
Numerical Algorithms 13 (1996) 179-200 179

Numerical computation of polynomial zeros by means
of Aberth's method*

D a r i o A n d r e a Bin i

Dipartimento di Matematica, Universita di Pisa, via Buonarroti 2, 1-56127 Pisa, Italy
E-mail: bini @dm.unipi.i t

Received 16 September 1995
Communicated by ,~. BjOrck and M. Redivo-Zaglia

A mio padre

An algorithm for computing polynomial zeros, based on Aberth's method, is presented.
The starting approximations are chosen by means of a suitable application of Rouch6's
theorem. More precisely, an integer q >~ 1 and a set of annuli ,Ai, i = 1 , . . . ,q, in the
complex plane, are determined together with the number k~ of zeros of the polynomial
contained in each annulus Ai. As starting approximations we choose k~ complex numbers
lying on a suitable circle contained in the annulus A~, for i = 1 , . . . , q. The computation
of Newton's correction is performed in such a way that overflow situations are removed.
A suitable stop condition, based on a rigorous backward rounding error analysis, guarantees
that the computed approximations are the exact zeros of a "nearby" polynomial. This implies
the backward stability of our algorithm. We provide a Fortran 77 implementation of the
algorithm which is robust against overflow and allows us to deal with polynomials of any
degree, not necessarily monic, whose zeros and coefficients are representable as floating
point numbers. In all the tests performed with more than 1000 polynomials having degrees
from 10 up to 25~600 and randomly generated coefficients, the Fortran 77 implementation
of our algorithm computed approximations to all the zeros within the relative precision
allowed by the classical conditioning theorems with I1.1 average iterations. In the worst
case the number of iterations needed has been at most 17. Comparisons with available public
domain software and with the algorithm PA16AD of HarweU are performed and show the
effectiveness of our approach. A multiprecision implementation in MATHEMATICA T M is
presented together with the results of the numerical tests performed.

Keywords: polynomial zeros, Aberth's method, numerical test, starting approximations.

AMS subject classification: 65H05, 65Y20.

* Work performed under the support of the ESPRIT BRA project 6846 POSSO (POlynomial System
SOlving).

�9 J.C. Baltzer AG, Science Publishers

1 8 0 D. A. Bini / Numerical computation o f polynomial zeros

1. Introduction

Let
T~ ?/,

= = II(. - # 0, (,)
i = 0 i=1

be a polynomial of degree n having coefficients in the complex field C and zeros
o~i, i = l , . . . , n .

The problem of approximating the zeros ai, / = l , . . . , n , of p(x) given its
coefficients, is a classical problem in pure and applied mathematics which has re-
ceived a growing interest particularly for the computational and numerical issues
strongly related to its solution. In the wide literature on this problem (see the ex-
cellent bibliography collected in [31]) we may find contributions on the theoreti-
cal analysis of the complexity of approximating polynomial zeros [4, 36, 37, 39,
41], as well as more concrete numerical algorithms for their computation [1, 3, 10-12,
16, 18, 21-24, 26, 27, 29, 30, 36, 38, 39, 43-45]. On the latter subject we refer the
reader also to GAMS, the Guide on Available Matematical Software, whose informa-
tion can be obtained by means of anonymous ftp at http://gams.nist.gov.

Among analytic algorithms a certain interest has been devoted to Durand-Kerner
and Aberth methods [l, 11, 12, 27, 44] particularly for their good features in a parallel
model of computation. In fact, these methods allow the simultaneous approximation
of all the zeros. These methods have been widely analyzed in the literature (see [3, 9,
14, 15, 18, 19, 28]), and some implementations have been proposed in [9, 14] and in
the SLATEC library (see GAMS). The methods of Aberth and Durand-Kerner have
local superlinear convergence to simple zeros and local linear convergence to multiple
zeros.

Let us denote x~ h:), i = 1 , . . . ,n , the set of approximations to the n zeros of
p(x) at the kth step of the algorithm. Then the Durand-Kemer iteration is given by

_(~+,) (k) p(zl k))
.T i ~-~ ,T, i ,~ rx(~) ~.k) ' i 1 , . . . ,n , (2)

an 1 - I j = l , j # i k i - ,T)

whereas the Aberth iteration is given by

(k) , (k)) :~(k+i) = :~Ik)
i

1 - k))) E } ' = , , j #)
(3)

In this paper we present an implementation of Aberth's method for the simultaneous
approximation of all the zeros in floating point arithmetic with a fixed machine pre-
cision (sections 5 and 6), and draw the general lines of a multiprecision algorithm
based on both Aberth's and Durand-Kerner 's iteration (section 7), which rely on the
following tools:

1. A new criterion for selecting initial approximations to the zeros, which is based
on a suitable application of Rouch6's theorem (section 2).

D. A. Bini / Numerical computation o f polynomial zeros 181

2. A formula for the computation of the value p(x)/p '(z) which avoids overflow
problems (section 3).

3. A criterion for stopping the iterations, based on a rigorous backward rounding
error analysis, which guarantees that each computed approximation is the zero
of a "nearby" polynomial (section 4).

4. A guaranteed a posteriori error bound on the approximation error, i.e., for each
approximation xi to c~i, a real positive machine number ri is provided such that
]xi - oq] < 'rilxil (section 4).

5. The property of quadratic convergence of the mean [15] of the Durand-Kerner
iteration (used only for the multiprecision algorithm, section 7).

Concerning the criterion for selecting starting approximations, we first consider a
method, based on Rouchd's theorem, for computing an integer ~', 2 ~< ~" ~< n, a set of

integers 0 = kl < k2 < " < k4 = n, and a set of radii sk.~, tk~, 0 ~< s~ < t~,, i =
1, . . . ,~ ' , so = 0, g,. = +oo, such that the open annulus {z E C: sL. ' < Izl < t~,} of

center 0 and radii si:~, t~, contains no zeros of the polynomial p(z) as well as of any

polynomial c(x) E 7~(p) --= {~']=objxJ: [bj[= Jail, j = 0 , . . . , n } , for i = 1, . . . ,~ ' ,
while the closed annulus Ai = {z E C: tk~ ~<]z I ~< s~+,} of radii tk, and sk,+~

contains exactly ki+l - k'/ zeros of p(x), as well as of any polynomial c(x) E 7~(p),
for i = 1 , . . . , ~. Then we propose a cheaper criterion, based on the above technique,
for selecting initial approximations distributed along different circles in such a way

that each annulus Ai contains ki+l - k i approximations. Our criterion is defined by
the following steps:

I. Compute the upper envelope of the convex hull of the set {(i, log Jail): i =
0 , . . . , n}, and denote 0 = hi < k2 < - " �9 < kq = n, the abscissas of the vertices

of this set.

2. Compute
aki_l I/(ki-ki_~)

= i = 2 , ,q.
Uki ak i ' � 9

3. For i = 1 , . . . , q - 1 select ki+l - ki points of moduli uk~+~, that is, put

k,+j =u~+~exp ki+l - ki j + - n + ~ i ,

j = 1 , . . . , k i + l - k z , i = 1 , . . . , q - I ,

where i is the imaginary unit such that i 2 = - l , and a is any nonzero number.

