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Butyrate and the Colonocyte 
Implications for Neoplasia 

OMAIDA C. VELAZQUEZ,  MD, FIOWARD M. LEDERER,  MD, and JOFIN L. ROMBEAU, MD 

Butyrate is produced in the colon of mamnlals as a result of microbial fermentation of dietary 
fiber, undigested starch, and proteins. Butyrate may be an important protective agent in 
colonic carcinogenesis. Trophic effects on normal colonocytes in vitro and in vit'o are induced 
by butyrate. In contrast, butyrate arrests the growth of neoplastic colonocytes and inhibits the 
preneoplastic hyperproliferation induced by some tumor promoters ilz vitro. We speculate 
that selective effects on G-protein activation may explain this paradox of butyrate's effects in 
normal versus neoplastic colonocytes. Butyrate induces differentiation of colon cancer cell 
lines. It also regulates the expression of molecules involved in cohmocyte growth and 
adhesion and inhibits the expression of several protooncogenes relevant to colorectal carci- 
nogenesis. Additional studies are needed to ewduate butyrate's antineoplastic effects in t'it'o 
and to understand its mechanism(s) of action. 
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Butyrate is a metabolic by-product of dietary fiber. 
Numerous studies have shown an inverse correlation 
between ingestion of a high fiber diet and the risk of 
colon cancer, thus leading many investigators to hy- 
pothesize an antineoplastic role for butyrate. This 
report reviews the effects of butyrate on normal and 
neoplastic colonocytes at the level of proliferation, 
differentiation, and gene expression. The known and 
hypothesized molecular events behind the mechanism 
of action of butyrate are detailed. The awfilable data 
are examined in relation to their implications for 
understanding, preventing, and treating colon cancer. 

Epidemiologic and animal studies suggest that di- 
cta U fat and protein may promote carcinogenesis in 
the colon, whereas increased fiber and complex car- 
bohydrates in the diet may protect against colon 
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cancer (1-6). Human case-control studies support 
this association (7). Intake of fiber-rich foods is in- 
versely related to risk of cancers of both colon and 
rectum (7). Colonic luminal butyrate concentrations 
are postulated to be a key protective component of 
high-fiber diets against colon cancer (5, 6). 

Butvrate is one of the short-chain fatty acids 
(SCFA) that are the C2-5 organic fatty acids. These 
compounds are formed in the gastrointestinal tract of 
mammals as a result of anaerobic bacterial ferrnenta- 
tion of undigested dietary components (8-1()) and are 
avidly absorbed bv the colonic epithelium (11), with 
butyrate being a preferred oxidative fuel (12). Dietary 
fiber is the principal substrate for the fermentation of 
SCFA in humans (13); however, undigested starch 
and protein also contributc to their production (14). 
In the mammalian hind,,ut~ , acetate, propionate, and 
butyrate account for 83% of SCFA with a total con- 
centration of approximately 100 mmol/liter (15-171 
present in a nearly constant molar ratio of 60:25:15 
(10). Of the three major SCFA, butyrate has the most 
profound effect on colonocyte growth and diff'erenti- 
ation. Propionate  has similar (somet imes  less 
marked) effects as butyrate in colonocyte growth and 
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differentiation, but acetate does not cxert these 
effects. 

The total concentration and relative mohu concen- 
trations of individual SCFA arc greatly influenced by 
dietary carbohydrates, protein, and typcs of fiber fer- 
mented (8-10, 18-21 ). Therefore, it may be possible 
to manipulate different dietary substrates to achieve 
desired amounts and ratios of SCFA, particularly with 
respect to butyrate, in order to influence the inci- 
dence of colonic disease. 

BUTYRATE EFFECTS ON PROLIFERATION: 
NOR51AL VERSUS NEOPLASTIC 

COLONOCYTES 

The dividing cells within the normal colonic nat> 
cosa are located in the mid- to lower portion of the 
crypt (22). The products of these dividing cells thcn 
migrate towards the surfacc of the ciypt and mature 
or fully differentiate. The process of carcinogenesis 
disrupts this orderly migration such that cells con- 
tinue to proliferate as they migrate towards the crypt 
surface, failing to show characteristics of normal dif- 
ferentiation and eventually invading the basement 
membrane (23-25). 

