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Strong laws of large numbers (SLLN) for weighted averages are proved under 
various dependence assumptions when the variables are not necessarily inde- 
pendent or identically distributed. The results considerably extend the existing 
results. Weighted versions of the Marcinkiewicz-Zygmund SLLN are also 
formulated and proved under a similar set up. It seems that such results are not 
known even for independent and identically distributed random variables. 
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1. I N T R O D U C T I O N  

Let {X,,} be a sequence of  r a n d o m  var iables  (rvs) and  {a,,} be a sequence 
of posi t ive weights; put  , , --z-kffi l  ak and  T , , = A , 7 1 Z k f f i l  a k ( X k - - E X k ) .  
Using a result  of  C h a n d r a  and Ghosa1131 s ta ted  as T he o re m 2.1, we es tab-  
lish the a lmos t  sure convergence of  {T,,} to zero where {X, ,}  is A Q S I  or  
cp-mixing or  . -mix ing .  ( F o r  the defini t ion of  AQSI ,  see Sect ion 2.) O u r  
results extend cons iderab ly  those of  Jamison  et  al., 171 Prui t t ,  c91 Rohatg i ,  cl~ 
and E temad i J  51 

We also cons ider  the ana logues  of  Marc ink i ewicz -Zygmund  s t rong law 
of large numbers  ( M Z S L L N  in shor t )  for weighted averages  under  very 
general condi t ions ;  it appea r s  that  s imilar  results are not  k n o w n  even under 

the i.i.d, setup. 
All the results are s ta ted  in Sect ion 2 and  the proofs  are given in 

Section 3. 
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2. MAIN RESULTS 

Here we shall assume that the weight sequence {a,,} satisfies the 
following conditions: 

(a) A,, --* oo and a,,/A,, ~ O. 
(b) For all j~>l, ( j )  := {k >~ l: j - l < A J a ~ < . j } c { 1  ..... Kj} for 

some positive integer K. 

Remark 2.1. Assumption (b) is slightly stronger that the assumption 
that 

#{k>~l:AJak <<.j} <<.Kj, Vj>I1 (2.1) 

made in Jamison et aL (7) It will be clear from the proofs that Eq. (2.1) suf- 
fices in case the rvs are stochastically dominated by a rv X with E IX] < 
(with E IX]P< oo for MZSLLN). Finally, (b) is satisfied in the unweighted 
case and more generally, whenever {A,,/a,,} is increasing and Eq. (2.1) holds. 

Definition 2.1. A sequence {X,,} of rvs is said to be asymptotically 
quadrant sub-independent (AQSI) if there exists a nonnegative sequence 
{q(m)} such that q(m)--* 0 and Viv~j, 

P{Xi>s, X j> t } -P{X i>s}  P{Xi>t} <<.q(li-jl)%(s,t), s,t>O, 

P{X,<s, Xj<t} -P{Xi<s}  P{Xi<t} <~q(li-jl)fl~j(s,t), s, t < 0  

where ~,j(s, t) and flo.(s, t) are nonnegative numbers. 
This dependence condition is a useful weakening of the definition of 

AQI proposed by Birkel/1) The AQSI condition is satisfied by many mixing 
sequences (see Birkel t~) as well as by pairwise m-dependent and pairwise 
negative quadrant dependent sequences. 

We shall use the following result stated in Chandra and Ghosal/3~ 

Theorem 2.1. Let {X,,} be 
satisfying 

~o~ f-o %(s, t)ds dt < sup 0 0 ,  
i ~ j  ~0 aO 

Assume that 

SU r (i) P,,~ l~/---k= 1E ]Xk I/f(n))< 0% 

(ii) Z~= ,(f(J))-2 var(Xj) < ~ ,  

(iii) E,~ q(m) S'.)~=,,+ ~(f(j))-2 < 

a square integrable AQSI sequence 

fo fo 
sup flo.(s, t) ds dt < ov (2.2) 
i ~ j  --oo --o0 
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where {f(n)} is a positive sequence increasing to infinity. Then 

