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A mio padre 

An algorithm for computing polynomial zeros, based on Aberth's method, is presented. 
The starting approximations are chosen by means of a suitable application of Rouch6's 
theorem. More precisely, an integer q >~ 1 and a set of annuli ,Ai, i = 1 , . . .  ,q, in the 
complex plane, are determined together with the number k~ of zeros of the polynomial 
contained in each annulus Ai.  As starting approximations we choose k~ complex numbers 
lying on a suitable circle contained in the annulus A~, for i = 1 , . . . ,  q. The computation 
of Newton's correction is performed in such a way that overflow situations are removed. 
A suitable stop condition, based on a rigorous backward rounding error analysis, guarantees 
that the computed approximations are the exact zeros of a "nearby" polynomial. This implies 
the backward stability of our algorithm. We provide a Fortran 77 implementation of the 
algorithm which is robust against overflow and allows us to deal with polynomials of any 
degree, not necessarily monic, whose zeros and coefficients are representable as floating 
point numbers. In all the tests performed with more than 1000 polynomials having degrees 
from 10 up to 25~600 and randomly generated coefficients, the Fortran 77 implementation 
of our algorithm computed approximations to all the zeros within the relative precision 
allowed by the classical conditioning theorems with I1.1 average iterations. In the worst 
case the number of iterations needed has been at most 17. Comparisons with available public 
domain software and with the algorithm PA16AD of HarweU are performed and show the 
effectiveness of our approach. A multiprecision implementation in MATHEMATICA T M  is 
presented together with the results of the numerical tests performed. 
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1. Introduction 

Let 
T~ ?/, 

= = II(.  - # 0, (,) 
i = 0  i=1  

be a polynomial of degree n having coefficients in the complex field C and zeros 
o~i, i =  l , . . . , n .  

The problem of approximating the zeros ai,  / = l , . . . , n ,  of p(x)  given its 
coefficients, is a classical problem in pure and applied mathematics which has re- 
ceived a growing interest particularly for the computational and numerical issues 
strongly related to its solution. In the wide literature on this problem (see the ex- 
cellent bibliography collected in [31]) we may find contributions on the theoreti- 
cal analysis of the complexity of approximating polynomial zeros [4, 36, 37, 39, 
41], as well as more concrete numerical algorithms for their computation [1, 3, 10-12, 
16, 18, 21-24, 26, 27, 29, 30, 36, 38, 39, 43-45]. On the latter subject we refer the 
reader also to GAMS, the Guide on Available Matematical Software, whose informa- 
tion can be obtained by means of anonymous ftp at http://gams.nist.gov. 

Among analytic algorithms a certain interest has been devoted to Durand-Kerner 
and Aberth methods [l, 11, 12, 27, 44] particularly for their good features in a parallel 
model of computation. In fact, these methods allow the simultaneous approximation 
of all the zeros. These methods have been widely analyzed in the literature (see [3, 9, 
14, 15, 18, 19, 28]), and some implementations have been proposed in [9, 14] and in 
the SLATEC library (see GAMS). The methods of Aberth and Durand-Kerner have 
local superlinear convergence to simple zeros and local linear convergence to multiple 
zeros. 

Let us denote x~ h:), i = 1 , . . .  ,n ,  the set of approximations to the n zeros of 
p(x)  at the kth step of the algorithm. Then the Durand-Kemer  iteration is given by 

_(~+,) (k) p(zl k)) 
.T i ~-~ ,T, i ,~ rx(~) ~.k) ' i 1 , . . .  ,n ,  (2) 

an 1 - I j = l ,  j # i k  i - ,T ) 

whereas the Aberth iteration is given by 

(k) , (k) ) :~(k+i) = :~Ik) 
i 

1 - k)) )  E } ' = , , j #  ) 
(3) 

In this paper we present an implementation of Aberth's method for the simultaneous 
approximation of all the zeros in floating point arithmetic with a fixed machine pre- 
cision (sections 5 and 6), and draw the general lines of a multiprecision algorithm 
based on both Aberth's and Durand-Kerner 's  iteration (section 7), which rely on the 
following tools: 

1. A new criterion for selecting initial approximations to the zeros, which is based 
on a suitable application of Rouch6's theorem (section 2). 
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2. A formula for the computation of the value p(x)/p '(z)  which avoids overflow 
problems (section 3). 

3. A criterion for stopping the iterations, based on a rigorous backward rounding 
error analysis, which guarantees that each computed approximation is the zero 
of a "nearby" polynomial (section 4). 

4. A guaranteed a posteriori error bound on the approximation error, i.e., for each 
approximation xi to c~i, a real positive machine number ri is provided such that 
]xi - oq] < 'rilxil (section 4). 

5. The property of quadratic convergence of the mean [15] of the Durand-Kerner 
iteration (used only for the multiprecision algorithm, section 7). 

Concerning the criterion for selecting starting approximations, we first consider a 
method, based on Rouchd's theorem, for computing an integer ~', 2 ~< ~" ~< n, a set of 

integers 0 = kl < k2 < " < k4 = n, and a set of radii sk.~, tk~, 0 ~< s~ < t~,, i = 
1, . . . ,~ ' ,  so = 0, g,. = +oo, such that the open annulus {z E C: sL. ' < Izl < t~,} of 

center 0 and radii si:~, t~,  contains no zeros of the polynomial p(z) as well as of any 

polynomial c(x) E 7~(p) --= {~']=objxJ: [bj[ = Jail, j = 0 , . . . , n } ,  for i = 1, . . . ,~ ' ,  
while the closed annulus Ai = {z E C: tk~ ~< ]z I ~< s~+,} of radii tk, and sk,+~ 

contains exactly ki+l - k'/ zeros of p(x), as well as of any polynomial c(x) E 7~(p), 
for i = 1 , . . . ,  ~. Then we propose a cheaper criterion, based on the above technique, 
for selecting initial approximations distributed along different circles in such a way 

that each annulus Ai contains ki+l - k i  approximations. Our criterion is defined by 
the following steps: 

I. Compute the upper envelope of the convex hull of the set {(i, log Jail): i = 
0 , . . . ,  n}, and denote 0 = hi < k2 < - " �9 < kq = n, the abscissas of the vertices 

of this set. 

