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In this paper, we adapt the Fair and Taylor [4] method for forward-looking variables in 
simulation models to control theory models. In particular, we develop a procedure for solving 
quadratic linear control models when there are forward-looking variables in the system 
equations. The simplest way to do this for deterministic problems would be to stack up the 
variables for all time periods using Theil's procedure [9], as suggested by Hughes-Hallet 
and Rees [5] for simulation models and done by Becker and Rustem [7] for perfect fore- 
sight problems. However, we plan to continue from the current paper and develop similar 
procedures for passive and active learning control problems, and the stacking procedure 
does not seem as natural for those problems. Therefore, we will use the Fair-Taylor 
approach here and adapt it for deterministic quadratic linear problems. 

1. P r o b l e m  statement 

The standard quadratic linear tracking problem is written as 

N-1 
f'md (Uk )k= 0 

to minimize  the criterion 

1 
J = -~ [xlv - YeN ]" WN [xN - YeN ] 

N - I  
1 ], 

+ -~ ~ .  ([xk - ~k Wk [xk -- ~k] + [uk -- ~k YAk [uk -- ~k ]) ,  
k--0 

where 

x k = n element state vector for period k, 

uk = m element  control vector for period k, 

(1.1) 

�9 J.C. Baltzer AG, Science Publishers 
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~k = desired vector for state vector in period k, 

~k = desired vector for control vector in period k, 

W k = penalty matrix on deviations of state variables from desired paths, 

Ak = penalty matrix on control variables for deviations from desired paths, 

subject to the system equations 

Xk+l = AXk + Buk + CZk k = 0 . . . . .  N - 1 (1.2) 

and the initial conditions 

where 
x0 given, (1.3) 

A = n x n coefficient matrix, 

B = n x m coefficient matrix, 

C = n x g coefficient matrix, 

Zk = g vector of exogenous variables. 

A slightly different version of the system equations (1.2) is used here than is 
contained in Kendrick [6]. The modification is made to accommodate exogenous 
variables. This is done by replacing the exogenous vector Ck of constant terms in the 
previous notation with a coefficient matrix C and a vector Zk of exogenous variables, 
such that Ck = CZk. 

The typical structure of C is a first column which contains the constant terms 
from the system equations, with the remainder of the matrix containing coefficients 
which multiply exogenous variables in the system equations. Consistent with this 
structure, the Zk vector usually has a one in first position, followed by a column of the 
exogenous variables which vary over time. 

Now consider a quadratic linear tracking problem in which the outcome of the 
state variable for period k + 1 is a function not only of the state and control variables 
in period k, but also of the expected value of the state variables in periods k + 1 and 
k + 2. This can be called a state equation with forward- look ing  variables. In this case, 
the system equations (1.2) is written as 

Xk+l = AXk + BUk + CZk + DlX~+ll k + D2Xek+21k . 

Thus, for instance, the variable 

X~+llk 

(1.4) 

is the expected value of the state variable at period k + 1 as projected from period k. 
Under the rational expectations hypothesis, the following condition holds: 

X~+llk_ 1 = Xk+ 1. 



H.M. Amman, D.A. Kendrick / Forward-looking variables 143 

This means that it is assumed that economic agents have perfect foresight about future 
states. In a stochastic environment rather than the deterministic environment of this 
paper, the above equation would be transformed into 

X e 
k + l l k - 1  = E k - l X k + l '  

i.e. the symbol Ek-1 means the mathematical expectation operator at time k -  1. 
The Fair-Taylor procedure for determining the expected value of the forward- 

looking variables in simulation models is an iterative scheme where values of these 
variables are the same as the solution from the model. This requires choosing some 
nominal path for the expected values for the first iteration and then solving the model 
repeatedly. After each iteration, the expected values are updated to be the same as the 
solution values for the corresponding state variable in the previous solution. This 
process is continued until convergence is obtained. We adopt a similar procedure here 
for optimization models. 