(f(n)) -1 ~ (Xk--EXk)oO a.s. (2.3) 
k = l  

We shall replace the condition of identical distribution by considering 
the functions 

and 

G ( y ) = s u p n  -I ~ P{IX~I>y} (2.4) 
n ~ l  k=l  

and 

f o G ( y )  dy<co (2.6) 

r o d ( y )  dy<  co (2.7) 

~. P{ IX,, I > A,/a,,} < co (2.8) 
n ~  1 ) 

It is easily observed that a single sufficient condition for Eqs. (2.6)-(2.8) is 

where 

f oG*(y )  c/y< co (2.9) 

G*(y) = sup. P{ IX,, I > y} (2.10) 
n > ~ l  

Condition Eq. (2.9) is equivalent to saying that {X,,} is stochastically 
dominated by an integrable random variable. Finally, in the unweighted 
case, d(y) = G(y). 

Theorem 2.2. Let {X,,} be an AQSI sequence satisfying 

rAflai fAilai 
sup aiaj Jo %.(s, t) ds dt < co 
i ~ j  fo ;o 

sup aiaj flij(s, t) ds dt < co 
i v~ j - -  A j / r  - -  Ai/gdi 

(2.11) 

(~(y)=supA,~-' ~ akP{IX~l >y}  (2.5) 
n ~ > l  k = l  

For various dependence conditions, the SLLN for the weighted 
averages will be proved under the assumptions 
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and ~,,~,= 1 q(m) ~)~ , ,+  1Aj - < oo. If Eqs. (2.6)-(2.8) hold, then 

A,71 ~" ak(Xk--EXk)~O a.s. (2.12) 
k = l  

The SLLN given by Eq. (2.12) also holds, as shown later, under the 
~o-mixing and ,-mixing conditions. (In this context, we follow the ter- 
minologies of McLeish ~8~ and Hall and Heyde 161 respectively.) 

Theorem 2.3. Suppose {X,,} is a ~0-mixing sequence with mixing 
coefficients {~0,,,} of size - 1 .  If Eqs. (2.6)-(2.8) are satisfied, then Eq. (2.12) 
holds. 

Theorem 2.4. If {X,,} is .-mixing and Eqs. (2.6)-(2.8) are satisfied, 
then Eq. (2.12) holds. 

We shall now consider the weighted versions of the MZSLLN under 
various dependence conditions, which can be, roughly speaking, described 
as follows: 

Let {X,,} satisfy suitable dependence conditions and let 

Assume that 

~ (y)  = sup a~/p a~/PP{IXkl > y }  (2.13) 
n ~ l  k [ k = l  

io yP-lG(y) dy < ~ (2.14) 

and 

Then 

fo~ dy < ~ (2.15) 

P{IX,,IP>A,,/a,,} <c~ (2.16) 
n =  1 

n! 

A,7 ~/p ~ a~/PXk--*O a.s. (2.17) 
k = l  
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if either 0 < p <  1 or 1 ~<p<2 and EX,,=O Vn~> 1. (Note that G ( y ) = G ( y )  
in the unweighted case and ~ ( y ) =  r  i fp  = 1. A single sufficient condi- 
tion for Eqs. (2.14)-(2.16) is 

f o y P - l G * ( y )  dy<oo  (2.18) 

where G*(y) is as defined in Eq. (2.10). This is the same as saying that 
{X,,} is stochastically bounded by a random variable X with E IX[ p < oo.) 

It is well known that in the unweighted setup, the case 0 < p  < 1 is 
trivial and the M Z S L L N  holds irrespective of  any dependence condition. 
Lemma 3.2 of Section 3 shows that the same is true in the weighted case 
also. 

From now oll, we shall assume that 1 <~ p < 2 and EX,, = 0 Vn >>. 1. 

Definition 2.2. A sequence {X,,} ofrvs is called asymptotically almost 
m, gatively associated (AANA) if there is a nonnegative sequence q ( m ) ~  0 
such that for all m, k i> 1, 

c o v ( f ( X , , , ) ,  g(X,,,+, ..... x . ,+k) )  

<~ q(m)(var(f(X,, ,))  v a r ( g ( X m  + 1 ..... X,,,+k))) 1/2 (2.19) 

for every coordinatewise increasing continuous function f and g so that the 
right-hand side of Eq. (2.19) is finite. 