2. Compute 
aki_l I/(ki-ki_~) 

= i = 2 ,  ,q. 
Uki ak i ' � 9  

3. For i = 1 , . . . , q -  1 select ki+l - ki points of moduli uk~+~, that is, put 

k,+j =u~+~exp ki+l  - ki j + - n  + ~ i , 

j =  1 , . . . , k i + l - k z ,  i =  1 , . . . , q - I ,  

where i is the imaginary unit such that i 2 = - l ,  and a is any nonzero number. 

Concerning the computation of p(x)/p~(x) by means of the Ruffini-Horner rule, 
we observe that overflow problems are very likely whenever ]x I > 1 and the degree n 
of the polynomial is very large. For this reason the computation of p(x)/p '(x)  is re- 
duced to the computation of pR(y)/p~R(y) for y = x - I ,  where p R ( X )  = ~_,in=o a n - i X  i. 
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Moreover, we prove the backward numerical stability of the Ruffini-Horner rule even 
for complex polynomials, deduce from this property the efficient stop condition 

Ifl(p(x)) [ <  n(s(Ixl)), 
'/1. 

s ( x )  = ~-'~ [a.i](1 + 4 i ) ,  
i = 0  

(4) 

where fl(-) denotes the actual computed value in the floating point arithmetic endowed 
with the machine precision # (# = 2 .53 for the IEEE arithmetic), and finally obtain 
the following guaranteed a-posteriori error bound 

Ifl(p(zi))l + ~fl(s(Ixil)) 
I.vi - c~il <~ r i ,  ri = 'n, 

I l f l (p ' (md)l  -  fl(s'(Ix l))l" 

In the light of the result [33], we prove that if the stop condition (4) is satisfied for 
x = ~ then there exists a polynomial ~'(x) = y ~ _ o - d i z  i such that 18(~) = 0 and 
a,i = a / ( 1  + e i ) ,  le l < 2(1 + 4i)#,  i = 1 , , . . , n .  

The algorithm that we obtain in this way, implemented in Fortran 77 in floating 
point arithmetic, resulted to be very robust and numerically stable. Unlike the available 
software, it allowed to approximate successfully all the zeros of polynomials of very 
high degree (greater than 20,000) within the precision guaranteed by the conditioning 
theorems, and to deal with very extreme situations like polynomials with very large 
and very small coefficients where the normalization by the leading coefficient would 
generate an overflow condition, and polynomials having some zeros which are too 
large to be represented as floating point. The situations where our algorithm may 
fail are extremely unlikely and are detected by the code itself by means of warning 
messages. 

The iteration (3) has been implemented in a Gauss-Seidel style, furthermore, 

at each step of (3) only the components x~ ~+l) for which the condition (4) is not 

satisfied for z = x} ~:) are updated. The program stops if either (4) is satisfied for 

x = x} k), i = 1 , . . . ,  n, or if the number k of iterations exceeds the limit of 30. 
The algorithm delivers n approximations xi, i = 1 , . . . ,  n, to the zeros c~i to- 

gether with n relative error bounds ri ,  i = 1 , . . .  ,n ,  such that Iri - c~i[ < r i l x i [ ,  
and a vector of Boolean components giving information about the reliability of each 
approximation and of the associated error bound. 

The storage required by our program is that needed to store the n § 1 input 
coefficients, the n output approximations of the zeros, the n radii which bound the 
errors and the boolean vector. Moreover, two auxiliary real vectors of n-I- 1 components 
are used. 

The cost of each iteration performed on a single component  is 24n + O(1) real 
arithmetic operations (ops), where we used the weight 2 for complex additions and 
the weight 6 for complex multiplications and reciprocations. 

In the numerical experiments performed with 1000 polynomials having randomly 
generated coefficients and degrees 10, 20, 50, 100, 200, the number of iterations for 
each computed zero has been at most 16 and its average value has been l l.1. 
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We performed further numerical experiments with specific polynomials, having 
ill-conditioned zeros, large degree (up to 25,600) or large coefficients. In all the cases 
the output precision reached the maximum value allowed by the classical conditioning 
theorems [17, 24]. 

We compared our program with the programs CZERO of the library NAPACK 
(Jenkins and Traub algorithm), CPZERO of the library SLATEC (Durand-Kerner's 
algorithm), available at the URL address http://netlib.belMabs.com/netlib, and with 
algorithm PA16AD of the Harwell library. Our program resulted to be faster than 
CZERO and CPZERO, and comparable with PAI6AD in terms of CPU time. On the 
other hand, PA16AD as well as CPZERO failed to compute the zeros for several test 
polynomials due to overflow, more specifically in the cases of degree greater than 850 
and in the cases of polynomials with large coefficients. CZERO failed in the case 
where the normalization performed in order to reduce the polynomial in monic form, 
leads to overflow conditions. 

Finally, in section 7 we outline the features concerning the preliminary multi- 
precision implementation of our algorithm performed in MATHEMATICA TM. In this 
multiprecision version the program delivers approximations of all the zeros within the 
precision requested by the user and dynamically adjusts the precision of the floating 
point arithmetic to the numerical conditioning of each zero. In this way no waste of 
computational effort is done and the property of quadratic convergence of the mean 
exploited by Durand-Kemer ' s  method is used to avoid linear convergence in the case 
of multiple or clustered zeros. 

We report a few results of this implementation which show the efficiency of our 
approach. We refer the reader to the paper [5] for further improvements and for a 
more efficient implementation of this algorithm. The Fortran 77 code is available on 
the web at the URL address http://netlib.bell-labs.com/netlib/numeralgo/. 

2. Choosing the starting approximations 

The choice of the initial points .(0) i = 1, n, for starting the iteration (2) or (3), X i  ~ �9 . .  

is rather delicate since the number of steps needed by the iterative method to reach a 
given approximation strongly depends on it. In [14] several criteria for choosing the 
initial approximations are analyzed, in [1] the Aberth iteration is started by selecting 
n equispaced points on a circle of center 0 and radius r, where r is an upper bound to 
the moduli  of the zeros. In [19] a more involved procedure is introduced for selecting 
a radius r which yields an intermediate value between the maximum and the minimum 
modulus of the zeros. These criteria of selecting the starting points are inadequate 
in the case where the polynomial p(x) has zeros with large moduli and zeros with 
small moduli  at the same time. Indeed, in this case it is not possible to choose good 
approximations to all the zeros by fixing a single circle. 

