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We present a pedogogical review of Majorana masses and Majorana's theory of 
two-component massive fermions. We discuss the difference between Majorana 
and Dirac masses and show that Majorana masses are fermion-number violating. 
We discuss the connection between Majorana and Weyl spinors and show that 
the massive Majorana and Weyl field theories are equivalent. We study the 
second quantization of the massive Weyl theory in detail. 

1. INTRODUCTION 

Majorana's theory of the neutrino (Majorana, 1937) has proven to be 
both a basic development in the theory of fermions and an idea whose 
practicality has become apparent only many years after the original work 
itself, and then, moreover, in several different guises. Interest in the Majorana 
theory was revived some 20 years after its development following the 
discovery of parity violation and an associated two-component neutrino 
structure (see, e.g., Kabir, 1963); and interest was generated again some 20 
more years later with the development of unified gauge theories (see, e.g., 
Frampton, 1980). Because of the fundamental significance of Majorana 
spinors and because of the current interest in Majorana masses we present 
here a pedagogical review of the subject. 

In setting up the theory we study first the kinematics of c-number 
Majorana spinors. In Section 2 we discuss the Lorentz transformation 
properties of Majorana spinors and show that while they form an irreduc- 
ible representation of the real Lorentz group, they decompose into a 
complex conjugate pair of Weyl spinors under the complex Lorentz group. 
Consequently the physical content of Majorana and Weyl spinors is the 

643 

0020-7748/84/0700-0643503.50/0 D 1984 Plcnum Publishing Corporation 



644 Mannheim 

same, and so Majorana and Weyl spinors can be used interchangeably. In 
Section 3 we establish the Lorentz invariance of a two-component Majorana 
or Weyl mass and show that such masses (unlike Dirac masses) are 
fermion-number violating. Thus we see that while two-component masses 
are not in fact forbidden by Lorentz invariance, they require fermion-num- 
ber violation. For this reason they had been ignored for many years, and 
have only just recently come back into prominence because of the possibil- 
ity of lepton-number violation in grandunified gauge theories (Frampton, 
1980). 

After discussing the kinematics of c-number Majorana spinors we 
proceed in Sections 4, 5, and 6 to study Majorana q-number fields. In 
Section 4 we show the equivalence of the Majorana and Weyl field theories. 
In Section 5 we study the general structure of the mass matrix in field 
theories where both Weyl and Dirac masses are simultaneously present and 
show that in general they admit of a pure Majorana structure after di- 
agonalization. In Section 6 we present the canonical quantization of the 
Majorana theory. 

Analogously to a c-number Klein-Gordon theory with real wave 
functions, the wave equations of the c-number Majorana theory also do not 
admit of any solutions which are energy eigenstates. However, again like the 
Klein-Gordon case, a successful particle interpretation is possible if we 
reinterpret the theory as a field theory. Thus the Majorana theory only 
exists as a second-quantized theory, so that second quantization is necessary 
from the beginning. We recall, in contrast, that in Dirac theory second 
quantization was only introduced at the end because the c-number theory 
was found to possess extra negative energy solutions. Hence for Dirac 
theory positive energy solutions do exist in the c-number theory and the 
subsequent filling of the negative energy sea then converts the theory into a 
q-number theory, whereas in the Majorana theory no positive (or negative) 
energy solutions exist at all until the theory is second-quantized. Thus 
second quantization is playing a much more central role here than in the 
Dirac case. Having identified the need for second quantization we are then 
able to provide a second-quantized definition of antiparticle as the hole in 
the negative energy sea. This definition is distinct from the c-number 
definition, which is the state coupled with the opposite sign to some external 
field. The two definitions do coincide for Dirac's electron but not for the 
massive neutrino, since no c-number theory exists for the latter. Thus the 
hole state definition is the more general. 

To complete this review we present, in Section 7, a short discussion of 
the analogies between the theory of Majorana masses and Majorana's 
infinite component wave equation theory, and also discuss briefly some very 
recent applications of Majorana masses in modern gauge theories. 
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2. K I N E M A T I C S  O F  M A J O R A N A  S P I N O R S  

In this section we discuss the kinematic properties of Majorana spinors, 
treating them in the first instance as state vectors, i.e., as first quantized 
c-number spinors represented by column vectors in an appropriate Dirac 
matrix space. A Majorana spinor, +M, is defined via the relation 

~bM= (+M) c (1) 

where q~c denotes conjugate spinor. A Majorana spinor is thus self-con- 
jugate and hence a candidate for describing neutral particles such as the 
neutrino. 

In order to discuss the transformation properties of Majorana spinors 
and to see their connection with the more familiar Weyl and Dirac spinors 
we shall find it convenient to use the Marjorana and Weyl bases for the 
Dirac gamma matrices rather than the standard Dirac basis 

[throughout this paper we use the metric g~,, = ( 1 , - 1 , - 1 , - 1 ) ] .  The 
Majorana basis, which was introduced by Majorana himself in his original 
paper (Majorana, 1937), is defined by 

n 1 7 f f = ~  _1 (1 -  7g)')'; ~ - ( 1  +'if)_ (3) 

so that 

~ (~ 0) 0 ~ 
o 2 0 ' y (  = - i 0 03 ' 2 - -  02 0 

3'3M=i( ~ 0,0)' yM=(--025 0 020) '  cM=(O0202)0 

a S =  ol 0 ' a2u= 0 1 '  03 0 

Analogously, the Weyl basis for the gamma matrices is defined by 

1 n]~ 

(4) 

(5) 
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so that 

o ~ )  o -11, ~,i( ok v~ =/P~" ( -1  

o~,(;k 0) /~ 01 ~( ,o2 0) 
- -  Ok ' YSw = 0 - -  1 ' 0 i0.2 (6) 

The charge conjugation and Lorentz transformation properties of 
Majorana spinors are most readily seen in the Majorana basis for the 
gamma matrices. In this basis charge conjugation only involves complex 
conjugation for states (columns) [or Hermitian conjugation for fields 
(matrices)] according to 

+c = q,, (7) 

so that there is no mixing of spinor components. Thus in this basis a 
Majorana spinor will be a four-component spinor each component of which 
is real to give a total of four independent real degrees of freedom. In the 
Majorana basis the Lorentz generators Z,~ ( =  3~,-/,/2) have the special 
property of being real, i.e., 

~(o ~ -~/-~ ~/ ~o~ ~(o ~ ~) 
~ 0 1 =  "2 0.1 0 ' Z02 = 0 ' = "2 0.3 

1(0 ol) 1( 0 ~ 
~12 ='2" O1 0 ' ~23 = ' 2  -- 0" 3 0 ' 

1(-,o2 0) 
Y~3~=~ 0 -io2 (8) 

and thus furnish a real representation of the commutation algebra 

Under a Lorentz transformation an arbitrary Lorentz group spinor 
transforms as 

---, e'%~z,'ff (10) 

where %. is real. Thus the phase of ~ is not changed under Lorentz 
transformations in the Majorana basis. Hence a Lorentz-transformed 
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Majorana spinor remains a Majorana spinor (in any basis), with the 
self-conjugacy condition of equation (1) being Lorentz invariant. 