Concerning the computation of p(x)/p~(x) by means of the Ruffini-Horner rule,
we observe that overflow problems are very likely whenever]x I > 1 and the degree n
of the polynomial is very large. For this reason the computation of p(x)/p '(x) is re-
duced to the computation of pR(y)/p~R(y) for y = x - I , where p R (X) = ~_,in=o a n - i X i.

182 D. A. Bini / Numerical computation o f polynomial zeros

Moreover, we prove the backward numerical stability of the Ruffini-Horner rule even
for complex polynomials, deduce from this property the efficient stop condition

Ifl(p(x)) [< n(s(Ixl)),
'/1.

s (x) = ~-'~ [a.i](1 + 4 i) ,
i = 0

(4)

where fl(-) denotes the actual computed value in the floating point arithmetic endowed
with the machine precision # (# = 2 .53 for the IEEE arithmetic), and finally obtain
the following guaranteed a-posteriori error bound

Ifl(p(zi))l + ~fl(s(Ixil))
I.vi - c~il <~ r i , ri = 'n,

I l f l (p ' (md)l - fl(s'(Ix l))l"

In the light of the result [33], we prove that if the stop condition (4) is satisfied for
x = ~ then there exists a polynomial ~'(x) = y ~ _ o - d i z i such that 18(~) = 0 and
a,i = a / (1 + e i) , le l < 2(1 + 4i)#, i = 1 , , . . , n .

The algorithm that we obtain in this way, implemented in Fortran 77 in floating
point arithmetic, resulted to be very robust and numerically stable. Unlike the available
software, it allowed to approximate successfully all the zeros of polynomials of very
high degree (greater than 20,000) within the precision guaranteed by the conditioning
theorems, and to deal with very extreme situations like polynomials with very large
and very small coefficients where the normalization by the leading coefficient would
generate an overflow condition, and polynomials having some zeros which are too
large to be represented as floating point. The situations where our algorithm may
fail are extremely unlikely and are detected by the code itself by means of warning
messages.

The iteration (3) has been implemented in a Gauss-Seidel style, furthermore,

at each step of (3) only the components x~ ~+l) for which the condition (4) is not

satisfied for z = x} ~:) are updated. The program stops if either (4) is satisfied for

x = x} k), i = 1 , . . . , n, or if the number k of iterations exceeds the limit of 30.
The algorithm delivers n approximations xi, i = 1 , . . . , n, to the zeros c~i to-

gether with n relative error bounds ri , i = 1 , . . . ,n , such that Iri - c~i[< r i l x i [,
and a vector of Boolean components giving information about the reliability of each
approximation and of the associated error bound.

The storage required by our program is that needed to store the n § 1 input
coefficients, the n output approximations of the zeros, the n radii which bound the
errors and the boolean vector. Moreover, two auxiliary real vectors of n-I- 1 components
are used.

The cost of each iteration performed on a single component is 24n + O(1) real
arithmetic operations (ops), where we used the weight 2 for complex additions and
the weight 6 for complex multiplications and reciprocations.

In the numerical experiments performed with 1000 polynomials having randomly
generated coefficients and degrees 10, 20, 50, 100, 200, the number of iterations for
each computed zero has been at most 16 and its average value has been l l.1.

D. A. Bini / Numerical computation of polynomial zeros 183

We performed further numerical experiments with specific polynomials, having
ill-conditioned zeros, large degree (up to 25,600) or large coefficients. In all the cases
the output precision reached the maximum value allowed by the classical conditioning
theorems [17, 24].

We compared our program with the programs CZERO of the library NAPACK
(Jenkins and Traub algorithm), CPZERO of the library SLATEC (Durand-Kerner's
algorithm), available at the URL address http://netlib.belMabs.com/netlib, and with
algorithm PA16AD of the Harwell library. Our program resulted to be faster than
CZERO and CPZERO, and comparable with PAI6AD in terms of CPU time. On the
other hand, PA16AD as well as CPZERO failed to compute the zeros for several test
polynomials due to overflow, more specifically in the cases of degree greater than 850
and in the cases of polynomials with large coefficients. CZERO failed in the case
where the normalization performed in order to reduce the polynomial in monic form,
leads to overflow conditions.

Finally, in section 7 we outline the features concerning the preliminary multi-
precision implementation of our algorithm performed in MATHEMATICA TM. In this
multiprecision version the program delivers approximations of all the zeros within the
precision requested by the user and dynamically adjusts the precision of the floating
point arithmetic to the numerical conditioning of each zero. In this way no waste of
computational effort is done and the property of quadratic convergence of the mean
exploited by Durand-Kemer ' s method is used to avoid linear convergence in the case
of multiple or clustered zeros.

We report a few results of this implementation which show the efficiency of our
approach. We refer the reader to the paper [5] for further improvements and for a
more efficient implementation of this algorithm. The Fortran 77 code is available on
the web at the URL address http://netlib.bell-labs.com/netlib/numeralgo/.

2. Choosing the starting approximations

The choice of the initial points .(0) i = 1, n, for starting the iteration (2) or (3), X i ~ �9 . .

is rather delicate since the number of steps needed by the iterative method to reach a
given approximation strongly depends on it. In [14] several criteria for choosing the
initial approximations are analyzed, in [1] the Aberth iteration is started by selecting
n equispaced points on a circle of center 0 and radius r, where r is an upper bound to
the moduli of the zeros. In [19] a more involved procedure is introduced for selecting
a radius r which yields an intermediate value between the maximum and the minimum
modulus of the zeros. These criteria of selecting the starting points are inadequate
in the case where the polynomial p(x) has zeros with large moduli and zeros with
small moduli at the same time. Indeed, in this case it is not possible to choose good
approximations to all the zeros by fixing a single circle.

Unlike the criteria for choosing the initial approximations introduced in [1, 14]
and [19], our criterion performs this choice by selecting complex numbers along
different circles and relies on the result of [35]. We first recall the following tool for
locating the zeros of rational functions [40].

184 D. A. Bini / Numerical computation of polynomial ze#vs

Theorem 1 (Rouch6). Let f (x) and g(x) be rational functions which are regular in a
simply connected bounded domain D and on its boundary F, and suppose that

If(:)l > r.

Then f (x) and F(x) = f (z) + 9(x) in D have the same number of zeros, counted
according to their multiplicity.

We need also the following localization theorem [24].

Theorem 2. Let p(x) = y~=oakX k be the polynomial (1) having zeros a l , . . . , c~,.,
and such that a,~, ao # O. Then we have

]o~i[~< max {la, olanl, I + laJla, , I , . . . , i + la,~-,/a,,I},

[c~-i I ~< max {laTUa01, 1 + la~/ool , . . . , l + la , - , /~01},

f o r i = 1 , . . . , n .