While butyrate decreases proliferation of neoplas- 
tic colonocytes in viHz) (26-31) and in vivo (32, 33), it 
increases proliferation of normal colonic epithelium 
in vio'o (34) and in vivo (35-37) (Table 1). 

Trophic Effects on Normal Colonic Epithelium 

Butyrate plays an important role in colonic mucosal 
growth and epithelial proliferation, a reduction in 
concentration of luminal butyrate by decreased deliv- 
ery of fermentable substrate to the large intestine 
induces colonic mucosal atrophy (36, 38). Instillation 
of SCFA into the colonic lumen induces mucosal 
regeneration as shown by increased weight, DNA 
content, and crypt length (37). Of the three major 
SCFA, these effects on colonic mucosal proliferation 
are thought to be mostly due to butyrate (36, 37). In 
an in vivo rat model, both intravenous and intraco- 

Ionic infusions of SCFA significantly reduced the 
mucosal atrophy associatcd with long-term total par- 
enteral nutrition (TPN) (39). Another in vivo study 
using rats maintained on TPN showed that infusion of 
a SCFA mixture (6(1:25:15: ace ta te -propiona te-  
butyrate) into the proximal colon significantly in- 
creased cohmic mucosal height and DNA (40). A diet 
lich in wheat bran fed to rats significantly increased 
the concentration of butyrate throt.ghout the colon 
(41). Of the SCFA examined, the colonic luminal 
concentration of butyrate had the strongest positive 
correlation to indices of cell proliferation. An in vitro 

study using human colonic mucosa demonstrated that 
propionate and more significantly, butyrate (10 
retool/liter), are trophic factors for the human cecal 
epithelium (42). 

Thc mechanisnas by which butyrate enhances nor- 
mal colonic mucosal proliferation are not well under- 
stood, but they appear to be indirectly and directly 
mediated. Butvrate exerts indirect systemic trophic 
effects as noted when colonic instillation of SCFA 
stimulates proliferation not only in colonic mucosa, 
but also in unexposed, adjacent colonic epithelium, 
ileuna and jejunum (36, 37, 43, 44). Moreover, infu- 
sion of SCFA into the colonic lumen stimulates 
growth in isohited, denervated loops of jejunum in 
rats (45). However, butyrate also directly affects pro- 
lifcration because it stimulates epithelial proliferation 
in short-term organ culture of hulnan colonic mucosa 
in the absence of circulating or neural factors (42). 

Inhibitory, Effects on Neoplastic Colonocyte Growth 

Butyratc inhibits DNA synthesis and arrests the 
growth of neoplastic colonocytes in the G I phase of 
the cell cycle (46). These effects occur in multiple 
cultured tumor cell lines (47). Tile concentrations 
used to produce these effects are not toxic to the cells. 
RNA and protein synthesis inhibition is minimal and 
cells lemain viable and functional. Butyrate inhibits 
the proliferation of LIM-1215 cultured colon cancer 
cells at concentrations of 1-10 retool/liter (28). Bu- 
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tyrate, in a concentration of 1 retool/liter, increases 
cell doubling time from 26 to 72 hr and decreases the 
cloning efficiency from l.lC,,: to ll.05c~. In this study, 
proliferation was only minimally inhibited by acetate 
and propionate. Similar inhibition of proliferation is 
noted in several other in vitro studies of many difffer- 
ent colorectal cancer cell lines (22, 26, 27, 29, 31, 48). 
Anchor-dependent growth is inhibited by, butyrate tit 
a concentration of 2 mmol/liter in HRT-18 cells, 
under conditions that do not affect cell viability (27). 
Removal of butyrate from the culture medium rapidly 
reverses the effects on proliferation. 

In rive evidence that butyrate selectively inhibits 
malignant colonocyte growth is limited (32). We have 
recently shown that butyrate inhibits colorectat carci- 
noma cell growlh in i'ivo in a model of liver metasta- 
ses in mice when administered as a continuous intra- 
venous infusion (2 j k ~ d a y )  for 7 days (33). 

