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This paper generalizes results by Bradley. TM Suppose that for 1 =1,2 .... 
{X~:kET] 't} is a centered, weakly stationary p*-mixing random field, and 
suppose limt_~ Cov(X~, x~) exists, any k eE a. Then the successive spectral 
densities converge uniformly to a continuous function. For a sequence of strictly 
stationary random fields that are uniformly p*-mixing and satisfy a indeberg 
condition, a CLT is lbroved for sequences of sums from the fields. This result is 
then applied: given a centered strictly stationary p*-mixing random field whose 
probability density and joint densities are continuous, then a kernel estimator 
for the probability density obeys the CLT. 

KEY WORDS: Stationary random fields; p*-mixing, spectral density; Central 
Limit Theorem. 

1. I N T R O D U C T I O N  

Let d be a positive integer. A d-dimensional discrete field of complex 
r andom variables { X k : k E Z  a} will be called "centered" if E X k = 0  for 
all k. The field is "weakly s ta t ionary" if E IXo}2< oo and EXkXy depends 
only on the vector k - j .  The field is "weakly s ta t ionary of  fourth degree" 
if it is weakly s ta t ionary and also satisfies: E IYol 4 < oo and E X ~ X b X c X a =  
E X o X b _ , X , . _ u X a _ , .  A field is "strictly s ta t ionary" if for any finite set 
S e E  a and vector v ~ Z  a, the set of  r.v.'s { X k : k E S }  has the same joint  
distribution as the set {Xk+o: k ~  S}. 

C C W S  will mean  centered, complex, and weakly stationary.  CRSS will 
mean centered, real, and strictly stationary.  CCSS will mean centered, 
complex, and strictly stationary.  C C W F S  will mean  centered, complex, and 
weakly s ta t ionary of  the fourth degree. "a lmost  all k" will mean "all but  
finitely many  k." The symbol  X will mean the indicator  function of  a set. 

~Department of Mathematics, Indiana University, Bloomington, Indiana, 47405. E-mail: 
M1LLERCP @ UCS.INDIANA.EDU. 

867 

0894-9840/94/1000.0867506.50/0 �9 1994 Plenum Publishing Corporation 



868 Curtis 

Let T denote { z � 9  For t � 9  a, let 2 be the vector in 
( - n ,  n]a such that t = (exp i2~ ..... exp i2a). Let Pr  denote the normalized 
Lebesgue measure (2niz)-tdz on T, and let #a r be p r x ' " x # r ,  the 
d-dimensional product measure on T a. 

If {Xk:k �9  a} is a CCWS random field, then a nonnegative Borel 
integrable function f is a "spectral density" for the field if for any k �9 7/a, 

EXkX~ = fr; eik~f(t) dpar(t) 

Here k.  2 denotes the dot product. If k �9 7] '/, then Hk[I is the Euclidean 
norm. For two nonempty disjoint sets S, T c  2U, we define dist(S, T) to be 
min{ l l j -k l [ :  j eS ,  k �9  Let F (S )=  {57k~SakXk:akeC, and ak=O for 
almost all k}, and F(T) = {Zk~ rakXk: ak �9 C, and ak = 0 for almost all k}. 
Let a(S) be the a-field generated by {Xk: k �9 S}, and define a(T) similarly. 

We now define three measures of dependence of the sets S and T. 

r(S, T):=sup{lEf~l/llflL2 Ilglla: f ~F(S), g~F(T)} 

p(S, T) := sup{ [ E l ( f -  E f ) ( g -  Eg)]l / l l f -  ETIIz I Ig-  Egll 2: 

f � 9  L2(a(S)), g �9 L2(a(T))} 

~(S, T) := sup{ IP(A c~ B) - P(A ) P(B)I: A �9 a(S), B �9 o-(T)} 

From these we obtain mixing coefficients. For any real number s >i 1, define 

r*(s) := sup{r(S, T): dist(S, T) ~>s} 

p*(s) := sup{p(& T): dist(S, T) >~ s} 

c~*(s) := sup{~(S, T): dist(S, T)>~s} 

For any s~> 1, r*(s)<~p*(s), so the condition lims_o~ r* ( s )=0  is weaker 
than lims_ o0 p*(s)= 0. When a Lindeberg condition is needed, as in Sec- 
tions 4 and 5, we must have a truncation of some Xk's; r*(s) only concerns 
linear combinations of Xfls so we use lira.,._ oo p*(s)=0. Theorem 3.1 and 
the preliminaries in Section 2, however, need only r*(s) to go to 0 as 
S ---* c~ ,  

~(S, T) and measures based on it appears often in mixing research (see 
Bradley ~2~ for a survey), or(S, T)<~p(S, T) for all S and T, but Bradley ~51 
showed that if X is strictly stationary, then ~(s)<~p*(s)<~2n~*(s); so 
Theorems 4.1 and 5.1 could be stated with the condition: lim,._ oo ~*(s)= 0. 
Since the proof of Theorem 4.1 used the definition of p*(s), that is the 
mixing coefficient used here. 
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In this paper, Theorem 3.1 applies Theorem 2.1 (in Preliminaries) to 
the case of a sequence of random fields with convergent covariances. 
Falk c61 proved a similar result; but in that paper it was assumed that for 
the lth field, x--~ r t2'"~ converges, and that the convergence is uniform Z - , m = 0  /~. / 

over all/. In Theorem 3.1, it is assumed that suptr*(s  ) goes to zero as 
s --* oo, but not that the r*-coefficients are summable in some way. 