Now assume that ak ~ 0 and put f (x) = ak xk, 9(x) = p(x) -- f (x) . If r > 0
is such that

I k kl > - a k x k l for I.~1 = ~, (5)

then, from theorem 1 it follows that the polynomial p(x) has k zeros in the open disk
C(r) = {x E C: tzl < v} of center zero and radius r.

Since
71,

ak' kl-< ra Jl' l
i = 0 , i#k

then any Ok > 0 which solves the inequality

n

laklO k > ~ la~lO ~, (6)
i=0, ~#k

provided it exists, is such that p(x) has k zeros in the disk C(Ok). Therefore we
restrict our attention to the inequality (6).

Indeed, (6) can be more easily manipulated than (5), on the other hand, by
restricting our interest to (6), we may lose solutions of (5). In other words, the infor-
mation that we recover from (6) is weaker than that obtained by (5), in fact it concerns
localization properties shared by any polynomials c(x) E "P(p) = { ~ ' ~ 0 bi x i Ib~l =
lail, i = 0 , . . . , n}. This information is strict if it is referred to all the polynomials in
the class ~(p) , as is shown in the following

Theorem 3. Let Ok be a positive solution of (6), then any polynomial c(x) E 79(p)
has k zeros in the disk C(Ok). Moreover, if Ok solves the equation lakl0 k --
~n--o, i#k lail Oi then there exists a polynomial c(x) E 79(p) having a zero on the

boundary of C(Ok) and C(Ok) contains either k or k - 1 zeros of c(x).

D. A. Bini / Numerical computation of polynomial zeros 185

Proof The proof of the first part of the theorem is trivial. The proof of the second
part follows from remark 1. []

Observe that any solution Ok of (6) (if it exists) satisfies the condition O~[ak[>
0 la l for any i # k, that is,

ai l / (k- i) aj l / (k - j) ,
- - < O k < - - i < k < j .

I a k I l a k I
(7)

Whence we obtain the inequalities

uk <Ok < v k , k = O , . . . , n , (8)

where

u k = m a x a i l/(k-i), k = 1 , . . . , n ,
i<k a k

v k = min ai l/(~:-~) - - , k = O , . . . , n - 1 ,
i>k, a~r a k

/(u 0 = l l + m a x - - ,
i>0 a 0

v n = l + m a x a---L/ ,
i<n art

(9)

and the expressions for u0 and Vn hold in the light of theorem 2.
From (8) it follows that if uk ~> vk then there exist no positive solutions to

equation (6). Moreover, for k = 0 and k = n there exists only one positive solution
to the equation

n

[ak[O k - ~ lail O~ = o, (10)
i=0, ir

which gives, for k = n, the radius of the circle containing all the zeros of p(x)
(compare [24]).

As pointed out in [35], if 0 < k < n then (10) can have either no positive
solutions or two positive solutions. Below we give an inductive proof of this fact.

Theorem 4. Assume that ao, an # O. If (10) has a solution for k 7 ~ 0, n, then it must
have two solutions, counted with their multiplicity, and they belong to the interval

[uk, vk].

Proof First observe that the number of positive solutions is even. In fact, the contin-
uous function in (10) is negative at zero and at +ee . Moreover, if ak = 0 there are no
positive solutions of (10). Now, let us proceed by induction on k. For k = 1 there are

186 D. A. Bini / Numerical computation of polynomial zeros

two solutions, in fact, they are given by the intersection of the straight line of equation
y = [al [x and the convex function of equation y = ~ - - 0 , i#~: [ai[xi (observe that the
second derivative of the latter function is positive for x > 0). For the inductive step
assume that for k = h, 1 < h < n - 1, the number of positive solutions is either 2 or
zero and prove it for k = h.+ 1. Consider the case ak : / 0 , since otherwise the number
of solutions of (10) would be zero. If for k = h,+ 1 there were more than 2 solutions,
these would be at least 4. Therefore the first derivative of the function in (10) would
have at least three positive zeros. This contradicts the inductive assumption since
the derivative of (10) for k = h + 1 has the same representation of (I0) where /,: is
replaced by h and aiO i by iai Oi- l . []

Consider the case where (10) has two positive solutions tA:, sk such that uk ~<
te < sk ~< vjc, then (6) is satisfied for tk < 0 < sk, consequently (5) is satisfied for
r = 0. Therefore from Rouch6's theorem we may deduce that the polynomial p(x) ,
as well as any polynomial c(x) E 7)(p), has /v zeros in the closed disk of radius t~:
and no zeros in the open annulus determined by the disks of radii t~: and sk.

Remark I. From theorem 4 it follows that if (10) has two positive solutions tk < sk,
then the polynomial c(x) =]ak[x k - ~-~.in=o, i#k [ai[xi E 79(p), has k zeros in the disk

C(r) for t~: < r < sk. Moreover the positive zeros tk and sk lie on the boundary of
C (t k) , C (s k) , respectively. This proves the second part of theorem 3.

Theorem 4 allows us to recover important information on the localization of the
zeros of p(x) . In fact, we have the following result [35].

Theorem 5. Let 0 = E l < ~2 < " ' ' '~ ~0 • TL be all the values of k for which (10)
has a positive solution, and let so = s~.~ < tk~ - < s~2 < .. �9 < t~o_~ < sko - ' < t~o = tn

be these solutions. Moreover define to = 0, Sn = +oe. Then, any polynomial

c(x) E "P(p) has k i + l - k i zeros in the closed annulus Ai = {z E C: s~, ~< [z[~< t~+~}

of radii s~ , t~. +,, for i = 1 , . . . , ~ ' - 1, and no zeros in the open annulus of radii

t~.~, s~.~, for i = 1 , . . . , q'.

Observe that the inclusion results expressed in theorem 5 are strict if referred to
the class "P(p). In fact, as can be easily seen, there exist polynomials c(x) E "P(p)
having zeros on the boundary of the annuli of radii s~ , t~.+. Moreover, it is proved

in [35] that the set made up by the zeros of all the polynomials c(x) E 7)(p) coincides
0-1 with Ui=l .Ai.

These inclusion results can be used for determining a set of starting pAoints for

Aberth's iterations. Different strategies can be applied. We may choose ki+l - ~ i
points randomly distributed in the annulus of radii ts s~+~, or, alternatively, we may

choose ki+l - k i equispaced zeros on the circle of radius ts or we may distribute the

zeros on the circle of radius (tL. ~ + sk~+~)/2.

D. A. Bini / Numerical computation of polynomial zeros 187

A very cheap strategy, that we have adopted in our implementation, allows us to
select ki+l - ki starting approximations in the annulus Ai without computing t~ and
ss The idea consists in selecting all the integers ki, i = 1 , . . . , q, such that uk~ <~ vk~
no matter whether (10) has positive solutions or not, and to choose ki+l - k i equispaced
points on the circle of radius uk~.

More precisely, the starting approximations are selected in the following way:

1. Compute an integer q and kl < k-2 < ' ' ' < k-q such that uk~ ~< vki, i = 1 , . . . , q,
uj > vj for j ~ k-i, where uk and vk are defined by (9).