Induction of Crypt Base Proliferation and 
Inhibition of Premalignant Crypt Surface 
Hyperproliferation 

Patients tit increased risk for colon cancer (eg, 
familial polyposis colt and Gardner's syndrome) have 
a "'premalignant" type of proliferation of the colonic 
epithelium with a shift of the proliferative zone from 
the crypt base to the tipper 40e2 of the ch-ypt (24, 25). 
In endoscopically obtained biopsies from normal hu- 
man mucosa, incubation with butyrate, tit a concen- 
tration of 1(} mmol/liter (which is tin in i'il'o physio- 
logic concentration), significantly increased colonic 
crypt ceil proliferation. The butyrate-induced prolif- 
eration was observed only in the basal 60Q of the 
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crypt, which is considered to be the zone of physio- 
logic cry, pt cell proliferation and nut a premalignant 
response (42). In follow-up in i'itro studies also using 
normal human colonic mucosa, deoxycholate-induced 
ci.ypt surface premalignant hyperproliferation was in- 
hibited by coincubation with butyrate (49, 50) (Fig- 
tires l a n d  2). 

In rive evidence that bt, tvrate inhibits colonic crypt 
surface hyperproliferation is limited. We have re- 
cently observed that crypt surface proliferation is 
decreased by butyratc (1() mmol/liter) and increased 
by deoxycholate ( 10 mmol/liter) in i'il'o in normal rat 
colon (51 ). 

BUTYRATE EFFECTS ON DIFFERENTIATION: 
NORMAL VERSUS NEOPLASTIC 

COLONOCYTES 

While butyrate induces differentiation of neoplastic 
colonocytes in vitro (26, 28, 30, 31) and in i'il'o (32), it 
either decreases or dues not significantly affect the 
expression of differentiation markers in normal 
colonocytes in i,itm (34) and in rive (52) (Table 1). 

Induction of Differentiation Markers in Neoplastic 
Coionocytes 

In Vitro Regulation of Expression of Brush-Border 
Hydrolases. Brush-border membrane enzymes such 
as alkaline phosphatase are markers of differentia- 
tion, and their expression decreases with neoplastic 
transl\~rmation (53, 54). Evidence obtained from a 
study of brush-border hydrolases in biopsies of. nor- 
real and neoplastic human colonic epithelium dem- 
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onstrate a low expression of brush-bordcr hydrolases 
in adenomas, suggesting till impairment in the differ- 
entiation process early in colorectal carcinogenesis 
(53). A specific form of alkaline phosphatase [human 
placental-like alkaline phosphatase (PLAP)] is in- 
duced by sodium butyrate in several colorcctal adc- 
nocarcinoma cell lines in culture (26, 27, 55-58). 
Butyrate increased the activity of alkaline phos- 
phatasc in 10 of 14 colon cancer cell lines, in magni- 

* . ) m  - 

tudes ranging from 2- to l,,~-told increases (58). A 
significant correlation between the induction of alka- 
line phosphatase activity and the degree of morpho- 
logic differentiation was noted. 

Studies with LIM-1215 cultured colon cancer cells 
incubated with butyrate at 1 retool/liter concentra- 
tions demonstrate increased activity of alkaline phos- 
phatase by 600%. Both the proliferative effects and 
the effects on alkaline phosphatase activity occurred 
at the same time in culture, therefore suggesting a 
possible link between butyrate's differentiating and 
antiproliferative effects (28). Associated with these 
effects on proliferation and differentiation were phe- 

hioh" notypic changes such as "e or cytoplasmic to nuclear 
ratios. In HT-29 cells, incubation with butyrate rap- 
idly induced enterocytic-Iike differentiation and 
growth inhibition while concomitantly inducing alka- 
line phosphatase mRNA (31, 48). 

In l, Ttro Regulation of Expression of SCLC Clus- 
ter-I Antigen. The expression of small cell lung can- 
cer (SCLC) cluster-I antigens are associated with 
increased differentiation in some adenocarcinoma 
cell lines. The effects of sodium butyrate on SCLC 
cluster-I antigen expression has been studied in three 
poorly differentiated colorectal adenocarcinoma cell 
lines (59). After four days of culture with sodium 

butyrate, tile expression of SCLC cluster-I antigen 
was induced in these cell lines and enhanced induc- 
lion correlated with increased levels of alkaline phos- 
phatase. 

