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The aim of this paper is to investigate the asymptotic normality for strong 
mixing sequences of random variables in the absense of stationarity or strong 
mixing rates. An additional condition is imposed to the coefficients of interlaced 
mixing. The results are applied to linear processes of strongly mixing sequences. 
The class of applications include filters of certain Gaussian sequences. 
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1. I N T R O D U C T I O N  

Let (f2, K, P) be a probability space and let o~', .~ be two sub a-algebras 
of K. Define the strong mixing coefficient by 

. (~ ' ,  ~ ) =  sup [P(AB)-- P(A) P(B)[ 
A ~ . ,/. B e "J4 

(1.1) 

and the maximal coefficient of correlation 

p ( d ,  ~ ) =  sup Icorr(f,g)l (1.2) 

A strictly stationary sequence {Xi} i E z  is called ~-mixing if ~,, ~ 0 where 

~,, = ~(a(A",, i~0) ,  a(Xi, i>~n)) 
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It should be noted that in order for the central limit theorem to hold for 
a strictly stationary strong mixing sequence of random variables it is 
required the existence of moments of order strictly higher than two in com- 
bination with a polynomial mixing rate. (See Peligrad, ~ ~51 for a survey and 
Doukhan et al., ~7~ for a recent result.) 

In many situations the mixing rates are hard to estimate. Therefore it 
is interesting to replace the strong mixing rates by sufficient conditions 
imposed to some other dependence cofficients that might be in certain 
situations easier to verify. Papers by Bradley, ~2~ and Peligrad ~ 16-171 are steps 
in this direction. Also because of the applications in statistics and in other 
fields it is interesting to have a CLT for nonstationary strong mixing 
sequences. 

In this paper we prove several central limit theorems for strongly 
mixing sequences satisfying the Lindeberg condition and an additional 
assumption imposed to an interlaced mixing coefficient. For  some other 
nonstationary weak dependent sequences we mention among other results 
papers by Utev, ~81 Peligrad and Utev. 1~4~ 

For a stationary sequence { Ark} k ~ z denote by f i r  = a(Xi, i e T) where 
T is a finite family of integers. Define 

~,,* = sup ~(~r ,  .~s) (1.3) 

p,* = sup p (~ r ,  5as) (1.4) 

where these sup are taken over all pairs of nonempty finite sets S, T of Z 
such that dist(S, T)~> 17. 

According to Bradley ~41 for every 17 >~ 1 

%* ~ p,* ~< 21r~,,* 

Bradley 14~ proved in the context of strictly stationary random fields that the 
condition e,* ~ 0 as n ~ co contains enough information to assume the 
CLT without any additional rate or moments higher than 2. Miller ~1-'1 
analyzed the fourth moment of partial sums of such a random field not 
necessarily stationary, and proved the CLT for some estimators of spectral 
density for strictly stationary random fields. One of the results in Miller I ~3~ 
is a central limit theorem for block sums from sequences of strictly station- 
ary random fields satisfying a Lindeberg condition and uniformly satisfying 
p,* ~ 0 with no assumption of a mixing rate and no assumption of higher 
order moments. Bryc and Smolenski ~6~ found bounds for the moments of 
partial sums for sequences of random variables satisfying p ~' < 1. 
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In this paper we shall investigate the validity of CLT for strongly mix- 
ing sequences satisfying either p* < l or lim;,~ ~ p,* < 1. By the Remark 3 
in Bryc and Smolenski ~6~ we know that these conditions do not necessarily 

~ p,, - O. imply lim,,~ * -  
Moreover in some situations these coefficients, or closely related ones 

are easy to estimate. With the same notation as in Bradley ~3~ we denote by 

r,* = sup [corr( V, W)[ (1.5) 

where the supremum is taken over all finite subsets S, T of Z such that 
dist(S, T)>~n and over all the linear combinations V = Y ~ s a i X a  and 
W =  Y'4~rbiXi  . 

According to the proof of Theorem 2 in Bradley ~31 and the Remark 3 
in Bryc and Smolenski 161 one can see that if {Xk}k~Z has a bounded 
positive spectral density, i.e. O < m < f ( t ) < M  for every t one has 
i"* <~ 1 - m l M  < 1. 

For stationary Gaussian sequences the coefficients p,* and r,* are iden- 
tical (Kolmogorov and Rozanov~lll). 

As a consequence our results are easily applicable to filters 

~, , i=L, (x , ,  x ,+ l  ..... x,+,,, .)  

where the underlying sequence {X i} is stationary, strongly mixing 
Gaussian sequence which has a bounded spectral density which stays away 
from 0. When m,, = 0 for every n such a sequence satisfies p,* < 1 and when 
sup,, m, < co we have lim . . . . .  p,* < 1. 