2. For i = 1 , . . . , q - 1 select ki+l - ki points of moduli uki+~, that is, put

k~+j=uk~+~exp ki+l - ki j + - n + a i ,

j = 1 , . . . , k i + l --hi , i = i , . . . , q - 1, (11)

where i is the imaginary unit such that i 2 = - 1 , and a is any nonzero number.

Since { k j , . . . , k 0 } C { k l , . . . , k q } and u~ <, t~ < s~ ~ vg,, with the criterion

(11) we select ki+l - k i initial approximations in the annulus Ai of radii tL.~, s ~ + .
Moreover this selection is cheap since it avoids the approximation of the solutions t~
and s~ of (10). The computation of the integers ki, i = l , . . . , q , at stage 1 and o{ ~
the rad~ii uk~+~ at stage 2, can be efficiently performed by using the same technique of
computational geometry exploited in [3, 39].

Consider the set C = {(i, log [aiD, i = 0,. . . , n}, and define the upper envelope
of the convex hull of C as the set convex(C) = {(ki , loglaki l), 0 = k-l < k-2 <
�9 .. < k-q = n} such that the piece-wise linear function obtained by joining the point
(k-i, log lak~l) with (k-i+l, log I % + , I), for i = 1 , . . . , q - 1, is convex and lies above
the points (/ , log lail), i = O , . . . , n .

We may prove the following result.

Theo rem 6. The set {k-I < k-2 < "" < k-q} made up by the vertices of convex(C)
is such that uk~ <~ vk~, i = 1 , . . . , q (compare (9)) and ui > vi for i r k-I,. . . ,k-q.
Moreover, we have

aki l/(ki+t-ki)
= f o r i = 1 , . . . , q - 1 . Vki : Uki+l aki_l

Proof. The convexity conditions in k,i, for 1 < i < q are given by

ak-----2- II/(ki-ki-l) laJl l / (j - k i) < j < ki~
[aki_l ~ ~ '

aki]l/(ki-ki+l) laki l/(J-ki)
> - - , j > ki,

aki+~ aj [

I aki I il(ki-ki+l) ak i ll(ki-ki-i)

ak~+ ~ I a~:~_ i I "

188 D. A. Bini / Numerical computation of polynomial zepvs

Whence,

Moreover

l / (k i - j)

uk~ = max 4a--~-"
j<k~ aki

= ak~+ I l / (k i - k i+ l)

ak~

aki_ I l / (k i - k i _ l)
= ~< min aj

l ak~ I j>ki

: Vki.

a, ki+l l / (k i -k i+l)

Vk~ = I aki I = Uki+l"

The inequalities ui > vi, i, 7 ~ k l , . . . , kq, can be similarly proved.

l / (k i - j)

[]

Since the computation of the upper envelope of the convex hull of n + 1 points
in the plane can be carried out in at most 2n Flog 2 n] convexity tests, the computation
of the starting approximations according to (11) costs O(n log n) arithmetic operations
in the light of theorem 6.

3. Implementation of Newton's correction

The evaluation of p (x) / p ' (x) at x = ~, can be performed by computing p(~) and
p'(~) by means of the well-known Ruffini-Homer rule. That is, p(~) is computed as
remainder of the division of p(x) by x - ~ , while p'({) is computed as remainder of the
division of q(x) by x - ~, where q(x) is the quotient of p(x) and x - ~. Alternatively,
the value of p' (x) can be computed by means of the Ruffini-Horner role applied to

r~.--l the polynomial }-~'~i=o (i + 1)ai+lx ~.
This computation is numerically stable, since the values ofp(~) and p'(~) actually

computed with a floating point arithmetic can be viewed as the exact values obtained
from the coefficients of a slightly perturbed polynomial. In order to see this we state
the following straightforward result which extends to the complex case some properties
of the floating point arithmetic.

Theorem 7. Let x = xl + ix,, y = Yl + iy2, z = z I -Jr- iz2, w = wl -q- iw2, be
complex numbers such that z = x + y, w = xy. Then, for the values z, w actually
computed in floating point arithmetic, with machine precision #, by means of the
relations zl = xl + Yl, z2 = x2 --1- Y2, Wl = x l y l - x2Y2, z2 = xly2 -t- x2yl , we have

~'= z(1 + v), ~ = w(1 + w), I '1 < #, Iwl < 2x/2/ + O(/.z2).

From the above theorem we easily obtain the following result:

Theorem 8. Let fl(p(~)) be the value computed by means of a floating point arithmetic
having machine pecision p by means of the Ruffini-Homer rule

p(~) = (' " ((an~ + a n - l) ~ + " " + al)~) + ao

D. A. Bini / Numerical computation of polynomial zeros 189

then fl(p({)) = ~'({), where

, n

~(x) = E ai(1 + ci)x i,
i=0

< ((2v + 1)i + 1)> +0(#2).

A similar relation holds for the first derivative pt(x).

(12)

Proof It follows by applying theorem 7 to each multiplication and addition in the
Ruffini-Horner rule. []

Despite its numerical stability the Ruffini-Homer rule may suffer from overflow
problems. This situation occurs, for instance, in the case where a polynomial having
positive coefficients and large degree is computed at a point ~ where I~l > 1. For
this reason in our implementation we apply the Ruffini-Horner rule, as described
above, only in the case where I~[< 1. If > 1 we compute PR('Y)IP~('Y), with
the customary Ruffini-Horner rule, where "y = 1/4 and p,~(x) = ~ i ~ o ai z~- i is the
reverse polynomial of p. Then we apply the following formula, that can be easily
proved by direct inspection,

1
P(()/P' (~) = n7 - 72P''/"PR'"/'Rt) l t) (13)

in order to recover the sought value of the Newton correction.

4. Stop condition and a-posteriori error bound

Stop conditions for iterative methods have been proposed by several authors [2, 25, 32,
45]. Here we observe that theorem 8 gives us as a by-product a cheap and efficient stop
criterion which is somehow similar to the one described in [45] for real polynomials.
In fact, from theorem 8 we readily deduce that

g(() -p(() =s((), s(x) = E aicixi ' (14)
i=0

whence we obtain the following upper bound to the relative error

n

The above relation implies that if [P(~)I > ~s'(l~l) then the computed value is
affected by a relative error less than 1 and therefore it is still reliable (actually the

190 D. A. Bini / Numerical computation of polynomial zeros

condition]P'(()I > 2#g(]~]) would imply at least one bit of guaranteed information).
Thus we obtain the following necessary stop (unreliability) condition

(15)

where both the left and right hand sides are computable. Moreover the left hand side
is the value actually computed in floating point arithmetic, while the right hand side
coincides with the actually computed value up to within O(# 2) terms.

It is a simple matter to deduce from the results of [33] the following

Theorem 9. Let ~ E C be such that the stop condition (15) holds, then there exists
= ~]_oai:c ~ such that ~(~) = 0 and ai = ai(1 + 5 i) , a "nearby" polynomial ~'(x) A i

I~1 < 2(1 + 4i)p.

