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Three Theorems on p*-Mixing Random Fields

Curtis Miller!

Received April 16, 1993, revised November 15, 1993

This paper generalizes results by Bradley.”’ Suppose that for 1=1,2,..
{X!:keZ') is a centered, weakly stationary p*-mixing random field, and
suppose lim,_ ., Cov(X{, x}) exists, any keZ“. Then the successive spectral
densities converge uniformly to a continuous function. For a sequence of strictly
stationary random fields that are uniformly p*-mixing and satisfy a indeberg
condition, a CLT is proved for sequences of sums from the fields. This result is
then applied: given a centered strictly stationary p*-mixing random field whose
probability density and joint densities are continuous, then a kernel estimator
for the probability density obeys the CLT. "

KEY WORDS: Stationary random fields; p*-mixing, spectral density; Central
Limit Theorem.

1. INTRODUCTION

Let d be a positive integer. A d-dimensional discrete field of complex
random variables {X,:keZ} will be called “centered” if EX,=0 for
all k. The field is “weakly stationary” if E|X,|>*<co and EX, X, depends
only on the vector k —j. The field is “weakly stationary of fourth degree”
if it is weakly stationary and also satisfies: E | X,|* < o0 and EX, X, X . X, ,=
EXoX,_,X._,X,_, A field is “strictly stationary” if for any finite set
ScZ? and vector ve Z the set of r.v’s {X,:keS} has the same joint
distribution as the set {X, . ke S}.

CCWS will mean centered, complex, and weakly stationary. CRSS will
mean centered, real, and strictly stationary. CCSS will mean centered,
complex, and strictly stationary. CCWFS will mean centered, complex, and
weakly stationary of the fourth degree. “almost all k& will mean “all but
finitely many £.” The symbol y will mean the indicator function of a set.
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Let T denote {zeC:|z|=1}. For teT¥ let 1 be the vector in
(—m, n]? such that = (exp il,,.., exp id,). Let u, denote the normalized
Lebesgue measure (2niz)"'dz on T, and let p% be prx---xur, the
d-dimensional product measure on T¢

If {X,:keZ’} is a CCWS random field, then a nonnegative Borel
integrable function f is a “spectral density” for the field if for any k € Z¢,

EX, Xo= Ld e (1) du (1)

Here k - A denotes the dot product. If k € Z, then | k|| is the Euclidean
norm. For two nonempty disjoint sets S, T < Z¢, we define dist(S, T) to be
min{|| j—k|: jeS, keT}. Let F(S)={>esa: X a,€C, and a, =0 for
almost all k}, and F(T)= {3 ,.ra, X, a,€C, and a, =0 for almost all k}.
Let o(S) be the o-field generated by {X,: ke S}, and define o(7T) similarly.

We now define three measures of dependence of the sets S and T.

r(S, T) :=sup{|Efg|/| fll. lgll,: f€ F(S), ge F(T)}

p(S, T) :=sup{|E[(f— Ef)(g— Eg)1I/| f— Ef |l | g — Egl»:
feLy(a(S)), ge Ly(a(T))}

a(S, T) :=sup{|P(4 n B)—~ P(A) P(B)|: A€ a(S), Bea(T)}

From these we obtain mixing coefficients. For any real number s> 1, define
r¥(s) :=sup{r(S, T): dist(S, T) = s}
p*(s) :=sup{p(S, T): dist(S, T) > s}
a*(s) :=sup{a(S, T): dist(S, T) = s}

For any s> 1, r*(s) < p*(s), so the condition lim,_,  #*(s)=0 is weaker
than lim; , ., p*(s)=0. When a Lindeberg condition is needed, as in Sec-
tions 4 and 5, we must have a truncation of some X,’s; #*(s) only concerns
linear combinations of X,’s so we use lim,_ , p*(s)=0. Theorem 3.1 and
the preliminaries in Section 2, however, need only r*(s) to go to 0 as
§— 0.