Regulation of in Vitro Expression of Molecules 
Involved in Chemotherapy Resistance 

The effects of butyrate on the level of expression of 
the nmltidiug resistance gene (mdr-1), which are be- 
lieved to correlate with cellular differentiation, are 
variable (60, 61). Butyratc-treated SW60 human co- 
lon carcinoma cells have increased etflux of vinblastin, 
implying increased expression of the mdr-1 gene, 
howevex, another study using DHD-K 12/TRV hu- 
man colon cancer cells showed no effect on mdr-I 
gene product activity (62). 

Contrasting Effects on Normal Colonocytes 

The expression of differentiation markers de- 
creases in normal human colonic cells after a 24-hr 
incubation with butyrate. Tiffs suggests that butyrate 
does not enhance, and in fact may suppress, differen- 
tiation of normal colonocytes (34). When large bowel 
luminal butyrate was increased in rats by feeding a 
wheat bran-rich diet, no significant in vivo effects were 
documented on the expression of the colonic brush- 
border hydrolases, alkaline phosphatase, and dipep- 
tidyl peptidase IV (52). 

THE PARADOX 

The paradoxical effects of butyrate on normal and 
neoplastic colonocyte proliferation and differentia- 
tion is unlikely to be artifactual. We have recently 
observed that butyrate (10 retool/liter) induces prolif- 
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eration of the colonic crypt base (undifferentiated 
rapidly proliferating normal cells) while inhibiting 
proliferation at the crypt surface (differentiated nor- 
mal cells with low proliferation rates) in the surgically 
isolated normal rat colon in vivo (51}. 

Different metabolic profiles of neoplastic and nor- 
mal colonocytes may account for this paradox. Colon 
cancer cells in vivo switch from principally aerobic to 
anaerobic metabolism (63, 64). Failure to completely 
oxidize butyrate may lead to higher intraccllular con- 
ccntrations or accumulation of metabolic intermedi- 
ates as well as pH changes. Decreases in intracellular 
pH may enhance or inhibit gene expression when 
compared to normal cells (65). Alternatively, mutated 
proteins in the neoplastic colonocyte may have an 
altered specific affinity for butyrate. Similarly, normal 
colonocytes of different stages in the proliferation- 
differentiation continuum may express different iso- 
types of regulatory proteins that have varying intrinsic 
attinities for butyrate. Thus, butyrate may act as a 
cofactor to proteins in the transduction pathway or to 
the transcription regulatory proteins, thereby specifi- 
cally s t imulat ing or inhibiting certain cellular 
processes. 

REGULATORY EFFECTS ON MOLECULES 
INVOLVED IN CELLULAR GROWTH, 

ADHESION AND MIGRATION 

Increase in EGF Receptor Expression 

In human HCT-116 colon tumor cells, butyrate 
increases the cell surface epidermal growth factor 
(EGF) receptor expression in association with the 
induction of a more differentiated phenotype in some 
of the clones studied (2 mmol/liter butyrate for 96 hr) 
(66). While all clones had a butyrate-induced inhibi- 
tion of growth, the effect on alkaline phosphatase 
varied widely. These effects on EGF receptor expres- 
sion may be important in controlling cell growth in 
neoplastic colonocytes. 

Decrease in S19 and LBP and Increase in HLA-1 

The differential expression of S19 ribosomal pro- 
tein, laminin-binding protein (LBP), and human lym- 
phocyte antigen class 1 (HLA-1) mRNA associated 
with human colon carcinoma correlates in vitro to 
tumor progression and differentiation (67). Increases 
of S19 and LBP expression combined with decreases 
in HLA-I expression are associated with increased 
malignant potential in human colon carcinoma cells. 
Incubation of human colorectal carcinoma cells with 
sodium butyrate decreases levels of S19 and LBP 
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mRNA and increases levels of HLA-I mRNA expres- 
sion compared with untreated cells. These effects may 
be relevant in modulating cell adhesion and migration 
and thus malignant potential. 