The representation of equation (8) is reducible, and can be reduced in 
the standard manner via 

Z~. = ~_(1 + y ~ )  Z,,, (11) 

into its D(1/2,0) and D(0,1/2) pieces. Noting that .},Ms is complex we thus 
see that even though Y.~,~ is real, E~ are complex. Thus E~,, can only be 
reduced by a|lowing complex numbers. Hence even though Y~,,, is reducible 
under the complex SO(3,1;C) Lorentz group, it is nonetheless irreducible 
under the real SO(3,1; R) Lorentz group alone. Consequently we see that a 
Majorana spinor transforms as a four-dimensional irreducible representa- 
tion of SO(3,1; R). With regard to this real representation of the Lorentz 
group we recall in passing that the commutation relations of equation (9) 
also admit of another purely real representation, the familiar D(1/2,1/2) 
representation which acts on the coordinates x~,, viz., 

~01 

o_1 
- 1  0 0 

0 0 0 ' 
0 0 0 

0 0 - 1  0 
0 0 0 0 

- 1  0 0 0 
0 0 0 0 

~03 

0 0 0 - 1 ~  

) 0 0 0 0 
0 0 0 0 ' 

- 1  0 0 0 

~12 

0 0 0 0 
0 0 - 1  0 
0 1 0 0 
0 0 0 0 

~"23 = 
i 0 0 0 0 0 0 

0 0 - 1  
0 1 0 

~31 ~ 1 7 6 1 7 6  
0 0 0 
0 0 0 
0 - 1  0 

(12) 

so that altogether SO(3,1; R) admits of two inequivalent real irreducible 
four-dimensional representations. This is in contrast to SO(4; R) which 
only admits of one real irreducible four-dimensional representation, the one 
which acts on the coordinates. Hence the existence of a real Majorana 
spinor representation is associated with the Minkowski nature of the metric. 

Once we have defined Majorana spinors we can then use them as a 
basis for constructing Dirac spinors. Along with q,M we introduce a second 
independent (anti) Majorana spinor g,A[ = _ (q / )C]  to give a total of eight 
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real degrees of freedom. We define 

q z, = q,M + q,A 

(~,o)c = q,v_ ~A (13) 

so that +M and +A are indeed Majorana spinors, i.e., 

+M = ,  = 

= - ( r  (14) 

Since the phase of an arbitrary spinor is unchanged by the Lorentz 
transformations of equation (10) in the Majorana basis we see that the 
decomposition of equation (13) is Lorentz invariant with 4, ~ transforming as 
a spinor under the Lorentz group. Thus we recognize its eight real degrees of 
freedom as a complex four-component Dirac spinor. 

As well as its decomposition into two independent self-conjugate 
Majorana spinors given in equation (13), the four-component Dirac spinor 
also admits of another decomposition, this one with respect to two indepen- 
dent complex Weyl spinors. Specifically, the complex two-component right- 
and left-handed Weyl spinors, +w and +w, transform according to the 
D(1/2,0) and D(0,1/2) representations of the Lorentz group and reduce 
the D(1/2,0)eD(O,1/2) Dirac spinor representation as 

where 

+" = q4~+ ~,~" (15) 

~b w= �89 + 3,5) +m 

q,W=r �89 ~ 
(16) 

The transformation properties of the Weyl spinors are most easily seen in 
the Weyl basis for the gamma matrices given in equations (6). In the Weyl 
basis (1 +_ 3,5)/2 project out the two upper and two lower components of +m, 
while the Lorentz rotations -c~im/2  and boosts ak/2 are block diagonal. 

j 

Hence we see directly that q~ and q,w indeed transform as separate 
irreducible D(1/2,0) and D(0,1/2) representations under the homogeneous 
Lorentz group. However, the Weyl spinors are connectable by a discrete 
parity transformation. Consequently, a neutrino which transforms as 4, w t. 
only, say, would give rise to the familiar parity-violating two-component 
neutrino theory. 
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To see the connection between Majorana spinors and Weyl spinors it is 
again convenient to use the Weyl basis for the gamma matrices. In this basis 
charge conjugation is given by 

0 i% ) +* 
~bc = C W v ~  = ivw~/* --  --  i o  2 0 

where C w is the matrix which transposes the 7~,, i.e., 

c - % c  = - ~,y 

(17) 

(18) 

Thus an arbitrary Majorana spinor can be written in the following equiva- 
lent forms: 

{) " ij 1 b + ---~-~ = ~"=~- - b ,  =~- ~- . 

a *  

0 0 c 
1 0 1 0 = 1--- r 4,~+' q,~' c l [  2 I, }2) ] 

= v~- - b *  + ~ -  - b *  (~- 
a* a* 

(19) 

with its four real degrees of freedom being expressed as the two complex 
quantities a and b. Analogously an arbitrary q,A spinor can be written as / c ) 

1 d 
+A = ~ d* (20) 

- -  C *  

We shall denote by ~M and ~,4 the particular pair of Majorana spinors for 
which c = a and d = b. With these spinors we may now construct arbitrary 
Weyl spinors, since 

( + ~,a) = = 4,aw= ( , w ) C  (21) 

/~ 1 ~M 0 = ~pw= (~kw)C (22) 
~( _ ~ A ) =  - b *  

a *  
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Thus starting from general Majorana spinors q,M and q,A we can build any 
arbitrary Dirac or Weyl spinor. Hence the Majorana spinors are building 
blocks for all the other sp in- l /2  spinors. 

From equations (19) we note further that a Majorana spinor can be 
interpreted either as a linear superposition of q,~ and its own conjugate, or 
equivalently as a linear superposition of q,w and its own conjugate. Under 
Lorentz rotations and boosts the complex components a and b of 4'~" form 
a doublet and transform as (a, io). Thus - io2(~pw) * transforms as (o, - io), 
i.e., the - b*, a* doublet of (q,w)c transforms the same way as +L w. Hence 
q/a can be reexpressed as two pieces which transform as D(1/2,0)  and 
D(0,1/2),  respectively, and which are conjugate to each other. It is im- 
portant to note that since the decomposition of equation (19) consists of a 
D(1/2,0)  representation and its own conjugate [as opposed to some arbi- 
trary other D(0,1/2)  representation], it contains the same number of 
degrees of freedom as the original 4, M, and thus has not changed the 
physical content. Thus self-conjugate Majorana spinors can be reexpressed 
as a pair of complex conjugate Weyl spinors so that Majorana and Weyi 
spinors are interchangeable and are equivalent in the sense of equation (19). 
Since it is inconvenient to work with the decomposition of equation (19) we 
shall formulate the theory of Majorana masses entirely in terms of Weyl 
spinors in the following. 