a(S, T) and measures based on it appears often in mixing research (see
Bradley'® for a survey). (S, T) < p(S, T) for all S and T, but Bradley®®’
showed that if X is strictly stationary, then a(s)< p*(s)<2ra*(s); so
Theorems 4.1 and 5.1 could be stated with the condition: lim, _, ., a*(s)=0.
Since the proof of Theorem 4.1 used the definition of p*(s), that is the
mixing coefficient used here.
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In this paper, Theorem 3.1 applies Theorem 2.1 (in Preliminaries) to
the case of a sequence of random fields with convergent covariances.
Falk'® proved a similar result; but in that paper it was assumed that for
the /th field, > °_, r,(2™) converges, and that the convergence is uniform
over all/l. In Theorem 3.1, it is assumed that sup,r*(s) goes to zero as
s — oo, but not that the r*-coefficients are summable in some way.

Theorem 4.1 resembles Theorem 4 in Bradley®’; here, however, the
successive block sums are drawn from a sequence of random fields, not one
random field.

Theorem 5.1 is similar to Theorem 3.1(i) in Bradley.!"" There it was
assumed that 3%, p(2")< oo and that b '=0(n*) for some Be(0,1).
Theorem 5.1 assumed instead that p*(s) — 0 as s —» oo with no summability
condition on the p* coefficients or growth condition on b ".

It might be noted that by restricting the cardinalities of S and T, we
can define a large class of mixing coefficients. If j, k are positive integers or
o0, define

pfi(s)=sup{p(S, T):dist(S, T)>s, card S< j,card T< k}

a*(s) and p*(s) can be defined likewise (see Bradley®'). p*(s) of this paper
is p* .(s) in this terminology. Tran®’ obtained results similar to those of
Section 5 of this paper, using the condition

“}fk(s)

-0 as s— o0 (1.1)
Skz1 jak

This is weaker than the condition lim,_, ., p*(s)=0, but an exponential
rate of convergence was assumed for Eq. (1.1) in Ref. 9.

2. PRELIMINARIES

We now quote the foliowing results.

Lemma 2.1. (Lemma | of Bradley”'): Suppose 0<r<1. Suppose
X,,., X, is a family of centered complex random variables such that
| X|l, < oo for all je {1,.., n}, and such that: for any two disjoint nonempty
subsets S, T< {1,.., n}, we have |E(X e s Xi)(Zher Xl <7 1 Xhes Xell2-
1Zker Xill2- Then

(1=r)
(T+r) E,E'X" <E

(1+r
E|X.|*
l—r)kgl 14l

Mg E

Xk

I

k

Lemma 2.2. (Lemma 2 of Bradley'®): If ¢ := {q,,} is a nonincreasing
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sequence in [0, 1] such that lim,,_, . ¢,,< 1, then there exists a positive
constant 4 = A(q) such that: If {X,:keZ“} is a CCWS random field for
which r*(m)<gq,,, Ym > 1, then for any finite set S < Z¢,

2
E < A-(card S)E | X,|? (2.1)

2 X
keS

For a random field X := {X,: ke Z“}, S(X:m) will denote the sum
> Xy, with the sum taken over all k£ :=(k,,..., k) such that 1 <kg<m, for
s=1,.,d. F(X:m) will denote m~“E|S(X :m)|?, and G(X :m) will be
m=E |S(X : m)|*.

Lemma 23. (Lemma 3 of Bradley®): If g := {g,,,} is a nonincreasing
sequence in [0, 1] such that lim,, _, ., ¢,,=0, then for any ¢ > 0 there exists
a positive integer M(q, ) such that: If {X,:keZ*} is a CCWS random
field for which r*(m)<gq, Vm=1, then for any positive integer
M= M(q, ¢), and any positive integer n,

|F(X: M)— F(X:nM)|<e-E|X,|? (2.2)

Further, M(q,¢) can be chosen as follows: Let 4 be the constant
A(g) of Lemm 2.2, and let L(gq,¢) be a positive integer so large
that g, <(&/64)>. Then M(q,¢) need only be sufficiently large that
(1+L(g, e)/M(q, £))' — 1 < (/64)>.