Theorem 4.1 resembles Theorem 4 in Bradleyt3~; here, however, the 
successive block sums are drawn from a sequence of random fields, not one 
random field. 

Theorem 5:1 is similar to Theorem 3.1(i) in Bradley. c~ There it was 
assumed that Y.,,~=l p (2" )<oo  and that b,71=o(n ~) for some t ie (0 ,  1). 
Theorem 5.1 assumed instead that p*(s) --, 0 as s ~ oo with no summability 
condition on the p* coefficients or growth condition on b,7 ~. 

It might be noted that by restricting the cardinalities of S and T, we 
can define a large class of mixing coefficients. If j, k are positive integers or 
oo, define 

p*k(s) = sup{p(S, T): dist(S, T) >/s, card S ~< j, card T-N< k} 

a*(s) and p*(s) can be defined likewise (see Bradleyt4~). p*(s) of this paper 
is p*.~(s)  in this terminology. Tran c9~ obtained results similar to those of 
Section 5 of this paper, using the condition 

sup ~*k(S)~o  as s ~ o o  (1.1) 
.i.k~l j , k  

This is weaker than the condition l im~_~ p*(s)=0,  but an exponential 
rate of convergence was assumed for Eq. (1.1) in Ref. 9. 

2. PRELIMINARIES 

We now quote the following results. 

Lemma 2.1. (Lemma 1 of BradleyC3)): Suppose 0 < r <  1. Suppose 
X~ ..... X,, is a family of centered complex random variables such that 
IIXII 2 < ~ for all j E { 1 ..... n }, and such that: for any two disjoint nonempty 
subsets S, T c { 1 ..... n }, we have I E(Ek ~ s Xk)(Y'.k ~ r Xk)l ~< r .  II )-'.k ~ s Xk II 2" 
IlY'-k ~ r Xkll.'. Then 

IXkl- -~ g k'@ Xk ( I - - r )  ~< 2 + r )  ~, EIXkl2 ( l + r )  E ~<(1 
k=l  l ( 1 - - r )  k ~ l  

Lemma 2.2. (Lemma 2 of Bradleyt31): I fq  := {qm} is a nonincreasing 
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sequence in [0, 1] such that limm_, oo q,, < 1, then there exists a positive 
constant A =A(q)  such that: If {Xk:kE~_ d} is a CCWS random field for 
which r*(m)<~ q,,, Vm t> 1, then for any finite set S ~  7/d, 

E Ik~s Xk2 <~ A.  (card S)E IXot 2 (2.1) 

For  a random field X : =  {Xk: k~7]a}, S(X: m) will denote the sum 
Xk, with the sum taken over all k := (k~ ..... kd) such that 1 <<.ks<~m, for 

s = l  ..... d. F(X:m)  will denote m-dEIS(X:m)I  2, and G(X:m) will be 
m-ZaE IS(X : m)[ 4. 

Lemma 2.3. (Lemma 3 of Bradleyt31): If q := {q,,} is a nonincreasing 
sequence in I-0, 1 ] such that limm_ oo q,, = 0, then for any e > 0 there exists 
a positive integer M(q,e) such that: If { X k : k e Z  d} is a CCWS random 
field for which r*(m)<~q,, V m ) l ,  then for any positive integer 
M>~ M(q, ~), and any positive integer n, 

IF(X: M ) -  F(X : nM)l <~ ~ . E IYol ~ (2.2) 

Further, M(q,e)  can be chosen as follows: Let A be the constant 
A(q) of Lemm 2.2, and let L(q,e) be a positive integer so large 
that qt(q.~l<(e/6.4) 2. Then M(q, e) need only be sufficiently large that 
(1 + L(q, e)/M(q, ~))d__ 1 < (e/6A) 2. 

Lemma 2.4. (Lemma 4 of Bradleyt31): If X := {X,: k e 7/d} is a CCWS 
random field for which r*(m) ~ 0 as m --* oo, then lim . . . .  F(X : m) exists 
in [0, oo). 

For  any t E T d, and any random field {X~: k e 7]d}, X,  m will denote 
e -ik';. .Xk" 

Lemma 2.5. (Lemma 18.4.1 in Ref. 7): If {~j}j~,, {~j}y~l, and ~ are 
all random variables, and if (y converges weakly to ( as j ~ oo, and ~j ~ 0 
in probability as j --* oo, then (j + ~j converge weakly to ( as j ~ oo. 