Equation (14) can be used for deriving an efficient implementation of an a-
posteriori upper bound to the approximation error (for similar bounds we refer the
reader to [6-8, 13, 20, 42]). We recall that the disk of center ~ and radius r(~) =
Inp(~)/p'(~)l contains a zero of p(x) (see [22]). Therefore if ~ is an approximation to
a zero then r (~) / (l ~ l - r (~)) constitutes a bound to the relative approximation error,
provided that I~1 > r(~), i.e., the disk which contains the zero does not intersect the
origin of the complex plane. Indeed this result could be effective if the values of p({)
and p~(~) were computed with no rounding errors. In actual computations the value of
p(~) obtained in floating point arithmetic may be affected by large cancellation errors
(since ~ is close to a zero), thus making meaningless the criterion itself.

However, in the light of (14) we may compute a guaranteed upper bound to
IP(~)I, i.e., Ip(~C)l ~< Ifl(p(~))l + #g(l~l) and a guaranteed lower bound to IP'(~)I, i.e.,
IP'(~)I ~> I lf l (P '(~)) l- #~(l~l)l which lead to the following a-posteriori bound U(~) to
the absolute error I~ - zl of the approximation of ~ to the zero o~

- = n(lfl(p())l +

Ilfl(P'())l - '

(16)

Observe that, if I~l > ~(~) then - ~(~)) is an upper bound on the relative
error - zl/Izl.

It is worth pointing out that both the stop condition (15) and the guaranteed error
bound (16) are obtained by assuming the maximum rounding error in each arithmetic
operation. Therefore it may happen that the computed value of p(x) is still reliable
even if (15) is satisfied, and that the actual approximation error is much less than its
bound (16). In our implementation of the algorithm we adopted the simple bound

~(~) = n(lfl(P(~))l + ?'(~))/Ifl(P'(~))l.

5. A Fortran implementation, results of numerical tests

The algorithm has been implemented in Fortran 77 with the following features.

D. A. Bini / Numerical computation of polynomial zeros 191

The starting points are selected according to (11) where to the parameter a has
been given the value 0.7 and where the upper envelope of the convex hull compu-
tation is performed with a divide-and-conquer algorithm having an O(n logn) cost.
The Aberth iteration has been implemented in a Gauss-Seidel style, i.e., the updated
components are immediately used inside the current iteration, according to the formula

N(x l k))
xi- (k+l) = xlk) (k) (k) '

1 - N (x i)A(x~)

i - I n

A (x l X :)) = j ~ l xl k) 1-(k+l) + E x~k) lx~k) ' i = l , . . . , n .
�9 = - : c j j = i + l -

T h e updating of the ith components is not performed if condition (15) is satisfied for
x = xl k)

The algorithm stops if either condition (15) is satisfied for x = x! k), i = l, n,
or if the number of iterations exceeds a fixed value NITMAX (in the driver program
we set NITMAX = 30).

The arithmetic cost of each iteration performed on all the n components is 24n2+
O(1) real arithmetic operations (ops). In fact, 16n + O(1) ops are needed for the
Newton correction, and 8n+O(1) ops for the Aberth correction on a single component.

The space required by this program is 2n + l complex*16 numbers needed for
storing the input coefficients of the polynomials and the approximations to the zeros;
n real*8 numbers needed to store the relative errors; 2n + 2 real*8 numbers and n
bytes for storing the components of three auxiliary vectors.

Our program has been tested with several classes of polynomials and compared
with the public domain software CZERO of the library NAPACK and CPZERO of the
library SLATEC, and with the routine PA16AD of Harwell based on Madsen-Reid 's
algorithm [30], on a Sparc workstation with standard IEEE arithmetic.

We considered polynomials having random coefficients, and classes of specific
polynomials.

Concerning random polynomials, we generated 100 polynomials having complex
coefficients with real and imaginary parts between - 1 and 1, for each of the following
values of the degree n: 10, 20, 50,100,200. Moreover we considered a single ran-
dom polynomial for each of the following values of the degree n: 400, 800, 1,600,
3,200, 6,400, 12,800, 25,600. In all the cases the computation has been carried out
successfully by our program, whereas the other routines have failed in some cases
(this is denoted by a "F" in the tables below). The number of iterations has been at
most 17 and its average value has been 11.1. Table 1 reports, for each value of n,
the maximum and the average time (tm, ta), the maximum and the average number
of iterations (it,n, ita), the ratios RH, RN, Rs between the average time needed by

192 D. A. Bini / Numerical computation of polynomial zeros

Table 1
Random polynomials.

n t., t~ it.,, it,, RH RN Rs
l0 0.02 0.01 12 7.04 1.49 2.08 3.33
20 0.06 0.05 10 7.84 1.23 1.72 5.48
50 0.29 0.24 13 9.46 1.01 1.33 F

I00 1.03 0.86 15 10.1 0.91 1.27 F
200 3.68 3.37 16 I 1.0 0.88 1.18 F

Table 2
Random polynomials of large degree.

n it t RH RN
400 11 14.7 0.83 1.04
800 11 56.1 0.85 1.I0

1,600 13 234 F 1.14
3,200 16 918 F 1.18
6,400 15 3,616 F 1.25

12,800 16 14,883 F 1.37
25,600 17 59,934 F 1.33

the programs of Harwell, Napack, Slatec, respectively, and the average time needed
by our program. An "F" denotes the failure of the algorithm.

Table 2 reports the value of n, the number it of iterations and the time t needed
by our program, together with the ratios RH, RN between the time needed by the
programs of Harwell and Napack, respectively, and the time needed by our program
for a single random polynomial of degree n.

For small degrees our program is faster than the ones of Harwell, Napack and
Slatec, for higher degrees the Harwell routine is slightly faster but it fails for polyno-
mials of degree greater than 850 due to overflow problems. The program of Slatec
fails to compute the zeros for some random polynomials of degree greater than or
equal to 50.

Concerning specific polynomials, we considered several classes, the first, class A,
is made up by monic polynomials having zeros with very large and very small moduli:

(A1) 2720 + 102002714 + 275 + 1,

(A2) x 2~ + 1025027 14 + X 5 + 1,

(A3) 2720 -Jr- 103002714 4- 275 4- 1,

(A4) 272o + xlt + 1010x + 10-t0

Class B is made up by monic polynomials having one zero whose floating point
representation generates an underflow condition:

(B1) 2720 4- 2711 4- 1020027 4- 10-200,

(B2) x20 + 27 11 + 1 025027 + 1 0 -250,

(B3) x 2~ + x li + 103~176 + 10 -3~176

D. A. Bini / Numerical computation o f polynomial zeros 193

Table 3
PoLynomials having small and large zeros.