Decrease in Urokinase 

Colon cancer cells secrete urokinase and express its 
receptors (68). The urokinase activity of these cells is 
greatest at thc invading surfacc of the tumor (69}. 
Butyrate is a potent inhibitor of urokinase secretion 
in LIM-1215 colon cancer cells as well as normal 
colon cells (70). This inhibition may affect the ability 
of carcinoma cells to inw~de and metastasize. 

Increase in GM3 Ganglioside 

Sialyltransfcrases are glycosyltransferases that add 
sialic acid to the nonreducing termini of oligosaccha- 
rides, forming molecules that are implicated in cellu- 
lar recognition and adhesion as well as neoplastic 
transformation and metastasis (71). One such type of 
molecule are the sialylated glycolipids, such as GM.~ 
ganglioside. Butyrate treatment of two colon cancer 
cell lines in vitro increased the synthesis of GM.~ gan- 
glioside while concomitantly indt, cing differentiation 
(26). 

Decrease in Adhesion to Laminin 

Laminin, a glycoprotein localized in the basement 
membrane, is involved in cell growth, differentiation, 
morphogenesis, migration, attachment, and cancer 
metastasis (72-78). Increased levels of laminin recep- 
tor correlate with tumor undifferentiation and meta- 
static potential (79, 80). Induction of differentiation 
of HT-29 human colon cancer cells with butyrate 
reduces the adhesion to laminin, possibly mediated by 
factors that modify galactosyltransferase (81). Undif- 
ferentiated human colon cancer cell lines bind pref- 
erentially to laminin substrate over fibronectin or 
collagen IV (81). Induction of differentiation with 
sodium butyrate decreases cellular adherence to lami- 
nin. Because laminin binding is partially inhibited by 
oe-lactalbumin [a "modifier of galactosyltransferase 
specificity" (81)], galactosyltransferase has been im- 
plicated in the binding of cells to laminin. These 
findings suggest an interaction between increased dif- 
ferentiation and decreased neoplastic cell binding to 
laminin. Increased cellular differentiation might de- 
crease accessibility to laminin binding protein on the 
basement membrane. 
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TABLE 2. SUMMARY OV EI:EL:C'rs OF BUTYRATE ON MOI.E('ULAR 
EVENTS REI.EVAN-f TO LARGE BOWEL Nt-OPl.ASIA* 

Gene (Tuomosome K#'ect o f  buo'mte 

FAP/MCC 5q Unknown 
p53 17p Unknown 
DCC I 8q Unknown 
c-ras 12p p21 inhibited 

(HT29 cells) 
c.~'rc pp(~(I, p5('~ inhibited 

(SW~2{) cells) 
c-rove Inhibited 
L/B/K alkaline phosphatasei" lp Activated/induccd 

(nlany cell lines) 

* Adapted and reproduced with permission (84). 
t Liver/l~one/kidnev alkaline phosphamse, the form expressed in 

colon. 

BUTYRATE-INDUCED REGULATION OF 
GENE EXPRESSION 

The multistage hypothesis of colon carcinogenesis 
is predicated on a steplike progression from normal 
epithelium, to hyperproliferative epithelium, to abe> 
rant crypts, to various stages of dysplasia (present in 
adenomas), to preinvasive, invasive, and metastatic 
carcinoma (82, 83). Current data suggest that this 
multistep process results, in part, from an accumula- 
tion of genetic alterations including the familial ad- 
enomatous polyposis coli-lnutated in colon cancer 
(FAP/MCC) locus on chromosome 5, the deleted 
colon cancer (DCC) gene on chromosome 18, the p53 
gene on chromosonae 17, and the ras protooncogene 
(82). Aberrations in the expression of many other 
protooncogenes have also been implicated, probably 
reflecting late events in the neoplastic transformation. 

The effects of butylate on the expression of FAP/ 
MCC, DCC, and p53 protooncogenes in colonocytes 
are not known, but inhibition in the expression of 
c-ras, N-ras, c-src, c-n0,c, and c-mvb genes have been 
reported in several colorectal cell lines m vitro. Table 
2 summarizes the major effects of butyrate on impor- 
tant molecular events relevant to colon cancer (84). 

