sum of four 
terms: 

�9 E[  Y,,]J. 
�9 A polynomial of degree j - 1  in E[  Y,] times o(1). 

�9 O(n - I )  E [  Y.]J. 

�9 A polynomial of degree j - 1  in E[Y,,]  times o( l )  times O(n-~). 
However, from Eq. (1.1) and Lemma 4 we see that 

O(n -I) E[ Y.]J = o(1) E[  y o ] j -  l 

so E[Z~k,....kj)~,w Ikt"" Ikj] <~ E[ Y,,]J + (a polynomial in E [  Y,] of degree 
j) o(1). Therefore the theorem follows by taking the expectation of both 
sides of Eq. (2.2). [] 

The following extends Theorem 1 up to ~ < 1: 

Theorem 6. If 8 ~ [ 1 / 2 , 1 )  and for some e > 0  we have 
Z~=l P~-a-~  < ~ then l im,_ ~ rt -~1 - ' ~ ) Y , ,  = 0 a . s .  

Proof By hypothesis and Lemma 4 we have E[  Y,,] = o(n ~ -a-t). Let 
p be the smallest integer so that ( 2 p - 1 ) e > 6 .  From Theorem 5 it is suf- 
ficient to show that 

lim Y;P'-E[Y~]=O a.s. (2.3) 
n ~  r n (I - ~ ) P  

Again using Theorem 5 we see that 

Var(Y~) = n II -a  - ~)12p- l~o( 1 ) 

so Eq.(2.3) follows from the Borel-Cantelli lemma and Chebychev's 
inequality. [] 

We would like to determine a normalization of Y,, which gives an 
almost sure limit which is finite and positive. To this end, we let k,,A 
denote the largest integer whose A th power does not exceed n, and if x > 0 
is not an integer, we take Y,. to be Yq where q is the integer part of x. 

Theorem 7. Let p be a positive integer and let A 1> 1 be given. Sup- 
A pose that ~b(x)> 0 for all x > 0. Let l, = k,, A. Suppose that 

~ = ~  ~(n")-" E[  Y,,.] < oo (2.4) 

E[  Y,,] >1 C~ > 0  (2.5) 
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If A = 1 or if 

then 
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Fll --(l/A) 
lira 0 (2.6) 

,,- ~ q~(n) E[Y,,] 

~b(Z.) E[  Y~,,] 
~b(n) E[ Y,,] ~< C2 < (2.7) 

1 ( Y, ) 
lim ~ \ E [ y , ]  1 = 0  a.s. 

Proof It follows from Chebychev's inequality and Theorem 5 that 
since E[  Y.]  is bounded away from 0 that there is a constant K so that 

[ ~-~-)\E[Y,,] ( ) ] (ec~(n) E[Y,,]) 2pY''])- ] K 
1 IT,, < E [ ( Y , - E [  2p 

Pr 1 >e  ~< (e~b(n)),p E[ y , ]  

Hence it follows from the Borel-Cantelli lemma and (7) that 

1 ( Y,,A ) 
lim ~(--~5~) \ e l  y,,A] 1 = 0 a.s. 

To finish off the proof we need to "fill in the gaps" in case A > 1. First note 
that 

, ~ ~ (  _Yr. 1 ) = 0  a.s. 
\EE Y,.] 

since 1, increases to infinity and only takes values in the A th powers of 
positive integers. 

Next, note that k,,.A is of the same order of magnitude as n TM, so 

i, - / , ,  ~< (k,, + 1 )A __ k,A = O(n' -(,/A,) (2.8) 

Since for any n we have [ Y , -  Y,,+,[ ~< 1 it follows from Eqs. (2.6) and (2.7) 

1 E [ y .  ] l lY"-E[Y"] ~ - [ ~ j  lim s u p - -  1 ~l im sup Cz ~ - ~  = 0  a.s. 
. . . .  ~(,,) ,,.o0 

which proves the theorem. [] 



Divergence Rates for the Number of Rare Numbers 419 

Corollary 8. Suppose that A 1> 1 and 

,, =, E[ Y,,A-----] < oo (2.9) 

n I - ( l / A )  

lim - - = 0  (2.10) 
. . . .  E[ Y,,] 

Then 

lim Yn 
. . . .  e [  Y.] 