Theorem 2.1. (Theorem 1 of Ref. 3): If {Xk: k E  7/d} is a CCWS ran- 
dom field such that r*(m) --*0 as m ~ oo, then {X~} has a continuous spec- 
tral density f ( t )  on T d. Define XCk'~=e--~k';'Xk and X c'~ := {Xt, n:ke7]a}; 
then f ( t )  = lim,, _. oo F(X ul : m). 

Proposition 2.1. Let q := {q,,} be a nonincreasing sequence in [0, 1] 
such that lira . . . .  q , ,=0 .  For  e > 0 ,  let M(q,e) be the constant of 
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Lemma2.3. Suppose {Xk:keT/d} is a CCWS random field such that 
r*(m)<~q,, for all positive integers m. By Theorem 2.1, {Xk: keT/d} has a 
continuous nonnegative spectral density f .  

Corollary of Lemma 2.3 and Theorem 2.1. Let (q.,} and {Xk: k ~ 7/~} 
be as in Proposition 2.1. Then for any integer N>~ M(q, ~), and any t E T d, 
we have IF(XC') : N ) -  f( t) l  <~ ~. 

Proof. {Xk: k e 7/d} is a CCWS random field with the same r-coeffi- 
cients as {Xk:ke7/d}. Therefore Lemma 2.3 applies: Since N>-M(q, ~), 
we have that for any positive integerk, IF(X ~~ : N ) - F ( X  ~~ :kN)l ~<e. 
f ( t )  = lim,,~ ~ F(X (~ : n) = limk_ :o F(X ~'~ : kN), so [F(X I'~ : N) - f ( t ) l  = 
limk-- ~ IF(X(') : N ) - F ( X ( ' )  : kN)I ~<supk~>I IF(X(') : N ) - - F ( X  : kN)l <~8. 

3. CONVERGENCE OF SPECTRAL DENSITIES 

Suppose {(X/.k: k~7/a}: l =  1, 2,...} is a sequence of CCWS random 
fields, and n a positive integer, then let S(XI:n)  and F(Xl:n)  denote 
S ( X : n )  and F ( X : n )  for the lth field {Xl.~.:k6Za}. For any real number 
m/> 1, let r*(m) and p*(m) denote r*(m) and p*(m) for {Xt, e:kEZfd}. If 
{X~,k: k E 7/,i} has a continuous spectral density function, let this density be 
denoted fl(t). 

Theorem 3.1. Suppose { { X i . k : k e Z a } : l =  1, 2,...} is a sequence of 
CCWS random fields. Suppose that sup/r*(m)--*0 as m--* oo, and that 
l im/ ,  oo EXi.oXt.k exists for all k e 7/. Then there exists a continuous non- 
negative function g on T a such that sup,~ r" IIg(t)-f~(t)ll ~ 0 as l--, co. 

Proof. For  each l e { 1, 2,...}, the nonnegative continuous spectral 
density f /  of {Xi.k:keT/a} exists by Theorem 2.1, and f / ( t ) =  
lim,,~ ~ F(X~ ') :n). Also, E IX (')/,o 2 = E IXi.ol 2, Vte T a and l/> 1, and also 
liml_ o~ E IX1.012 exists, so there is a constant C such that E IX~.~12 < C for 
any t E T  a and 1>/1. Let q, ,=supr*(m) .  For  each 1>/I and t e T  a, the 
random field y r'(,~, k e7/a} satisfies the conditions of Lemma 2.3. Choose ( ** Lk" 

> 0 and let M =  M(q, ~/C). Then 

lim F ( X ~ ~  lim F ( X } ~  V t E T  a, VI~>I (3.1) 
H ~ O O  m ~ o O  

By Eqs. (2.2) and (3.1), 

IF(X~') : M) - f /( t) l  ~< sup IF(X~') : M) - F(X~ '1" nM)l 
ne N 

<<. (elC) . E IXI~.~I2 < e, Vt e T a, vt>: 1 (3.2) 

860/7/4-12 
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Let Vk denote l i m / ~  EXt.oX,. k. Define S(M) to be {kEZd:I~< 
kp ~< M, p = 1 ..... d} and define g~.(t) = M -a "~/.k~s~4) eilk-Jl; 'Vk-j �9 There 
exists a positive integer l(e) such that IEX~.oXI.k-Vkl < M -a 'e  if l~> l(~), 
for Vk~S(M) .  Then for an integer l>~l(e) and t~ T a, 

IF(X~'~ : M)-g~( t ) I  <.M -'l ~, e i l k - J ) ; ' ( E X l . j X l . k  - Vk_j) [ 
j , k ~ S ( M )  I 

<~ M -a.  M za. M - a . e = e  (3.3) 

By Eqs. (3.2) and (3.3), 

I f , ( t ) -g~( t ) l  <2e, Vt ~ T a, Vl >>- I(~) (3.4) 

By Eq. (3.4), 

lira f t ( t ) - -  lira f~( t )= lira f t ( t ) - -g~(t)+g~(t)--  li_m_m f t ( t )  

<~2. l im[ f l ( t ) -g~( t ) l<4e ,  any t ~ T  a 

This is true for any 
denote limt~ o~ ft(t). 