Unlike the criteria for choosing the initial approximations introduced in [1, 14] 
and [19], our criterion performs this choice by selecting complex numbers along 
different circles and relies on the result of [35]. We first recall the following tool for 
locating the zeros of rational functions [40]. 



184 D. A. Bini / Numerical computation of polynomial ze#vs 

Theorem 1 (Rouch6). Let f ( x )  and g(x) be rational functions which are regular in a 
simply connected bounded domain D and on its boundary F, and suppose that 

If(: )l > r. 

Then f ( x )  and F(x)  = f ( z )  + 9(x) in D have the same number of zeros, counted 
according to their multiplicity. 

We need also the following localization theorem [24]. 

Theorem 2. Let p(x) = y~=oakX k be the polynomial (1) having zeros a l , . . . ,  c~,., 
and such that a,~, ao # O. Then we have 

]o~i[ ~< max {la, olanl, I + laJla, , I , . . . ,  i + la,~-,/a,,I}, 

[c~-i I ~< max {laTUa01, 1 + la~/ool , . . . ,  l + la , - , /~01},  

f o r i =  1 , . . . , n .  

Now assume that ak ~ 0 and put f ( x )  = ak xk, 9(x) = p(x) -- f (x) .  If r > 0 
is such that 

I k kl > - a k x k l  for I.~1 = ~, (5) 

then, from theorem 1 it follows that the polynomial p(x) has k zeros in the open disk 
C(r) = {x E C: tzl < v} of center zero and radius r. 

Since 
71, 

ak' kl-< ra Jl' l 
i = 0 ,  i#k 

then any Ok > 0 which solves the inequality 

n 

laklO k > ~ la~lO ~, (6) 
i=0, ~#k 

provided it exists, is such that p(x) has k zeros in the disk C(Ok). Therefore we 
restrict our attention to the inequality (6). 

Indeed, (6) can be more easily manipulated than (5), on the other hand, by 
restricting our interest to (6), we may lose solutions of (5). In other words, the infor- 
mation that we recover from (6) is weaker than that obtained by (5), in fact it concerns 
localization properties shared by any polynomials c(x) E "P(p) = { ~ ' ~ 0  bi x i  Ib~l = 
lail, i = 0 , . . . ,  n}. This information is strict if it is referred to all the polynomials in 
the class ~(p) ,  as is shown in the following 

Theorem 3. Let Ok be a positive solution of (6), then any polynomial c(x) E 79(p) 
has k zeros in the disk C(Ok). Moreover, if Ok solves the equation lakl0 k -- 
~n--o, i#k lail Oi then there exists a polynomial c(x) E 79(p) having a zero on the 

boundary of C(Ok) and C(Ok) contains either k or k - 1 zeros of c(x). 
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Proof The proof of the first part of the theorem is trivial. The proof of the second 
part follows from remark 1. [] 

Observe that any solution Ok of (6) (if it exists) satisfies the condition O~[ak[ > 
0 la l for any i # k, that is, 

ai l / (k- i)  aj l / (k - j ) ,  
- -  < O k <  - -  i < k < j .  

I a k  I l a k  I 
(7) 

Whence we obtain the inequalities 

uk <Ok < v k ,  k = O , . . . , n ,  (8) 

where 

u k = m a x  a i  l/(k-i), k =  1 , . . . , n ,  
i<k a k 

v k =  min ai l/(~:-~) - -  , k = O , . . . , n - 1 ,  
i>k, a~r a k 

/( u 0 = l  l + m a x  - -  , 
i>0 a 0 

v n = l + m a x  a---L/ , 
i<n art 

(9) 

and the expressions for u0 and Vn hold in the light of theorem 2. 
From (8) it follows that if uk ~> vk then there exist no positive solutions to 

equation (6). Moreover, for k = 0 and k = n there exists only one positive solution 
to the equation 

n 

[ak[O k - ~ lail O~ = o, (10) 
i=0, ir 

which gives, for k = n, the radius of the circle containing all the zeros of p(x) 
(compare [24]). 

As pointed out in [35], if 0 < k < n then (10) can have either no positive 
solutions or two positive solutions. Below we give an inductive proof of this fact. 

Theorem 4. Assume that ao, an # O. If (10) has a solution for k 7 ~ 0, n, then it must 
have two solutions, counted with their multiplicity, and they belong to the interval 

[uk, vk]. 

Proof First observe that the number of positive solutions is even. In fact, the contin- 
uous function in (10) is negative at zero and at +ee .  Moreover, if ak = 0 there are no 
positive solutions of (10). Now, let us proceed by induction on k. For k = 1 there are 
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two solutions, in fact, they are given by the intersection of the straight line of equation 
y = [al [x and the convex function of equation y = ~ - - 0 ,  i#~: [ai[ xi  (observe that the 
second derivative of the latter function is positive for x > 0). For the inductive step 
assume that for k = h, 1 < h < n - 1, the number of positive solutions is either 2 or 
zero and prove it for k = h.+ 1. Consider the case ak : / 0 ,  since otherwise the number 
of solutions of (10) would be zero. If for k = h,+ 1 there were more than 2 solutions, 
these would be at least 4. Therefore the first derivative of the function in (10) would 
have at least three positive zeros. This contradicts the inductive assumption since 
the derivative of (10) for k = h + 1 has the same representation of (I0) where /,: is 
replaced by h and aiO i by iai Oi- l .  [] 

Consider the case where (10) has two positive solutions tA:, sk such that uk ~< 
te < sk ~< vjc, then (6) is satisfied for tk < 0 < sk, consequently (5) is satisfied for 
r = 0. Therefore from Rouch6's theorem we may deduce that the polynomial p(x ) ,  
as well as any polynomial c(x) E 7)(p), has /v zeros in the closed disk of radius t~: 
and no zeros in the open annulus determined by the disks of radii t~: and sk. 

