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Optimizing a Linear Function 
over an Efficient Set 1 

J. G. ECKER 2 AND J. H. SONG 3 

Communicated by P. L. Yu 

Abstract. The problem (P) of  optimizing a linear function drx  over 
the efficient set for a multiple-objective linear program (M) is difficult 
because the efficient set is typically nonconvex. Given the objective 
function direction d and the set of domination directions D, if drT~ > 0 
for all nonzero rceD, then a technique for finding an optimal solution 
of (P) is presented in Section 2. Otherwise, given a current efficient 
point .~, if there is no adjacent efficient edge yielding an increase in drx,  
then a cutting plane drx  = dr~ is used to obtain a multiple-objective 
linear program (If-l) with a reduced feasible set and an efficient set E. 
To find a better efficient point, we solve the problem (Ii) of  maximizing 
c~rx over the reduced feasible set in (If, I) sequentially for i. If  there is a 
x i ~ g  that is an optimal solution of  (Ii) for some i and drx  i > drY, then 
we can choose x ~ as a current efficient point. Pivoting on the reduced 
feasible set allows us to find a better efficient point or to show that the 
current efficient point ~ is optimal for (P). Two algorithms for solving 
(P) in a finite sequence of  pivots are presented along with a numerical 
example. 

Key Words. Multiple-objective linear programming, efficient sets, 
domination cones, nonconvex optimization. 

1. Introduction 

In  a mul t ip le -ob jec t ive  l inear  p r o g r a m ,  a convex p o l y h e d r o n  X is given 
over  which several  l inear  object ives are  to be maximized .  T h r o u g h o u t  
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this paper, we will assume that X is a bounded nondegenerate convex 
polyhedron. 

Suppose that we have the feasible set in standard form, 

x = { x e R "  I(A, I ) x  = b, x >= 0}, 
where (A, I) ~ R "  • and b eR m, b > 0. Let 

F cT7 

LcTA 
where ci~R n for i = 1 . . . . .  k. With this understanding, a multiple-objective 
linear program is formulated as follows: 

(M) max Cx, 

s.t. xeX .  

Definition I.I .  A point x ~  is an efficient point if there is no x e X  
such that Cx > Cx ~ and Cx ~ Cx ~ 

Throughout this paper, we will use the following notation for vectors. 
For x, y eR",  x > y means x ~ y and x ~ y. 

Let E be the set of efficient points for (M), and let Xex be the set of 
extreme points for X. The basic problem ( P ) t h a t  we investigate is to 
maximize a linear function drx over the set E, 

(P) max drx, 

s.t. x~E. 

Associated with (P), the relaxed problem is 

(R) max drx, 

s.t. x~X. 

The importance and motivation of problem (P) have been discussed 
extensively in the literature; see for example the presentations of Philip 
(Ref. 1), Isermann and Steuer (Ref. 2), Benson (Refs. 3-7), Dessouky, 
Ghiassi, and Davis (Ref. 8), and Weistroffer (Ref. 9). In particular, Benson 
shows in Ref. 3 that, in some modeling problems involving multiple 
objectives, models of the form (P) are more realistic and appropriate than 
the more usual multiple objective linear programs. Also, solving (P) with 
the efficient set defined implicitly avoids the computational difficulties of 
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enumerating all efficient extreme points. The production planning example 
given by Benson in Ref. 3 illustrates these points nicely. We should also 
mention that, as special cases of problem (P), we can find upper and lower 
bounds for the individual objectives c~rx over the efficient set. 

In Ref. 1, Philip first studied problem (P) and suggested an algorithm 
for solving it. Later, Isermann and Steuer (Ref. 2) outlined a similar 
procedure for solving (P) where the objective function drx is one of the 
multiple objectives cTx in (M). These methods use a cutting hyperplane and 
try to find an efficient point on the Cutting face that has an adjacent efficient 
edge yielding an increase in the objective function drx. As discussed by 
Benson, who studied in Ref. 6 more general cases of problem (P), including 
the case where X is a general convex set, neither of these procedures explain 
explicitly how to find a point on the cutting face that has an adjacent efficient 
edge yielding an increase in dTx. In Refs. 4 and 5, Benson suggests two 
methods for solving (P) using different approaches from the Philip method. 
These methods guarantee that at least one extreme point optimal solution 
of (P) can be found in a finite number of steps. One step of the Benson 
algorithms in Refs. 4 and 5 calls for finding, if one exists, a feasible solution 
to a nonlinear system of equations and inequalities. This step is implemented 
by solving a sequence of linear programming problems. Benson (Ref. 6) gave 
a number of algebraic and geometric results concerning the existence and 
nature of global optimal solutions to the problem (P). 