For any e > 0, if 

e > 0, so lira,_ ~ f t( t)  exists for any t ~ T d. Let g(t) 

l>~l(e) and t e  T d, by Eq. (3.4) 

[ g ( t ) -  f~(t)[ ~< [ g ( t ) -  g~.(t)l + I g~.(t)- ft(t)l 

= lim Ifj(t)-g~.(t)l + Igc(t)- f~(t) l  
j ~ o o  

sup Ifj(t)--g~(t)l + tg~(t)-- ft(t)l <~ 2e + 2a=4e 
j~l(e) 

Hence sup, ,v ,  Ig ( t ) - f , ( t ) l  <~4e if l>~l(e), and { f t  l =  1, 2,...} con- 
verges uniformly to g. Since f ,  is nonnegative and continuous for each l, g 
is also. 

4. A CLT FOR A S E Q U E N C E  OF R A N D O M  FIELDS 

Theorem 4.1. Suppose {X/:= {Xi.k: kEZd} ,  l= 1, 2,...} is a sequence 
of CRSS random fields such that sup, p*(m) -~ 0 as m --~ o% 
lira,_ ~ f,(1 ) > 0, 0 < inf, EX~. o, and sup, EX~. o < ~ .  If {n,} is a sequence of 
positive integers such that (i) n t - ~  as l ~  ~ and (ii) l i m l ~  EX~. o. 
z{iX,.o[ >en d/z} =0  for any e > 0 ,  then S(X,:n,)/IIS(X, : n,) l l2~N(0, 1) as 
l ~ o o .  

Proof Without loss of generality we may assume that EX~. o = 1, all 
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1t> 1. Let p*(m) denote sup~p*(m) and let q,,,=p*(m). Let A be the 
constant A(q) of Lemma2.2. Sincer*(m)<~p*(m) for every m~>l, 
A satisfies Eq. (2.1) for the random field Xt, each l>~ 1. There exists C > 0  
such that f t ( l ) > 4 C  for almost all/. Choose any e in (0, C). Let M be the 
integer M(q, ~) of Lemma 2.3. By condition (i), n , > M  for almost all l; so 
by the Corollary to Lemma 2.3 and Theorem 2.1, 

IF(Xt :n,)l ~> f t ( 1 ) -  IF(X/:nz)-- f l ( l  )1 

> 4 C - e > 3 C  

That is, 

EIS(XI:nl)[2~3Cn/, for almost all l (4.1) 

Now define: X~.,-=Xt.k'Z{lXt.kl<~na/Z}--EXu,.z{lX,.kl<~na/Z}, and 
X~k=Xt.k--X~.k, for VI~>I, Vk~71 a. For any random variable Y, 
E(Y-EY)Z<~EY 2, and E(Y-EY)4<~Ey4+4 IEy3Ey[ +6(EYZ)2+ 
3(EY) 4 ~ 16EY 4. Therefore 

(a) E(X~.k)Z <~ EX~.~ . z{ IXz.kl <~ n'//2} <~ gXT.k= 1 

(b) ,, 2 EX~. k z{[X,.k[ <~na/Z} E(X~.k) <~ �9 (4.2) 

(C) E(.~;,k)4 ~ < 16EX~. k " z{IX,.kl <~nf z } 

For each l = 1 ,  the random fields X' l :={Xt .k:k~-  a} and X:' := 
{X~k:k~7/u} have p-coefficients no greater than those of X/. Hence A 
satisfies Eq. (2.1) for X~' and X:'. By Eq. (2.1), Eq. (4.1), condition (ii), and 
Eq. (4.2)(b), 

}irn E___IS(X 7 - ..-7-~, 2 " - ~ :  n')12 ~< l i m  A. n a. E IX,;ol 2 
E IS(X1 :nAI - 3Cn a 

<.(A/3C) lim EX~.o.Z{IX~.o] <<.n~/2}=0 (4.3) 

This implies: 

S(Xf : nl)/IIS(XI: n/)112 ~ 0 in probability 

S(XI : nl) = S(X[ : nl) + S(X7 : n/), so Eq. (4.4) and Lemma 2.5 give 

(4.4) 

S(X,  :nA 
=~N(0,1) as l ~ m  if and only if 

IIS(Xz : n31[2 

S(X;  :n,) 
(4.5) 