= 1 a.s. 

Proof Set ~b(x)=l in the theorem. Then Eq.(2.4) reduces to 
Eq. (2.9) and Eq. (2.6) reduces to Eq. (2.10). 

Next, note that Eq. (2.10) implies that E[  Y,,] is divergent. Hence 
Eq.(2.5) is satisfied. Thus we have the case A = I .  If A > I ,  since 
[ Y,, - Y,, + ,I ~< I, we have 

E___~[_ Yr,] 1 ~< n_-- I,, 
e [  Y,,] E[  Y,,] 

Together with Eqs. (2.8) and (2.10) this shows us that Eq. (2.7) holds as 
well. [] 

Remark 2.1. The hypotheses of this corollary cannot be satisfied if 

E[  II,] 
lim sup - -  < 

n ~  o o  

while they are always satisfied if for some f(n) > O, 

x /~f(n)  
lim,,4supoo E[  Y,---~ < ov 

For example, f(n) = log(n + 1 )2. 
In the next section we shall determine some condition on the Pk under 

which the hypotheses of Theorem 7 are satisfied. 

3. THE BEHAVIOR OF E[ Y.] 

In order to better appreciate Theorem 7 we have to have a better grip 
on the behavior of E[  Y,,] as n ~ ~ .  Our goal is to describe the behavior 
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of E [  Yn] in terms of the behavior of the Pk" We already see from Lemma 4 
that for a e (0, 1 ], if p~ is summable then E [  Y,,] = o(1)n  ". We have also 
seen in Theorem 2 that in some circumstances E[  I",] may be bounded. 
These results are not of much use to us in that what Theorem 7 indicates 
to us is that we want E[  Y,,] to be divergent. However, Lemma 4 does give 
us a clue about how quickly we might expect El-Y,,] to diverge. We will 
now proceed to develop some results in that direction. 

First off let us settle when E[  Y,] is a bounded sequence. Here is a 
companion to to Theorem 2: 

Theorem 9. If there is a strictly increasing sequence of positive 
integers, k(j), such that Pk(j+ ~)/Pku) < 1 and 

lim P k t j + l l / p k t j )  = 1 
j~oo  

then lim,, E[Y,,]  = or. 

Remark 3.1. For  example, if the Pk are strictly decreasing and 
lim supk Pk+~/Pk = 1 then such a sequence k(j) exists. What we have to 
avoid is a sequence Pk such as P2k-1 = P,_~ = 2 - k - '  for which the conclu- 
sion of the theorem is false. 

Proof. Let aj=pk(j). Choose e e(0,  1). Then there is a positive 
integer M so that if j > M then aJaj_ ~ >/( 1 -- e). Then 

E[ Y,,] i> ~ 17( 1 - a j ) " - la j  
j = M  

~ ((1--aj)"--(1--aj_l)")(aj-I--1) -' 
j=M \ aj 

~ > - - ( 1 - ( 1 - a  v,~ M - - I I  ] 
8 

Hence liminf,,E[Y,,] ~>(1-e)/e ,  which implies the conclusion of the 
proposition. [] 

Of course, to apply Theorem 7 we need some idea of the rate of 
divergence of E[  Y,,]. 
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Proposition 10. Suppose that p: (0, oo)--,(0, I) is 
~ = ~ p ( k ) =  1. Put Pk=P(k) .  Suppose that for 
g: (0, ~ )  ~ (0, oo) we have 

p(g(x)) %+o(1) 
X 

decreasing and 
some function 

lbr some positive constant %. Then 

l iminf E [ Y . ]  �9 exp(--%) (3.1) 
,,4 o~ n ~--.~k>~g(n) Pk 

If we can also find h: (0, oo)--. (0, oo) so that 

Ch+O(l) 
p(h(x)) 

X 

for some positive constant Ch, and for every x, g(x) < h(x), then 

lim inf.,E-f-[ Y'-~ '], ,>~min(cge-C,,che -o,) 
,,~ o~ ntn) --gtn) 

(3.2) 

Proof. For Eq. (3.1), observe that 

E[ Y.] ~>n(1 --p(g(n))" ~ Pk 
k >~n 

For Eq. (3.2), let W,, denote the integers between g(n) and h(n). The key 
to the proof is that on any closed interval in [0, 1], as a function of u, 
the expression u ( 1 - u )  ''-~ achieves its minimum at the endpoints of the 
interval. Therefore 

E[r,,]>>. E npk(1--Pk)"-' 
kE m.  