In our paper, we develop methods for solving (P) that involve only 
pivoting on the feasible set for (M) or a reduced problem (lVl) to overcome 
the local optimality proble m that arises when, in an efficient searching 
procedure, an efficient extreme point is encountered having no efficient 
edges yielding an increase in dTx. We conclude this section by giving an 
overview of our approach, which uses the Philip approach (Ref. 1) and 
makes it implementable and practical by explaining exactly how to use 
cutting hyperplanes to overcome the local optimality problem. 

Given a current efficient point :~, a pivoting technique for finding adjacent 
efficient edges at 2 is discussed in Section 3. If there is no adjacent efficient 
edge yielding an increase in drx, which indicates that ~ is a local optimal 
solution of (P), then we add a cutting hyperplane dTx = dT~ to the feasible 
set X and we consider the following multiple objective linear program: 

(l~I) max Cx, 

s.t. xEX, 

W-- {x~Xl dTx >= drY}. 

We let /7 denote the set of efficient points for (19I). Let (Ii) denote the 
following linear program: 
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(Ii) max c~x, 

s.t. x~)?. 

In our algorithm, we check whether or not there is an optimal solution x i 
of (Ii) such that drx ~ > dr~ and xg~E for some i. If  there is such a point 
M, then we can choose x i as a new current efficient point and keep 
searching for an adjacent efficient edge yielding an increase in dTx. If  no 
such point x i exists, we show how to pivot to obtain a better efficient point 
or show that the current efficient point ~ is an optimal solution of  (P). We 
begin in Section 2 by deriving some preliminary results. 

2. Differences between Problems (R) and (P) 

The following definition of domination cone D is given in Ref. 10. 

Definition 2.1. Let D be the semipositive polar cone generated by the 
gradients of the k objective functions in (M), that is, 

D = 

We call D the domination cone. 

The following well-known theorem provides another description for an 
efficient point. 

Theorem 2.1. x~ if and only i f  ~thei~e is no nonzero feasible 
domination direction n in X at x ~ 

Proof. Notice that there is no nonzero feasible domination direction 
n in X at x ~ if and only if there is no x E X  such that x --x~ which 
means there is no x ~ X  such that Cx >_ Cx ~ This completes the proof. [] 

If  an optimal solution to the relaxed problem (R) is efficient, such a 
solution is optimal for (P). Also, if (P) and (R) have a common optimal 
solution, then an optimal solution to (P) is one of  the multiple optimal 
solutions to the linear program (R), and so problem (P) is again easy to 
solve. 

Lemma 2.1. If  drn > 0  for all nonzero nED, then every optimal 
solution of  (R) is an optimal solution of  (P). 

Proof. Let x* be an optimal solution of  (R). We need to show that 
x*EE. Suppose that x*~E. Then, there is a nonzero n e D  and rc is a 
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feasible direction at x*, so there is a point x * + ~ l r e X  for some ~ > 0 .  
Then, 

dr(x * + an) = drx  * + ~drn > drx  *. 

But this inequality contradicts x* being an optimal solution of  (R). 
Therefore, x*~E,  and so x* solves (P). [] 

The following is a special case of  a result of  Benson; see Theorem 4.7 
in Ref. 6. 

Lemma 2.2. I f  drn > 0  for all nonzero rc~D, then at least one 
optimal solution of  (R) is also an optimal solution of (P). 

Proof. We will give a short proof  as follows. Suppose that x* is an 
optimal solution of (R). I f  x*EE,  then x* is an optimal solution of  (P). I f  
x*~E,  then as in Refs. 11 and 12, the linear program 

(Px*) max ers, 

s.t. Cx = Is + Cx*, 

x ~ X ,  

S>0,__. 

where e is a vector with each component  equal to one, has an efficient 
solution g with C2 > Cx* or equivalently C ( : ~ - x * )  > 0 .  Thus, 
n = g - x * e D .  But dT~r >-->_ O, SO drYc>=dTx *. Since x* is an optimal 
solution of  (R), we have dTyc = dTx *, and so :~ is an optimal solution of 
(R) and is efficient. Thus, :~ is an optimal solution of (P). [] 

The above two lemmas show that it is easy to find a solution of (P) 
when dTTr > 0 or drTt > 0 for each nonzero rc ~D. Consider the following 
cases: 

Case 1. 

Case 2. 

Case 3. 

Case 4. 

drTr > 0, for all nonzero 7z~D. 

dr~z > 0, for all nonzero rc~D. 

drlr < 0, for all nonzero zc~D. 

None of the above cases holds. 

In Section 4 below, we show that if Case 3 holds, then the cutting face 

F = { x ~ X l d r x  = dT.~} 
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is efficient for the reduced problem )?. This allows us to show how to pivot 
to get a better efficient point or show that the current efficient point ~ is an 
optimal solution of  (P). If  Case 4 holds, then the cutting face F may not be 
efficient for .~, but again we show how to pivot to get a better efficient 
point or show that ~ is an optimal solution of (P). 