~ N ( 0 , 1 )  as l o c ~  
ilS(X,:nAII2 
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By Eqs. (2.1) and  (4.2)(a) ,  

IF(XI : n/) - F (X[  : nl)l 

= nF"l l la( ,v ,  : n,)ll ~ -  IIS(X[ "n,)ll ,Zl 

=nFdll la(Xl:n3112 - IIS(X[ : n31121" (llS(X,:n3112+ IIS(X: : n311z) 

<~ nF d IIS(Xz : n 3 -  S(,V', : n,)ll2 �9 [(An'/EXT.o) '/2 + (An'/E(X;.o)2) ta] 

= n? '~ IIS(Xf : n31l 2" 2(AndEX~.o) l/z 

<~ 2n?d[ An,/E( X;~o)2] ~/z (Anal),~2 = 2A IIX,.'oll z 

By Eq. (4.6), cond i t i on  (ii), and  Eq. (4.2)(c),  

SO 

lim IF(Xt : nl) - F(X: : n/)l 
/ ~  

(4.6) 

~< 2A lim IIX;~ol12 
/---~ oo 

~<2A lim [EX~.o.Z{IX,,o[ <~na/2}]'/z=O 
I ~  

(4.7) 

By Eq. (4.1) and  (4.7), 

g IS(X; : n,)l z/> E I S(.k% : ,b)l  z - n~ ~ IF(X, : nt) - F(Xt' : n ,) l /> 3Cn a -  o(n a) 

E IS(X[ : n/)l = > 2Cn d for  a lmos t  all l 

E q u a t i o n  (4.3) also implies tha t  

E IS(X[ :n/)[ 2 
l im - 1 
t~  ~ E IS(X, : n312 

so tha t  Eq. (4.4) is equ iva len t  to  

S(X[ : n~)/llS(X[" n,)lla =~ N(0,  1) 

(4.8) 

as l ~  ~ (4.9) 

We now ob ta in  a b o u n d  on  E(X') .  By cond i t i on  (ii), there  exists a 
non inc reas ing  sequence  { h i } c [ 0 ,  1] such tha t  hi--+0 as I ~  and  
l i m t -  ~ EX~.o" Z{ IXt.ol > htn a/2 } = 0. T h e n  
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E(X~.o) 4 <~ 16E[X~,o" Z{ IXz, ol ~ htna/2}] 

+ 16E[X~o" z{h,n'//2 < [X~.o[ ~< n'//2 } J 

<~ 16h~n a" E[X~.o" •{ IX,.ol ~< h,n~/2}l 
+ 16nt a" E[X~.o" Z{ [X,.o[ > h,n a/2 } ] 

16h~ n[" EX~,o + 16n[g[X~o" Z{ IZ,.ol > h,nf2}l 
= 16na(h~ + E[X~,o" Z{ [Xi, o[ > htn ]/2 }]) 

The expressions in parentheses in the last line are o(1), so 

E(X~.o) 4 = o(n a) (4.10) 

We can introduce two nondecreasing sequences of positive integers 
{m/} and {bt} such that 

(a) l i m / ~  .o mr = lim/-, ,~ b /=  m; 

(b) ml<~b ~ all l>/1; 

(c) limt_ ~ ml. p*(bt) = 0; 

(d) lim/~oo ml.bJnl=O.  

Let p~ be the smallest integer such that 

m l ( p l + b t - l ) < ~ m l ( p l + b l )  for each l>/1 (4.11) 

Now define "blocks" of random variables as follows: for each 1>1 I, 

W,.j= ~ {X~'.k: ( j - -  1)(p, + b,) < k , <~ j(pt  + b,) - b,. 

and 1 <~k,<~nlfor s =  2 ..... d} 

for j = 1,..., mr; 

V,,j = ~ { X~',k: j(P, + b,) - bl < k~ <~ j (p ,  + b,); 

l <~ks<~ nlfor s=  2 ..... d} 

for j = 1 ..... m r -  1; 

U/= {X;,k: m l ( p l + b t ) - b l < k ~  <~nt; 1 <~k,<~nt, for s = 2,..., d} 

By Eq. (4.10), O<~nt -mt (p t+bi )+ml<<.n t -ml (p t+bt )+bl<~bt ,  so 
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the number of X~.k's in U/is I n / -  mt(pt + hi) + bl] nat - ~ <~ blnat- i. Each V/. j 
is the sum of ~,tn~ -~.ks. Hence, by Eqs. (2.1) and (4.2) 

E 
r e ( I ) -  I 

{ .i~l 
V,.j + Ut ~ [ ( m r -  1 ) b,nat - t  + btnat- ' ] .  A .  E(X~.o) 2 

<<. mlbtn'[- l . A (4.12) 

By Eqs. (4.8) and (4.12), and condition (d), 

E z,j=x""(t)-t Vi.j+ Utl'- rntbtn} ~-I 
lira <~ lira ---0 (4.13) 