The strong mixing property for a Gaussian sequence can also be 
expressed in terms of the form of the spectral density (Ibragimov and 
Rozanov] lm Chapters 4 and 5). 

Some of our results, Theorems (2. l ) and (2.2) do not assume stationarity 
and they deal with triangular arrays of random variables, {~,,,-, 1 ~< i ~< k,,} 
where k,,--, oo. 

In this context we shall define 

~,,k = sup o~(a(~,,i, i <~ S), a(~,,j, j >1 s + k))  (1.6) 
x>~ l 

and ~k = sup,, ~,,k. 
The array will be called strongly mixing if limk_ ~_ 0Zk = 0. Similarly we 

define 

P,,k-* ---- sup p( a( ~,,i, i e T), a( ~,,/, j e S) ) (1.7) 
k 
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where T, 
and 

S c { 1 . 2  ..... k,,} 

Peligrad 

are nonempty subsets such that dist(T, S)~>k 

/~' - -* (1.8) - sup P,,k 
I I  

2. RESULTS 

Our  first two theorems refer to triangular arrays of strongly mixing 
random variables which satisfy the Lindeberg condition. No mixing rate is 
required or the existence of moments of order higher than 2. An additional 
condition is imposed to -* p,, which cannot be deleted from the theorems not 
even in the strictly stationary case (see Peligrad t15~ for a survey and 
Doukhan et aL~7~). 

Theorem 2.1. Let {{,i; 1 <~i<~k,,} be a triangular array of centered 
random variables, which is strongly mixing and have finite second moments. 
Assume lim, ~ ~ -* " =  . p,, < 1. Denote by aT, var(Z~"__ 1 {,i) and assume 

1 k. 
s u p ~ ,  E E~], < oo (2.1) 

and for every e > 0 

Then 

1 kn 
Z E~,/(I~, , , I  > m,,) ~ 0 as n - -+  ov (2.2) 

a ~  i = l  

, N(0, 1) as n - o r e  (2.3) 
O" n 

Theorem 2.2. Assume {~,,;; 1 <~i<<.k,} is a triangular array of cen- 
tered random variables which is strongly mixing and satisfies the Lindeberg 
condition in Eq. (2.2). Assume in addi t ion /~ '  < 1. Then Eq. (2.3) holds. 

Motivated by the asymptotic behavior of linear processes we give next 
two corollaries to Theorems 2.1 and 2.2, respectively, where the main part 
of nonstationarity comes from noarandom normaliTers. 

Corollary 2.1. Suppose {Xk} is a strongly mixing sequence of ran- 
dom variables which is centered and { X~} is a uniformly integrable family. 
Consider the triangular array of  random variables {a,,kXk, I <~k<~n} 
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where a,,k 
Assume 

and 

are numerical constants and denote a~=va r (~7=  I a,,~X~). 

I a ,,k [ max ~ 0 as n ~ oo (2.4) 
1 <~k~<n O" n 

sup a,, - a;, k < oo (2.5) 
n k =  1 

Assume in addition lim,,~ -* p,, < 1. Then 

1 '~' 
- -  ~ a , ,k . .~  k , N ( 0 , 1 )  as n ~ o o  (2.6) 
O'n k ~ I 

Corollary 2.2. Assume {Xk} is a strongly mixing sequence centered 
such that {X~} is a uniformly integrable family. Assume Eq. (2.4) holds, 
and in addition/~* < 1 and infk EX~ > 0. Then Eq. (2.6) holds. 

In the strictly stationary case Theorems 2.1 and 2.2 give also new 
results: 

Corollary 2.3. Suppose { Xk} is a strongly mixing strictly stationary 
sequence of random variables which is centered and has finite second 
moments. Assume lim . . . .  p,* < 1 and a,~ --, oo. Then 

and 

O" n 

lim inf a,~/n > 0 (2.7) 

~ ,  N(0, 1) as n o ~  (2.8) 

Corollary 2.4. Suppose {Ark} is a strongly mixing strictly stationary 
sequence of random variables which is centered and has finite second 
moments. Assume p* < 1. Then Eqs. (2.7) and (2.8) hold. 