Given d, we will determine which of  the above four cases holds. 
Consider the following two linear programs: 

(A) max drn, 

s.t. Cn < O; 

(B) max drn,  

s.t. Cn >= O. 

Lemma 2.3. 

(i) The zero vector 0 is the unique optimal solution of  (A) if and 
only if drn > 0 for all nonzero n e D  and there is no feasible and nonzero 
~' for (A) such that C n ' =  0 and drn '=  O. 

(ii) I f  0 is an optimal solution of  (A), then drn > 0 for all nonzero 
neD .  

(iii) The zero vector 0 is the unique optimal solution of (B) if and 
only if d rn  < 0 for all nonzero n e D  and there is no feasible and nonzero 
n' for (B) such that Cn'= 0 and dTn '=  O. 

Proof. 

(i) Suppose that 0 is the unique optimal solution of  (A), and let n be 
a nonzero vector in D. We know that Cn > 0 and so C ( - n )  < 0. Thus, - n  
is feasible for (A) and d r ( - n )  < 0. Hence, drn > 0 for all nonzero neD. 
Also, there is no feasible n such that Cn = 0 and drn = 0, because the zero 
vector is the unique optimal solution of  (A). 

Now, suppose that dTn > 0 for all nonzero n e D .  Since every nonzero 
n e D  satisfies C ( - n )  < 0, so - n  is feasible for (A) and d r ( - n )  < 0. We 
will show that D does not include any nonzero n 2 such that Cn 2 =  0. If  
there is n 2 such that Cn 2 = 0  and drn2>O, then for any nonzero n l e D ,  
there is a positive a > 0 such that 

dr{an ' + (1 - ~)( _~2)} _- O. 

Since 

c{ n' + (1 - >_0, 
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SO 

art I + ( 1 - ~) (_n2)  ~D. 

By the above, 

d T { ~ x  1 + (1 --  ~)(--7Z2)} > 0, 

which is a contradiction. Thus, there is no n z such that C n z =  0 and 
drn 2 > 0. Thus, dr( - z 0  < 0 for all nonzero feasible -7~ of  (A). But the 
zero vector is feasible for (A), so it is the unique optimal solution (A). 

(ii) We proceed b y  contrapositive statement. Suppose that drn < 0 
for some nonzero rceD. Since - r e  is feasible of  (A) and dr(-re)  > 0, the 
zero vector is not an optimal solution of (A). 

(iii) The proof  follows by rewriting (B) as 

(B) max dr~z, 

s.t. C( - ~) < O, 

and applying (i) to (B). [] 

By solving (A), we can determine if drn > 0 for all nonzero n e D  or if 
drn >0 for all nonzero neD. If  drn > 0  for all nonzero neD, then by  
Lemma 2.1, every optimal solution of  (R) is an optimal solution of  (P). If 
drn > 0 for all nonzero neD,  then choose any optimal solution x* of  (R), 
and by solving (Px*), we can get an optimal solution of  (P). If  we have 
Case 3 or 4, then we will show how to find an optimal solution of  (P) in 
Section 4. 

3. Pivoting Techniques to Find Efficient Edges 

In this section, we assume that we have an initial eff• extreme 
point x ~ for (M). Finding such a starting point is not difficult; see Refs. 
11-12 and Refs. 16-17 for example. By appropriate pivots, we represent 
this efficient vertex x ~ and problem (M) by the following tableau T: 

X N X B 

f - C  0 

b A I 

Here, x N denotes the variables which are nonbasic at the basic feasible 
solution x ~ and x s denotes the variables which are basic. In this section, we 
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summarize the results of Refs. 14-16 that show how to find all edges 
incident to x ~ that are efficient. To simplify the discussion, we assume here 
that T is a nondegenerate tableau. For  details on the degenerate case, see 
Ref. 16. 

Suppose that x ~ is an efficient extreme point. In order to determine 
which edges incident to x ~ are efficient, we use the following theorem. 

Theorem 3.1. Suppose that the given tableau T is nondegenerate and 
its associated basic feasible solution x ~ is efficient. Consider the linear 
program 

(QJ) max z = eTs, 

s.t. Cu = s + CJ, 

u > 0 ,  

s > O ,  

where C j denotes the j th  column of C in T and e is a vector with each 
component  equal to one. Let F j be the edge incident to x ~ obtained by 
increasing the nonbasic variable x u .  Then, 

FJ~_E, i f f  Zmax = 0 in (QJ). 

Proof. See Theorem 1 in Ref. 16. [] 

The dual of (QJ) is 

min .T - C J y ,  

s,t. Cry  > O, 

-y>e.= 

Let y = - ( v  + e), where the vector v is the variable vector and e is a vector 
with each component  equal to one. We can formulate the dual of  (QJ) as 
the following program: 

(R j) min - - eTC j -  1)Tc j, 

s.t. CTv < -- CTe, 

V>0.  