I ~  E IS(X; " nt)l 2 i~o~ 2Cnat 

S(X;  �9 n~) = ,z-s=tx''(t)~ Wt.s)+tx',,,,(t)-t~z.,j=, Vt.j)+ U~, so Eq. (4.12) implies 

, , ,m-, U,) /[IX(X/  in probability ,--. s ~  t= Vt.j+ :n/)112~0 as co (4.14) 

Equation (4.14) and Lemma 2.5 mean that 

w,,j 
~ N ( 0 ,  l) 

liS(X't : n311,_ 
as l ~ co if and only if 

S ( X ;  : n3  
=~ N(O, 1) 

[IS(X; : nt ) l lz  
as l ~ m  

(4.15) 

Equation (4.14) also implies that 

~ - ~ m ( I )  "3 
E ~ j =  ~ W~,sl- 

lim = 1 
~ - ~  E IS(X; : n31"- 

(4.16) 

By Eqs. (4.16) and (4.8), 

re(l) 2 
E j~l= WI"j >1 Cna for almost all l (4.17) 

By Eqs. (4.I5) and (4.16), Eq. (4.9) is equivalent to 

roll) /11 roll) 

If Eq. (4.18) is true, then, the theorem holds. 

(4.18) 
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The W~.2.'s are at least bt distant from each other, for l fixed. By 
Lemma 2.1, for any 1 >/1, 

E 
m(I) WI, j 2 m(/) 
~= =at ~ EIWI, jl 2 

j l j=l 

=dlrnlEIWi.ol 2 where dte( 
1-p*(b~) 1 +p*(bl)~ 
1 + p*(b , ) '  1 

(4.19) 

I7t7 I ~ " m ( I )  For each l, let Yi. j=( . . id l  Z..j=I w~.,l12), for j � 9  {1,..., m/}, and let 
{ Y~,, ..... Y~.,,,,~} be i.i.d, random variables, each with the distribution of 
Y/.l. Then E ~ j = l  Y~,jl = 1. For any t � 9  and me {2 ..... m/}, 

Eexp(itj~=~ Yt.j)-Eexp(it'~'j=, Yt.j) Eexp(itY,,,,) ~<p*(b,)(4.20) 

By Eq. (4.20) and condition (c), 

/ ,,,it) ) '~)Eexp(itYt, j) lim Eexp(it ~ YI.j - = lim mlp*(bl)=O(4.21) 
/ ~ o ' ~  \ j = l  j = l  / 4 o o  

�9 r e ( I )  V~ ~ 1 - - I r a ( I }  Eexp(tt~.j=~ ~ / . j j = t t j = ~  Eexp(itYz.j), so Eq. (4.21) means that at each 
t �9 R, the characteristic function of x--,n y~.j converges to the same limit / ' j =  I 

(if any) as the c.f.of ~:~/I Y;j. Pointwise convergence of c.f.'s is equivalent 
to weak convergence, by the Continuity Theorem for probability measures; 
therefore Eq. (4.18) is equivalent to 

re(l) 

Y~,j=~N(O, 1) as l--.oo (4.22) 
j = l  

By the Lyapunov version of the CLT, Eq. (4.22) is true if 

'"(/1 /11 re(l) , 4) 
0 ,limoo ,j=~, II Y~.jlI~I j~ ,  Y"J" 2 = (4.23) 

By Eq. (4.19) and the independence of the Yt'.]s, 

m(/) YI.j - i ~= ' = Yt.o) = [-~-yfffi -W--~, ~2 = 1~dr mlE( ' 2 mlEIWi.ol2 
I1.] I I l l - , j  = I /./11 2 

(4.24) 



878 Curtis 

By Eqs. (2.3), (4.19), and (4.24), and Lemma 2.5, 

re(l) Ill re(I) t 4 lira .j~, 11 Y;.jI[ 4/  j~, yr.. 2) 
- -  <ll 4 /]1 "n(') ~/r j i ) ~  3 

= lim m/ '  W/.oll 4 " d / -  
1 ~  j I 

~< lira m,. (B[(p,n'/-~ ) . []X,.ol[4+(p~na-,)2, []Xco[]2]/C, 4 2n,2U).d; 

<~(B/C z) lim d i . [ l i m  (mtp#nl) lim , 4 u , 
�9 ~ �9 (llXLol14/nl)+ lim (mlPT/nT)] 

By condit ion (c), l im/_ o~ P*(bt)=O, so d/--* 1 as l--* m. lim/_o~ (mlp#nl) 
I, and l i m t ~  (p#nt) 0. l i m / ~  , 4 u = = ( l l X ~ , o l l  4/nz ) = 0 by Eq. (4.9). Hence 

Eq. (4.22) is true and the theorem is proved. 