>1 (h(n) - g ( n )  ) min(np( g(n) )( 1 - p(g(n) )", bh(n) )(1 - p( h(n) )") ) 

which implies Eq. (3.2). [] 

Equations (3.1) and (3.2) do not always yield the same estimates on 
the rate of growth of El- Y,]. For example, it is easy to check that if 

log~(x) 
p ( x ) = ( C + o ( 1 ) )  xa 
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satisfies the hypotheses of Proposition 10 then we can take g ( x ) =  
x I/p log~/P(x) and h(x) = 2g(x). Equation (3.2) tells us that E[  Y,] grows as 
least as fast as g(n). However, Eq. (3.1) tells us that the growth rate is at 
least g(n) i f f l >  1, while i f f l =  1, it is at least log(n)g(n). 

We now turn our attention to describing a function g in terms of p~ 
so that lim,, E[  Y,,]/g(n) ~ (0, oo). 

Lemma 11. Suppose that p: (0, o o ) ~  (0, 1) is decreasing, Z~~ p(k) 
=1, and that there is a divergent sequence g(n) such that for all 
x E [a, b] c (0, oo ), np(xg(n)) converges uniformly to a function f (x)  which 
is integrable on [a, b]. Put Pk = p(k) for any positive integer k. Then 

lim 1 i, b 
~ o ~  g(n---'-) ~ n(1 - -  Pk)" Pk = exp( - - f (x ) )  f (x)  dx 

k r [ a g ( n ) , b g ( n ) ]  t 

Proof. Since 0 < pl < 1 we have 

exp ( - -npk)exp(  2(1-np2 "~ _ p l ) j  ~<(1 --pk)"<~exp(--npk) '(3.3) 

SO for ke  [ag(n), bg(n)] we have that there is a constant Ca, b SO that 

exp ( -- np ( (g~n ) g( n ) ) ) exp( -- C,,.b P ~,g,,,,) 

<~(1--Pk)n<~exp(--np((g-~g(n))) 

Since f (x )  is Riemann integrable on [a, b],  so is f (x)  e x p ( - f ( x ) )  and the 
lemma follows from the pinching theorem. [] 

Theorem 12. Under the hypotheses of Lemma 11 we have 

infELI- Y,,] >1 rb| e x p ( - - f ( x ) ) f ( x )  lim dx . . . .  g(n) Ja 

l i m s u p E [  Yn] ~<a i ~ n - +  exp(-f(x))f(x)dx+limsup-7-.S.., ~.. Pk . . . .  g(n) c n ~ c~ ~ l t )  k > b g ( n )  

Proof. We may write 

E[Y,,]=n ~, (1--pk)npk+O(1) 
k ~ l  
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and then divide the sum according to k<ag(n), ke[ag(n),bg(n)] and 
k > bg(n). F o r  the te rms with k < ag(n) note  tha t  

n - ~-+--i- n(1--pk)"pk <~1-~-- ~ 1 

The l emma  covers the middle values of  k, and for the large values of  k 
overest imate (1 - Pk)" by 1. [] 

Corol lary 13. Suppose  that  for some C > 0 and  fl > 1 we have 

log~(k) 
Pk=(C+~ k p 

For  n/> 2 put  g(n) = n j/p log~/P(n). Then 

lim E [  Y,,] C '/# ( ~ _ )  
,,~o=. g(n) --ff~+#)/-~P F 

Proof The  hypotheses  of  the theorem are satisfied for any 
0 < a < b < oo with f (x )  = Cfl-~x-P. It is easy to check that  

n 
l i m s U p g - ~  ~ ( 1 - - p k ) " p k  

, # 4  oo 0 ' ,  k > b g ( n )  

converges to 0 as b ~ oo, so letting a -~ 0 and the b --, oo gives 

lim E [ Y , ]  _ f o  . . . .  g(n) f ( x )  e x p ( - f ( x ) )  dx 

Making  the subst i tut ion u = x - p  allows us to compute  the integral. []  

T o  see what  happens  when fl = 1 we formulate  the result slightly dif- 
ferently to avoid some technical p rob lems  abou t  sums of  series. 