By duality, (QJ) has optimal value zero if and only if the optimal value of 
(RJ) is zero. As in Ref. 16, this implies that the optimal value of (R j) is zero 
if and only if 

S = {(v, w N) >= 0 I Cry + w u  = - Cre,  wu = O} r ~ .  (1) 
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We will use the set S to determine which edges incident to x ~ are efficient. 
Let the tableau S r  be defined as follows: 

1) W N 

- Cre  C r I . 

We assume that - Cre > O, otherwise simplex pivots can be performed 
on S r  to obtain a nonnegative constant column. A key observation is that, 
if w N can be made nonbasic by pivoting on ST while maintaining a 
nonnegative constant column, then F j is an efficient edge. Typically, many 
edges incident to x ~ can be identified as efficient by this observation. In the 
worst case, one could minimize wff over ST to determine if FJ _ E. 

To solve (P), we will use the above result to develop a pivoting 
technique for finding an efficient edge which gives a direction of  increase 
for the objective function drx ,  if one exists. We will illustrate how the 
Philip algorithm (Ref. 1) works with using the above efficient searching 
technique. Figure 1 is helpful in describing how to proceed in our pivoting 
technique if an efficient point 2 is obtained having no efficient edges that 
yield an increase in drx .  In Fig. 1, the efficient set E is indicated by the bold 
edges and x ~ is the initial efficient extreme point. By using Theorem 3.1 and 
the tableau ST, we would find two efficient edges incident to x ~ Given the 
objective function d r x  in Fig. 1, suppose that we increase d r x  by pivoting 
to 2. From 2, further increases in d r x  along efficient edges cannot be 
obtained, but 2 is not a solution to (P). 

x 0 

Y: 

X* 

Fig. 1. Original feasible set and maximization direction d. 
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To proceed further, we need to determine if there is a point ~ ~ E with 
drg > dr2 as is the case in Fig. 1. We will show how this can be done by 
cutting the feasible set X through the extreme point 2 by the hyperplane 
drx = dr2. In the next section, we derive some important results that allow 
us to construct an algorithm for finding better efficient points, if any exist. 

4. Efficient Points in the Reduced Problem 

Given a point 2 eE c~ Eex with no efficient edges yielding an increase in 
drx [i.e., 2 is a local optimal solution of (P)], we consider the reduced 
problem, 

(1VI) max Cx, 

s.t. xeX,  

{x Xt >-_dT2}, 
with E denoting the set of efficient points for (1VI). 

Lemma 4.1. If  xeXc~E,  then x~E. 

Proof. Suppose that xr  Then, there exists a point y ~ X  such that 
Cy > Cx. But yeX .  So, x r  completes the proof. [] 

Notice that the converse of Lemma 4.1 does not hold. 

Theorem 4.1. If  2 ~ E n X e x  and there is no efficient edge e = [2, z] in 
E such that drz > dr2, then not exclusively, either 2 is an optimal solution 
of (P) or there is an efficient edge ( = [2, y] in E. 

Proofi Suppose that 2 is not an optimal solution of (P). Since 2 is 
not an optimal solution of (P), there exists Yc ~E n Xex such that dr~ > dr~ 
and ~ is not connected to 2 by an efficient edge in E. By the previous 
Lemma 4.1, ~ eE. But/~ is connected, so there must exist a path of efficient 
edges in E from :~ to 2. Thus, ~ has an adjacent efficient edge in/~. This 
completes the proof. [] 

Notice by Theorem 4.1 that, if 2 is not an optimal solution of (P), but 
it is a local optimal solution of (P), then there is an efficient edge ~ = [2, y] 
in E', that is, on the hyperplane {x~XldT~ =dTx}. 

We use Xex to denote the set of extreme points of X. 
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Theorem 4.2. Suppose that 2 ~E n Xex. If  there is a point 2 ~E such 
that dr~ > dr2, then 2 e E .  

Proof. Suppose that ~r  Then, there exists w e X  such that 
C ( w - s  >0. Notice that we,(,  because the above inequality would 
contradict 2~E.  Also since w~X, it follows by the definition of Jf that 
drw < dr2. Also d r2  < drs so drw < dr2 < drs Therefore, there is an 

> 0 such tha t  

ew + (1 - e)2 = ~(w - s + 2 e  J?. 

Thus, 

C(E(w - ~) + ~) = ~C(w - ~) + C~ > C~, 

since E > 0 and C(w -.~) > O. But 

~(w - ~) + ~ eg ,  

so this contradicts s Thus, 2 e E  and this completes the proof. [] 

The following theorem establishes an important property of  the cut- 
ting face 

F = {x EX I drx = drx} 

when d satisfies Case 3 in Section 2. 

Theorem 4.3. If  drn < 0 for all nonzero n ED, then the cutting face F 
is efficient for the reduced problem, that is, F _  E. 