Lemma 24. (Lemma 4 of Bradley®): If X := {X,: ke Z“} isa CCWS
random field for which r*(m) — 0 as m — oo, then lim,, , ., F(X : m) exists
in [0, o0).

For any re T¢ and any random field {X,:keZ“}, X" will denote
e—ik-). . Xk-

Lemma 2.5. (Lemma 18.4.1 in Ref. 7): If {{;}2,, {¢;};2,, and { are
all random variables, and if {; converges weakly to { as j— oo, and £, -0
in probability as j — co, then {;+ ¢; converge weakly to { as j— .

Theorem 2.1. (Theorem 1 of Ref. 3): If {X,: ke Z“} is a CCWS ran-
dom field such that r*(m)— 0 as m — oo, then {X,} has a continuous spec-
tral density f(z) on T“ Define X{"=e~*"*X, and X" := {X{": ke 7"};
then f(¢)=lim,, , , F(X“ :m).

Proposition 2.1. Let q:= {g,,} be a nonincreasing sequence in [0, 1]
such that lim,,_ , ¢,=0. For ¢>0, let M(q,¢) be the constant of
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Lemma 2.3. Suppose {X,:keZ?} is a CCWS random field such that
r*(m)<gq,, for all positive integers m. By Theorem 2.1, {X,: ke Z?} has a
continuous nonnegative spectral density f.

Corollary of Lemma 2.3 and Theorem 2.1. Let {g,} and {X,: ke Z¢}
be as in Proposition 2.1. Then for any integer N> M(q, ¢), and any te T
we have |F(X': N)— f(1)| <e.

Proof. {X,: keZ“}is a CCWS random field with the same r-coeffi-
cients as {X,:keZ}. Therefore Lemma 2.3 applies: Since N> M(g, ¢),
we have that for any positive integerk, |F(X'":N)—~F(X":kN)| <e.
flty=lim,_, . F(X :n)=lim,_  F(X":kN), so |[F(X":N)—f(1)| =
limy .  |F(X® : N)— F(X": kN)| <supys, |[F(X": N)— F(X : kN)| <e.

3. CONVERGENCE OF SPECTRAL DENSITIES

Suppose {{X,, keZ‘}:1=1,2,.} is a sequence of CCWS random
fields, and n a positive integer, then let S(X,:n) and F(X,:n) denote
S(X :n) and F(X : n) for the Ith field {X,,:keZ“}. For any real number
mz 1, let r¥(m) and pF(m) denote r*(m) and p*(m) for {X, . keZ’}. If
{X,«: keZ} has a continuous spectral density function, let this density be
denoted f,(¢).

Theorem 3.1. Suppose {{X,, keZ?}:1=1,2,.} is a sequence of
CCWS random fields. Suppose that sup,r*(m)—0 as m — o0, and that
lim,_, ., EX,oX, exists for all ke Z. Then there exists a continuous non-
negative function g on T such that sup,. | g(t)— f;(¢)]| = 0 as [ - co.

Proof. For each /e {l,2,.}, the nonnegative continuous spectral
density f, of {X,,:keZ?} exists by Theorem 2.1, and f,(1)=
lim, , , F(X{":n). Also, E|X{JI*=E|X,,|% VteT? and />1, and also
lim, . ., E|X,,|” exists, so there is a constant C such that E |X{g|* < C for
any te T and /> 1. Let g,,=sup rf(m). For each />1 and te T, the
random field {X[}): keZ"} satisfies the conditions of Lemma 2.3. Choose
£>0 and let M = M(q, ¢/C). Then

lim F(X[”:nM)= lim F(X":m)= f,(1), VieT, VYi=1 (3.1)

n— o m— o0

By Egs. (2.2) and (3.1),

|[F(X{": M)— f(1)] <sup |F(X": M)— F(X{" : nM)|

neN

<EC)-E|X{P<e, VieTd Viz1 (32)