Inhibition of the r a s  and s r c  Protooncogenes and 
Inhibition of p21 and pp60 

Butyrate suppresses the malignant transforming ac- 
tivity of a human N-ras oncogene in the human colon 
carcinoma cell line MIP 101 (85). This effect is asso- 
ciated with a more differentiated phenotype that in- 
cludes decreased growth rate, eliminated anchorage- 
independent growth, and decreased tumorgenicity. 
Under these study conditions butyrate treatment did 
not have a detectable effect on the overall structure, 
methylation, and level of expression of the human 
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N-ras gene from MIP 101 cells. It is possible that 
butyrate may activate a second gene that negates the 
action of the transforming N-ras gene. 

Butyrate may exert its antineoplastic effects via p21, 
a GTP-binding protein product of the ras family. In 
the fibroblast cell line NIH 3T3, p21 is needed for 
cells to lnove from the G~ to the S phase in the cell 
cycle, thereby initiating cell division (84). Butyrate 
exhibits a dose-dependent inhibition of the produc- 
tion of Ha-p21 in the HT-29 colon cancer cell line as 
well (29). 

PP60 ..... and p56 l~-k are tyrosine kinases that are 
enzylnatic products of the src family of protoonco- 
genes. PP60 ...... is expressed in both neoplastic and 
nornlal cells, whereas p56 Ick is expressed only in neo- 
plastic cells. In SW620 colon cancer cells, butyrate 
decreases the expression of protein kinase activity as 
well as the expression of pp60 c~'~" and p56 k'k. In 
addition to these effects, butyrate decreases prolifer- 
ation, decreases contact independent growth, and in- 
creases alkaline phosphatase expression (86). 

Inhibition of c - m y c  Protooncogene 

The protooncogene c-myc encodes a nuclear pro- 
tein that functions as a transcription factor as well as 
being involved in DNA replication (87). The c-,o'c 
gene expression is linked to cell proliferation, differ- 
entiation, and apoptosis and is down-regulated with 
induced differentiation. Colonic carcinogenesis is as- 
sociated with increased expression of c-no'c mRNA 
and protein in the absence of gene amplification or 
rearrangement (88-92). Increases of c-no,c protein 
correlate with growth rates in six human colon tumor 
cell lines examined in vitro. Butyrate significantly re- 
duced the levels of c-no'c in all colon cancer cell 
phenotypes treated (93). In HT-29 cells butyrate ar- 
rests cell growth early in the G~ phase of the cell 
cycle, in association with the emergence of markers of 
differentiation and down-regulation of c-rove mRNA 
expression (94). Sodium butyrate increases the block 
to transcriptional elongation in the c-rove gene in in 
vitro studies of SW837 rectal cancer cells. Thelefore, 
butyrate might regulate c-myc expression by regulat- 
ing transcriptional elongation in these cell types (95). 
All of the cells examined in this study had a normal 
c-no,c DNA sequence, indicating that the deregula- 
tion of c-no'c expression in colon cancer is not due to 
a cis mutation of this region. In vitro studies on the 
regulation of c-no,c expression by butyrate in the 
colon carcinoma cell line CaCo-2 show that butyrate 
induces a factor involved in c-n0,c mRNA degrada- 
tion (96). Therefore, it is also possible that posttran- 

D~t~estil'e Diseases and Sciences. I "oL 41, No. 4 C.1pril 199()) 



BUTYRATE. THE COLONOCYTE, AND NEOPLASIA 

scriptional modification of gene expression could be 
one of the major targets for the antiproliferative 
effects of butyrate. In this study, butyrate reduced 
c-myc mRNA levels after a 30-rain delay. In contrast 
to the findings in SW837 cells, butyrate appeared to 
affect c-rove expression at the posttranscriptional level 
in CaCo-2 cells, but not tit the level of transcriptional 
initiation or elongation. 