Proof. For  any interior point z of  the cutting face F, we need to show 
that z eE.  Notice that the set of  feasible direction in )? at z is 
{n e X  I drn >= 0}. But there is no nonzero feasible direction n e D  satisfying 
drn > O. Therefore, z ~E, which completes the proof. [] 

If  2 e E n Xex and there is no efficient edge e = [2, z] in E such that 
drz > dr2, then as discussed above, we cut the feasible set X by the 
hyperplane drx = dr2. As indicated in Theorem 4.2 and the contrapositive 
of  Lemma 4.1, we need to check whether or not there is a point J?eE 
satisfying dr)7 > dr2. To check whether or not there is such a point 9~, 
consider the following linear programs for each i = 1 . . . . .  k: 

(Ii) max crx, 

s.t. x e X ;  

(PIi) max crx, 

s.t. x~E .  
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By L e m m a  2.2, there is a c o m m o n  opt imal  solution for  (Ii) and (PIi),  
because nrci > 0 for  all n e D .  By solving (Ii) sequentially for  i = 1 . . . . .  k, 
let x;  be an opt imal  solution of  (Ii). Not ice  that,  i f x  is feasible for  (Ii) , then 
drx  > dr2. Consider  the following cases for  xi: 

(i) d r x  i > dT2 and x~eE; 
(ii) dTx i > dr2  and xiCE; 

T " ^ (iii) d x '  = dr2. 

I f  (ii) holds, then there is a point  g e e  such that  Cg > Cx i. Notice  tha t  
cr~  = c r x  ~ because x i solves (Ii). So 9~ is also an opt imal  solution of  (Ii). 
F o r  case (ii), we consider two subcases: 

(iia) dT~ > dr2, 
(iib) dTff = dr2. 

In  case (i), x i e E  by Theo rem 4.2, so we can use x ~ as a new current  
efficient point  and seek an adjacent  efficient edge yielding an increase in 
drx.  In case (iia), f l e E  by Theo rem 4.2, so we can use s as a new current  
efficient point  and seek an adjacent  efficient edge yielding an increase in 
drx.  In cases (iib) and (iii), there is an efficient op t imal  solution o f  ( I 0  in 
the cutt ing face. We now solve (I~+1) and check to see if x '§ satisfies (i), 
(iia), (iib), or  (iii). I f  x i+j satisfies (i) or  (iia), we can cont inue with x e+ 1 
as a new current  efficient point.  I f  x ~§ 1 satisfies (iib) or (iii), we cont inue 
as above  and solve (Ii +2). I f  we cont inue until (Ik) and never obta in  (i) and 
(iia), we then show below in Theo rem 4.4 that  the current  efficient point  2 
solves (P) provided that  there is no efficient poin t  in E" on the cut t ing face 
F which has an adjacent  efficient edge yielding an increase in drx.  

We illustrate this process by cont inuing the example  in Fig. 1. Recall  
f rom Fig. 1 that  2 is the current  efficient point.  In Fig. 2, the unique 
opt imal  solution of  (11) is x I = 2, which is on the cutt ing face. So, we solve 
(12) and obtain  x 2 = ~. Since dr~ > dr2  and 2 e E ,  we are in case (i). So, we 
take ~7 as a new current  efficient point.  

With  this new current  efficient point ,  we can seek an adjacent  efficient 
edge yielding an increase in drx.  In  this example,  no adjacent  efficient edge 
yielding an increase in d r x  exists. We therefore cut the feasible set by  
d r x  =drY~; see Fig. 3. Solving (I1), we obtain  y which is on the cutt ing 
face. So, we now solve (12) and obta in  ff which is also on the cut t ing face. 
We have reached (12) and are in case (iii). We now need to determine if 
there is a bet ter  efficient point  in the current  reduced feasible set X. 

Not ice  that  drTt < 0  for  all nonzero  reeD implies F c_E by T h e o r e m  
4.3. So, all edges on F are efficient in J?. Therefore ,  we need to pivot  on F 
to determine whether  or not  there is a point  y on F which has an adjacent  
efficient edge yielding an increase in dTx. I f  2 is a current  efficient point ,  
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C l  . . "  ' 

C2 
X* 

t 
. 

Fig. 2. Reduced feasible set for problem (I~I). 

C l  , . ' ' '  .." 

37* tt 

Fig. 3. Reduced feasible set for problem (1VI). 

and there is no efficient edge.yielding an increase in drx, and if S; n F  ~ ~ ,  
where Si is the set of efficient optimal solutions of (Ii) for any i, and there 
is no efficient edge yielding an increase in drx at xi~Si, then it is necessary 
to pivot on the cutting face F to determine if there is an efficient point y e F 
such that y has an adjacent efficient edge yielding an increase in drx. So, in 
the worst case, we would need to generate all efficient extreme points of  E 
on F using, for example, the method in Ref. 15. 