3. MAJORANA AND WEYL MASSES AND 
FERMION-NUMBER NONCONSERVATION 

The current interest in Majorana and Weyl spinors stems from the fact 
that it is possible to construct Lorentz invariant mass terms from them. We 
shall formulate the discussion initially in terms of Majorana spinors. In the 
direct product of two ~pM spinors we can form a Lorentz scalar since 

D(1/2,0)| = D(0 ,0 )~D(1 ,0)  (23) 

The scalar D(0,0) term takes the form 

= ( M)c q,M q,. (24) 

and is known as a Majorana mass. To check that this term is a Lorentz 
scalar we note that under an infinitesimal Lorentz transformation 6~b = 
e.~'t.~,,qJ the change in qjrC~b is 

~,~qff( Cy~y. + yf  yrC )~b (25) 
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which vanishes according to equation (18). To simplify the structure of the 
Majorana mass term we express ~k M in the Weyl basis for the gamma 
matrices as 

M 1 ~ = ~ - (  (26) 
- io2~* j 

where q~ denotes the two-component spinor 

With this definition we find that 

m ~ - ~ r  . . m T- 

_ m [a'b* - b ' a *  - ab + ba]  (28) 
2 

so that a Majorana mass is only nonvanishing if a and b are antisymmetric 
under interchange. Thus in a field theory a and b would have to be 
anticommuting fermion fields, while in a purely c-number theory a and b 
would have to be members of a Grassmann algebra and satisfy 

(a,a}+={b,b}+=(a,b}+ 

= ( a , a * } + = ( b , b * } + =  ( a , b * } + = 0  (29) 

As well as the above Majorana mass we can also form a Weyl mass 
since the direct product of two 4, w (or two q,~v, of course) spinors also 
contains a Lorentz scalar. In terms of Weyl spinors the scalar D(0,0) term 
takes the form 

(+~,)c+~=( w T . ,  r ) c r  (30) 

In the Weyl basis for the gamma matrices 4'~" is given by 

0 

Thus the Weyl mass takes the form 

m m 7 [(,~)Tc.',~'+ (~)*(c.')* (~').] = ~-[e;o2**-,T;o2,] (32) 



652 Mannheim 

to thus establish the complete equivalence of the Weyl and Majorana 
masses. 

Given the above form for the Weyl mass exhibited in equation (30) we 
now note some of its general properties. Since C w is diagonal in the 
D(1/2,0),  D(0,1/2) basis it only couples q~r to ~kR or ~ to q%, so it 
decomposes d/rC+ according to helicity, as is to be expected since C w 
commutes with 3,J ~'. Additional insight into the structure of the Weyl mass is 
obtained by recalling some familiar kinematic properties of a pair of 
identical fermions. For a pair of fermions with zero total angular momen- 
tum the available (1, s) states are (0,0) and (1,1). The (1,1) combination 
corresponds to q~rCy~O~q~ and the (0,0) to qTCqJ. Now two fermions with 
zero total linear three momentum travel back to back. Their total spin wave 
function in the antisymmetric s = 0 state is one in which the spins are 
antiparallel with respect to a fixed axis. Hence each particle has its spin 
parallel to its own direction of motion, to confirm that ~rCq~ is diagonal in 
the helicity basis. Finally, we note that since the (1, s) part of the wave 
function of the (0, 0) pair is antisymmetric the internal wave function of the 
pair must be symmetric. This will become a nontrivial restriction on 
Majorana masses when the fermions are placed in representations of non- 
Abelian unifying gauge groups. 

As we thus see, the restriction to a two-component theory does not 
require the absence of mass terms, despite the somewhat widespread belief 
to the contrary. However, we note that ~/rCd/ transforms like a difermion 
and hence changes fermion number by two units. Thus the additional 
requirement of fermion number conservation (or of whatever other specific 
additive quantum numbers q, carries) is needed, and usually assumed, in 
order to prevent Weyl spinors from acquiring a mass (Pauli, 1957). For this 
reason q, rC+ has not usually been considered as a candidate mass term in 
the literature. However, with the recent development of unified gauge 
theories with possible lepton number violation, interest has been revived in 
such mass terms. Thus what was once thought of as a vice of two-compo- 
nent neutrino mass terms, namely lepton number violation, has recently 
reemerged as a virtue. 

Having now obtained the mass terms of equations (24) and (30) we can 
construct Lorentz invariant Lagrangians for Majorana and Weyl spinors, 
viz., 

i 
(33) 

so . .  = (34) 
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From equations (26) and (31) and the Grassmann properties of equations 
(29) we find that both of these Lagrangians take the form 

m T- m . 
z = 2 '* (?0  + o~?~),  + ~ *  ,o2, - -f**,o2** (35) 

to establish the complete equivalence of the Majorana and Weyl c-number 
spinor theories (Serpe, 1952; McLennan, 1957; Case, 1957). 

The Lagrangian of equation (35) is now conveniently written entirely in 
terms of the four independent real degrees of freedom contained in the 
complex two-component spinor , .  The Euler-Lagrange variation of these 
Grassmann variables is straightforward and yields the equations of motion 

( iO 0 q- iOkOk ) * = mi~ 

, t ( i~  ~ + io k ~k ) = midpro2 (36) 

particle of mass m. 
It is useful to compare the Majorana and Weyl spinors 

standard Dirac spinor, ~b D, whose Lagrangian takes the form 

From equations (36) we obtain 

(0o 2 -  02 + m E ) , = 0  (37) 

so that each component o f ,  satisfies the Klein-Gordon equation for a 

with the 

(38) 

According to equation (13) we may decompose an arbitrary Dirac spinor 
into a pair of Majorana spinors, viz. (in the Weyl basis), 

~D=~22 ( r 1 P 

Under this decomposition the Dirac Lagrangian takes the form 

i t m . m . 
~ = 7 '  (~o + o~ak), + 5 - ,%2, -  y**,o2** 

i - mot. i~ p+ m . (40) +~pt (OO+Ok?k)p - - -  ~ -]-pttazp* 

to again confirm the Lorentz irreducibility of equation (13). From equation 
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(40) we see that each Majorana spinor in equation (39) has its own 
associated Majorana Lagrangian, with the two Majorana masses reducing 
one Dirac mass. However, the reverse is not always true since we can only 
combine two Majorana masses into one Dirac mass as above provided the 
two masses are degenerate. Hence Majorana or Weyl masses are in principle 
different from Dirac masses. 

We also note some additional kinematic distinctions between Weyl and 
Dirac masses. Under chiral transformations ~brCg, r is purely right-handed 
and ~brC+L is purely left-handed, whereas the Dirac mass ~b  = ~r4'/. + 
~t.~bR involves both helicities and transforms nontrivially with respect to 
both left- and right-handed chiral transformations. Specifically, if for exam- 
ple ~b belongs to the fundamental of an S U ( n ) t  x SU(n)  n group then the 
fermions transform as 

+t.- (n ,1 )  

+R - (1, n) 

~b D -  ( n , 1 ) ~ ( 1 , n )  

(41) 

while the mass terms transform as (recall that Weyl masses are symmetric in 
the internal indices) 

q~rcq~ R - (1, n (n  + 1) /2 )  

r _ + 1 ) / 2 , 1 )  (42) q~LC+L (n(n 

and thus the mass terms have totally different chiral properties. Addition- 
ally. each Weyl mass is parity violating while the Dirac mass is parity 
conserving. Finally, we note that each Weyl mass carries two units of 
fermion number while the Dirac mass has zero fermion number. Thus the 
various mass terms are qualitatively very different. 