5. A K E R N E L  D E N S I T Y  E S T I M A T O R  

Proposit ion 5.1. Suppose that X:= {Ark: k E E a} is a CRSS r andom 
field, and suppose that this field has a cont inuous  marginal  probabil i ty 
density function p(x) on R. Also suppose that for each k6Y_ '1 the joint  
probabil i ty density Pk of {Xo, Xk} is continuous.  Let {b/} be a sequence of 
positive numbers  such that lira 1_ ~ b / =  0, and l ira/_ ~. l a. b/= m. Let w be 
a real nonnegat ive measurable function on R such that: 

(a) S ~  w(u) du= 1; 

(b) 3 U > 0  such that w ( u ) = 0  if lu] > U; 

(c) ~-o~ (w(u)) 2+6du<~176 for some 6 > 0 .  

Finally, for each l e { 1, 2,... }, k ~ 77 d, and z ~ R, define 

gl.k(z)=b# 1/2 

For  any real number  z and positive integers n, l, 

S(g,(z)  : n) = ~ g,.k(z) 

with the sum over the set {k E 7/u; 1 ~< k,. ~< n for s = 1 ..... d}. 

Theorem 5.1, Let {Xk:ke7/a}, {b,}, w, and {g/.k:keT/a, 1=1,2,. . .} 
be as in Proposi t ion  5.1, and suppose that for the field of X,'s,  p*(m) ~ 0 
as m---, oo. If {zl ..... zu} is a finite collection of  distinct real numbers  such 
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that p(zj) > 0 for j =  1 ..... iV, then let Z be the N x  N matrix with entries 
a~j = 6up(z ~) ~ w2(u) du. Also let 0 N denote the zero vector of N coordinates. 
Then as 1--* oo, the random vector l-a/ZS(gt(zj):l))7=l converges weakly 
to the multivariate normal N(0N, X) distribution. 

Proof Let {'7 ..... ru} be arbitrary real numbers. Define the random 
field X,:= {X, .k :k~Z a} by X,.k=~,~=~ rjg,.,(Zi) and ~'-=~,jU=~ r~p(zj). 

wZ(u) du. To prove the theorem, it suffices to show that 

I-a/'-S(XI : I)=~ N(O, ~ 2) as l ~ o o  (5.1) 

Lemma 5.1. For any a , b ~ 7 /  and z , v ~ R ,  we have that 
lim/_ ~ Egl.o(z) gl.b(V) = 6,,b6:v p(z) " ~ ~_ WZ(U) du. 

Proof This follows from standard calculations involving the defini- 
tions of gck(Z) and integrals with marginal and joint probability densities; 
it is left to the reader. 

By the lemma, 

N 

lim EXI.oXI.k = lira ~ I'it',,,Egl.o(Zj) gl.k(z,,,) 
J . t l l  = 1 

N 

= ~ ,)r,,,6Ok6i,,,p(zj) f w~(u) du 
/ m = l  

N 

= 2 ,)80, p(z ) f a,, = 6o,=  (5.2)  
j = l  

The random fields X,:={{Xi .k:k~7/a} ,  /=1,2, . . .}  have p*-coeffi- 
cients no greater than the p*-coefficients of X~:={Xk:keT/a}.  Their 
r* coefficients are also bounded by p* for X~:= {X,: keT/a}. Therefore, 
by Theorem 2.1, X / := {Xt.k: k e 7/u} has a nonnegative continuous spectral 
density f /  on T a, for each l>~ 1. Since the p*-coefficients of the sequence 
{X,.k:k~7/a} converge to zero uniformly, and since, by Eq.(5.2), 
l im,~EXt .oX~.k  exists for all keT] a, Theorem3.1 applies; there is a 
continuous function g on Tsuch that SUPr,~ I[f~-g]l --,0 as l ~  oo. g(t) has 
a Fourier series Y~k~zeake ~k'~. By Eq. (5.2), 

ak = f e-~k;'g(t) par(t ) = lira f 
T d l ~ ~ T d 

= lim EXcoXc, = 6o, O 2 
/ ~ o ~  

e -ik ~ft(t) #ar(t) 
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so that  g(t) is identically a 2. Therefore 

lim f t (1 )=g(1 )=a  2 (5.3) 
I ~ o o  

Let q,,=p*(m), the p*-coefficient for {Xk:ke7/a}; then Lemma2.3  
applies to {X~.k:kET_a}, for every l~> 1. Choose e > 0  and let M be the 
M(q, ~) of Lemma 2.3. By the corollary of Lemma 2.3 and Theorem 2.1, 

IF (X , ' l ) - f t ( 1 ) l<e  if I>~M (5.4) 

Equations (5.3) and (5.4) means that 

IF(X1 : l) - a2[ < 2e for almost all l (5.5) 

Equation (5.5) is true for any e > 0 .  So 

lim F(X~" l) = lim (E IS(Xt: 1)12) - l -a= cr 2 (5.6) 

Equation (5.1) is therefore equivalent to 

(S(X,'I)/IIS(X,'I)II2)=,N(O, 1) as l-- ,oo (5.7) 

For  the sequence of random fields { {X~.k: k~ Za}, l =  1, 2,...} it has been 
shown that: the p*-coefficients converge to zero uniformly as m---, m;  
l im t .~ f t (1 )=az>O;  and EX~.o~a 2, so EX~.o>0 for almost all/ .  Of 
course l ~  m, so Theorem 4.1 will apply if condition (ii) of that  theorem is 
satisfied. 