Corol lary 14. Suppose tha t  for some C > 0 and for all u > 1 we have 

~,, Pk  = ( C 4- o( 1 )) log~(u) 
k > t ,  

Then 

lim E [ Y n ]  _ C  
, -  ~o n log~(n) 

860/9/2-11 
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Proof It is straightfoward to show that  g(n)= n- l  l og~- t (n )  satisfies 
the hypotheses of  Theorem 12 with f (x )  = C'/x for some positive constant  
C and I-a, b] = [ 1, 2] .  Therefore  

l imsup  E [ ~ , = l i m ~ p  ,E,[loY--J"],n , 
. . . .  n l o g  (n) ~ g( ) g~ ) 

lim . . . .  sup( C + o( 1 ) ) ( !og(  2 ) + log( n ~ ) - )  + ( ~ - 1 ) log log( n ) )~ 

= C  

On the other  hand,  if in P ropos i t i on10  we take b > 0  and g ( n ) =  
bn log ~-  tOO we have 

lim inf E [  Y.] 
, , -  ~ n log ' (n)  

= lim inf( C + o(1) ) (log( b,,) + (o~ - l ) log log(n ).)~' E[ Y,,] 
. _  " g ( , , )  l o g ( , , )  

>/C exp( - C'/b) 

Since we may  take b to be arbitrari ly large we have 

i.. : El- Y,,] El- Y,,] 
lm mt  - -  ~ = C = lim sup 
. ~ ~ n l o g  (n )  . . . .  n log ' (n)  

which is what  we wanted to show. [] 

The next corol lary gives us an idea of  the rate of  convergence of 
Y,,/E[ In] to 1: 

Corollary 15. Suppose that  

logS(k) 
Pk=(C+o(1))  k # 

as k ~  m for some fl>~l and that  p is a positive integer. Put  
x = (2p + 1 )fl/(2pfl - 2p + 1 ) and g(n) = n I/p log~/a(n). If u(n) is increasing 
and divergent, and 

~ ( l o g  n)  c2p- i)~/p 
,, = ~ nu2P(n.,. ) < 0o 
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then 

lim nt2-P)m2P+~m(l~ n)~/P ( Y " "  E[ g(n) a.s. 
n ~  co 

Remark 3.2. Notice that the factor 

n~Z-P)/,2p+ I~P)(log n)'/#/u(n) 

may be taken to be divergent if p c [ l , 2 )  or if f l = 2  and ~ > 0 .  For 
example, i f f l = l  then we must have 0 t< - - l .  If we set p = l ,  we get 
nl/3(log n)~/P/u(n) and we may take u(n) to diverge as slowly as we like. 

Proof Take A = x and ~b(n) = n (#-2)/(~2p+ I)#)(1og n)~/Pu(n) in 
Theorem7. Theorem l2 allows us to verify that the hypotheses of 
Theorem 7 are satisfied by these choices. [] 

Finally, let us look at a sharpening of Theorem 2, where it was shown 
that under certain conditions E[ Y,,] was bounded. 

Lemma 16. Suppose that limk_ ~o (Pk + I/Pk) = P ~ (0, 1 ). Let k(n) = 
min{k:pk<~l/n}. Let L denote the limit points of npk~,~. Then 
(p, 1] c L c [ p ,  1]. 

Proof It is relatively straightforward to establish the upper inclusion. 
Observe that 

P k ( n )  <~ npk~,,~ <~ 1 
P k ~ n )  - 1 

The lower inclusion is a little more unpleasant. Choose xr  1], and 
define the positive integer sequence nj by ny=max(1, [x/p~]), where [ y ]  
stands for the integer part of y. Observe that for all large positive integers 
j we have 

pj~PJ<!<<. PJ _ PJ-, PJ 
x nj x - -p j  x- -pyp:_l  

Therefore, for all range j, since x >  p and pj converges to 0, pk(n D = p j .  
Therefore, 

lim njpk~,,j)= x 
j---, oo 

which finishes the proof of the lemma. [] 
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Eisenberg, Stengle, and Strang ~2} analyze the behavior as n--* oo of 

Pr(S,,)-nkffi2 ~ Pk 1--j pj 

For geometric distributions, we will see that E[ Y,] and Pr(S,,) have the 
same asymptotic behavior. 