3. PROOFS 

The proof of Theorem 2.1 uses the following two lemmas. The first 
lemma gives bounds for the variance of partial sums in terms of a cofficient 
based on the correlation of sums. It is Lemma 1 in Bradley/3) 
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Lemma 3.1. Suppose 0 < r < 1. Suppose { XI, X2 ..... X,,} is a family of 
centered L2-integrable random variables such that for any nonempty subset 

S c { 1 , 2  ..... n} S * = { 1 , 2  ..... n } - S  

Then 

c o r r  

( l _ r ,  ~ ,  ( , x ~ ) 2  l + r  @ , 
(1 +,.) E X ~ E  Xk ~--(~_rkT EX; 

k = l  I 

The next lemma gives estimates of higher moments of partial sums. It 
is Lemma 3 in Bryc and Smolenski/6~ 

Lemma 3.2. Assume { X1, X,_ ..... X,,} is a family of centered random 
variables which are integrable in Lq for q a fixed real, 2 ~< q ~< 4. Denote by 
/ ~ = S u p s p ( ~ s , ~ s . )  where S c { 1 , 2  ..... n} and S*={1,2,. . . ,n}-S, and 
assume/~ < 1. Then there is a positive constant C depending only on q and 
/3 such that 

(@ q) (~  I n 9 k~q/2"~ e xk <.c glXkl"+ Z EX?<) ) (3.1) 
k 1 k = l  \ k = l  

In the next text we are going to use a variant of Lemma 3.2, namely 

Lemma 3.3. Assume { X,, X2 ..... X,,} are centered random variables 
in Lq, 2 ~< q ~< 4. Assume that there is a positive number p, 1 ~ p ~< n such 
tha t /~ ,  < 1 where/7* is defined by Eq. (1.8). Then we can find a constant 
C depending only on p, q and/7* such that Eq. (3.1) holds for this C 

Proof The proof follows by Lemma 3.2 after a standard reduction 
procedure. Denote by k the integer part of nip and write 

n p - -  1 

Ex ,=E  r,+y, 
i=l j=o 

where for every O<~j<~p- 1, Yj=Y.~=o X/p+j and Yp = Y'-'i'=kp+~ Xi. 
Now we apply Lemma 3.2 to each Yj, 0 ~<j ~< p -  1. Notice that for 

each j fixed the variables added in Yj satisfy fi ~< fi* < 1 and Lemma 3.2 
applies. Also Yp contains at most p terms. The result follows now by 
standard arguments. 
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3.1. Proof of Theorem 2.1 

The p roof  of  this theorem requires several steps. 

3.1.1. Normalizat ion and Truncation 

Denote  by ~,,i=~,,i/tr,, and notice that  var(~,.k"__, ff,,i)= 1. Wiih this 
notat ion the condit ions Eqs. (2.1) and (2.2) can be replaced by: 

kn 
E{~,iI( Iff,,il > e) ~ 0 as n --+ oo for every e > 0 (3.2) 

i = l  

.and 
kn 

sup ~ Eff~,,< oo (3.3) 
n i =  1 

Because of  Eq. (3.2) we can construct  a sequence of  positive numbers  
~,, --+ 0 such that  

kn 
Eff,~,I(IG;I > ~,,) --+ 0 as n --+ oo (3.4) 

i = 1  

We truncate  now at the level e,,. 
Define 

r/,,;= G;/(IG,1 ~<e,,)-  EG, I ( IG,  I ~<e,,) 

and 

Y,,; = C,,,I(IC,,d > e,,)-EC,,iI(lC,,d >g,,) 

Because lim,, fi,* < 1 we can find a positive integer p such that P-7 < 1. By 
Lemma 3.3 applied with q = 2 we have for some positive constant  C which 
does not  depend on n 

var 
( k,~_ ) k,, 

Y,,i ~ C "Z var(y,,i) 
i 1 i = 1  

kn 

~<2C ~ EC~,,I(IC,,,I >g,,) 
i = 1  

which converges to 0 when 11 --+ oo by Eq. (3.4). 
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Therefore the problem is reduced now to prove the central limit 
theorem for a triangular array of random variables {tl,,i, i ~< 1 ~< k,,} which 
is centered, and satisfies 

and 

Iq,,il~2e,, where e,,>O, e.--*O (3.5) 

kn ) 
var ( y" r/, i --, 1 as 11 --* oz (3.6) 

i = l  

kij 
sup ~. var q,,i< oz (3.7) 

n i= 1 

3.1.2. Block#1g Procedure 

At this step we divide the variables in big blocks and small blocks, the 
sum of the variables in big blocks will then be approximated by a sum of 
independent random variables while the sum of variables in small blocks 
are negligible for the convergence in distribution. This is a variation of 
Bernstein's method of dealing with weak dependent random variables. 