Remark  I. From theorem 4 it follows that if (10) has two positive solutions tk < sk, 
then the polynomial c(x)  = ]ak[x k - ~-~.in=o, i#k [ai[ xi  E 79(p), has k zeros in the disk 

C(r )  for t~: < r < sk. Moreover the positive zeros tk and sk lie on the boundary of 
C ( t k ) ,  C ( s k ) ,  respectively. This proves the second part of theorem 3. 

Theorem 4 allows us to recover important information on the localization of the 
zeros of p(x ) .  In fact, we have the following result [35]. 

Theorem 5. Let 0 = E l < ~2 < " ' '  '~ ~0 • TL be all the values of k for which (10) 
has a positive solution, and let so = s~.~ < tk~ - < s~2 < .. �9 < t~o_~ < sko - '  < t~o = tn 

be these solutions. Moreover define to = 0, Sn = +oe.  Then, any polynomial 

c(x) E "P(p) has k i + l - k i  zeros in the closed annulus Ai = {z E C: s~, ~< [z[ ~< t~+~} 

of radii s~ ,  t~. +,, for i = 1 , . . .  , ~ ' -  1, and no zeros in the open annulus of radii 

t~.~, s~.~, for i = 1 , . . . ,  q'. 

Observe that the inclusion results expressed in theorem 5 are strict if referred to 
the class "P(p). In fact, as can be easily seen, there exist polynomials c(x) E "P(p) 
having zeros on the boundary of the annuli of radii s~ ,  t~.+. Moreover, it is proved 

in [35] that the set made up by the zeros of all the polynomials c(x) E 7)(p) coincides 
0-1 with Ui=l .Ai. 

These inclusion results can be used for determining a set of starting pAoints for 

Aberth's iterations. Different strategies can be applied. We may choose ki+l - ~ i  
points randomly distributed in the annulus of radii ts s~+~, or, alternatively, we may 

choose ki+l - k i  equispaced zeros on the circle of radius ts or we may distribute the 

zeros on the circle of radius (tL. ~ + sk~+~ )/2. 
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A very cheap strategy, that we have adopted in our implementation, allows us to 
select ki+l - ki starting approximations in the annulus Ai without computing t~ and 
ss  The idea consists in selecting all the integers ki, i = 1 , . . . ,  q, such that uk~ <~ vk~ 
no matter whether (10) has positive solutions or not, and to choose ki+l - k i  equispaced 
points on the circle of radius uk~. 

More precisely, the starting approximations are selected in the following way: 

1. Compute an integer q and kl < k-2 < ' ' '  < k-q such that uk~ ~< vki, i = 1 , . . . ,  q, 
uj > vj for j ~ k-i, where uk and vk are defined by (9). 

2. For i = 1 , . . . , q  - 1 select ki+l - ki points of moduli uki+~, that is, put 

k~+j=uk~+~exp ki+l - ki j + - n  + a i , 

j = 1 , . . . , k i + l  --hi ,  i =  i , . . . , q -  1, (11) 

where i is the imaginary unit such that i 2 = - 1 ,  and a is any nonzero number. 

Since { k j , . . . , k 0 }  C { k l , . . . , k q }  and u~  <, t~  < s~  ~ vg,, with the criterion 

(11) we select ki+l - k i  initial approximations in the annulus Ai of radii tL.~, s ~ + .  
Moreover this selection is cheap since it avoids the approximation of the solutions t~ 
and s~ of (10). The computation of the integers ki, i = l , . . . , q ,  at stage 1 and o{ ~ 
the rad~ii uk~+~ at stage 2, can be efficiently performed by using the same technique of 
computational geometry exploited in [3, 39]. 

Consider the set C = {(i, log [aiD, i = 0,. . . ,  n}, and define the upper envelope 
of the convex hull of C as the set convex(C) = {(ki , loglaki l  ), 0 = k-l < k-2 < 
�9 .. < k-q = n} such that the piece-wise linear function obtained by joining the point 
(k-i, log lak~l) with (k-i+l, log I % + ,  I), for i = 1 , . . . ,  q - 1, is convex and lies above 
the points ( / , log lail), i = O , . . . , n .  

We may prove the following result. 

Theo rem 6. The set {k-I < k-2 < ""  < k-q} made up by the vertices of convex(C) 
is such that uk~ <~ vk~, i = 1 , . . . , q  (compare (9)) and ui > vi for i r k-I,. . . ,k-q. 
Moreover, we have 

aki l/(ki+t-ki) 
= f o r i =  1 , . . . , q - 1 .  Vki  : Uki+l aki_l 

Proof. The convexity conditions in k,i, for 1 < i < q are given by 

ak-----2- II/(ki-ki-l) laJl  l / ( j - k i ) <  j < ki~ 
[ aki_l ~ ~ ' 

aki ]l/(ki-ki+l) laki l/(J-ki) 
> - -  , j > ki, 

aki+~ aj [ 

I aki I il(ki-ki+l) ak i ll(ki-ki-i) 

ak~+ ~ I a~:~_ i I " 
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Whence, 

Moreover 

l / ( k i - j )  

uk~ = max 4a--~-" 
j<k~ aki 

= ak~+ I l / ( k i - k i+ l )  

ak~ 

aki_ I l / ( k i - k i _ l )  
= ~< min aj 

l ak~ I j>ki 

: Vki. 

a, ki+l l / ( k i -k i+l )  

Vk~ = I aki I = Uki+l" 

The inequalities ui > vi, i, 7 ~ k l , . . . ,  kq, can be similarly proved. 

l / ( k i - j )  

[] 

Since the computation of the upper envelope of the convex hull of n + 1 points 
in the plane can be carried out in at most 2n Flog 2 n] convexity tests, the computation 
of the starting approximations according to (11) costs O(n log n) arithmetic operations 
in the light of theorem 6. 

3. Implementation of Newton's correction 

The evaluation of p ( x ) / p ' ( x )  at x = ~, can be performed by computing p(~) and 
p'(~) by means of the well-known Ruffini-Homer rule. That is, p(~) is computed as 
remainder of the division of p(x) by x - ~ ,  while p'({)  is computed as remainder of the 
division of q(x)  by x -  ~, where q(x) is the quotient of p(x)  and x -  ~. Alternatively, 
the value of p' (x)  can be computed by means of the Ruffini-Horner role applied to 

r~.--l the polynomial }-~'~i=o (i + 1)ai+lx ~. 
This computation is numerically stable, since the values ofp(~) and p'(~) actually 

computed with a floating point arithmetic can be viewed as the exact values obtained 
from the coefficients of a slightly perturbed polynomial. In order to see this we state 
the following straightforward result which extends to the complex case some properties 
of the floating point arithmetic. 