To complete our discussion of the c-number Majorana theory we also 
examine the solutions to the equations of motion of equation (36). In the 
rest frame we find that equation (36) possesses two solutions, viz., 

(-0"e+'"') 
qh = O.e+i,,,,}, q~2 = 0e -i"" (43) 

where we have introduced convenient Grassmann variables 0 and 0* which 
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satisfy 

{0,0}+-- { 0 " , 0 " } + =  {0,0"}+--0 (44) 

Neither solution is an eigenstate of iOo, i.e., neither solution satisfies 

0 
i-~q5 i = _+ mq~, (45) 

The c-number theory therefore does not possess any traveling wave solu- 
tions which are eigenstates of iO o. Since we would like to identify traveling 
waves as particles we see that this is impossible since we cannot form states 
of a definite energy. Hence, unlike the Dirac case, the massive Weyl theory 
does not exist as a one-particle theory. As we recall, the real Klein-Gordon 
wave equation does not possess any solutions of the form e x p [ ~ . 2 -  loot] 
when the wave function is real, and thus also has no one-particle limit. 
However, a successful particle interpretation of the Klein-Gordon theory 
was given by Pauli and Weisskopf following second quantization, an 
analysis which influenced Majorana in his setting up of an analogous real 
spinor theory. And indeed, as we shall see below in Section 6, the massive 
Majorana theory will also admit of sensible particle states following its 
reinterpretation as a second-quantized field theory. Thus the c-number 
Majorana theory has to be second-quantized. 

Finally, we note a peculiarity of the Weyl mass. As is well known, the 
massless m = 0 Weyl equation does in fact admit of one-particle plane wave 
solutions, one of positive energy and the other of negative energy. When we 
add a mass term to the Weyl equation we find that we are unable to 
combine these two solutions into the two components of a sp in- l /2  positive 
energy massive fermion, as is exhibited in the solutions of equation (43). 
Thus it is the mass term which forces the Weyl theory to become analogous 
to the real Klein-Gordon case, and hence it is the mass term which forces 
second quantization upon us. 

4. EQUIVALENCE OF THE MAJORANA AND WEYL 
FIELD THEORIES 

In setting up a q-number field theory we reinterpret the c-number fields 
as operators in an infinite dimensional Hilbert space and replace the 
Grassmann anticommutators of equations (29) by the standard equal time 
anticommutation relations for fermion fields. Apart from these changes 
demonstration of the equivalence of the Majorana and Weyl field theories 
essentially follows the previous c-number discussion. A Lagrangian density 
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for a second-quantized Weyl field is given as in equation (34), viz., 

s = -2i O/.Wy~O~b.- w ~m[~bWc~W +(~bW)tct(~nn')t ] (46) 

which takes the form 

i t m m . (47) ,.~ = - ~  (50 + o/,.0k) ~ + -~-~io2~ -- ~-~t/or2~'t 

(in the Weyl basis for the gamma matrices) when we write 

q,w = (48) 

We now introduce a new field ~ 

X = -~-2 [+w + (~pw) c I (49) 

which satisfies 

Mannheim 

Using the fermion field anticommutation relations we find that we can 
reexpress equation (46) as 

(51) 

which we recognize as the Lagrangian for a self-conjugate Majorana field. 
With use of the transformation of equation (49) we thus show the equiva- 
lence of the Majorana and Weyl field theories. 

The transformation of equation (49) is somewhat reminiscent of the 
Pauli-Gursey transformations (Pauli, 1957; Gursey, 1958) 

where 

~p --* a +  + b T s ~  c (52) 

lal 2 + Ibl 2 =1 (53) 

lThe author is indebted to Professor N. G, Deshpande for explicitly identifying this transfor- 
mation for him. 

x = x  c (50) 
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maintains unitarity. The Pauli-Gursey transformations leave invariant the 
antisymmetrized kinetic energy of a free massless fermion. However, equa- 
tion (52) implies the Lorentz invariant transformations 

~R ~ a~n + b( ~L) c (54) 

where both sides transform as the D(1/2,0) representation, and 

g/L --' a~kL - b( ~R) c (55) 

where both sides transform as the D(0,1/2) representation, and thus differs 
from equation (49). The difference lies in the fact that equation (54) mixes 
together two totally unrelated D(1/2,0) representations, i.e., it mixes differ- 
ent degrees of freedom [and analogously for equation (55)], while equation 
(49) merely rewrites a given number of degrees of freedom in a self-con- 
jugate form. Equation (49) is thus not a transformation but only a decom- 
position of a real field into a complex conjugate pair, as we discussed in 
Section 2. 

Having now shown the equivalence of the Majorana and Weyl f i e ld  
theories we note the advantages of the Weyl formulation. The Lagrangian of 
the Majorana fields of equation (51) involves a constraint X = X c while the 
Weyl Lagrangian of equations (46) and (47) does not. Thus the Weyl 
spinors provide us with a formulation of the theory in terms of uncon- 
strained degrees of freedom which is much more convenient for studying 
Euler-Lagrange variation, etc. Second, the Weyl degrees of freedom are 
complex and are hence more convenient for implementing complex phase 
transformations. Since we are interested in embedding the theory in a 
non-Abelian gauge theory, all of the associated symmetry transformations 
can most easily be discussed with Weyl spinors. Finally, in such theories 
most other fields (particularly those of electrically charged particles) will be 
described by Weyl spinors and hence their coupling to Majorana fields will 
be most easily implemented in the Weyl formulation of Majorana fields. 
Thus in the following we shall study the second-quantization and particle 
content of the theory directly from equations (46) and (47) rather than use 
Majorana fields explicitly. 

5. THE MOST GENERAL MAJORANA, WEYL, AND DIRAC 
MASS MATRIX 

In this section we discuss the structure of the general mass matrix when 
all types of mass are present simultaneously. For a single species of a 
neutral particle (which we conveniently describe by two Weyl spinors) the 
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most general bilinear Lagrangian is 

i_  - i _  

f f t - AR(~RCu g + v~C re)  (56) 

where we take the Dirac mass parameter X and the left- and right-handed 
Weyl mass parameters A L and A R to be real. In terms of the left-handed 
Weyl spinor 

N =  (pR) c (57) 

we can reexpress the Lagrangian as 

i - i - -  - 
, ~  : "~ P L Tit OlaP L "[- ~ N'ru Ou N 

- �89  NCVL + vLCN + vI_ C t N t  + NtCt 'v[)  

-- A L ( P L C P L  + " L "  tr-'t,,t.L ) 

- A R ( N C N +  N f C t N  t )  (58) 

This gives a mass matrix in the (7, L, N) basis 

( AL X/2  ) (59) 
M =  X/2  AR 

which is diagonalized by 

where 

P = cos av L + sin a N  

Q = - s i n a v  L + c o s a N  

Mannheim 

tan2a X (61) 

(60) 
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In terms of P and Q the full Lagrangian takes the form 

i - ~ p t c t p t  ~2~=~PY~,O~,P-mp(PCP + ) 

i - -  
+ -~Q',luOuQ - m o ( Q C  Q + QtCtQt)  (62) 

where 

,,,,. = ~/A/_ + A . / -  '~ { (AL -- A.)'-  + X-' }'/~ 

,,,O ={(A, + a . )+  + {(A/-- A.)2+ X'- } ~/' 

The transformations of equation (60) are particular forms 
Pauli-Gursey transformations of equation (52). Specifically if 