Claim. For  any e > 0 ,  l imt_ ~ X2/.o" ~{[Xl'~ >~l a/z } =0 .  

Proof of Claim. First, 

E(w( (Xo - z)/b~) ) = I w( ( x -  z)/b~) . p(x)  dx 

=bl. I w(y) p(bt y + z) dy (5.8) 

Since J[(z) " S w(y) dy<~ S w(y) p(bt y + z)dy<~J,(z) . ~ w(y)dy, Eq. (5.8) 
implies that  lim~.oob71/ZE(w(Xo-z)/bl)=O, VzeR.  There is then a 
positive integer 1( 1 ) such that  Zjv= 1 IrjEw((Xo - Zj)/b~)l < b]/z if 1 ~> l( 1 ). Let 
HI.j = Irjw((Xo - zj)/bl)l. Then 
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N 
IX;,o[ = b7 t/2 ~ rj [w((Xo - zj)/b;) - E w ( ( X o -  z)/b;)] 

j t 

( +L ) <.-.bF u2 b]/2 Hc; (5.9) 

Choose 6 e (0, 1 ) such that S [w(u)l z+~ du < oo. If at ..... au are positive 
numbers, then when bt < 1, 

by  2 + a/ j  <~ b] '2 + a i 1 a~ 
j = l  j = l  "= 

< ajaka~, + ~. (2a/a~k+a/ak) 
", , = j k  1 j.k=t 

N 
+ ~. (2aj+a~)+b, (5.10) 

j = l  

By Eqs. (5.9) and (5.10), and the fact that b ; ~ 0  as l--* o% we have 

( EIX;,ol2+~<~bTI2+~I/2E b~/2+ H;./ 
j = t  

~ b t t 2 + 6 ) / 2 [  ~ EHI'jHI'kH~'m 
]k t 

N 
+ Z <e/+,./+,., + 2e;+,.?/~,) 

j.k=l 

+ Z (2EH,.j + EH~.;) + b, 
j~ t  

for almost all l (5.11 ) 

There are ( N +  1 ) 3  1 integrals in the expression in brackets, as well 
as b;. Let j ~  {1 ..... N},  and y ~ { 6 ,  1, 1 + 6 ~ 2 , 2 + 6 } .  Then 

lim b~ 'EH}I., = lirn bi -t f Ir/w((x - zj)/b+)l r p(x)  dx 

= lim f Iriw(y)l ~' p ( b t y + z / )  dy 
I ~ o o  

r 
= P(Z;) J Ir;w(y)l r dy < ~ .  

Hence there exists a constant C >  1 such that 

EH}'..;<~Cb; for j E { I  ..... N } . ~ { 6 , 1 , 1 + 6 , 2 , 2 + 6 } ,  1>11 (5.12). 
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By Eq. (5.12) and H61der's inequality, all the expectations in the 
brackets in Eq. (5.11) are bounded by C.  bt. Therefore 

ElXt.ol2+~ <~bTI2+~l/2[((N+ 1) 3 -  1).Cbt+bt] <~8bT~/2N3C (5.13) 

By Eq. (5.18), lim t_ EX~. o �9 I{  IXt'~ ~ ~/,/2} ~ limt ~ ~ (~laO_)-~ EX2+~ o c  " L 0  

= l imt-  oo e-e(labt)-~/2" 8N3C = 0, and the claim is proved. 
By the claim, (ii) of Theorem 4.1 is true, so Eq. (5.7) is true, and the 

theorem is proved. 
By Theorem 5.1, l-a/2(S(gt(zi ) : 1))~=1 =~N(0N, Z') as 1--* m. Also, 

(btla) -~p- converges to zero. Therefore, for any real number z, 
b;-~@-a(s(gt(z):l)) converges to zero in probability. Now 

r bi-'/21-'t(S(gt(z) : l ) )=bF'l-"k~ ~,~ ..... tl,,Lw~ b---~) - E w  \---~l JJ 

and b 7 tEw((X~-z) /b t )  converges to p(z) as l--* m, independently of k; so 
(btla) -1 Zk~1.....II, w((Xk--Z)/bt) must converge to p(z) in probability. 
Therefore we may use (bt la)- 1 Zk ~ I~.....tl" w((Xk-  z)/bt) as an estimator 
/~(X) for the kernel density p(X). 
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