Theorem 7. Let x = xl + ix,, y = Yl + iy2, z = z I -Jr- iz2, w = wl -q- iw2, be 
complex numbers such that z = x + y, w = xy.  Then, for the values z, w actually 
computed in floating point arithmetic, with machine precision #, by means of the 
relations zl = xl + Yl, z2 = x2 --1- Y2, Wl = x l y l  - x2Y2, z2 = xly2 -t- x2yl ,  we have 

~'=  z(1 + v), ~ = w(1 + w), I '1 < #, Iwl < 2x/2/  + O(/.z2). 

From the above theorem we easily obtain the following result: 

Theorem 8. Let fl(p(~)) be the value computed by means of a floating point arithmetic 
having machine pecision p by means of the Ruffini-Homer rule 

p(~) = ( ' "  ((an~ + a n - l ) ~  + " "  + al )~)  + ao 
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then fl(p({)) = ~'({), where 

, n  

~(x) = E ai(1 + ci)x i, 
i=0  

< ((2v  + 1)i + 1)> +0(#2). 

A similar relation holds for the first derivative pt(x). 

(12) 

Proof It follows by applying theorem 7 to each multiplication and addition in the 
Ruffini-Horner rule. [] 

Despite its numerical stability the Ruffini-Homer rule may suffer from overflow 
problems. This situation occurs, for instance, in the case where a polynomial having 
positive coefficients and large degree is computed at a point ~ where I~l > 1. For 
this reason in our implementation we apply the Ruffini-Horner rule, as described 
above, only in the case where I~[ < 1. If > 1 we compute PR('Y)IP~('Y), with 
the customary Ruffini-Horner rule, where "y = 1/4 and p,~(x) = ~ i ~ o  ai z~- i  is the 
reverse polynomial of p. Then we apply the following formula, that can be easily 
proved by direct inspection, 

1 
P(()/P' (~) = n7 - 72P''/"PR'"/'Rt ) l  t ) (13) 

in order to recover the sought value of the Newton correction. 

4. Stop condition and a-posteriori error bound 

Stop conditions for iterative methods have been proposed by several authors [2, 25, 32, 
45]. Here we observe that theorem 8 gives us as a by-product a cheap and efficient stop 
criterion which is somehow similar to the one described in [45] for real polynomials. 
In fact, from theorem 8 we readily deduce that 

g(() -p( ( )  =s((), s(x) = E aicixi '  (14) 
i=0  

whence we obtain the following upper bound to the relative error 

n 

The above relation implies that if [P(~)I > ~s'(l~l) then the computed value is 
affected by a relative error less than 1 and therefore it is still reliable (actually the 
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condition ]P'(()I > 2#g(]~]) would imply at least one bit of guaranteed information). 
Thus we obtain the following necessary stop (unreliability) condition 

(15) 

where both the left and right hand sides are computable. Moreover the left hand side 
is the value actually computed in floating point arithmetic, while the right hand side 
coincides with the actually computed value up to within O(# 2) terms. 

It is a simple matter to deduce from the results of [33] the following 

Theorem 9. Let ~ E C be such that the stop condition (15) holds, then there exists 
= ~]_oai:c ~ such that ~(~) = 0 and ai = ai(1 + 5 i ) ,  a "nearby" polynomial ~'(x) A i 

I~1 < 2(1 + 4i)p. 

Equation (14) can be used for deriving an efficient implementation of an a- 
posteriori upper bound to the approximation error (for similar bounds we refer the 
reader to [6-8, 13, 20, 42]). We recall that the disk of center ~ and radius r(~) = 
Inp(~)/p'(~)l contains a zero of p(x) (see [22]). Therefore if ~ is an approximation to 
a zero then r ( ~ ) / ( l ~ l  - r ( ~ ) )  constitutes a bound to the relative approximation error, 
provided that I~1 > r(~), i.e., the disk which contains the zero does not intersect the 
origin of the complex plane. Indeed this result could be effective if the values of p({) 
and p~(~) were computed with no rounding errors. In actual computations the value of 
p(~) obtained in floating point arithmetic may be affected by large cancellation errors 
(since ~ is close to a zero), thus making meaningless the criterion itself. 

However, in the light of (14) we may compute a guaranteed upper bound to 
IP(~)I, i.e., Ip(~C)l ~< Ifl(p(~))l + #g(l~l) and a guaranteed lower bound to IP'(~)I, i.e., 
IP'(~)I ~> I lf l (P '(~)) l-  #~(l~l)l which lead to the following a-posteriori bound U(~) to 
the absolute error I~ - zl of the approximation of ~ to the zero o~ 

- = n(lfl(p( ))l + 

Ilfl(P'( ))l - ' 

(16) 

Observe that, if I~l > ~(~) then - ~(~)) is an upper bound on the relative 
error - zl/Izl. 

It is worth pointing out that both the stop condition (15) and the guaranteed error 
bound (16) are obtained by assuming the maximum rounding error in each arithmetic 
operation. Therefore it may happen that the computed value of p(x) is still reliable 
even if (15) is satisfied, and that the actual approximation error is much less than its 
bound (16). In our implementation of the algorithm we adopted the simple bound 

~(~) = n(lfl(P(~))l + ?'(~))/Ifl(P'(~))l. 

5. A Fortran implementation, results of numerical tests 

The algorithm has been implemented in Fortran 77 with the following features. 



D. A. Bini / Numerical computation of polynomial zeros 191 

The starting points are selected according to (11) where to the parameter a has 
been given the value 0.7 and where the upper envelope of the convex hull compu- 
tation is performed with a divide-and-conquer algorithm having an O(n logn)  cost. 
The Aberth iteration has been implemented in a Gauss-Seidel style, i.e., the updated 
components are immediately used inside the current iteration, according to the formula 

N(x l  k)) 
xi- (k+l) = xlk) (k) ( k ) '  

1 - N ( x  i )A(x~ ) 

i - I  n 

A ( x l X : ) ) = j ~ l  xl k) 1-(k+l) + E x~k) lx~k) ' i = l , . . . , n .  
�9 = - : c j  j = i + l  - 

T h e  updating of the ith components is not performed if condition (15) is satisfied for 
x = xl k) 

The algorithm stops if either condition (15) is satisfied for x = x! k), i = l, n, 
or if the number of iterations exceeds a fixed value NITMAX (in the driver program 
we set NITMAX = 30). 