This procedure corresponds to the rather stringent assumption of perfect fore- 
sight in a deterministic model, meaning that economic agents can make the right 
prediction of the future states of the economy. In a stochastic model, as in Amman 
and Kendrick [1] and Amman et al. [2], this assumption would be replaced by the use 
of expected values. As there is no uncertainty in the deterministic case, expectations 
will be met perfectly. 

The iterative scheme for solving the model will be outlined here using the 
notation 

X e~ 
k+l]k 

to represent the expected value of the state variable at iteration v. 
A number of different procedures could be used to get a starting path for the 

state and control variables. The simplest is to set 

xeO 0 = 0 for all k. 
k + l l k  = Xk+l 

Thus, the iterative scheme used here is begun by setting 

D1 = Dz = 0 

and solving the resulting control problem. In this case, there are no forward-looking 
variables and the standard solution procedure for quadratic-linear tracking problems 
can be used. Call the optimal state variables for this solution 

X NL, 

i.e. the no-lead solution. Then set the expected values of the forward-looking vari- 
ables equal to the no-lead solution for the first iteration: 

el NL and X el NL for all k. (1.5) 
X k + l l k  = Xk+l k+21k = Xk+2 
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Then the system equation (1.4) on the first iteration becomes 

= r~ x e l  D X el Xl+l  A x  1 +Bulk + CZk +L"I  k+l[k + 2 k+2lk" (1.6) 

However, the terms 
D X el el 

CZk + I k+llk + o 2 x k + 2 [ k  (1.7) 

are all known after the no-lead solution, so the system equations can be rewritten as 

where 

and 

x l + l  .,_ Ax 1 q.. Bulk + ~,~1, (1.8) 

C ' = [ C  D1 D2] (1.9) 

[zk 1 ~1 el 
= Xk+ll k �9 

I xel  
[ k+21k 

(1.10) 

Then the system equation (1.8) is of the same form as the original system equa- 
tion (1.2) and the standard quadratic-linear tracking model can be used to solve the 
model at iteration one, cf. Kendrick [6, chap. 2]. Call the solution to this problem 

(Xk I *1 ,u k ) for all k. 

Begin iteration two by updating the expected values of the forward-looking state 
variables with 

e2 *1 x k = x k for all k. (1.11) 

Then the system equations on the second iteration become 

2 2 Bu 2 -t- CZk -t- 1 k+llk -t- 2 k+2lk" (1.12) Xk+ 1 = A x  k -t- D X e2 D X e2 

Once again, the terms 
e2 (1.13) CZk + OlXek21lk + OEXk+21 k 

are known before the problem is solved, so the system equations at iteration two can 
be written 

2 ___ Ax 2 2 - - 2  Xk+l k + BUk + C Z k ,  (1.14) 
where 

C = [ C  DI D2] 
and 

(1.15) 

[zk] 
e2 

,~2 = Xk+llk . 

IXe2 I 
L  +21kl 

(1.16) 
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Equation (1.14) is now in the form of the system equations for the standard quadratic- 
linear tracking problem and can be solved again with that code. 

The iterations as described above are then repeated until convergence is obtained, 
i.e. until 

e,u+l eu 
x k - x  k ) < e  for all k, (1.17) 

where e is the tolerance of convergence. At this stage, we do not know what conditions 
must be met to guarantee convergence of this procedure; however, our experience with 
the numerical example here was that only a small number of iterations were required. 

The procedure described above is used for all time periods except for period 
N -  1, which is the last period for the system equations. In that period, the value of 

e s Xk+21k will not be defined since, as xN+IlN-1, it will be beyond the terminal period. A 
way to deal with this terminal condition is to set XTV+llN-l equal to xN. The way Fair 
and Taylor deal with this issue is to extend the simulation period N to N + s. If s is 
taken sufficiently large, the impact of the boundary condition on the simulation period 
N, posed by the forward-looking variables, will generally be small. In this way, this 
boundary condition will have little impact on the solution of the optimal controls in 
the periods 0 to N -  1. 