AI A2 A3 A4 B1 B2 B3 CI C2 C3
it 7 7 7 5 5 5 5 6 6 5
RH 1.5 F F F F F F F F F
RN F F F F F F F F F F

Class C is made up by polynomials whose normalization generates an overflow
condition, moreover, the polynomial C1 has a zero whose real part is too large to be
represented as a floating point number:

(G'l) 10-2~176 n t- 102~176 19 -t- 10200,

(C2) 10-2~176 20 Jr- 101~176 19 -t- 10200,

(C3) 10-3~176 20 -t- 103~176 -t- 1.

Table 3 reports, for each polynomial of the classes A, B and C, the number of
iterations needed by our program and the ratios RH and RN of the time needed by the
Harwell and the Napack program, respectively, and the time needed by our routine.
An "F" denotes the failure of the program. Our program has never failed, even for the
polynomial C1 our program computes all the zeros which are representable as floating
point numbers and outputs a warning message informing the user about the existence
of a too large zero.

We considered also polynomials of the following classes:

(i) (z + 1) n - (1 - i)z n (i 2 = - 1) , n = 10, 15,20,25,30,35,40.

(ii) (z + l) r " - z ' ~ + 0 . 1 2 5 i , n = 10,15,20,25,30,35,40.

(iii) Modified Legendre polynomials of degree n where the leading coefficient is
multiplied by i, n = 10,20,30.

(iv) i + 2 z + 3 z 2 + - . . + (r ~ + l) z r~, n = 10 ,20 ,30 , . . . ,80 .

{ ~ = 1 0 , 2 0 , r a = 2 , 4 , 6 , a = 1 0 0 ,
(v) i z n - (a z - I) m, 40, m = 10, a--- 100.

(vi) (z q- 1)2(z + i)3(z 15 q- z 7 + 1).

(vii) z n - i, n = 10,20,40,80.

The polynomial (i) belongs to the class 79((z + 1) n) introduced in section 2; its
zeros can be explicitly expressed in terms of the nth roots of - i . The polynomial (ii)
represents a perturbation of a polynomial in the class 79((z + 1)n). Legendre polyno-
mials have coefficients growing exponentially with the degree. The polynomials (v),
which are a slight modification of Mignotte's polynomials, have a cluster of m zeros
around a -1 of radius roughly a - n / m - l . For n = 20, m = 2, a = 100, the two zeros
of the cluster cannot be separated in the floating point arithmetic.

Tables 4-8 report, together with the values of n, the number it of iterations
needed by our program and the ratios RH, RN, Rs of the time t required by the

194 D. A. Bini / Numerical computation of pol),nomial zeros

Table 4
Polynomials in the classes (i) and (ii).

n it RH RN Rs it RH RN Rs
I0 8 1.14 1.92 5.57
15 10 0.96 1.96 7.78
20 11 0.85 1.30 12.8
25 13 0.77 1.20 F
30 16 0.83 0.91 F

9 1.16 1.81 4.93
8 1.19 1.89 8.93

12 0.96 1.37 11.3
11 1.02 1.41 2.40
11 0.93 1.23 F

Table 5
Modified Legendre polynomials.

n it RH /~N Rs
10 7 1.27 2.08 4.80
20 7 1.14 1.79 10.3
30 9 0.8 1.37 10.6

Table 6
Polynomials in the class (iv).

n it RH RN Rs
10 8 1.41 1.92 5.15
20 7 1.49 2.08 6.80
30 9 1.15 1.56 6.40
40 8 1.15 1.59 18,1
50 9 1.09 1.49 F
60 l0 1.01 1.47 F
70 8 1.06 1.52 F
80 8 1.1 1.45 F

Table 7
Polynomials in the class (v).

n m it RH RN Rs
10 2 14 1.19 1.92 3.00
I0 4 15 0.83 1.23 3.05
10 6 13 0.71 1.23 6.60
20 2 15 1.45 2.08 5.74
20 4 16 1.19 1.89 5.26
20 6 15 0.71 1.20 3.87
40 10 16 1 . 1 0 1 . 2 0 6.79

Table 8
Polynomials in the class (vii).

n it RH RN Rs
10 4 2.00 3.00 2.50
20 4 1.67 2.30 5.00
40 5 1.67 2.12 7.13
80 5 6.24 1 . 9 2 10.2

160 5 F 2.5 20.67

D. A. Bini / Numerical computation of polynomial zeros 195

programs of Harwell, Napack and Slatec, respectively, and the time required by our
program.

For the polynomial (vi) with multiple zeros we have it = 17, RH = 1.04, RN =
1.35, Rs = 3.33.

6. Notes on the For t ran 77 code

The main subroutine for the computation of polynomial roots is called in the following
way: CALL POLZEROS (N, POLY, EPS, BIG, SMALL, NITMAX, ROOT, RADIUS,
ERR, ITER, APOLY, APOLYR), where N (integer) is the degree of the polynomial;
POLY (complex*16, dimension N + 1, input) is the coefficient vector, i.e., p(x) =
~ = 0 POLY('i+ 1)x i. The parameters EPS, SMALL and BIG are related to the floating
point arithmetic used by the computer, more precisely, EPS is the machine precision,
SMALL is the smallest positive real*8, BIG is the largest real*8. For instance, for
machines using the IEEE arithmetic like PCs, we have EPS = 2 . d 0 . . - 5 3 , SMALL =
2.d0**- 1074, BIG = 2.d0** 1023. The parameter NITMAX is the maximum number
of iterations allowed in Aberth's method, in the driver program it is set equal to 30.
ROOT (complex*l 6, dimension N, output) is the vector of the approximations of the
roots; RADIUS (real*8, dimension N, output) is the vector of the absolute error bounds
such that the disk of center ROOT(~/) and radius RADIUS('/) contains a root of p(z),
i = 1 , . . . , N; ERR (logical, dimension N, output) gives information on the unreliability
of the roots, more precisely, ERR(j) = .TRUE. if after NITMAX iterations the stop
condition (15) is not satisfied for ~ = ROOT(j), ERR(j) = .FALSE., otherwise; ITER
(integer, output) is the number of iterations performed by the algorithm; APOLY and
APOLYR (real*8, dimension N + 1, auxiliary) are two auxiliary vectors used to store
the coefficients of the polynomial s(x) of (4) and of the analogous polynomial obtained
by performing a backward error analysis in the computation of pR(X) of (13).

In the subroutine POLZEROS there are calls to the following subroutines:

ABERTH, computation of the Aberth correction;

NEWTON, computation of p(x)/p'(x), of the inclusion radius and test of the
stop condition;

START, computation of the starting approximations according to the method of
section 2;

CNVEX, computation of the upper envelope of the convex hull of {(i, log [ai[),
i = 0 , . . . , n} by means of a divide-and-conquer technique;

CMERGE, LEFT, RIGHT, CTEST, auxiliary subroutines needed only by CN-
VEX.