The arithmetic cost of each iteration performed on all the n components is 24n2+ 
O(1) real arithmetic operations (ops). In fact, 16n + O(1) ops are needed for the 
Newton correction, and 8n+O(1 )  ops for the Aberth correction on a single component. 

The space required by this program is 2n + l complex*16 numbers needed for 
storing the input coefficients of the polynomials and the approximations to the zeros; 
n real*8 numbers needed to store the relative errors; 2n + 2 real*8 numbers and n 
bytes for storing the components of three auxiliary vectors. 

Our program has been tested with several classes of polynomials and compared 
with the public domain software CZERO of the library NAPACK and CPZERO of the 
library SLATEC, and with the routine PA16AD of Harwell based on Madsen-Reid 's  
algorithm [30], on a Sparc workstation with standard IEEE arithmetic. 

We considered polynomials having random coefficients, and classes of specific 
polynomials. 

Concerning random polynomials, we generated 100 polynomials having complex 
coefficients with real and imaginary parts between - 1 and 1, for each of the following 
values of the degree n: 10, 20, 50,100,200.  Moreover we considered a single ran- 
dom polynomial for each of the following values of the degree n: 400, 800, 1,600, 
3,200, 6,400, 12,800, 25,600. In all the cases the computation has been carried out 
successfully by our program, whereas the other routines have failed in some cases 
(this is denoted by a "F" in the tables below). The number of iterations has been at 
most 17 and its average value has been 11.1. Table 1 reports, for each value of n, 
the maximum and the average time (tm, ta), the maximum and the average number 
of iterations (it,n, ita), the ratios RH, RN, Rs between the average time needed by 
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Table 1 
Random polynomials. 

n t., t~ it.,, it,, RH RN Rs 
l0 0.02 0.01 12 7.04 1.49 2.08 3.33 
20 0.06 0.05 10 7.84 1.23 1.72 5.48 
50 0.29 0.24 13 9.46 1.01 1.33 F 

I00 1.03 0.86 15 10.1 0.91 1.27 F 
200 3.68 3.37 16 I 1.0 0.88 1.18 F 

Table 2 
Random polynomials of large degree. 

n it t RH RN 
400 11 14.7 0.83 1.04 
800 11 56.1 0.85 1.I0 

1,600 13 234 F 1.14 
3,200 16 918 F 1.18 
6,400 15 3,616 F 1.25 

12,800 16 14,883 F 1.37 
25,600 17 59,934 F 1.33 

the programs of Harwell, Napack, Slatec, respectively, and the average time needed 
by our program. An "F" denotes the failure of the algorithm. 

Table 2 reports the value of n, the number it of iterations and the time t needed 
by our program, together with the ratios RH, RN between the time needed by the 
programs of Harwell and Napack, respectively, and the time needed by our program 
for a single random polynomial of degree n. 

For small degrees our program is faster than the ones of Harwell, Napack and 
Slatec, for higher degrees the Harwell routine is slightly faster but it fails for polyno- 
mials of degree greater than 850 due to overflow problems. The program of Slatec 
fails to compute the zeros for some random polynomials of degree greater than or 
equal to 50. 

Concerning specific polynomials, we considered several classes, the first, class A, 
is made up by monic polynomials having zeros with very large and very small moduli: 

(A1) 2720 + 102002714 + 275 + 1, 

(A2) x 2~ + 1025027 14 + X 5 + 1, 

(A3) 2720 -Jr- 103002714 4- 275 4- 1, 

(A4) 272o + xlt + 1010x + 10-t0 

Class B is made up by monic polynomials having one zero whose floating point 
representation generates an underflow condition: 

(B1) 2720 4- 2711 4- 1020027 4- 10-200, 

(B2) x20 + 27 11 + 1 025027 + 1 0 -250, 

(B3) x 2~ + x li + 103~176 + 10 -3~176 
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Table 3 
PoLynomials having small and large zeros. 

AI A2 A3 A4 B1 B2 B3 CI C2 C3 
it 7 7 7 5 5 5 5 6 6 5 
RH 1.5 F F F F F F F F F 
RN F F F F F F F F F F 

Class C is made up by polynomials whose normalization generates an overflow 
condition, moreover, the polynomial C1 has a zero whose real part is too large to be 
represented as a floating point number: 

(G'l) 10-2~176 n t- 102~176 19 -t- 10200, 

(C2) 10-2~176 20 Jr- 101~176 19 -t- 10200, 

(C3) 10-3~176 20 -t- 103~176 -t- 1. 

Table 3 reports, for each polynomial of the classes A, B and C, the number of 
iterations needed by our program and the ratios RH and RN of the time needed by the 
Harwell and the Napack program, respectively, and the time needed by our routine. 
An "F" denotes the failure of the program. Our program has never failed, even for the 
polynomial C1 our program computes all the zeros which are representable as floating 
point numbers and outputs a warning message informing the user about the existence 
of a too large zero. 

We considered also polynomials of the following classes: 

(i) (z + 1) n - (1 - i)z n (i 2 = - 1 ) ,  n = 10, 15,20,25,30,35,40. 

(ii) ( z + l ) r " - z ' ~ + 0 . 1 2 5 i ,  n =  10,15,20,25,30,35,40.  

(iii) Modified Legendre polynomials of degree n where the leading coefficient is 
multiplied by i, n = 10,20,30. 

(iv) i + 2 z + 3 z 2 + - . . + ( r ~ + l ) z  r~, n =  10 ,20 ,30 , . . . ,80 .  

{ ~ = 1 0 , 2 0 ,  r a = 2 , 4 , 6 ,  a = 1 0 0 ,  
(v) i z  n - ( a z  - I) m, 40, m = 10, a--- 100. 

(vi) (z q- 1)2(z + i)3(z 15 q- z 7 + 1). 

(vii) z n - i, n = 10,20,40,80. 