(63) 

of the 

then 

4' --, cos a4' -- sin a)'5 4'c (64) 

4'/_ ~ cos ~x4' L + sina(4'R) c 

+R ---' cos a4'g -- sin a( 4'/_ ) c (65) 

(4'R) c ---, - sina4' L + cosa(4'R) c 

which we recognize as equations (60). Thus when both Dirac and Weyl 
masses are present we can diagonalize the complete quadratic part of the 
Lagrangian by a Pauli-Gursey transformation. The resulting Lagrangian of 
equation (62) contains two uncoupled massive Weyl fields and is particle 
number violating. Unlike the case in equation (40) the two Weyl fields are 
not degenerate and hence cannot be combined into a Dirac field. Since a 
Dirac field can always be brought to a basis in which it is particle number 
conserving [as in equation (38)] we see the theory will possess an observable 
particle number violation unless either 

( ~ / - -  AR)Z + x 2 = 0  (66) 

or  

At. = A R = 0 (67) 
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Thus when both Weyl and Dirac masses are present the physical content of 
the theory is that of the pure particle number violating Weyl (or Majorana) 
theory of equation (62). 

The extension of the above analysis to many neutral particles is 
straightforward. For N species we have 

1 EXi j ( I ,  iLCNj + N j C . ; +  Nj*C*p[* + e~*C*Nf) 
2 . 

q 

O 

- Z N ~ (  NiC ~ + NJCtN, * ) (68) 

where only the symmetric parts of A' L and N~ contribute. The generalized 
2N-dimensional Pauli-Gursey transformation 

u,.] -8 , j  A,*j (69) 

leaves the kinetic energy invariant provided it is unitary, i.e., provided the 
N-dimensional matrices A and B satisfy 

A*A + B*B = I, BrA = ArB (70) 

Under this transformation the complete Lagrangian may be brought to the 
form 

i EY.O.P, - m(e,)(Picp, + p ? c W ) }  ~=Z{~ 
I 

i (7,) 

where m(Pi) and m(Q,) are the eigenvalues of the 2N-dimensional Hermi- 
tian mass matrix 

A' L xiJ/2 ' 
M =  XiV 2 AiJ (72) 
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Thus the complete quadratic piece of the Lagrangian is diagonalized by 2N 
Weyl fields whose masses in general are all different. Thus again the theory 
will be particle number violating. Finally, the transformations of equation 
(69) also have to be made on the interaction Lagrangian as well. This will 
then cause it to become particle number violating in general and will lead to 
transitions between the mass eigenstates of equation (71). 

take 

where 

6. THE MASSIVE WEYL THEORY AS A FIELD THEORY 

For the Lagrangian of the two-component Weyl field q~ (i =1,2) we 

.m 2 im d~l?azM (73) = idptio~O#~J + 1"-2 dpiOijdpj -- 2 r i - i j v j  

o~,--(1, o~). This Lagrangian generates the same action as the 
Lagrangian of equation (47). 
then leads to the equations of motion 

Euler-Lagrange variation of equation (73) 

io~O~q~j=iOoq~i + io,~Okq~ j = ,moijq~). 2 , 

�9 t ~ = irndpjoj~ (74) t O.~) % 

provided the variation 8~ anticommutes with q~. Because of these equations 
of motion the unequal time anticommutators must take the form (Case, 
1957) 

{+,(~, , ,  (a  _a_~7~ ), D( x t),,t,j(x, r)} = -  -~-o~ - x ' , t - c )  

( d P i ( x , t ) , e p j ( x ' , t ' ) }  = - rnai2jD(x - x ' , t - t ' )  (7s) 

where 

D ( x ,  t )  (27r)3 ei~'Xsin kot  (76) 

and 

k 0 = + (1~:12 + m 2 )  1/2 (77) 
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These relations in turn give the standard equal time anticommutators 

= 8 , j s , ( x -  x,) 

{,t,,(x, t ) , , j ( x ' ,  t)} = 0 (78) 

An energy-momentum tensor is defined as 

L,. a ~  aq, 
O0~,qJ cgx,, gu"~ (79) 

and takes the form 

.177 l 

L,, = o %  a,,,t, - ' 7  g," t,~,,2,~ + ,p*,,2,~* ) (80) 

for fields which satisfy the equations of motion. [In such solutions we note, 
in passing, that, unlike the case for the familiar Dirac equation, the 
Lagrangian of equation (73) does not vanish.] Using the field equations and 
the anticommutation relations we then find that T~,, is conserved, 

0,,T.,, = 0 (81) 

so that 

Pu -- f d3x To~, (82) 

are the translation generators. Thus the Hamiltonian takes the form 

and obeys 

H=~ (83) 

i[H, q~] = 0___~_~ (84) 
0t 

Having now obtained the field equations, to complete the analysis we 
must also construct the states of the theory so as to establish the particle 
content of the field operator ~(x, t). To make a normal mode expansion we 
follow Case (Case, 1957). We introduce a helicity basis for linear momen- 
tum ~: according to (k = I~:1) 

6.ke(k )  = k~(k)  

~.~/~(~)  = - k/~(~) (85) 
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We can make an arbitrary momentum space expansion for ,~(x, t) in terms 
of these helicity states and in terms of the positive and negative frequency 
solutions to the second derivative Klein-Gordon equation that q~(x, t) also 
satisfies, viz., 

ko+k 

x(e_,k..~[b+(-k)a(-k) m 

+e+ik._~[d.t(f~)a(~)4 m 

(ko + k) b_ (7,)/~(7,)] 

(ko+k)dt+ (k ) f l (k ) ]  } (86) 

where k 0 is defined in equation (77) and V is a volume factor. The 
requirement that q~(x, t) also satisfy the first derivative equations of motion, 
equations (74), then reduces the theory to two complex degrees of freedom 
by requiring 

d+_ (~:) = b_+ (k)  (87) 

Thus the most general solution to the equations of motion takes the form 
(Case, 1957) 

1 y , (ko+k)  1/2 
dp(x,t)- V 1/z ~ ~ 2k ~ 

( [ " • e-'"": b+ (7<),~(7,-) (ko + k) 

+ e+'~.."[b *_ (7~) ~(7~) + 

- -  b_ (~)/~(7,)] 

The second quantization of q~(x, t) according to equation (78) yields 

{b• (k;),b+ (k')} = (b+ (k),b:~(k')} 

= { b+ (k), b~ (~:')} =0 

(b :~ (~),  b \  (~' )}  = a(Z:, Z:') (89) 

so that bt_+ (~:) have the conventional interpretation of creating particles out 
of the vacuum, 10). 

m b*+ (k)fl(7~)])(88) 
(ko+k) 
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In terms of the creation and annihilation operators the Hamiltonian of 
equation (83) takes the form 

H = Eko [b*+ (7,)b+ (7`)-b_ (7,)b +_ (7,)] 

= ~_,ko[b++ (k)b+ (-k)-d_ (-k)d +_ (7`)] (90) 

which we can normal order as 

H=Eko[b++(lc)b+(7`)+b +_(7`)b (7`)-1] (91) 

Thus the two states b~ (7`)10) are two positive energy eigenstates of the 
Hamiltonian of equation (91) and thus give a sensible particle interpretation 
to the field q~(x, t). 2 