Lemma 17. Suppose p e ( 0 ,  1). Then for every xe (0 ,  oo) 

fp(x)=x ~. exp(--xpk)p k 

defines a continuous function on (0, oo) with the property that fp(p-") 
defines a nonconstant infinitely differentiable function of period 1 on 
(-oo,  oo). 

Proof. This is a restatement of Theorem 3 of Eisenberg, Stengle, and 
Strang [ 1993]. [] 

Theorem 18. Suppose that limk~oo(Pk+l/Pk)=pe(O, 1). Let f ,  be 
as in Lemma 17. Then the range of fp is equal to the set of limit points of 
E[L,]- 

Proof. Let k(n) be as in Lemma 16. Observe that 

E[Y,,+,]=n ~ (1--pk)"pk+n Y'. (1--pk)"pk+o(1) (3.4) 
k < k ( n )  k >~k(n) 

Now, suppose that n ~ oo in such a way that npk(,,) ~ X e [ p, 1 ]. Then 

' P j+k(n)+l .  !l ~ (1--pk)"pk=np~,,) ~ 1--pk(,O 
k>~kln) k>~k(n) j = O  Pj+k(n)  k = O  Pj+k(, , )  

so it follows from the dominated convergence theorem that along that 
same subsequence 

n Y" (1- -pk)"pk~x  ~, exp(--xpk)p k 
k>~k(n) k=O 

Next, we will show that the dominated convergence theorem implies that 

~, (1--pkl,,)_k) "pkO')-k *X ~ exp(- -xp-~)p  -k 
k < ktsO Pko0 k = 1 
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along any sequence where np(k (n ) )  converges to x. This is rather easy to 
see: For  k bounded away from 1 and all large n, since k(n)  ~ oo, there are 
qi6(O, 1) such that 

( 1 - Pktn ) - k)" Pk(n} -- k <~ ( 1 -- q lkpk(,,))n q 2 k <~ exp( -- q ~-kp) q 2 k  
Pktn) 

Since this last function of k is summable, the dominated convergence 
theorem is applicable. Therefore we have shown that if np~( , , )~  x along 
some subsequence, then E l  Y,,] converges to f p ( x )  along that same sub- 
sequence. Hence the range of f is contained in the limit points of E [  yn]. 
(Here we use that f ( p ) = f ( l ) ,  just in case x = p and p is not a limit point 
of npk(,,).) 

The reverse inclusion is easy: The preceding part of the proof  shows 
that El. Y,,] is bounded (as does Theorem 2). Along any convergent sub- 
sequence we can restrict to a subsequence along which npk(,,)--* x ~ [ p,  1 ], 
so the convergent subsequence of E[  Y,,] must converge to f ( x ) .  [] 

If Theorem 2 is applied when the hypotheses of Theorem 18 are 
satisfied, then the difference in the error bounds of Theorem 2 increases 
from 1/e to 3/e as p increases from 0 to 1. Numerical evidence suggests that 
the diameter of the range of fp(. ) decreases from 1/e to 0 as p increases 
from 0 to 1. Furthermore, for any p e (0, 1), for any positive integers M 
and N, for all x e [0, 1 ], 

N 
0 <fp(pX) ~. pk+X . p N + ,  _ ( U p ) M - , )  -- exp(_ptk+.~)) ~< 1 - - p  +exp(  

k :  -M log(l/p) 

Choosing p = 1/2 as in Key, (2) for x E [0, 1 ] we can numerically estimate 
the diameter of the range of the partial sum 

20 

( l/2)k+" exp( -- (1/2) tk +')  ) 
k = - - 5  

to be no more than 3 x 10 -5 and the error in replacing fl/2((�89 x) with the 
partial sum for x e  [0, I ] )  to be no more than 1.12 x 10 -6. The value of the 
partial sum at x = 0 is approximately 1.44270. All that Theorem 2 tells us 
is that the limit points of E[  Y,,] lie between 0.7629 and 1.8106. Corol- 
lary 2 of Eisenberg, Stengle, and Strang t3) shows I f p ( P " ) -  (1/log(1/p))l ~< 
0.0002 for all x and p >t 0.3. 
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