The c-los and c-jun Protooncogenes 

The ./tin and .los gene families encode for DNA 
binding proteins that dimerize to form the AP-1 tran- 
scription factor, which regulates multiple genes in- 
w)lved in cellular growth and differentiation (97). 
Butyrate induces c-lbs very rapidly tit a posttranscrip- 
tional level and more slowly sit a transcriptional level 
in human colon carcinoma CaCo-2 cells (98). This 
transcriptional induction does not result in increases 
of steady-state mRNA levels, indicating that butyrate 
can affect specific transcription factors important for 
cell growth and differentiation. 

Whether butyrate can affect gene expression in vivo 
remains to be thoroughly investigated. We have re- 
cently shown that butyrate increases c-tim but not 
c-fbs in normal rat colon in vivo, under the same 
conditions where the tumor promoter deoxycholate 
induces c-los but not c-jzm (51). 

Regulation of CEA Antigen Expression 

Incubation of several human colon cancer cell lines 
with sodium butyrate at 2 retool/liter concentration 
shows a considerable heterogeneity in the induction 
and expression of carcinoembryonic antigen (CEA) 
(99), Each of the cell lines studied show a distinct 
pattern of CEA antigen expression from a limited 
number of mRNA transfers. The induction of these 
CEA-related antigens began sis early as 24 hr after 
exposure and occurred primarily at the transcrip- 
tional level. 

Induction of Cytochrome Oxidase 

Expression levels of COXIII, a mitochondrial gene 
encoding for one of the 13 subunits of cytochrome c 
oxidase, are abnormally low in colon tumors, and in 
colonic tissue genetically at risk for neoplasia (100). 
In vitro studies using the HT-29 human colon carci- 
noma cells showed that incubation with butyrate in- 
creased cytochrome oxidase activity and the expres- 
sion of genes encoding for subunits of cytochrome 
oxidase (100). 
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Induction of Apoptosis 

In vitro studies using cell lines that originated from 
six colorectal adenomas and seven colorectal carcino- 
mas examined the ability of butyrate to induce apo- 
ptosis (programmed cell death) (101). Sodium bu- 
tyrate,  at physiologic concent ra t ions ,  induced 
apoptosis in two adenoma cell lines (RG-C2, AA-Ci) 
and in one carcinoma cell line (PC/JW/FI). Because 
escape from the induction of programmed cell death 
is important in colorectal carcinogenesis, butyrate 
may have an important regulatory effect on this pro- 
cess and thus explain, in part, why high-fiber diets 
appear to be protective in colon cancer. 

POSSIBLE MOLECULAR MECHANISMS OF 
ACTION FOR BUTYRATE EFFECTS ON 

COLONOCYTE GROWTH/DIFFERENTIATION 

Butyrate regulates the transcriptional expression of 
multiple genes (102) and has several effects on nu- 
clear proteins that could modify gene expression. 
These effects include: (1) hyperacetylation of core 
histones through the inhibition of histone deacetylase 
(103), (2) selective inhibition of phosphorylation of 
histones HI and H2 (104, 105), (3) selective increase 
in the phosphorylation of H3 histone (106), and (4) 
hypermethylation of cytosine residues in DNA (102, 
1(/4, 107). Butyrate also enhances the acetylation and 
phosphorylation of nonhistone proteins and increases 
ADP ribosylation (102, 105, 108-110). The signifi- 
cance of these varied molecular effects is not well 
understood and differs among the multiple in vitro cell 
lines studied. In general, histone hyperacetylation is 
associated with increased gene expression (111) and 
an increase in DNase I sensitivity (112). Hypermethy- 
lation of cytosine residues in DNA is associated with 
decreased gene expression. H1 histone phosphoryla- 
tion is associated with progression of the cells in the 
cell cycle (104). The induction or inhibition of gene 
expression produced by histone hyperacetylation, reg- 
ulation of phosphorylation in specific histones, and 
DNA hypermethylation are thought to be nonspecific. 
However, butyrate can also specifically modulate 
gene expression. For example, in CaCo-2 cells, bu- 
tyrate directly activates the PLAP promoter (113). 
Therefore, some investigators hypothesize that bu- 
tyrate acts as a cofactor for regulatory transcription 
proteins in the nucleus that are directly involved in 
gene expression (102) (see Figure 4 below). 