A driver program is also provided. This program sets the parameters EPS,
SMALL, BIG, NITMAX, MAXDEG, where the latter is the maximum degree, and
reads from the standard input the file name of the input data. This file must contain
on each line the degree N, the real part and the imaginary part of the coefficients

196 D. A. Bini / Numerical computation of polynomial zeros

P O L Y (1) , . . . , POLY(N + 1) of p(z). After the call to POLZEROS the driver program
writes on the standard output and on the file < i n p u t I • name>.out the values of

I , ERR(I) , ROOT(I) , RADIUS(I) , RADIUS(I) /ABS(ROOT(I)) ,

f o r / = 1 , . . . , N .

7. Towards a multiprecision implementation

We have implemented our algorithm by using multiprecision floating point arithmetic
in MATHEMATICA TM according to the following lines. Here we just give an outline
of our implementation and refer the reader for more details to [5].

The algorithm takes as input an error bound e > 0, the degree n and the complex
coefficients of the polynomial p(x), whose real and imaginary parts can be integer,
rational or floating point numbers. The algorithm delivers n disks of centers ca and
radii ri, i = 1 , . . . ,n , such that each disk contains a zero of p(z), the union of the
disks contains all the zeros, and one of the two following conditions holds:

(a) (cheap option) ri ~< elcal, for all the values of i corresponding to nonisolated
disks.

(b) (strong option) ri ~ EICa], for i = 1 , . . . ,n .

The algorithm dynamically adjusts the precision of the floating point arithmetic
(precision of computation), according to the numerical conditioning of each zero. In
this way the high precision is used only for ill-conditioned zeros.

In order to avoid linear convergence to multiple zeros or to clusters, the Rouch6
based criterion of section 2 is applied in a suitable way to the polynomial obtained
by shifting p(z) to the center of gravity of the cluster. The center of gravity of each
cluster is approximated by using the superlinear convergence of the means of the
components generated by the Durand-Kerner method and converging to the zeros of
the cluster [15].

The algorithm proceeds at different levels of working precision. Once a working
precision has been fixed, the computation is carried out until the computed approx-
imations are the zeros of a "nearby" polynomial. This situation occurs when the
computed value of p(z) at the approximation (is not reliable with respect to the
working precision, i.e., (15) holds.

The computation is performed with a higher working precision (double number
of digits) only for those approximations which do not satisfy conditions (a) or (b).
If a cluster has been detected, i.e., a set of m > 1 overlapping disks of centers
ca and radii ri, then the gravity center 9 of the cluster is approximated with few
iterations of Durand-Kerner 's method. Then the Rouch6 based criterion is applied to
the polynomial q(z) = p(z + 9) in order to find m new starting approximations to the
zeros of the cluster.

The resulting algorithm is outlined in the following steps:

D. A. Bini / Numerical computation of polynomial zeros 197

1. The number of digits of the working precision is set to the standard machine
value; a set of starting approximations is computed by the Rouch6 based criterion
applied to the polynomial obtained by rounding the coefficients of p(x) to d-
digits.

2. Aberth's method is applied selectively only to the components which are still
"far" from the sought zeros. The computation in the ith component is stopped if
the computed value of p(x) is not reliable in the sense of (15). A set of n disks
is output. Each disk contains a zero, the union of all the disks contains all the
zeros.

3. The isolated disks are added to the output list (cheap option); the connected
components made up by more than one disk are considered and the gravity
center 9j of the zeros belonging to the j th component is approximated by means
of Durand-Kemer ' s algorithm.

4. For each j the coefficients of qj(x) = p(x + 9j) are computed and the Rouch~
based criterion is applied to qj(x) to find better starting approximations. The
shift is made with a higher working precision depending on the multiplicity raj
of the cluster, whereas the criterion for selecting new starting approximations is
applied with the standard machine precision.

5. If for the j th cluster all the new m j approximations have a distance from their
gravity center gj lower than lgj[e, then mj copies of the disk of center gj and
radius el9jl are added to the output list.

6. If the output list is not complete then the number d of the digits of the working
precision is doubled and the computation is recursively applied from stage 2.

In the numerical tests that we have performed our algorithm has shown a super-
linear convergence independently of the multiplicity of the clusters and of the zeros.
Here we just report a few results of the many tests that we have performed with a set
of input polynomials suggested by John Abbot.

The polynomial (x - 3c2) 2 + icx 7, for c = l0 -6 has a cluster of two zeros
having imaginary parts with very small moduli (about 3.3 x 10 -44) and real parts
with small moduli (about 10 -12) which match in the first 31 digits. The condition
number of this pair of zeros is roughly 1055 so that the working precision needed
for separating the two zeros must have at least 86 digits. Our method performed 13
iterations in the standard machine precision (roughly 15 digits), and delivered 5 out
of 7 isolated disks. With the working precision of 30 digits no iteration has been
performed since the computed value of p(x) was unreliable right from the start. The
same situation occurred with the working precision of 60 digits. Only 5 iterations
(on two components) were sufficient to compute the two zeros in the cluster, with the
precision of about 70 digits, by using a working precision of 120 digits.

The polynomial X 14 -t-2 • 10242:11 --[- 1048X 8 +4X 7 --4 X 1024X4 +4 , has a cluster of
4 complex zeros with real and imaginary parts matching in the first 27 digits, having
big moduli (about 108); a cluster of two real zeros matching in the first 29 digits, with

198 D. A. Bini / Numelqcal computation of polynomial z e t v s

big moduli (about 108); a cluster of two zeros having small moduli (about 10 - 6) and
very small imaginary parts (about 10-28); a cluster of two real zeros with small moduli
(about 10 -6) matching in the first 21 digits; finally a cluster of 4 zeros with small
moduli (about 10-6), with very small real parts (about 10 -28) and imaginary parts
matching in the first 22 digits. After 15 iterations in the standard machine precision
no isolated disks were found by our algorithm. No iterations were performed with the
working precision of 30 digits, while after 5 iterations with the working precision of
60 digits 8 zeros out of 14 were found. With the working precision of 120 digits the
remaining 6 zeros were computed in 5 iterations (on 6 components).

The polynomial (z - 1) 2 (z - 2)5(z 1~ - (1000z + 1) ~-) has a zero of multiplici-
ty 2, a zero of multiplicity 5, a cluster of two zeros having 12 common digits, and
8 well conditioned zeros. We applied our method in the cheap option (a) with E =
10 -t~176 i.e., about 100 digits of the nonisolated zeros must be computed. The well
conditioned zeros were computed after 15 iterations in the standard machine precision.
No iterations were performed with the working precision of 30 digits. Only 3 iterations
were sufficient to isolate the two zeros in the cluster with a working precision of 60
digits. The double root has been computed, within the relative precision 6, as center
of gravity of the cluster with no Aberth's iterations and with 120 digits of working
precision. The root of multiplicity 5 is computed at the next stage, i.e., with the
working precision of 240 digits, as the gravity center of the cluster again with no
Aberth's iterations.

References

[1] O. Aberth, Iteration methods for finding all zeros of a polynomial simultaneously, Math. Comp.
27(122) (1973) 339-344.