Theorem 4.4. If  all points in F c~ E" connected to ~ by efficient edges 
of E" in F have no adjacent efficient edge yielding an increase in drx, then 
F c~/~ is connected. 

Proof. Let V be the subset of F n E where all the points in V are 
connected to ~ by efficient edges in F. Suppose that y~Fc~JE and y is not 
connected to ~ by a path of efficient edges in F. Because E is connected, 
there is an edge [y, s _c/~ with drs > dry = drY. Also, there is a path of 
efficient edges from ~ to ~. Suppose that this path reenters V at an efficient 
extreme point s Then, s  has an adjacent efficient edge yielding 
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an increase in drx.  This cont rad ic t ion  shows that F n E  must be 
connected. [] 

Coronary 4.1. I f  all points in F c~ E connected to 2 by efficient edges 
of  E in F have no adjacent efficient edge yielding an increase in drx,  then 
the current efficient point 2 is an optimal solution of  (P). 

Proof. This follows immediately from Theorem 4.4 because, in this 
case, F n E is connected. [] 

5. Algorithms for Solving (P) 

The following is an algorithm for solving problem (P). 

Algorithm 5.1. 
Step 0. Find an optimal solution x* of  (R). If  x * e E ,  then x* is an 

optimal solution of (P). Else, find an optimal solution 2 of  (Px*). If  
dr2  = d r x  *, then 2 solves (P). Otherwise, go to Step 1. 

Step 1. Start with an efficient point 2 which is an optimal solution of  

(Px*). 
Step 2. At the current efficient extreme point, say 2, find an adjacent 

efficient edge which gives a direction of  increase in the objective function 
value. I f  there is no efficient edge which yields an increase in objective 
function value, then go to Step 3. Otherwise, pivot to the next extreme 
point 2 of the chosen efficient edge and do another iteration of  Step 2. 

Step 3. Add the row which represents the cutting hyperplane and a 
slack variable x ,  + l to obtain a tableau T~ which represents 2 as an extreme 
point in J?. 

Step 4. See Steps 4.1 to 4.4 below. 
Step 4.1. Set i = l .  
Step 4.2a. Find an optimal solution x i of (Ii) which is an efficient 

extreme point in (l g l). 
Step 4.2b. If  d r x  ~ > dr2, then use x ~ as a new current efficient point. 

Adjust the current tableau for representing x ~ as an extreme point in X. Go 
to Step 2. 

Step 4.2c. If  d r x  ~ = dr2  and there is an adjacent efficient edge [x ~, 2] 
yielding an increase in drx,  then use ff as a new current efficient point. Go 
to Step 2. 

Step 4.2d. If  i ___ k - 1, do another iteration for i ~ i + 1. Go to Step 
4.2. 

Step 4.3a. I f  dr~ < 0 for all nonzero rceD, recall that the cutting face 
F _ E. Pivot on F seeking a point y which has an adjacent efficient edge 
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yielding an increase in drx.  If  no such y exists, then the current point ~ is 
an optimal solution of (P). 

Step 4.3b. I f  dr= ~ 0 for some nonzero = ~D, then not all of the cutting 
face F need to be in E. Pivot on F following efficient edges on F seeking a 
point y which has an adjacent efficient edge yielding an increase in drx. If  
no such y exists, then the current point ~ is an optimal solution of (P). 

Step 4.4. If  there is such an edge [y, g] _ E, then use ~ as a new 
current efficient point. Go to Step 2. 

We can modify Algorithm 5.1 to obtain an algorithm that does not 
necessarily need to follow efficient edges. Given a current efficient point 2, 
the following algorithm does not seek adjacent efficient edges yielding an 
increase in drx. Instead, at the current efficient point ~, which is not 
necessarily a local optimal solution of (P), we immediately generate a 
cutting hyperplane and maximize the individual objectives over the reduced 
set seeking a better efficient point. 

Algorithm 5.2. 

Step 0. Find an optimal solution x* of (R). If  x* ~E, then x* is an 
optimal solution of (P). Else, find an optimal solution ~ of (Px*). I f  
dr~ = d rx  *, then ~ solves (Px*)- Otherwise, go to Step 1. 

Step 1. Start with an efficient point ~ which is an optimal solution of 
(Px.). 

Step 2. Add the row which represents the cutting hyperplane and a 
slack variable xn+l to obtain the tableau T~ which represents 2 as an 
extreme point in ~. 

Step 3. See Steps 3.1 to 3.4 below. 
Step 3.1. S e t i = l .  
Step 3.2a. Find an optimal solution x i of (Ii), which is an efficient 

extreme point in ( ~ ) .  
Step 3.2b. If  drx  ~ > drY, then use x; as a new current efficient point. 