In the next text we denote ~,, =~(n)  and I x ]  denotes the integer part  
of x. With {e,,}, e,, ~ 0, as n--* oz constructed at the Step 1 fixed, we con- 
struct now a sequence of integers, {q,,} such that the following three 
convergences hold simultaneously 

q,, --* oz as 11--.oo (3.8) 

q,,e,,--.O as n--* oz (3.9) 

q , , g ( [ e 2 ' ] ) - - . 0  as 17--* oz (3.10) 

This is possible because e,, ~ 0 and ~,, ~ 0. Notice also that by Eqs. (3.5), 
(3.6), and Lemma3.3  without any loss of generality we can assume 
k,, --. oz. As a matter  of fact we can find a constant C such that k,, >1 Ce,;'-. 

For each positive integer 11, we define recurrently the integers: 

For  j = 0 , 1 , 2  .... put 

m o ---- 0 

m +,min{m m o  ,311, 
i=m2j -F I 

m2j+2 = m 2 j §  l + [~,~- 1 ] (3.12) 
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We denote now the consecutive sets of indexes 

Ij-- {k: mzj<k~mzj+l} 
J j =  {k: m2j+ , < k  <~m2u+ l)} 

(3.13) 

(3.14) 

for j = 0, I, 2 ..... It should be kept in mind that the integers mj and the 
sets Ij and Jj depend on n but the dependence will be suppressed in the 
notations. 

Notice that because sup,, x'*,, var t/,,; < 0% this procedure is going to ~.., i = I 

produce a finite number of blocks of indexes Ij. Denote their number by s 
The construction ends when either Jc or Ie+ ~ cannot be constructed, i.e., 
when either the number of the remaining variables after constructing I e is 
hfferior to [e,7 t ] or after constructing Je the remaining variables satisfy 
Y.~",,,,.,+~ vartl,,j<q,7 ~. After constructing le we put all the remaining 
variables, if any, into a last block denoted by Je- Denote now by 

Y,q = Z q. i  
ie lj 

and 

ZnJ = Z /~ni 
i~Jj 

for 1 ~<j~<d. 
Notice that d depends on n. Put d=d, , .  By Eqs. (3.13), (3.11), and 

(3.7) we can find a constant C~ which does not depend on n such that 

kn ~'n 

C, > ~ varr/,,,>t 2 Z var,l,,,.~>d.q,.' 
i = 1  j = l  iEI) 

Therefore the number of blocks, s satisfies: 

d,, ~C~q,,  (3.15) 

We estimate now the variance of 3-'.~L ~ Z,,j. Notice first that because of the 
construction of the last block we can find (by using Lemma 3.3 with q = 2) 
a constant C2 independent on n such that 

varZ,,e,~< C,_([t,,] - t  max Eq~,i+qT, l) 
1 ~i<~kn 

From this estimate we obtain by Eqs. (3.5) and (3.8) 

var Z,,e,, ---, 0 as n --, oo (3.16) 
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By Lemma 3.3 with q = 2 ,  applied twice and by Eqs. (3.12) and (3.14) we 
find some constants C3 and C4 such that 

i , , -  I ) / , i -  1 

var __~ Z, u ~< C3 ~'. var Z,u 
\ j  1 j = t  

f , I -  I 

<~C4 Y'. Y" var11,,i<~C4/',,e,71 max (varl/,,D 
j = l  i e J  s I < ~ i < . k .  

whence by Eqs. (3.15), (3.5), and (3.9) this variance converges to 0 as 
17 --* oz. This remark in combination with Eq. (3.16) gives 

( ' " )  = var }-" Z m --,0 as n--, oo (3.17) 
" , j  I 

This shows that Z~"~ Z,v is negligible for the convergence in distribution. 
Moreover by Eqs. (3.6) and (3.17) we get (,n): 

lim var Y'. Y,u =1 (3.18) 
n ~ :,z_ \ j  I 

Notice that by Lemma 3.1 since lim . . . . .  -* . p,, < 1 and the variables Ym are 
spaced apart by [e,7'] variables we can find by Eq. (3.18) two constants 
0 < K, < K2 such that for every n sufficiently large: (17 >~n0) we have 

fll 

0 < K , <  ~" var Y , j < K  t (3.19) 
. / =  ! 

Denote by a,, = (~J"__ l var Ym) j/-'' Now by a standard argument based on 
recurrence and the definition of the strong mixing coefficients for every t we 
have the following estimate: 

( " " )  Eexp(ita,,tY,,,) E exp ira,-[ l ~ = 1 r,,x --H~" ~ i61",fi([~,]-I]) (3.20) 

which converges to 0 as 17--* oo by Eqs. (3.10) and (3.15). Therefore the 
problem now is reduced to study the asymptotic behavior of a triangular 
array { Y,*, 1 ~< j ~< E,,} of independent random variables such that for each 
n and j the variable Y,* is distributed as Y,e and satisfies Eq. (3.19). 