The polynomial (i) belongs to the class 79((z + 1) n) introduced in section 2; its 
zeros can be explicitly expressed in terms of the nth roots of - i .  The polynomial (ii) 
represents a perturbation of a polynomial in the class 79((z + 1)n). Legendre polyno- 
mials have coefficients growing exponentially with the degree. The polynomials (v), 
which are a slight modification of Mignotte's polynomials, have a cluster of m zeros 
around a -1 of radius roughly a - n / m - l .  For n = 20, m = 2, a = 100, the two zeros 
of the cluster cannot be separated in the floating point arithmetic. 

Tables 4-8 report, together with the values of n,  the number it of iterations 
needed by our program and the ratios RH, RN, Rs of the time t required by the 
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Table 4 
Polynomials in the classes (i) and (ii). 

n it RH RN Rs it RH RN Rs 
I0 8 1.14 1.92 5.57 
15 10 0.96 1.96 7.78 
20 11 0.85 1.30 12.8 
25 13 0.77 1.20 F 
30 16 0.83 0.91 F 

9 1.16 1.81 4.93 
8 1.19 1.89 8.93 

12 0.96 1.37 11.3 
11 1.02 1.41 2.40 
11 0.93 1.23 F 

Table 5 
Modified Legendre polynomials. 

n it RH /~N Rs 
10 7 1.27 2.08 4.80 
20 7 1.14 1.79 10.3 
30 9 0.8 1.37 10.6 

Table 6 
Polynomials in the class (iv). 

n it RH RN Rs 
10 8 1.41 1.92 5.15 
20 7 1.49 2.08 6.80 
30 9 1.15 1.56 6.40 
40 8 1.15 1.59 18,1 
50 9 1.09 1.49 F 
60 l0 1.01 1.47 F 
70 8 1.06 1.52 F 
80 8 1.1 1.45 F 

Table 7 
Polynomials in the class (v). 

n m it RH RN Rs 
10 2 14 1.19 1.92 3.00 
I0 4 15 0.83 1.23 3.05 
10 6 13 0.71 1.23 6.60 
20 2 15 1.45 2.08 5.74 
20 4 16 1.19 1.89 5.26 
20 6 15 0.71 1.20 3.87 
40 10 16 1 . 1 0  1 . 2 0  6.79 

Table 8 
Polynomials in the class (vii). 

n it RH RN Rs 
10 4 2.00 3.00 2.50 
20 4 1.67 2.30 5.00 
40 5 1.67 2.12 7.13 
80 5 6.24 1 . 9 2  10.2 

160 5 F 2.5 20.67 
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programs of Harwell, Napack and Slatec, respectively, and the time required by our 
program. 

For the polynomial (vi) with multiple zeros we have it = 17, RH = 1.04, RN = 
1.35, Rs = 3.33. 

6. Notes on the For t ran  77 code 

The main subroutine for the computation of polynomial roots is called in the following 
way: CALL POLZEROS (N, POLY, EPS, BIG, SMALL, NITMAX, ROOT, RADIUS, 
ERR, ITER, APOLY, APOLYR), where N (integer) is the degree of the polynomial; 
POLY (complex*16, dimension N + 1, input) is the coefficient vector, i.e., p(x) = 
~ = 0  POLY('i+ 1 )x i. The parameters EPS, SMALL and BIG are related to the floating 
point arithmetic used by the computer, more precisely, EPS is the machine precision, 
SMALL is the smallest positive real*8, BIG is the largest real*8. For instance, for 
machines using the IEEE arithmetic like PCs, we have EPS = 2 . d 0 . . - 5 3 ,  SMALL = 
2.d0**-  1074, BIG = 2.d0** 1023. The parameter NITMAX is the maximum number 
of iterations allowed in Aberth's method, in the driver program it is set equal to 30. 
ROOT (complex*l 6, dimension N, output) is the vector of the approximations of the 
roots; RADIUS (real*8, dimension N, output) is the vector of the absolute error bounds 
such that the disk of center ROOT(~/) and radius RADIUS('/) contains a root of p(z), 
i = 1 , . . . ,  N; ERR (logical, dimension N, output) gives information on the unreliability 
of the roots, more precisely, ERR(j) = .TRUE. if after NITMAX iterations the stop 
condition (15) is not satisfied for ~ = ROOT(j), ERR(j) = .FALSE., otherwise; ITER 
(integer, output) is the number of iterations performed by the algorithm; APOLY and 
APOLYR (real*8, dimension N + 1, auxiliary) are two auxiliary vectors used to store 
the coefficients of the polynomial s(x) of (4) and of the analogous polynomial obtained 
by performing a backward error analysis in the computation of pR(X) of (13). 

In the subroutine POLZEROS there are calls to the following subroutines: 

ABERTH, computation of the Aberth correction; 

NEWTON, computation of p(x)/p'(x),  of the inclusion radius and test of the 
stop condition; 

START, computation of the starting approximations according to the method of 
section 2; 

CNVEX, computation of the upper envelope of the convex hull of {(i, log [ai[), 
i = 0 , . . . ,  n} by means of a divide-and-conquer technique; 

CMERGE, LEFT, RIGHT, CTEST, auxiliary subroutines needed only by CN- 
VEX. 

A driver program is also provided. This program sets the parameters EPS, 
SMALL, BIG, NITMAX, MAXDEG, where the latter is the maximum degree, and 
reads from the standard input the file name of the input data. This file must contain 
on each line the degree N, the real part and the imaginary part of the coefficients 
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P O L Y ( 1 ) , . . . ,  POLY(N + 1) of p(z). After the call to POLZEROS the driver program 
writes on the standard output and on the file < i n p u t  I •  name>.out the values of 

I ,  ERR(I) ,  ROOT(I) ,  RADIUS(I) ,  RADIUS(I) /ABS(ROOT(I)) ,  

f o r / =  1 , . . . , N .  

7. Towards a multiprecision implementation 

We have implemented our algorithm by using multiprecision floating point arithmetic 
in MATHEMATICA TM according to the following lines. Here we just give an outline 
of our implementation and refer the reader for more details to [5]. 