Adjust the current tableau for representing x f as an extreme point in X. Go 
to Step 2. 

Step 3.2c. If  drx  ~ = drYc and there is an adjacent efficient edge Ix ~, 2] 
yielding an increase in drx,  then use 2 as a new current efficient point. Go 
to Step 2. 

Step 3.2d. If  i < k - 1, do another iteration for i ~ i + 1. Go to Step 
3.2a. 

Step 3.3a. If  dr= < 0 for all nonzero = ~D, recall that the cutting face 
F _ E'. Pivot on F seeking a point y which has an adjacent efficient edge 
yielding an increase in drx. If  no such y exists, then the current point 2 is 
an optimal solution of (P). 
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Step 3.3b. If  drrc ~ 0  for some nonzero ~eD,  then not all of  the 
cutting face F need be in E'. Pivot on F following efficient edges on F seeking 
a point y which has an adjacent efficient edge yielding an increase in drx. 
If  no such y exists, then the current point ~ is an optimal solution of (P). 

Step 3.4. If  there is such an edge [y, 2] __%_ E, then use 2 as a new 
current efficient point. Go to Step 2. 

The authors are currently developing an implementation for computa- 
tional experiments showing how the algorithms work in practice. In the 
following section, we illustrate the algorithms with an example. 

6. E x a m p l e  

Consider the multiple-objective problem 

max I x 1 -  3X2~, 
xl + 3x2J 

s.t. x e X ,  

X = { x e R  2 [ Xl + 2x2 < 8, 2xl + x2 < 7, xl - 2x2 < 1, xj,  x2 > 0}. 

Figure 4 gives the feasible set X with the efficient set indicated by the bold 
eges. 

The problem (P) that we want to solve is 

(P) max ( - 3 x l - 2 x 2 ) ,  

s.t. x~E.  

x2 

X2 . J . ' X l  
d 

Fig. 4. Feasible set for the example. 
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Solving (R) gives the unique point (0, 0). Since (0, O) q~E, drn < 0 for some 
nonzero rc~D. Also, as we explained in Section 2, solving (B) gives the 
unique optimal solution 0, so from Lemma 2.3, dr~ < 0 for all nonzero 
rc ~D. By Theorem 4.3, cutting faces will be efficient in the reduced problems. 

We now show how Algorithm 5.1 works. 

Solving (P) with Algorithm 5.1. Suppose that we start with the initial 
efficient extreme point x ~  (2, 3)r with tableau To, 

x]  x 2 x 3 x 4 x 5 

- 1 2  0 0 - 1 / 3  - 4 / 3  0 

- 7  0 0 - 7 / 3  5/3 0 
11 0 0 5/3 -1 /3  0 

3 0 1 2/3 - 1 / 3  0 
2 1 0 - 1 / 3  2/3 0 
5 0 0 5/3 - 4 / 3  1 

In Step 2, we need to check which edges adjacent to x ~ are efficient. Forming 
the tableau STo and pivoting by the subproblem technique (see Ref. 18) to 
get a nonnegative constant column, tableau Sro becomes 

93 94 W3 W4 

18/3 --18/3 0 1 5 . 

4 --5 1 0 3 

Because w4 is nonbasic, increasing x4 gives (as discussed in Section 3) an 
efficient edge adjacent to x ~ Also from tableau To, we see that increasing 
x4 gives an increase in objective function drx. So in Step 2, we choose x4 
to enter the basis and we pivot to the new efficient extreme point 
x 1 = (0, 4) r with tableau T1, 

Xl X2 X3 X4 X5 

- 8  2 0 - 1  0 0 

- 1 2  - 5 / 2  0 - 3 / 2  0 0 
12 1/2 0 3/2 0 0 

4 1/2 1 1/2 0 0 
3 3/2 0 - 1 / 2  1 0 
9 2 0 1 0 1 
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Again, we need to find which edges adjacent to xl are efficient. The edge 
adjacent to x I obtained by increasing Xl in tableau T~ is efficient. But 
increasing x~ yields a decrease in drx. Thus, there is no adjacent efficient 
edge which yields an increase in drx. So, in Step 3, we have to cut the 
feasible set 2" through x z by the hyperplane drx = d r x  ~, that is, 
- 3 X l -  2x2 = - 8 .  We add the cutting hyperplane as a constraint to the 
tableau T1 to obtain the tableau T1, 

- 8  

- 1 2  
12 

XI X2 X3 X4 X5 X6 

2 0 - 1  0 0 0 

-5/2 0 -3/2 0 0 0 
1/2 0 3/2 0 0 0 

4 1/2 1 1/2 0 0 0 
3 3/2 0 - 1 / 2  1 0 0 
9 2 0 1 0 1 0 
0 2 0 - 1  0 0 1 

To solve (Ii), maximize the first objective function crx  over T~. After a 
couple of pivots, we have the following tableau T~: 