[2] D.A. Adams, A stopping criterion for polynomial root finding, Comm. ACM 10 (1967) 655-658.
[3l G. Alefeld and J. Herzberger, On the convergence speed of some algorithms for the simultaneous

approximation of polynomial roots, SIAM J. Numer. Anal. 11(2) (1974) 237-243.
[4] M. Ben-Or and R Tiwari, Simple algorithms for approximating all roots of a polynomial with real

roots, J. Complexity 6 (1990) 417-442.
[5] D. Bini and G. Fiorentino, A multiprecision implementation of a poly-algorithm for univariate

polynomial zeros, in: Proc. of the POSSO Workshop on Software, eds. J. C. Faug~re, J. Marchand
and R. Rioboo (Paris, 1995).

[6] W. B0rsch-Supan, A-posteriori error bounds for the zeros of polynomials, Numer. Math. 5 (1963)
380-398.

[7] D. Braess and K. R Hadeler, Simultaneous inclusion of the zeros of a polynomial, Numer. Math.
21 (1973) 161-165.

[8] C. Carstensen, Inclusion of the roots of a polynomial based on Gerschgorin's theorem, Numer.
Math. 59 (1991) 349-360.

[9] M. Cosnard and R Fraigniaud, Asynchronous Durand-Kerner and Aberth polynomial root finding
methods on a distributed memory multicomputer, Parallel Computing 89 (1990) 79-84.

[10] D. K. Dunaway, Calculation of zeros of a real polynomial through factorization using Euclid's
algorithm, SIAM J. Numer. Anal. 11(6) (1974) 1087-1104.

[11] E. Durand, Solutions Numdriques des Equations Algdbriques, Tome I: Equations du Type
F (X) = 0; Racines d'un Polyn6me (Masson, Paris 1960).

[12] L.W. Ehrlich, A modified Newton method for polynomials, Comm. ACM 10(2) (1967) 107-108.

D. A. Bini / Numerical computation of polynomial zeros 199

[13] L. Elsener, A remark on simultaneous inclusions of the zeros of a polynomial by Gerschgorin's
theorem, Numer. Math. 21 (1973) 425--427.

[14] P. Fraigniaud, Analytic and asynchronous root finding methods on a distributed memory multi-
computer, Research Report LIP-IMAG (1989).

[15] R Fraigniaud, The Durand-Kerner's polynomials root-finding method in case of multiple roots,
BIT 31 (1991) 112-123.

[16] I. Gargantini and R Henrici, Circular arithmetic and the determination of polynomial zeros, Numer.
Math. 18 (I972) 305-320.

[17] W. Gautschi, Questions of numerical condition related to polynomials, in: Recent Advances in
Numetqcal Analysis, eds. C. de Boor and G. H. Golub (Academic Press, New York, 1978) pp. 45-
72.

[18] M.W. Green, A. J. Korsak and M. C. Pease, Simultaneous iteration towards all roots of a complex
polynomial, SIAM Rev. 18 (1976) 501-502.

[19] H. Guggenheimer, Initial approximations in Durand-Kemer's root finding method, BIT 26 (1986)
537-539.

[20] M. Gutknecht, A-posteriori error bounds for the zeros of a polynomial, Numer. Math. 20 (1972)
139-148.

[21] E. Hansen, M. Patrick and J. Rusnak, Some modifications of Laguerre's method, BIT 17 (1977)
409-417.

[22] R Henrici, Applied and Computational Complex Analysis, Vol. 1 (Wiley, 1974).
[23] A.S . Householder, Generalization of an algorithm of Sebasti~o e Silva, Numer. Math. 16 (1971)

375-382.
[24] A.S. Householder, The Numerical Treatment of a Single Nonlinear Equation (McGraw-Hill, Boston

1970).
[25] M. Igarashi, A termination criterion tbr iterative methods used to find the zeros of polynomials,

Math. Comp. 42 (1984) 165-171.
[26] M.A. Jenkins and J. E Traub, A three stage variable shift iteration for polynomial zeros and its

relation to generalized Rayleigh iteration, Numer. Math. 14 (1970) 252-263.
[27] I .O. Kerner, Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Polynomen, Numer.

Math. 8 (1966) 290-294.
[28] N. Kjurkchev and K. Mahdi, Some remarks on Dvorcuk's root-finding method, BIT 34 (1994)

318-322.
[29] D.H. Lehmer, A machine method for solving polynomial equations, J. ACM 8 (1961) 151-162.
[30] K. Madsen and K. Reid, Fortran subroutines for finding polynomial zeros, Report HL

75/1172(C. 13), Computer Science and Systems Divisions, A.E.R.E. Harwell, Oxtbrd (1975).
[31] J. M. McNamee, A bibliography on roots of polynomials, J. Comput. Appl. Math. 47 (1993)

391-394.
[32] J.M. McNamee, A comparison of methods for terminating polynomial iterations, J. Comput. Appl.

Math. 21 (1988) 239-244.
[33] R.G. Moiser, Root neighborhoods of a polynomial, Math. Comp. 47 (1986) 265-273.
[34] C .A . Neff, Specified precision polynomial root isolation is in NC, in: Proc. 3lst Annual IEEE

Syrup. on Foundation of Computer Science (1EEE Computer Science Press, 1990) pp. 152-162.
[35] A. Ostrowski, On a theorem by J. L. Walsh concerning the moduli of roots of algebraic equations,

Bull. Amer. Math. Soc. 47 (1941) 742-746.
[36] V. Pan, On approximating complex polynomial zeros: modified quadtree (Weyl's) construction

and improved Newton's iteration, in: 5th Amzual ACM-SIAM Symposium on Discrete Algorithms,
Arlington, VA (1994).

[37] V. Pan, Sequential and parallel complexity of approximate evaluation of polynomial zeros, Comput.
Math. Appl. 14(8) (1987) 591-622.

[38] L. Pasquini and D. Trigiante, A globally convergent method lbr simultaneously finding polynomial
roots, Math. Comp. 44(169) (1985) 135-149.

200 D. A. Bini / Numerical computation of polynomial zeros

[39] A. SchOnhage, The fundamental theorem of algebra in terms of computational complexity, Tech-
nical Report, Mathematisches Institut der Universit~it Ttibingen (1982).

[40] Yu. V. Sidorov, M. V. Fedoryuk and M. I. Shabunin, Lectures on the Theory of Functions of a
Complex Variable (Mir, Moscow, 1985).

[41] S. Smale, The fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc. 4(1)
(1981) 1-36.

[42] B.T. Smith, Error bounds for the zeros of a polynornial based upon Gerschgorin's theorem, J. ACM
17 (1970) 661-674.

[43] G.W. Stewart, On the convergence of Sebasti~o e Silva's method for linding a zero of a polynomial,
Math. Comp. 12 (1970) 458-460.

[44] W. Werner, On the simultaneous determination of polynomial roots, in: Lecture Notes in Mathe-
matics 953 (Springer, Berlin, 1982) pp. 188-202.

[45] J .H. Wilkinson, Practical problems arising in the solution of polynomial equations, J. Inst. Math.
Appl. 8 (1971) 16-35.