860/7/4-12
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Let V, denote lim,_ ., EX,,X,,. Define S(M) to be {keZ 1<
k,<M, p=1,.,d} and define g()=M"*-3, sy € *V,_;. There
exists a positive integer /(¢) such that |EX, o X, — V.| <M 4-¢if 1= 1(e),
for Yk € S(M). Then for an integer > I(¢) and te T¢,

IF(X" M) =g ()l <M| Y e HEX, Xy~ Vi)

JkeSM)
SM 4 M2 M4.¢=¢ (3.3)
By Egs. (3.2) and (3.3),
| fi(1) —g.(1)| < 2, Vie TY, Vizi(e) (3.4)
By Eq. (3.4),

11m fi(r)— 11m f)= 11m Si)—g () +g.(t)— hm fi(0)
<2- 11m|f, g.(t) <4e, anyteT?

This is true for any £¢>0, so lim,_ ,, f;(t) exists for any te T% Let g(¢)
denote lim, _, ., f;(?).
For any £>0, if />/(e) and re T by Eq. (3.4)

lg(t) — fi(DI < 18(1) — g ()] + 1 g.(1) = fi(1)]
= llm 1 (1) — g + | g(1) — fi(2))

< sup | fi(1) —g )| +1g(0) - fi1)| <26 + 26 =4¢

iz i)

Hence sup,.r«|g(t)—fi(1)| <de if I=1(e), and {f;:]=1,2,..} con-
verges uniformly to g. Since f; is nonnegative and continuous for each /, g
is also.

4. A CLT FOR A SEQUENCE OF RANDOM FIELDS

Theorem 4.1. Suppose {X,:={X,,:keZ'}, I=1,2,.} is a sequence
of CRSS random fields such that sup,pf(m)—-0 as m— oo,
lim,_, ., f;(1)>0, 0 <inf, EX},, and sup, EX?; < o0. If {n,} is a sequence of
positive integers such that (i) n,—> o0 as - oo and (ii) lim,_ , EX}q-
2{1X 0l >en?*} =0 for any £>0, then S(X,:n,)/|IS(X,:n,)ll,= N(O, 1) as
I — 0.

Proof. Without loss of generality we may assume that EX} =1, all
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[z 1. Let p*(m) denote sup,p}¥(m) and let g, =p*(m). Let A be the
constant A(g) of Lemma 2.2. Sincer}(m)<pX(m) for every mz=1,
A satisfies Eq. (2.1) for the random field X,, each /> 1. There exists C>0
such that f,(1)>4C for almost all . Choose any ¢ in (0, C). Let M be the
integer M(q, ¢) of Lemma 2.3. By condition (i), #,> M for almost all /; so
by the Corollary to Lemma 2.3 and Theorem 2.1,

|F(X, s )| 2 fi(1) = |F(X, cn) = £, (1)
>4C—¢>3C

That is,
E|S(X,:n)|*>3CnY, for almost all / (4.1)

Now define: X}, =X, - x{|1 X, 4l Sn?} = EX - x{1 X, 4| <n{?}, and
X=X o— X}y, for Vizl, VYkeZY For any random variable Y,
E(Y—EY)*<EY? and E(Y—EY)'<EY*+4|EY’EY|+6(EY?)’+
3(EY)* < 16EY*. Therefore

(@) E(X;)<EX} - x{1X,/ <n{?}<EX} =1
(b) E(X;.’k)ngX/%k'X{le,dSnjllz} (4.2)
(€) E(X)*<16EX} - x{|X, | <n?}

For each /=1, the random fields X, :={X,:keZ’} and X/:=
{X/:keZ’} have p-coefficients no greater than those of X,. Hence A4
satisfies Eq. (2.1) for X, and X;. By Eq. (2.1), Eq. (4.1), condition (ii), and
Eq. (4.2)(b),

"o, 2 . n 12
fim EISXG )2 A E X
- E|S(X,:n)|° 1- 3Cn;