The family of AANA sequences contain negatively associated (in par- 
ticular independent) sequences (with q (m)=0  Vm>~ 1). The condition 
roughly means that asymptotically the future is almost negatively 
associated with the present. For an example of AANA which is not 
negatively associated, consider X,, = Y,, + ~n Y,+ ~ where Yi, Y2 .... are i.i.d 
N(0, 1) and ot,,~O, 0%>0. 

Theorem 2.5. Assume that {X,,} is AANA with ~,,~=t q2(m)< cx3. If 
Eqs. (2.14)-(2.16) are satisfied then Eq. (2.17) holds. 

The following version of the MZSLLN can be proved for ~p-mixing 
sequences. 

Theorem 2.6. Assume that {X,,} is ~p-mixing with Z,,~=I ~ol/2(m) < 
co. Then Eqs. (2.14)-(2.16) imply Eq. (2.17). 

The crux of the proofs depends on a maximal inequality applied on 
the truncated variables. A version of the MZSLLN for AQSI sequences is 
also stated later. However, this conclusion is not as sharp as those in 
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Theorems 2.5 and 2.6 because the maximal inequality available here is not 
so powerful. 

Let 

v(n) = inf{k I> 1: Ak >~ 2"} (2.20) 

Since Ak---~ oo, v(n)< oo. Also ak/Ak---~ 0, SO without loss of generality, 
assume that ak/Ak < 1/2. Then it easily follows that 2"~< A,o, ~ < 2" + ~; con- 
sequently { v(n)} is a subsequence of integers. 

Theorem 2.7. Assume that {X,,} is AQSI with Y.,,~=, q(m)< oo and 
for all i # j ,  

f f,a,/,,, %(s , t )dsd t<D( l+EY~+EY~. )  1117 lip (AffaJ)Ul' ~ ~II~ 
a i a) ,o ~o 

l/p I/pfO(Aj/ay)l/p - a,  ~ A,/.,,,,p p,j(s.  t ) ds dt <~ D(1 + EY~ + EY]) 

where Y,, = a]/PX,,I{ IX,, I p <~ A,,/a,,} + A ],/PI{ X,, > (A,,/a,,)l/p} _ A] /PI{  X,, < 
-(A,,/a,,) I/p} and D is a constant. If Eqs. (2.14)-(2.16) hold, then 

As -I  ~ a~/rX~-+O a.s. (2.21) 
k = l  

provided log v(n + 1 ) = O(log v(n)). 

Remark 2.2. The hypotheses on ~u(s, t) and flij(s, t) may seem to be 
rather awkward. However, it is satisfied if ~,~= 1 q(m) < oo and 

P { X i > s , ~ . > t } < ~ ( l + q ( l i - j l ) ) P { X ~ > s } e { ~ . > t  }, s , t>O 

P{Xi<s,  X j < t }  ~<(1 +q( l i - j l ) )P{X~<s}  P { X j <  t}, s, t < 0  
(2.22) 

Relation Eq. (2.22) is much weaker than demanding that {X,,} is .-mixing 
with coefficients {q(m)}. 

3. PROOFS 

For the proofs of Theorems 2.2-2.4, we shall use the following result. 
Throughout this section, C will stand for a generic constant. 

Lemma 3.1. Let {X,,} be any stochastic sequence such that Eqs. 
(2.6)-(2.8) hold. Then 
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(a) •k~176 Ak-2akE(Xkl{lXkl<~Aa/ak})<~176 2 
(b) A21Z~=, akE( lXk l I{IXkl > Ak/ak } ) ~ 0, 
(C) sup,>~l A21~."~=l akEIXkl < OO 

Proof The expression in (a) is dominated by 

Y'. (j-I)-EE(X~I{IX~I<j}) 
j = l  k e ( j )  

oo ctD J t! 