2. A simple example: The MacRae problem 

A simple example can be constructed from MacRae's [10] single-state single-control 
two-period stochastic control model. It was chosen because it is the simplest possible 
control problem and is well known in the literature. A deterministic version of the 
MacRae model, modified to cover five instead of two periods and to include a single 
forrward-looking variable for k + 21k, is 

f i n d  (Uo, Ul, U2, U 3 , U4 ) to m i n i m i z e  

1 2 1 5 
J =  -~w2x2 + ~ ~ ( W k  x2 + ZkU~) (2.1) 

k=O 

subject to xk+l = axk + bug + czk + dx~+21 k 

x 0 = 0 .  

The parameter values used are 

for k = 0 ,1 ,2 ,3 ,4 ,  (2.2) 

(2.3) 

a = 0.7, b = -0 .5 ,  c = 3.5, 

Zk = 1  Vk, Wk = 1  Vk, &k = 1  Vk. 

Also the desired paths in (2.1) are implicitly set to zero, so 

d = 0.2, 
(2.4) 

~ k = 0 ,  fik = 0  Vk. (2.5) 
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When this problem is solved using the forward- looking version of  the QLP 1) 

sof tware and the algori thm of  the previous section, it converges  within only a few 
iterations. Figure 1 shows that the value of  the state variable in the last t ime per iod x5 
was just  under  f ive in the first iteration. Recall  that the solution for that i teration 
ignores the effect  of  the forward-looking variable. Then the solution quickly converges  

so that within only a few iterations, x5 homes in on 5.69. 

Convergence of x 

5.8 ~~ .___---. �9 
5.6 

5.4 

to 5.2 x 

5 �9 

4.8 

4.6 I I I I t I 1 I t 
r I~  03 O) O 

i t e r a t i o n  

Figure 1. Convergence of the last period state variable. 

The  solution for  the state and control  variables for  all t ime periods is shown in 

table 1. 
Table 1 

Solution for the five period problem. 

Period Control variable State variable 

0 4.53 0.00 
1 5.16 1.84 
2 5.22 3.01 
3 4.58 4.03 
4 2.85 5.17 

5 N/A 5.69 

3. A m a c r o e c o n o m i c  example :  T h e  S a r g e n t  a n d  W a l l a c e  m o d e l  

The  Sargent and Wallace [8] model  provides a macroeconomic  example  with three 
state variables,  two control  variables and two forward- looking  variables.  The  two 

forward- looking variables are prices one and two periods ahead. 

1) The QLP software may be obtained on request from the authors. 
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In the following, we will convert the Sargent and Wallace model from the form 
presented in their paper into a state space model. Begin with their model with four 
equations: aggregate supply, aggregate demand (IS curve), aggregate money demand 
(LM curve), and productive capacity. 

Aggregate supply 

Yt = a l k t -1  + a2 (Pt  e . - P t l t _ l ) ,  (3.1) 
IS curve 

= _ _ e ) ] ;  ( 3 . 2 )  Yt b lk t -1  + b2[rt ( P t + l l / - I  Ptl t -1  

LM curve 

mt = Pt + clYt + c2rt; ( 3 . 3 )  

Productive capacity 

kt = d l k t - 1  + d2[rt - ( P t + l l t - I  - P t l t - 1  ) ]  + d3gt ,  ( 3 . 4 )  

where all variables are in natural logarithms unless otherwise noted. We switch here 
to using the subscript t for time periods and the letter k is used for the capital stock 
and not for the time index. Further, 

Yt -= output, 

k t --- productive capacity, 

Pt = price level, 

m t = money stock, 

gt = government expenditures, 

r t = interest rate, 

Pt+slt ---- expected price in period t + s as projected from period t. 