<(A4/3C) /1111; EX}-x{|X, 0l <n{?}=0 (43)
This implies:
S(X/ :n)/|S(X,:n)ll, = 0 in probability (4.4)
S(X,:n)=S8(X,:n)+ S(X/ :n), so Eq. (4.4) and Lemma 2.5 give

S(X,:n))
IS(X; = n))ll
S(X; :ny)
IS(X; = n)ll

= N(0, 1) as [— oo ifand only if
4.5)
= N(0, 1) as [—o o
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By Egs. (2.1) and (4.2)(a),

|F(X,:n)— F(X] :n)|
=n;IIS(X, n) 3= 1S(X; )3
=n7 IS, n )y = IS )l - (IS(XG = n)lla + IS(X 2 1))
<nN|S(X ) = S(X] sl - [(ARfEX )2 + (AnfE(X]0)*)'?]
=n;S(X] :n)lly - 2(An{EX )2

<2n; ‘TAn{E(X[0)* 17 (An)'? =24 || X[l (4.6)
By Eq. (4.6), condition (ii), and Eq. (4.2)(c),

lim |F(X,:n) = F(X; :m)

<24 lim || Xl
- o

<24 lim [EX7, - x{1X, ol <n{?}]1'2=0 (4.7)

By Eq. (4.1) and (4.7),
E|S(X] :n)*Z E|S(X,: n))|> —n{ |F(X,:n))— F(X] : n))| 2 3Cni — o(n])
$0
E|S(X/ :n)|*>2Cn¢ for almost all / (4.8)
Equation (4.3) also implies that
. E|S(X]:n)?
lim — T
ML EISX )
so that Eq. (4.4) is equivalent to

S(X7 :n)/IS(XT :m)ll= N(O, 1) as /- (4.9)

We now obtain a bound on E(X’). By condition (ii), there exists a
nonincreasing sequence {4} <[0,1] such that 4, —0 as /— oo and
lim[_, e EXIZ‘O . X{lX[.Ol > h,n;l/z} =0. Then
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E(X; o) S16ELX - x{|X,0l <hmni?}]
+ 16E[X o - x{hin{” <Xl <n{}]
< 16hin]- ELX[o - 1{1 X1l < hin{?}]
+ 16n] - ELX}o- x{| X0l > in{?}]
< 16h7n] - EX]o+ 16nfE[ X}, - x{1X 0l > hin{?}]
= 16n{(h} + E[X [y x{1X,ol > hin{?}1)

The expressions in parentheses in the last line are o(1), so
E(X0)* = o(n) (4.10)

We can introduce two nondecreasing sequences of positive integers
{m,} and {b,} such that

(a) lim,_  m,=lim,_ , b,=co;
(b) m;<b, alliz1;

(¢) lim, o m;-p*(b,)=0;

(d) lim,_ . m; -b,/n,=0.

Let p, be the smallest integer such that

my(p,+b,—1)<m,(p,+b) foreach />1 (4.11)

Now define “blocks” of random variables as follows: for each /> 1,

W/_,-=Z {Xie: U= pi+b) <k, < j(p,+b)—b,,

and 1<k, <mfors=2,.,d}

for j=1,.., my;

V=Y {Xix: J(p,+b)—b<k < j(p,+b);

1<k,<nfors=2,.,d}

for j=1,.,m,—1;

U={Xjxm(p+b)—b<k <n;l<k,<n,fors=2,.,d}

By Eq. (4.10), 0Sn;—m;(p;-%—b,)-i-m,gn,—m,(p;-i—b;)+b;<b,, SO
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the number of X; s in U, is [n,—m,(p,+ b))+ b1 n{~' <bn{~' Each V,,
is the sum of b,n?~'X;’s. Hence, by Egs. (2.1) and (4.2)

m(l)—1
E Z V,;+ U,

i=1

<D= 1) b=+ bynd= 1 A E(X; )

<mbini='. 4 (4.12)