-< crY, 2 1-3.2= I. ye/tx l> ay 
k e ( j )  1 --1 

<~C 1-3 ~ y E P{IXkI>Y} dy (3.1) 
I = 1  n = l  n- -1  j I k E ( j )  

Since for j r  ( j )  c~ ( j ' )  = ~ and ( j )  c { 1 ..... Kj}, the right-hand 
side of Eq. (3.1) is smaller than 

C 1-3 ~ yKlG(y)dy<<.C n -1 yG(y)dy 
I = 1  n = l  - - I  n = l  n - - I  

<<. C [o~ G(y) dy (3.2) 
Jo 

To prove (b), fix N>~ 1 and let n>N. Then the expression in (b) is 
equal to 

AT,' 2 a~I, ~ P{ IXkI>y}dy+A2  ~ P{JXkl>y}dy 
k =  1 k/ak k = N +  1 k/ak 

+A,? ~ ~ AkP{IXkl >&/a~} dy (3.3) 
k = l  

The first term in Eq. (3.3) is less than 

AT, t N( max ak) G(y) dy (3.4) 
I <~k<~N 

which goes to zero as n ~ ~ for any fixed N. The third term goes to zero 
by Kronecker's lemma. For the second term, let M be a given positive 
integer and N is so chosen that Ak/ak > M Vk > N. Thus the second term 
is dominated by 

A,7 ~ ak P{IXk[> y} dy<~ d(y)dy (3.5) 
k = l  
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Since M can be arbitrarily large, (b) is proved. The proof of (c) is 
elementary. [] 

Proof of Theorem 2.2. Put Y,,=a,,X,,I{IX,,I <~A,,/a,,} +A,,I{X,,> 
A,,/a,,}-A,,I{X,,< -A,,/a,,}. In view of Lemma 3.1(b) and Eq. (2.8), it 
suffices to show that 

A,7 ~ ~ (Yk - -EYk)~O a.s. (3.6) 
k = l  

Note that { Y,,} also form an AQSI sequence, i.e., Vir  

P{Y~>s, Y j>t} -P{Y~>s}  P(Yj>t} <~q(li-jl)e*(s,t), s,t>O 

e{Y,<s,  Y j < t } - P { Y , < s }  P{ Yj<t} <~q(li-jl)fl*(s,t), s , t<0  

where 

and 

., f~u(s/a~, t/aj), 
' 

f p,j(s/a~, t/aj), 
fiB(s, t)= (0, 

if 0 < s < A , . ,  0 < t < A j ,  

otherwise 

if - A i < s < 0 ,  - A j < t < 0 ,  

otherwise 

In view of Lemma 3.1(a) and (c), {Y,,} satisfies the hypotheses of 
Theorem 2.1 with f ( n ) = A , , ,  and so Eq. (3.6) follows. [] 

Proof of Theorem 2.3. Without loss of generality, assume that EX,, = 0 
Yn/> 1. Set Y,, = a,,X,,/A,,. In view of Lemma 3. l(b) and Kronecker's lemma, 
it suffices to show that 

•(Y,,-E(Y,,I{IY,,[<•I})) converges a.s. (3.7) 

By taking g,,(x)= min(x z, 1 ), d,, = 1 and r = 2, it follows from Lemma 2.9 
of McLeish (8) that we need to verify only 

~. (A,TZa~,E(X~,I{ IX,, I <~ A,,/a.} + P{ IX,, I > A./a.} ) < (3.8) 

In view of Lemma 3.1(a) and Eq. (2.8), the proof is now complete. [] 
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Proof of Theorem 2.4. Let Y,,=a,,X,,I{IX,,I<~A,,/a,,}. By Lemma 
3.1(a) and (c), the hypotheses of Theorem 2.20 of Hall and Heyde (6) are 
satisfied for the sequence Y,,-EY,, ,  n>~ 1, with b,,=A,,. Consequently, 
A,71 5".~= i( Yk - E Yk ) --+ 0 a.s. which leads to Eq. (2.12). [] 

The key idea of proving Theorem 2.5 is to establish the result, first for 
a suitable subsequence and use a maximal inequality (see Theorem A.1 of 
Appendix) to lift it to the whole sequence. The following analogue of 
Lemma 3.1 will be exploited. 

Lemma 3.2. Let 
(2.14)-(2.16). Then 

(a) 

(b) 

(c) 

(d) 

{X,,} be any sequence of rvs satisfying Eqs. 