It is important to notice that the kinematic coefficients of b• (7`), 
b ~ ( k )  in equation (88) are not themselves solutions to the c-number 
equations of motion, in contrast to the situation met in the standard Dirac 
and Klein-Gordon theories. Further, in the q-number theory, it is only the 
interplay of the positive and negative frequency parts of q~(x, t), defined via 

r t) = r t )+ r t) (92) 

which enables q>(x, t) to satisfy the q-number equations of motion. The 
positive and negative frequency parts of the field operator satisfy 

;+, a.q', • , =  m; ~ [ +, ]+ * ";  • (93) 

and thus, again unlike the standard Dirac and Klein-Gordon theories, are 
not themselves separate solutions to the field equations, but instead are 
connected with each other in equation (93) in a way which enables q~(x, t) to 
satisfy equation (74). As we recall, ,~(x, t) is not itself a self-conjugate field. 
However, because of the identification of b• (7`) with d+ (7`) in equation 
(87) we note that q,(x, t) and q?(x, t) both create the same particle states out 

2In passing we note that the Hamiltonian of equation (91) is invariant under parity transforma- 
tions which mix the two helicity states. Because of equation (87) this is equivalent to a CP 
transformation on the fields, with the Lagrangian of equation (73) being CP invariant. Thus 
even though the Lagrangian of the free massive Weyl theory, is not parity invariant in field 
space, there does exist a good parity transformation for the states. Hence any parity violation 
that might be observed in processes involving the scattering of these states would then have to 
be due to a parity noninvariance of lhe interactions and would not be related to the parity 
noninvariance of the free Lagrangian. 
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of the vacuum, so as far as its particle content is concerned q~(x, t) is acting 
like a self-conjugate field. 

If we take the matrix element of equation (84) between the vacuum and 
a one-particle state at rest 

we obtain 

I1> = b*+ (0)10> (94) 

(014,11)(11HI1) - (01HI2)(214,11) = i-ff-Tt (01g, ll) (95) 

since q~(x, t) can only change particle number by one unit. Since the 
Hamiltonian of equation (91) is diagonal in this same particle number basis 
the matrix element (01HI2) is zero. [The nontrivial content of this remark, 
which we will explore below, is to note that the Lagrangian of equation (73) 
does change another particle number by two units, namely, the usual 
fermion number.] Consequently we conclude that the c-number wave func- 
tion (0lq~ll) is an eigenstate of iO o with eigenvalue (IlHI1), i.e., 

. 0  
,~-(01q, ll) = (llHI1)(01q~ll) 

= m(01qql) 

= rne-i , , , ta(O) (96) 

Thus the diagonalization of the Hamiltonian in an appropriate second- 
quantized basis enables us to construct the desired first-quantized energy 
eigenstates. Further, if we take the matrix element of the field equation 
between the vacuum and the state 11) we obtain 

i O (01q, ll) = imo2(0lq~*[1) 

= imo2(l[q~lO)* (97) 

Thus the matrix element (0[q,[1), while being an eigenstate of iO o, is not a 
solution to the naive one-particle equation which would be suggested by 
using equation (36) blindly, viz. ,  

i~ t  (0[r = imo2(O]gpll)* (98) 
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precisely because q~ is a matrix, Thus, unlike the situation met in standard 
field theories, the matrix element (0lq~ll) is simply not a solution to the 
c-number wave equation, and it is that fact which enables us to avoid 
the difficulties associated with the absence of plane wave solutions to the 
c-number theory discussed in Section 3. 

To obtain the above particle interpretation of the second-quantized 
massive Weyl theory it was necessary for us to be able to diagonalize the 
Hamiltonian of equation (91) in a particle number conserving basis. Specifi- 
cally we find that the operator 

N= E [bt+ (k)b+ (k)+ b~ (k)b_ (k)] (99) 

obeys 

ON 
i[ H,  N ] = --~- = O (100) 

Thus the massive Weyl theory possesses a good conserved number operator 
N. Since the Lagrangian of equation (73) is not invariant under the familiar 

,p e '~  ( lo l )  

fermion number phase transformations, N is not the usual fermion number. 
Thus it is of interest to explore the nature of N. To this end we express N in 
coordinate space. Inverting equation (88) and its Hermitian conjugate yields 

x,0)r (x, t )  N =  f d 3 x d 3 x ' D ~ + ) ( x  ' -  * ' I - - ~  ( x , t )  (lO2) 

Here we have introduced the familiar nonlocal propagator for positive 
frequency modes 

D~+)(x, t) = 1_.__~ [ d3k e_ikot+i-k, x 
(2rr)3 y ~ o  (103) 

where k 0, as previously, is given by equation (77). Thus the number 
operator N is a nonlocal operator and cannot therefore be associated with 
any local Noether variation of the Lagrangian. The operator N is a pure 
second-quantized object which is not obtainable by quantizing any con- 
served quantity associated with a local invariance of the classical Lagrangian. 
While the conservation of N is thus an interesting feature of the free massive 
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Weyl theory, since N is nonlocal it is unlikely that it could be conserved by 
interactions. Nonetheless, even in the presence of interactions N is still 
useful as it is needed as a basis for classifying asymptotic scattering states. 

Given our above remarks we now note some interesting differences 
between the massive Weyl theory and the standard Dirac theory. As we 
recall, in Dirac theory the second-quantized fields can be expanded in a 
complete set of wave functions which are solutions to the one-particle Dirac 
equation; so that the vacuum to one particle matrix elements of the field 
operators then satisfy the same equations of motion as the fields themselves, 
namely the Dirac equation. So for the Dirac equation a sensible first-quan- 
tized theory does exist, with second quantization only being introduced 
essentially as an afterthought because the need to fill the negative energy sea 
a posteriori converted the theory into a many-body theory. Further, in Dirac 
theory the relevant particle number is a quantum number which is associ- 
ated with a Noether invariance of the classical equations of motion, to thus 
put the modes of the field into one-to-one correspondence with the solutions 
to the c-number Dirac equation. For the massive Weyl theory on the other 
hand there is no such one-to-one correspondence between the first- and 
second-quantized theories (the solutions to the first-quantized equations are 
not the coefficients in the normal mode expansion of the second-quantized 
field); and the appropriate particle number operator of the second-quan- 
tized Weyl field theory is not obtained from a classical Noether analysis. 
Consequently for the massive Weyl theory second quantization is necessary 
a priori in order to produce a sensible particle interpretation. 

The massive Weyl theory is thus seen to be a theory which has no 
associated c-number limit, and to be one for which the field aspect is 
necessary in order to establish the particle content of the theory. Thus an S 
matrix for the scattering of the states created by CO(x, t) cannot be con- 
structed without a knowledge of the underlying field theory. Ordinarily, the 
S-matrix and Lagrangian descriptions of the scattering of asymptotic states 
are equivalent. The S-matrix approach only requires a knowledge of the 
c-number equations for the states (the one-particle Dirac equation for 
instance) so as to describe the kinematic behavior of the asymptotic states 
under the Lorentz group in order to impose relativistic covariance; and then 
appeals to unitarity in order to account for processes which change the 
number of particles. The Lagrangian approach, alternatively, uses the 
dynamical behavior of the fields themselves in order to change the number 
of particles. Since the fields usually satisfy the same equations as the 
c-number states the two approaches are usually indistinguishable in their 
predictions with it being possible for instance to formulate a pure S-matrix 
theory of quantum electrodynamics. In the massive Weyl theory we now 
discover a rather different situation, i.e., in the absence of any associated 
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conventional one-particle theory the Lagrangian approach becomes essential 
for describing the on-shell scattering of asymptotic states. This is then an 
example of a theory where a field description has more content than a pure 
particle description. 