By Egs. (4.8) and (4.12), and condition (d),

EISp= Vi +UF _ mpni~
. = J { Yty
lim 1 <l

413
TR ) St T 2ck? (4.13)

SX;n) =W, )+ (Z70 ! V,,)+ Uy, so Eq. (4.12) implies

i=1

i=

m(l)—1
( V,+ U,)/HS(X,’ tn)|l, = 0 in probability as /— o (4.14)
=1

Equation (4.14) and Lemma 2.5 mean that
T W,

j=1

=N, 1) as /- oo if and only if

S(X/| :n)l
"S((Xl, /)I 4.15)
[y
———=N(0, 1) as [— o0
ISCG
Equation (4.14) also implies that
EIS w1
lim —=———L_— 4.16
MBS (4.16)
By Egs. (4.16) and (4.8),
ml) 2
E W,;,| =Cn{  for almost all / (4.17)
j=1
By Eqgs. (4.15) and (4.16), Eq. (4.9) is equivalent to
m{l) mih
<Z W,_,-/ Y W, ):N(O,l) as /- o (4.18)
j=1 j=1 2

If Eq. (4.18) is true, then, the theorem holds.
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The W, s are at least b, distant from each other, for / fixed. By
Lemma 2.1, for any /> 1,

m(l)

Z W/!

j=1

2 m(h
=d, Y E|W,

Jj=1

gt L)
=dmE|W,,|* where de( ,
mE W T () T=p%(0)

(4.19)

For each /, let Y, ;= (W, /IZ/ W, ), for je {1,.,m,}, and let
{Y, s Yimn} be iid. random variables, each with the distribution of
Y,,. Then E|X") ¥, />*=1. For any teR and me {2,.., m,},

j=1
m m—1

’Eexp (it Y Y,‘j)—Eexp (it Y Y,.j>Eexp(itY,_,,,)'Sp*(b,)(4.20)
Jj=1 j=1

By Eq. (4.20) and condition (c),

m(l) m(l)
llm ’Eexp (zt Y Y,j) [1 Eexp(ity, ;)| = hm m,p*(b;) =0(4.21)

j=1 j=1

Eexp(it 7% Y, ) =T1Y) Eexp(itY, ), so Eq. (4.21) means that at each
teR, the characteristic function of Y7 Y, converges to the same limit
(if any) as the cfof 37} Y} ;. Pointwise convergence of c.f.’s is equivalent
to weak convergence, by the Continuity Theorem for probabilify measures;

therefore Eq. (4.18) is equivalent to
m(l)

Y Y;;=N(0,1) as [->o (4.22)

j=1

By the Lyapunov version of the CLT, Eq. (4.22) is true if

m(l)
tim ('3 170

— 0 =1

n({)

Z Y//

J=1

4
) = (4.23)

By Eq. (4.19) and the independence of the Y; /s

m{l)

ZYI/

=1

mE | W/o|2
IZ74 Wil

=mE(Y]0)* = =1/d, (4.24)
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By Egs. (2.3), (4.19), and (4.24), and Lemma 2.5,

m(l) 4
lim (z T / )
/— oo =1 2

mi(l)

4
=Ilim m;:. (” W/.o”ﬁ/ Z W, ) 'dl2
- > j=1 2

< lim my - (BL(pini ™ ") WXiolla+ (P ™'V X101 33/C°n) - df

m(l)

Y Y
J=1

<(B/C?)- lim d?-[lim (m,pyn,)- lim (1X;ol3/nf)+ lim (m,p?/n})]

By condition (c), lim,_ . p*(b,)=0, so d,—> 1 as [ - o0. lim,_, . (m, p,/n,)
=1, and lim,_ , (p,/n)=0. lim,_, , (| X;olli/n¥)=0 by Eq.(4.9). Hence
Eq. (4.22) is true and the theorem is proved.

5. A KERNEL DENSITY ESTIMATOR

Proposition 5.1. Suppose that X := {X,:keZ’} is a CRSS random
field, and suppose that this field has a continuous marginal probability
density function p(x) on R. Also suppose that for each ke Z“ the joint
probability density p, of {X,, X,} is continuous. Let {b,} be a sequence of
positive numbers such that lim,_, ., b,=0, and lim,_ . /¢-b,= c0. Let w be
a real nonnegative measurable function on R such that:

(@) [Zowlu)du=1,;

(b) 3IU>0 such that w(u)=0 if |u| > U,

(€) [ (w(u))**°du< oo for some §>0.