Z~"=, A ~-2/ 'a~/"e(xH{ IX~ I" ~<.4Ja~} ) < o~, 

Y.~=, A~. '/l'a~/"E(lXkl I{IXkle <~AJak} )< ~ if 0 < p  < 1, 
A,T~n'Z],=, a~n'E([Xk[ z{Ix~l > AJa~})---, 0 if 1 ~<p<2, 

9/p 9 ,a -2/p x--v(,, + t)a7 ~ E(XT, I { iXkl ~, ~< Ak/ak} ) < oo, ~ ' n =  l "" v(n) / - - , k  = l 

A - 2 / p  X - v ( . +  II Z,,=,  ,,,,,) ~ k = ,  A~/"P{IXklP>Ak/ak}) < ~  

(Here v(n) is as defined in Eq. (2.20).) 

Proof Proof of part (a) is similar to that of part (a) of Lemma 3.1. 
Part (b) for 0 < p  < 1 can also be, proved analogously. To establish part (b) 
for 1 ~<p<2, split the expression in three parts as done in Eq. (3.3); we 
then need to verify 

lim limsupA,7 'm ~ a~/PE(lXklI{[Xklr>AJak})=O (3.9) 
N ~  n ~  k ~ N + l  

Given a positive integer M, find N>~I such that A J a k > M  Vk>N. 
Thus 

A5, )/r 
k f f i N + I  

a~/l'E(lX~.l I{ ]Xk[ p > Ak/ak} ) 

2  ' lxkl>y/d , 
j = M + ,  k<~n:Ak/ak<~ j d{ j _  l)l/p 

<~A,7 lip J ' /P  al/Pe{lxul> y dy (3.10) 
j = M + I  (J - 1 }I/p k 1 
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where m = min(n, Kj). Using the fact that 

( ,,k~__, .~l/. a l / p  ~ m l - I / p  a k )  <<.(Kj) ' - l Ie  A]I/p 

k = l  I 

the right-hand side of Eq. (3.10) is dominated by 

~=. f jllp 

C j~-'/" 
j =  A4 + I (J-- I)I/p 

G(y) dy <<. C yr - 'G(y) dy 

which goes to zero as M ~  m (i.e., as N ~  oo). 
To prove part (c), we write the expression as 

aZ E(XZI{IX~I"<~Aja~.}) E A-2/,. ""  v(n) 
k = 1 n: v(n + 1 ) ~ k 

<~ ~ a~/PE(X~.IIlXklP<~AJae}) 2 2-z"/e 
k =  [ n: v(n+ l]~>k 

Let n k =inf{n/> 1: v(n) >~k}. Then 

(3.11) 

(3.12) 

(3.13) 

-_,/p ~< ~-2/p ~, 2 -2,,/, << C2 -2,,kip <~ CAvl,,kl -~ CA (3.14) 
II: v(n+  l)>~k 

and so (c) follows from part (a). Part (d) is proved similarly. [] 

Proof o f  Theorem 2.5. It suffices to prove that 

A,7 'Iv ~. ( Y k - E Y k ) + O  a.s. (3.15) 
k = l  

where Y,, = a]/"X,,I{ IX, I [ p <~ A,,/a,,} + A]l/rI{ X,, > (A,,/a,,)l/p} _ A]/PI{X,, < 
~ t/p~ n --(A,,/a,,) j. Put U , = Y 1 , - E Y ,  I and T, ,=~k=~ Uk. By the proof of 

" C x''l EU~; thus Lemma Theorem 1 of Chandra and Ghosal, (4) ET;, <~ ~k= 
3.2(c) and (d) implies that 

v(n) 

A-~/" ~ U k ~ 0  a.s. (3.16) v(n) 
k = l  

For  m I> I, let n = n,,, be such that v(n) ~< m < v(n + 1 ). In  v iew of  Eq. (3.16), 
it now suffices to show that 

v(n + 1 ) 

Z m : = A ~ ,  I/p Z U k  ""~ 0 a . s .  (3.17) 
k =v(n )  + I 
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Fix e > 0. We have 

P{max(iZ,,,l: v(n)<m<v(n+ l ) )>e} 

~ < ~ P ~  max i i E 
n ~ l  ( v ( n ) < m < v ( n +  1) k = v ( n ) +  1 

v(n + I) 