As a field theory the massive Weyl theory also differs from Dirac 
theory in one other interesting way, namely, in its normal ordering prescrip- 
tion. For a standard four-component Dirac spinor a conventional normal 
mode expansion is 

i E 
V 1/2/,. :.t ~ .... 

(1o4) 

where u± (k) .  v ,  (h') are the familiar c-number Dirac spinors. The second 
quanuzatlon of the Dirac theory leads to the Hamiltonian 

H= E k,,[b**(~)b±(f,)-d+(~)d~;=(7~)] (lO5) 

which we rewrite as 

H= Z (106) 
k..~ 

The constant term is then removed by normal ordering with respect to the 
filled negative energy sea, so that the Dirac theory treats positive and 
negative frequencies vet3' differently. On the other hand, in the massive 
Weyl theory we also have to normal order the Hamiltonian of equation (90), 
but now we do so by occupying the states created by bt_ (k.), as indicated in 
equation (91), i.e., we normal order effectively with respect to positive 
frequencies [or equivalently with respect to negative frequencies according 
to equation (87)] so that now the positive and negative frequencies are 
treated symmetrically. We recall that this of course was one of the reasons 
Majorana originally set up the theory in the first place. 

The above remarks also help clarify the meaning of antiparticle. There 
are actually two definitions of antiparticle, first the state coupled to an 
external electromagnetic field with the opposite sign, and second the state 
associated with a negative frequency mode. The first definition is a c-num- 
ber single-particle definition, while the second definition is a q-number 
many-body definition. For the Dirac theory the two definitions coincide 
precisely because the theory has a c-number limit, with the c-number wave 
functions describing the same particles as those associated with the q-num- 
ber fields. However, for the massive Weyl theory no such c-number limit 
exists, and thus a c-number definition of antiparticle is not even available. 
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[Additionally there is no conserved electromagnetic current in the two-com- 
ponent theory to which electromagnetism could couple (Case, 1957).] In the 
massive Weyl theory only the second-quantized definition of antiparticle 
survives, with the particle being its own antiparticle according to equation 
(87). Thus the second-quantized hole state definition is the more general as 
it allows us to introduce a concept of antiparticle even when no coupling to 
an external electromagnetic field is possible. 

Finally in this context we comment on how the TCP theorem is 
satisfied. Under the combined TCP operation a four-component Dirac 
spinor transforms as 

Otp~ x,  t )O- '  = i75q~~ x ,  - t)  (107) 

with the creation and annihilation operators of equation (104) transforming 
as 

ob(L + )0 -1= d(L-v) (108) 

so that TCP takes electrons into positrons. In the massive Weyl theory 
equations (107) and (108) reduce to 

and 

Ock(x, t )O- l  = iept(-  x ,  - t ) 

Ob(k., +_)O- l=b( lc , -T  - )  

(109) 

Hence the state b*+(~:)[0) has the same particle content as the state 
Ob*+ (~:)10), as the particle is its own antiparticle. Further, the Lagrangian of 
equation (73) is invariant under the TCP transformation of equation (109). 
As we recall, if a Hamiltonian is TCP invariant, then any given eigenstate 
and its TCP transform are degenerate in mass. Ordinarily these two states 
are distinct, with the TCP theorem then providing for the degeneracy of a 
particle with its antiparticle. In the present massive Weyl theory the two 
states are states of one and the same particle so that the particle gets to be 
degenerate with its antiparticle by being its own antiparticle. The TCP 
structure of antiparticles is thus completely in accord with our previous 
analysis, 

For completeness we conclude this section by evaluating the Feynman 
propagator of the free massive Weyl theory. Using the second-quantized 
form of q,(x, t) given in equation (88) we obtain directly 

-i(OIT(q,j(x')q,*~(x))lO)= f d4k e ik''x-x') ~176176 +____6ji.____~k (111) 
(2qr)  4 k 2 - -  m 2 + ie 

(1]o) 



670 Mannheim 

We note that the numerator of the massive Weyl propagator differs from 
the standard ~,~'p, + m form of the Dirac propagator by the absence of any 
mass factor m. Apart from the fact that at the poles k 0 is given by 
+_(-k2+ m2) ~/2 in equation (111) the kinematic structure of the numerator 
of the massive Weyl propagator is otherwise the same as that of the massless 
Weyl propagator. This missing rn factor instead appears in the numerator of 
a second propagator of the massive Weyl theory, viz., 

= [ d4k e ik''x-x'' imo~ (112) -i(OIT(eoj(x')eo,(x))lO) j (2~r) 4 k 2 _ m 2 + i e  

This latter propagator is nonvanishing because the massive Weyl theory is 
not invariant under the phase transformations of equation (101), and would 
thus yield additional contractions in the Feynman rules for interacting 
massive Weyl fields. 

7. FINAL REMARKS 

In looking back over all of Majorana's work in fundamental theory it 
would appear that Majorana was somewhat unhappy with Dirac theory, and 
in particular with the existence of negative energy solutions. Specifically, in 
his other well-known paper (Majorana, 1932) (which was written prior to his 
work on self-conjugate fermion fields) he had also made an attempt to 
address the negative energy question, by constructing a c-number theory for 
the electron which only possessed positive energy solutions, the infinite 
component wave equation theory. Historically, this work appeared at about 
the same time as the experimental discovery of the positron, indicating that 
in fact the electron was classified according to the D(1/2,0)~D(0,1/2) 
representation rather than according to an infinite-dimensional represen- 
tation of the Lorentz group, so Majorana's work was largely ignored. 
Nonetheless it constitutes an interesting theoretical alternative for classify- 
ing spin-l /2 particles, and we shall review it briefly now, because, as we 
shall see, it bears some similarity to Majorana's self-conjugate theory. 

To begin, we recall that a Majorana self-conjugate spinor satisfies 
q, = q,c. In the Dirac basis for the gamma matrices this leads to the same 
relation as the Weyl basis relation given in equation (19), viz., 

/ a) 1 b 

a t 

(113) 
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In terms of this spinor we construct six operators 

Mi j i -  D O  

i 
Mo, = ~- ~r0Ov, Dff 

(114) 

Now, unlike the previous fermion case, we instead take a and b to be 
operators that satisfy Bose commutation relations. In such a case we find 

M12 = �89 ( ata - b ib) ,  

M m = 4 ( a  *=-b  *=- a 2 + b2), 

M~ = 2 ( ab - atb t ) 

i (bfa - a tb )  M23 = �89 ( afb + bfa) ,  M31 = ~- 

Mo2 = �88 bt2+ a 2 + b2),  

(115) 

Using the commutation relations again we find that these six operators close 
on the Lorentz algebra for M~ given in equation (9). Since the operators are 
also Hermitian they thus provide us with an infinite-dimensional unitary 
representation of the Lorentz group. (Had we instead used Fermi anticom- 
mutation relations the angular momentum changing boosts would have cut 
off at a finite point because of the Pauli principle.) 