Xl X2 X 3 X4 X 5 X6 

3 0 8 0 0 - 3  0 

1 0 1 0 0 1 0 
1 0 - 5  0 0 1 0 

5 0 8 0 0 --3 1 
5 0 5 0 1 --2 0 
7 0 4 1 0 " 1  0 
1 1 - 2  0 0 1 0 

The optimal solution of  (I1) is s and dr2 > drx 1. In Step 4, we need to 
adjust the tableau. Deleting the cutting hyperplane constraint (by deleting 
the row and column corresponding to x6), we obtain the following tableau 
T 2 representing ~ as an efficient extreme point in X: 
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xl x2 x3 x4 x5 

- 3  0 8 0 0 - 3  

1 0 1 0 0 1 
1 0 - 5  0 0 1 

5 0 5 0 1 - 2  
7 0 4 1 0 - 1  
1 1 - 2  0 0 1 

We then return to Step 2 using x 2 = 2 as the current efficient extreme point. 
We could see that there is no efficient edge adjacent to x 2 which yields 

an increase in d r x .  Again, we could cut the feasible set by the hyperplane 
- 3xl - 2x2 = - 3 yielding the following tableau T 2 for the reduced problem: 

Xl X2 X 3 X 4 X5 X6 

- 3  0 8 0 0 - 3  0 

1 0 1 0 0 1 0 
1 0 - 5  0 0 1 0 

5 0 5 0 1 - 2  0 
7 0 4 1 0 - 1  0 
1 1 - 2  0 0 1 0 
0 0 8 0 0 - 3  1 

The optimal solution of  (I1) is x 2 from the tableau 5P 2. We now solve (I2) 
to obtain the point y = (0, 3/2) r with the following tableau Ty : 

X 1 X 2 X 3 X 4 X 5 X 6 

- 3  0 0 0 0 0 - 1  

- 9 / 2  - 1 1 / 2  0 0 0 0 - 3 / 2  
9/2 7/2 0 0 0 0 3/2 

11/2 
5 
4 
3/2 

1/2 0 0 1 0 . - 1 /2  
- 2  0 1 0 0 - 1  

4 0 0 0 1 1 
3/2 1 0 0 0 112 
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We know that all the optimal solutions of (11) and (12) are on the cutting 
face and there is no efficient point on the cutting face that has an adjacent 
efficient edge yielding an increase in drx; by Theorem 4.4, the current 
efficient point x2= (l, 0) r is an optimal solution for (P). 

We now show how Algorithm 5.2 works. 

Solving (P) with Algorithm 5.2. The given initial efficient extreme 
point is x ~ = (2, 3) T with tableau To, 

Xl x2 x3 X4 x5 

- 1 2  0 0 -1 /3  -4 /3  0 

- 7  0 0 -7 /3  5/3 0 
11 0 0 5/3 - 1 / 3  0 

3 0 1 2/3 -1 /3  0 
2 1 0 -1 /3  2/3 0 
5 0 0 5/3 -4 /3  1 

In Step 2, we reduce the feasible set by adding the constraint drx ~ < drx; 
we obtain tableau To, 

Xl X2 X3 X4 X5 X6 

- 1 2  0 0 - 1 / 3  --4/3 0 0 

- 7  0 0 -7 /3  5/3 0 0 
11 0 0 5/3 -1 /3  0 0 

3 0 1 2/3 -1 /3  0 0 
2 1 0 -1 /3  2/3 0 0 
5 0 0 5/3 -4 /3  1 0 
0 0 0 -1 /3  -4 /3  0 1 

Maximizing the first objective function over To gives the point X 2 = ( 1, 0) T 
with tableau T1, 
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- 3  

xl x2 x3 x4 x5 x6 

0 8 0 0 - 3  0 

0 1 0 0 1 0 
0 - 5  0 0 1 0 

0 5 0 1 - 2  0 
0 4 1 0 - 1  0 
1 - 2  0 0 1 0 
0 8 0 0 - 3  1 

Now, we adjust the tableau Tt for the reduced feasible set by changing the 
constant column entry in the last row to 0 as in the following tableau ir~: 

X 1 X  2 X 3 X 4 X5 X 6 

- 3  0 8 0 0 - 3  0 

1 0 1 0 0 1 0 
1 0 - -5  0 0 1 0 

5 0 5 0 1 - 2  0 
7 0 4 1 0 - 1  0 
1 1 - 2  0 0 1 0 
0 0 8 0 0 - 3  1 

The optimal solution of 01) is x 2 and the optimal solution of (I2) is 
z = (0, 3/2) r. Since all the optimal solutions are on the cutting face and 
there is no efficient point on the cutting face that has an adjacent efficient 
edge yielding an increase in drx, we know by Theorem 4.4 that the current 
efficient point x 2 = (1, 0 ) r  is an optimal solution of  (P). 
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