Alternatively, butyrate may act at the membrane-  
cytoplasm interface by interacting with the G- 
proteins, which are key components of the signal 
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transduction pathway and play an important role in 
cellular proliferation. Binding of the G-protein to the 
SCFA mevalonate ( o r  o n e  of its metabolic intcrme- 
diates), is required for nlenlbrane translocation and 
subsequent ras protein activation in yeast and humans 
( 114, 115). Altered mevalonate-binding alfinity in mu- 
tated G-proteins (G*) may explain the paradox of 
butyrate's different effects on proliferation in normal 
versus neoplastic colonocytes (Table 1, Figures 3 and 
4). 

We hypothesize that in tile normal colonocyte, 
mevalonate (derived from the metabolism of bu- 
tyrate) mediates the proliferative effect of butyrate 
(Figure 3). If true, inhibitors of 3-hydroxy-3- 
methylglutal,wl-CoA (HMG-CoA) reductase such as 
mevastatin, should block butyrate-induced growth in 
normal cells by inhibiting the synthesis of mevalonate. 
Additionally, exogenous mevalonate should restore 

the proliferative response. Studies arc ongoing to test 
this hypothesis. 

Mutated G-proteins arc the products of activated 
ras oncogenes, which are thought to play a role in 
early colorcctal carcinogenesis (116, 117). With a 
chan,,ee to anaerobic metabolisnl in the neophistic 
cohmocyte, butyrate may accumulate in the cyto- 
plasm. Mutated G-proteins may have altered meval- 
onate-binding affinity, and we speculate that butyrate 
competes with mevalonate binding to G* but results 
in an inactivated form of the G*-protein (Figure 4). If 
this hypothesis is true, then one would expect an 
additive or synergistic inhibito U effect of mevastatin 
and butyrate on proliferation in these transformed 
cells. Moreover, exogenous mevalonate should elim- 
inate the antiproliferative effects of both butyrate and 
mevastatin. We have recently observed that in MC-26 
murine colorectal carcinoma cells coincubation with 
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colonocvtcs. Evidence suggests that G-proteins require binding to mevalonatc or ;.1 
mevahmate intcrmediatc fl~r Iranslocation into tile mcmbranc and subsequent activation 
(I 14). The activated G-protein then stimulates tile activity of protein kinase C (PK(')  via 
Ihc activation of phospholirmsc C (PLC). Thc casc:.ldc of enzymatic phosphorylations 
resulting from the activation of PKC leads to ~.1 signal fl~r growth. Activated ras oncogcncs 
encode for mutated G-proteins (G':). With a switch to anaerobic metabolism in the 
neoplastic colonocyte, hulvratc may accumulate in thc cytoplasm. ( 1 ) We hypothesize that 
bulvratc may then compete with mcvahmatc (or a mcvalonate intcrmcdiate) in the 
binding to G ~, but the I~utyrate-O* combination results in an inactive form of the 
G-p ro t e in .  Alternative mechanisms havc bccn proposed (1112) as depicted: (2) butyratc 
may specifically modulatc gcnc expression as a cofactor to the transcription proteins, and 
(3) butyratc may nonspccifically modt, late gent  cxprcssion via chromatin changes induced 
by DNA mclhvlatitm and histonc acetvlation (102). 

mevalonate reverses butyrate's antiproliferative ef- 
fects and coincubation with mevastatin synergistically 
potentiates these antiproliferative effects (33). 

CONCLUSIONS AND FUTURE RESEARCH 

The many effects of butyrate on the colonocyte 
probably reflect its ability to both specifically and 
nonspecifically affect genomic expression. The study 
of butyrate's varied effects may help clarify the pro- 
cess of colorectal carcinogenesis at a molecular level. 
Future work is needed to evaluate the in cico balance 
between colonic carcinogenic substances and poten- 
tially protective agents such as butyrate, which can be 
modulated by dietary interventions. Additionally, fur- 
ther investigations are needed to identifi,., the mecha- 
nism(s) of action of butyrate and to identify its role in 

the mediation, prevention, and treatment of colon 
cancer. 
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