As well as the above six bilinear combinations of creation and annihila- 
tion operators there are four other combinations. We define them as 

F o = ~73'o~ = (a ta  + b*b +1)  

r ,  = ze r#~, = , ( ~ t , _  b* :+  ~'- - b : )  

i (at,. + bt., - a2 r2 = ~Tvf~  = - -~ - b 2 ) 

F 3 = ~3'3~ = - (afb t + a t )  (116) 

The significance of these four infinite-dimensional F~ is that they transform 
as a four-vector under the generators of equation (115), viz., 

[ M . . ,  to]  =-i(g,.or,,-g.or.) (117)  

Consequently, if we introduce an infinite-dimensional c-number column 
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vector, X, then its c-number equation of motion 

(iF~,a# - m ) x  = 0 (118)  

is immediately covariant. Equation (118) is known as the Majorana 
infinite-component wave equation. It differs from the Dirac equation in that 
the quantities F~, do not form a Dirac gamma matrix algebra, so that the 
components of X do not satisfy the Klein-Gordon equation. From equation 
(116) we see that F 0 is diagonal with all of its diagonal elements being 
positive definite. Thus equation (118) only possesses positive energy solu- 
tions, this being Majorana's original objective. Further, since the boosts 
change angular momentum by two half units the complete multiplet of X 
contains a tower of spins which take on all half-integer values. Thus the 
absence of one negative energy spin one-half particle requires instead a 
whole infinite tower of half-integer spin positive energy states. 

The Majorana equation suffers from a well-known disease, namely, 
that it also possesses spacelike solutions. In our notation this may be seen 
directly. Specifically we note that F 3 is Hermitian. If we solve equation (118) 
in a Lorentz frame in which only P3 is nonzero then after rediagonalization 
we will find that the solutions behave like P3 - + mZ, and thus correspond 
to spacelike vectors. [The corresponding situation for the usual Dirac 
equation is that ~,3 ~ of equation (2) is anti-Hermitian so that then we would 
obtain p~ - - m 2 to only allow timelike solutions.] 

We thus see that there are many parallels between Majorana's two 
attempts to eliminate negative energies. Both the infinite component theory 
and the self-conjugate theory are candidate theories for the classification of 
a spin-l /2 particle which are alternatives to Dirac theory. Both of them are 
based on Majorana spinors, one with boson quantization and the other with 
fermion quantization. Both contain (and need) an infinite number of 
degrees of freedom, one through being an infinite component c-number 
theory, and the other through being a second-quantized q-number theory. 
Finally both of them contain spacelike propagation, one through having 
spacelike solutions to the equations of motion, and the other through 
possessing a quantum number [N of equation (102)] whose conservation 
would require information being communicated between spacelike sep- 
arated points. Because of this last feature both attempts are perhaps a little 
troubling, but the full implications of the spacelike structures remain to still 
be explored. 

Apart from attacking the basic theoretical question of the general 
nature of fermions, Majorana's self-conjugate theory has also very recently 
come back into prominence because of developments in modem gauge 
theories. There are applications in both pure electroweak unification models 
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(Mannheim, 1979; 1980) and also in grandunification models (Frampton, 
1980). The central questions that are raised are whether the physical 
neutrinos are two-component or four-component, whether they are massive 
or massless, and if massive whether they acquire Dirac or Majorana masses 
or both, whether lepton number is a global or a local symmetry, and finally 
whether it is broken in the neutrino sector. There appear to be models to 
cover each eventuality, so we discuss here very briefly only a few ideas 
which have a more theoretical as opposed to phenomenological basis. 

The most interesting question regarding neutrinos is whether they 
possess two or four components. While there is as yet no experimental 
indication that the neutrino is a four component spinor (recall that even the 
observation of a nonvanishing neutrino mass may merely be an indication 
that the neutrino is a massive two-component Weyl spinor), nonetheless the 
use of the fight-handed neutrinos has some theoretical advantages. It was 
pointed out (Mannheim, 1979; 1980) that they could play a very useful role 
in SU(2)L  • SU(2)R x U(1)v extensions of the Weinberg-Salam theory. In 
such theories the U(1)v generator is the operator B v - L v, baryon number 
minus lepton number, so lepton number plays an explicit role. Breaking the 
theory by giving the right-handed neutrinos a Majorana mass (i.e., breaking 
as ~,rc~,R) exactly breaks the theory down to the (so far exact) 
Weinberg-Salam model. Thus the asymmetry implicit in starting with 
SU(2)L  • U(1) is completely removed in both the charged and neutral 
current sectors by spontaneously breaking the left-right symmetric theory 
according to only one specific term, a right-handed neutrino Majorana 
mass, which is both compact and elegant. The subsequent breaking of 
SU(2)L  • U(1) down to electromagnetism then produces the usual Weinberg 
mixing pattern for the neutral currents provided that the left-handed 
neutrinos do not also acquire a Majorana mass. To ensure this Mannheim's 
model retained a residual unbroken global current L v - N R = Lws ( = ~,xe 

e + UL'yXU L for the first family) which we recognize as the conventionally 
defined lepton number of the usual Weinberg-Salam weak interactions. 
Further, the conservation of this current also prevents the neutrinos from 
acquiring a Dirac mass so that the left-handed neutrinos are completely 
massless. The lepton number L v is thus only broken in the right-handed 
neutrino sector, and that is sufficient to produce all the standard 
Weinberg-Salam phenomenology while pushing the unwanted lepton num- 
ber violations (which lead to processes such as neutrinoless beta decay) into 
the so far unobserved right-handed sector of the theory. Moreover in such a 
picture the right-handed neutrinos need only acquire typical regular light 
fermion masses to avoid any conflict withpresent experimental phenome- 
nology. Thus we see the practicality of Majorana mass breaking in pure 
electroweak unification models. 
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Majorana masses are also prominent in grandunification models 
(Frampton, 1980). There, the usual baryon and lepton number operators (or 
linear combinations of them) are gauged with the Weinberg-Salam theory 
being embedded in some large grandunifying group. Baryon and lepton 
number are then typically broken at the superheavy 10 ~5 GeV mass scale to 
leave the Weinberg-Salam model as an approximate residual light symme- 
try. One of the most interesting situations occurs in the widely discussed 
SO(10) model. There the right-handed neutrinos acquire superheavy masses 
while breaking lepton number. After the complete symmetry breaking 
process there is no residual (global) symmetry at all and so the left-handed 
neutrinos are also obliged to acquire a small ( - eV) mass. The observation 
of such an effect would be a very low energy signal of lepton number 
violation. On the other hand grandunified models have been constructed 
which still retain Lws as a residual global symmetry (Mannheim, 1980, and 
references therein), so in these models the left-handed neutrinos are still 
completely massless and the right-handed neutrinos are not superheavy. 
Thus an experimental study of a possible Majorana mass structure for right- 
or left-handed neutrinos will eventually provide information about the 
nature and scale of lepton number violation. 
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