The algorithm takes as input an error bound e > 0, the degree n and the complex 
coefficients of the polynomial p(x),  whose real and imaginary parts can be integer, 
rational or floating point numbers. The algorithm delivers n disks of centers ca and 
radii ri, i = 1 , . . .  ,n ,  such that each disk contains a zero of p(z), the union of the 
disks contains all the zeros, and one of the two following conditions holds: 

(a) (cheap option) ri ~< elcal, for all the values of i corresponding to nonisolated 
disks. 

(b) (strong option) ri ~ EICa], for i = 1 , . . .  ,n .  

The algorithm dynamically adjusts the precision of the floating point arithmetic 
(precision of computation), according to the numerical conditioning of each zero. In 
this way the high precision is used only for ill-conditioned zeros. 

In order to avoid linear convergence to multiple zeros or to clusters, the Rouch6 
based criterion of section 2 is applied in a suitable way to the polynomial obtained 
by shifting p(z) to the center of gravity of the cluster. The center of gravity of each 
cluster is approximated by using the superlinear convergence of the means of the 
components generated by the Durand-Kerner method and converging to the zeros of 
the cluster [15]. 

The algorithm proceeds at different levels of working precision. Once a working 
precision has been fixed, the computation is carried out until the computed approx- 
imations are the zeros of a "nearby" polynomial. This situation occurs when the 
computed value of p(z) at the approximation ( is not reliable with respect to the 
working precision, i.e., (15) holds. 

The computation is performed with a higher working precision (double number 
of digits) only for those approximations which do not satisfy conditions (a) or (b). 
If a cluster has been detected, i.e., a set of m > 1 overlapping disks of centers 
ca and radii ri, then the gravity center 9 of the cluster is approximated with few 
iterations of Durand-Kerner 's  method. Then the Rouch6 based criterion is applied to 
the polynomial q(z) = p(z + 9) in order to find m new starting approximations to the 
zeros of the cluster. 

The resulting algorithm is outlined in the following steps: 



D. A. Bini / Numerical computation of polynomial zeros 197 

1. The number of digits of the working precision is set to the standard machine 
value; a set of starting approximations is computed by the Rouch6 based criterion 
applied to the polynomial obtained by rounding the coefficients of p(x) to d- 
digits. 

2. Aberth's method is applied selectively only to the components which are still 
"far" from the sought zeros. The computation in the ith component  is stopped if 
the computed value of p(x)  is not reliable in the sense of (15). A set of n disks 
is output. Each disk contains a zero, the union of all the disks contains all the 
zeros. 

3. The isolated disks are added to the output list (cheap option); the connected 
components  made up by more than one disk are considered and the gravity 
center 9j of the zeros belonging to the j th component is approximated by means 
of Durand-Kemer ' s  algorithm. 

4. For each j the coefficients of qj(x) = p(x + 9j) are computed and the Rouch~ 
based criterion is applied to qj(x) to find better starting approximations. The 
shift is made with a higher working precision depending on the multiplicity raj 
of the cluster, whereas the criterion for selecting new starting approximations is 
applied with the standard machine precision. 

5. If for the j th  cluster all the new m j  approximations have a distance from their 
gravity center gj lower than lgj[e, then mj  copies of the disk of center gj and 
radius el9jl are added to the output list. 

6. If the output list is not complete then the number d of the digits of the working 
precision is doubled and the computation is recursively applied from stage 2. 

In the numerical tests that we have performed our algorithm has shown a super- 
linear convergence independently of the multiplicity of the clusters and of the zeros. 
Here we just report a few results of the many tests that we have performed with a set 
of input polynomials suggested by John Abbot. 

The polynomial (x - 3c2) 2 + icx 7, for c = l0  -6 has a cluster of two zeros 
having imaginary parts with very small moduli (about 3.3 x 10 -44) and real parts 
with small moduli (about 10 -12) which match in the first 31 digits. The condition 
number of this pair of zeros is roughly 1055 so that the working precision needed 
for separating the two zeros must have at least 86 digits. Our method performed 13 
iterations in the standard machine precision (roughly 15 digits), and delivered 5 out 
of 7 isolated disks. With the working precision of 30 digits no iteration has been 
performed since the computed value of p(x) was unreliable right from the start. The 
same situation occurred with the working precision of 60 digits. Only 5 iterations 
(on two components)  were sufficient to compute the two zeros in the cluster, with the 
precision of about 70 digits, by using a working precision of 120 digits. 

The polynomial X 14 -t-2 • 10242:11 --[- 1048X 8 +4X 7 --4 X 1024X4 +4 ,  has a cluster of 
4 complex zeros with real and imaginary parts matching in the first 27 digits, having 
big moduli  (about 108); a cluster of two real zeros matching in the first 29 digits, with 
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big moduli (about 108); a cluster of two zeros having small moduli (about 10 - 6 )  and 
very small imaginary parts (about 10-28); a cluster of two real zeros with small moduli 
(about 10 -6) matching in the first 21 digits; finally a cluster of 4 zeros with small 
moduli (about 10-6), with very small real parts (about 10 -28) and imaginary parts 
matching in the first 22 digits. After 15 iterations in the standard machine precision 
no isolated disks were found by our algorithm. No iterations were performed with the 
working precision of 30 digits, while after 5 iterations with the working precision of 
60 digits 8 zeros out of 14 were found. With the working precision of 120 digits the 
remaining 6 zeros were computed in 5 iterations (on 6 components). 

The polynomial (z - 1 ) 2 ( z  - 2)5(z 1~ - (1000z + 1) ~-) has a zero of multiplici- 
ty 2, a zero of multiplicity 5, a cluster of two zeros having 12 common digits, and 
8 well conditioned zeros. We applied our method in the cheap option (a) with E = 
10 -t~176 i.e., about 100 digits of  the nonisolated zeros must be computed. The well 
conditioned zeros were computed after 15 iterations in the standard machine precision. 
No iterations were performed with the working precision of 30 digits. Only 3 iterations 
were sufficient to isolate the two zeros in the cluster with a working precision of 60 
digits. The double root has been computed, within the relative precision 6, as center 
of gravity of the cluster with no Aberth's iterations and with 120 digits of working 
precision. The root of multiplicity 5 is computed at the next stage, i.e., with the 
working precision of 240 digits, as the gravity center of the cluster again with no 
Aberth's iterations. 
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