<~C A-2/",,,,, Z (a~/"ECX~,I{IXkl"<<-Adak} 
n =  1 k =  1 

+ I" > ) (3.18) 

above, we have used the maximal inequality given in Theorem A.1 of 
Appendix. The right-hand side of Eq. (3.18) is finite by Lemma 3.1(c) and 
(d); thus Eq. (3.17) follows. [] 

Proof of Theorem 2.6. Let Y,i=a],t"X,,I{IX,,I" <~A,,/a,,}. As {~p,} is 
trivially of size - 1 ,  Theorem 2.7 of McLeish (8) implies that U,, := Y , -  EY, 
is a mixingale (difference) sequence with qs,, = q~,~z. Also Vi < j, 

E(U, Us) =E(U,E(UsIX , ..... X,)) <~s-, II u,  II2 II u,  II2 (3.19) 

Using straightforward arguments (see, e.g., Lemma 1 of Chandra tz)) we 
obtain "',I,,IA-~/PX~"("i~k=~ a~k/PUk --, 0 a.s. The rest of the proof can be completed 
as in Theorem 2.5 with the aid of McLeish's (8) maximal inequality. [] 

v r tw''' Yk) <~ Proof of Theorem 2.7. It is easy to see that a ~z..k=~ 
C~,~=I(I+EY~,), and so A-I/P~'~=~a~,/P(Yk-EYk)~O a.s. It now v(n) 
remains to show that Ve > O, 

where 
proof of Theorem 2.5. By Theorem A.2 of Appendix, 

P{max(IZ,,l: v(n) <m < v(n + 1)) >e} 

~<P {max (]k= ~ (Yk--EYk)[>eAl~,/Pll~ 
v(n) + 1 

<~ CA~,~(P(logv(n)) x \  ~og5 t-2 ~ 
k ~ vOI) + 1 

Hence Eq. (3.20) follows immediately from Eq. (3.21) and Lemma 3.2. 

• P{max(lZ,,l: v(n)<m<v(n+l))>e} <oo (3.20) 

Z,,=A,~l/p(logm) -l x "v~ t z..k=,,(,,,,,)+I~Yk--EY~) and n,, is as in the 

(1 +EYe)  (3.21) 

[] 
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Remark 3.1. A close examination of the proof of Theorem 2.7 yields 
the following variation of it: 

Assume that all the hypotheses of Theorem 2.7 are satisfied except that 
Eqs. (2.14) and (2.16) are strengthened to 

and 

I : y P - ' ( l o g  y)~- G(y) dy < (3.22) 

L (log n) 2 P{ IX,, I" > A,,la,,} < oo (3.23) 
t i m  [ 

respectively. Then 

A .  t" L a]."Xk'--,O a.s. (3.24) 
k = l  

If actually {X,,} are pairwise independent, then the strengthening 
Eq. (3.23) is not necessary since here we can use the truncation Y,, = a , X ,  
I{IX, , I"~A,la, ,} .  

The SLLN problem for weighted sums of pairwise independent and 
identically distributed rvs was studied extensively by RosalskyJ ']~ However, 
Rosalsky's ~t]) results and the current ones do not include each other. 

APPENDIX A 

Theorem A.I. Let Xj ..... 2",, be mean zero, square integrable rvs such 
that Eq. (2.19) holds for l ~ < m < k + m ~ < n  and for all coordinatewise 
increasing continuous functions f a n d  g whenever the right side of Eq. (2.19) 
is finite. Let A 2 x',,-~ q2(m ) and G k = E X  ~, k~> 1. Then 

P max >~e <~2e- '-(A+(l+A2)l/z)  2 tr~ 
{ l ~ < k ~ < n  i I k = l  

For a proof, see Chandra and Ghosal]  4~ (Theorem 1). 

Theorem A.2. Let X~ ..... X,, be square integrable rvs such that there exist 
numbers a i ..... aT, satisfying E(X.,+j + ... +- 'L.+.)  -*a.,+l + "'" +am+p. 
Vm, p. Then we have E(max i .< k .< ,(ZY= ~ Xi)- ) --~ ( ( log n 3 o g  3 ) + _, ,_, = 

The result is an extension of the well known Rademacher-Mensov 
inequality. A proof can be found in Chandra and Ghosal, Is~ (Theorem 10). 
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