Finally, for each /e {1, 2,..}, ke Z“, and zeR, define

X,—:z X.—z
z)= =172 ) k——- — ) k
Bxl2)=bi [( )% )]

For any real number z and positive integers n, /,

S(g,(z):n) =Z 8.4(2)
with the sum over the set {keZ% 1<k ,<n for s=1,..,d}.
Theorem 5.1. Let {X,:keZ}, {b}, w, and {g, . keZ I=1,2,.}

be as in Proposition 5.1, and suppose that for the field of X,’s, p*(m)—0
as m— o0. If {z|,.., zy} is a finite collection of distinct real numbers such
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that plz; )>0 for j=1,.., N, then let X be the N x N matrix with entries

=0;p(z j w?(u) du. Also let 0, denote the zero vector of N coordinates.
Then as 1—» 0, the random vector /=“2S(g,(z;) : 1)))_, converges weakly
to the multivariate normal N(0,, X) distribution.

Proof. Let {r,,.., ry} be arbitrary real numbers. Define the random
field X;:={X, keZ by X, =%/ rg.lz) and o>=3_, r7p(z;)-
{ w?(u) du. To prove the theorem, it suffices to show that

[74PS(X,: )= N(0, 6?) as /- (5.1)

Lemma 5.1. For any a4,beZ and z,veR, we have that
liml—»w Eg/.u(z) gl.b(u) = 6ab5:vp(z) _“Tm wl(u) du

Proof. This follows from standard calculations involving the defini-
tions of g,,(z) and integrals with marginal and joint probability densities;
it is left to the reader.

By the lemma,

N
Ihm EXIOXIA— llm Z rj"mEg/.O(zj) gl,k(zm)
g _'wjm=[
N

= Z ’rm(sOI\ /mp jw dll

=1

= Z 1700 Pz )Iw u)du—éoka (5.2)

Jj=1

The random fields X,:={{X,,:keZ}, I=1,2,.} have p*-coeffi-
cients no greater than the p*-coefficients of X,:={X,:keZ?}. Their
r* coefficients are also bounded by p* for X,:= {X,: ke Z*}. Therefore,
by Theorem 2.1, X,:= {X,,: k€ Z“} has a nonnegative continuous spectral
density f, on T¢ for each /> 1. Since the p*-coefficients of the sequence
{X,«:keZ’} converge to zero uniformly, and since, by Eg.(5.2),
lim,, , EX;oX,, exists for all ke 79 Theorem 3.1 applies; there is a
continuous function g on T such that sup,« | f;—gll =0 as / — oo. g(¢) has
a Fourier series ¥, . 2o a,e® . By Eq. (5.2),

ax=[ e~ g0 )= lim [ e~ 40

= lim EX, (X, =00’

1= o
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so that g(t) is identically ¢% Therefore
llir{.loﬁ(l)=g(1)=02 (5.3)
Let g,,=p*(m), the p*-coefficient for {X,:keZ“}; then Lemma 2.3

applies to {X,,:keZ}, for every [>1. Choose £¢>0 and let M be the
M(q, €) of Lemma 2.3. By the corollary of Lemma 2.3 and Theorem 2.1,

IF(X,: ) —fi(l)|<e if I=M (5.4)

Equations (5.3) and (5.4) means that

|F(X,:)—0c? <2 for almost all / (5.5)

Equation (5.5) is true for any £>0. So

Ilim F(X,:1)=I1im (EI1S(X,:D)})-I"4=0? (5.6)

Equation (5.1) is therefore equivalent to

(SCX;: D/IS(X, : D) =N(,1) as [—-a0 (5.7)
For the sequence of random fields {{X,,:keZ“}, I=1,2,..} it has been
shown that: the p*-coefficients converge to zero uniformly as m — oo;
lim,_ , f;(1)=6>>0; and EX},—0? so EX},>0 for almost alll Of

course / — o0, so Theorem 4.1 will apply if condition (ii) of that theorem is
satisfied.