3.1.3. The Proof of  tim Central Lhnit Theorem 
At this step we prove that the triangular array {a,,-~ Ym,*" 1 <~j <<.l',,} 

constructed at the Step 2 satisfies the C.L.T. 
Because var(Y~"_, a,71 * - - Y,v) - I we have only to establish the Lindeberg 

condition, namely: 
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For every e > 0 

g'n 

~. EY~vI(lr, ul>e)--.O as n - , o o  (3.21) 
j=l  

In order to establish Eq. (3.21) we shall estimate Z if" ~ EY~j. 
For every j fixed, 1 <~j ~< {,, we apply Lemma 3.3 with q = 4 to each 

Y,~i and we get, for a certain positive constant C5 which does not depend 
O13. n 

(z (z )') 4 4 2 - EY,,j <~ C5 Erl,,~ + Eq,, (3.22) 
\ i e l j  X i e l j  / / 

By Eqs. (3.11), (3.13), and (3.5) we have: 

Eq~,, <<. q, 7' + max E~l~,, <~ q,-~ ~ +4e~, (3.23) 
i e l j  1 ~ i ~ k  n 

Once again by Eq. (3.5) we have 

Ell~ i <<. 4~, Ell~,i (3.24) 

Now by adding the relations in Eq. (3.22) and by taking into account 
Eqs. (3.23), (3.24), and (3.7) we can find a constant K~, independent on n 
such that 

[n  

Z Ey4j<~Kt(e~,+q,? l) 
j = l  

which approaches 0 as n ~  oo by the construction of e,, and Eq.(3.8). 
Therefore Eq. (3.21)is proved and as a consequence 

fn 

a,71 ~ Y,,* ~ , N ( 0 , 1 )  as n ~ o o  
i = l  

This convergence together with Eqs. (3.20), (3.17), and (3.19) gives 

kn 

a,71 ~ q,,i ~ , N ( 0 , 1 )  as n--*oo (3.25) 
i = 1  

and the theorem will be proved if we show lim . . . .  a,, exists and equals 1. 

3.1.4. The Identification of  a,, 
At this step we prove that {(Z,*." ~ ~/,;)2} is a uniformly integrable 

family, which together with Eqs. (3.6) and (3.25) will imply by the 
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convergence of the moments in the Central Limit Theorem that 
lim . . . . .  a,7~= 1, which will complete the proof of Theorem 2.1. In order to 
prove this we shall estimate E(Z~'~pI,,i) 4. By Lemma 3.3 applied with q = 4 
for a constant Ct independent on n we have 

e 2 12 e,,:,, 
~ i=  1 / ",i= 1 

and by Eqs. (3.24) and (3.7) we can find another constant C2 such that 

s u p E  q,,~ < C2 
n i I 

and the result follows. 

Proof of Theorem 2.2. By Lemma2.1 and the fact that fi* <1 the 
condition Eq.(2.1) of Theorem2.1 is satisfied. Therefore we apply 
Theorem 2.1 and we have the desired result. 

Proof of Corollary 2.1. In order to prove this corollary we apply the 
Theorem 2.1 to the triangular array 

~ n i = q n i X i ,  1 <~i<~n 

By Eq. (2.5) and the uniform integrability of {X~} the condition Eq. (2.1) 
of Theorem 2.1 is satisfied. In order to verify Eq. (2.2) we estimate 

1 " 
~ a~,EX~I(IX~I >e la,,A-'a,,) 

~l-I i= I 

~< max EXTI(IXA >~ la,,A-'a.) ~ a,]#cr~ 
1 ~<i~<n i =  t 

which is convergent to 0 by Eq.(2.4), Eq.(2.5) and the uniform 
integrability of {X~}. Therefore Theorem2.1 applies and we have the 
desired result. 

Proof of Corollary 2.2. Under the condition p* < I, we can apply 
Lemma2.1 and as a consequence Eq.(2.5) is satisfied. Therefore 
Corollary 2.2 follows now from Corollary 2.1. 

Proof of Corollaries 2.3 and 2.4. By the proof of Theorem 3 of 
Bradley ~3~ with 2 = 0 ,  one can easily see that under the conditions of 
Corollary 2.3, the relation in Eq. (2.7) follows. The conclusion in Eq. (2.8) 
follows by stationarity from Theorem 2.1. Corollary 2.4 is a consequence of 
Lemma 3.1 and Theorem 2.2. 
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