Claim. For any >0, lim,_, , X7, x{|X"° >el“?*} =0.
Proof of Claim. First,
Ew((Xo~2)/b) = | wi(x—2)/b) - p(x) dx

= b, [ w(y) plby+2) dy (5.8)

Since J;(z) - [ w(y) dy <[ w(y) p(b,y + 2)dy<J,(z) - | w(y)dy, Eq. (5.8)
implies that lim,_ . b, '?E(w(X,—2z)/b;)=0, VzeR. There is then a
positive integer /(1) such that 3/ | |r; Ew((Xo—z,)/b))| <b}? if [=I(1). Let
H, ;=1r,w((Xo—z,)/b,)|. Then
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N

Y. i [w((Xo—z;)/b)) — Ew((X,—2)/b))]

j=1

N
<b? <b,'/2+ Y H,__,) (5.9)

ji=1

| X0l =67

Choose 6 € (0, 1) such that | |w(u)|**° du<o0. If a,..., ay are positive
numbers, then when b,< 1,

N 2490 N 2 N
(b,‘/2+ v a,) s(b,‘/2+ 5 a,.> (1+ 5 a;?>
j=1 j=1

j=1

N N
<< y ajakaf,,>+ Y. (2a;a; +a;a,)
Jk=1

Jok.m=1
N

+ 3 (2a,+a’)+b, (5.10)
Jj=1

By Egs. (5.9) and (5.10), and the fact that b, —0 as /- o, we have

N 244
E|X,o|?*°<b2+ONE (b,”2+ ) H,.j>

j=1

N
<b,"(2+‘w2|: Z EH,JH,',(H‘s

I.m
Jokom=1

+

i

(EH, ,H,,+2EH, ;H,)

T™M=

+

=

(2EH,‘J-+EH‘,5_.,.)+b,:| for almost all / (5.11)

i=1

There are (N+ 1) —1 integrals in the expression in brackets, as well
as b,. Let je {1,.., N}, and ye {4, 1,14+6,2,2+5}. Then

lim b, 'EH} = lim b j Irw((x — 2,)/b)|" p(x) dx
1 — - 11— oo
=Ilir1;J|r,W(y)I" plby+z,)dy

= p(z)) [ Irw(y)I” dy < co.
Hence there exists a constant C > 1 such that

EH} ;< Cb, for je{l,.,N}-ye{d, 1,1+4,2,2+4+46},I>1 (512).
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By Eq.(5.12) and Hoélder’s inequality, all the expectations in the
brackets in Eq. (5.11) are bounded by C - b,. Therefore

EX, 0?0 <b P2 [((N+1)3—1)-Ch,+b,]1<8b°*N3C (5.13)

By Eq. (5.18), lim, _, ., EX7,- I{|X"°| = &/ “?} <lim,_, , (el *)~° - EX};°
=1lim,_, , e~ °(/%,)~%*-8N3C =0, and the claim is proved.

By the claim, (ii} of Theorem 4.1 is true, so Eq. (5.7) is true, and the
theorem is proved.

By Theorem 5.1, 1=“*(S(g,(z;): )}~ , = N0y, Z) as [— 0. Also,
(b,19)~'% converges to zero. Therefore, for any real number z,
b7 '"2I7(S(g/z) : 1)) converges to zero in probability. Now

X, —:z X, —
by P (S(gi(2) ) =" Y [w< £ )—Ew( : Z)]
ke {l.., 1} b/ bl

and b; 'Ew((X, —z)/b,) converges to p(z) as [ - o0, independently of k; so
(b,1)~! ke qr...nd W((X,—z)/b;) must converge to p(z) in probability.
Therefore we may use (b,/¢)! ke it w((Xx—z)/b)) as an estimator
p(X) for the kernel density p(X).
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