There is one notational difference and one substantive difference in the above 
model from the Sargent and Wallace model. The notational difference is in the expected 
price variables. The equivalence is 

Amman and Kendrick 

P t + l l t - 1  

Sargent and Wallace 

t + l  Pt-1  

Since we plan to do deterministic control experiments with this model, we have used 
the notation which is widely used in the control literature. The substantive difference 
is that Sargent and Wallace have an explicit monetary policy variable but place all 
fiscal policy variables in an exogenous vector which is driven by a first-order process. 
We have chosen here to take a single one of these fiscal policy variables, namely 
government expenditure, and include it explicitly as a control variable in the model. 
This was done for economic rather than computational reasons, that is, we wanted to 
emphasize the role of fiscal policy. 
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As discussed above, under the rational expectations hypothesis the following 
condition holds: 

e 

Pt+llt-I = Pt+l 

for the forward-looking variables. This means that it is assumed that economic agents 
have perfect foresight about future prices. 

Next, the model is reduced from the four equations above to three equations. 
This is done by solving the LM equation for rt and substituting it into the IS and 
productive capacity equations. Then the aggregate supply equation is inverted so it 
becomes a price equation. This is done in appendix A. In addition, the three equations 
are converted to state space form so that they can be written as 

^ ^ e 

x t  = A o x t  + AlXt-i  + BlUr-1 + Clzt-I  + D l x ~ l t _  l + D2Xt+llt_ 1, (3.5) 

with coefficient matrices 

A 0 -- 

b2Cl 
0 - ~--~ 

r r 
d2Cl 0 - a-L2 
C2 C2 
1 

0 0 
a2 

(3.6) 

A 1 = 

q 
0 bl 0 | 

0 dl 0 J, 

0 al 0 
a 2  

(3.7) 

I b 2  O ]  
r  

B1 = d2 d3 , CI = 
C2 
0 0 

0 

0 , 

0 

(3.8) 

with 

[o o io o 
/~1 ~ 0 0 , /~2 ~ 0 0 --  2 , 

0 0 0 0 

y'] [::] x t =  k t  , u t =  , Zk = [ 1 ] .  

Pt  

(3.9) 

(3.10) 



H.M. Amman, D.A. Kendrick / Forward-looking variables 149 

As is discussed in appendix A, the control variables in (3.10) are lagged values of the 
control variables in the original model. 

As will be discussed later, the structure of the matrix A 1 plays an important role 
in the response of the model. The first and third columns of this matrix consist entirely 
of zeroes so that perturbations to either output or prices do not have an effect on the 
model. 

A stylized version of this 
mates of the parameter values, 

al = 0.33, 

bl = 0.30, 

ci = 0.60, 

d 1 = 0.70, 

model can be developed by using some rough esti- 
which are 

a 2 = 0 . 0 5 ,  

b 2 = - 0.15, 

6' 2 = -- 0.01, 

d 2 = - 0.12, d3 = 0.16. 

(3.11) 

The sign conventions of the Sargent and Wallace model are observed here, with the 
exception that d 3 is not explicitly used in their model. The magnitudes of al and bl 
are about that of output-capital ratios. The magnitudes of Cl and c2 are in rough 
accord with similar parameters for a rational expectations model in Fair [3, p. 400]. 
Also, dl is a coefficient for a lagged dependent variable. No experience was available 
in choosing the magnitude of the other coefficients, so they were selected to be 
roughly the same size as the other coefficients but otherwise arbitrarily. 

From these parameter values one can compute the numerical value of the coef- 
ficients in the matrices (3.6)-(3.9). These calculations are in appendix B. 

While some control theory software permit model input using the Pindyck form 
of the model as described above, most require the collection of all x t terms on the left- 
hand side of the system equations. This can be obtained from (3.5) as 

where 

e e 
Xt+ 1 = A x  t + But  + Czt + DlXt+l l  t + O2xt+21 t, 

A = ( I -  A o ) - I A 1 ,  

B = ( I -  A0)-lB1, 

C ---- ( I  -- A O ) - I  C1,  

D l = (I - Ao)-I/)I,  

D 2 = ( I - A 0 )  - l b  2.  

(3.12) 

(3.13) 

Also, the time subscripts in (3.5) have been advanced by one period to obtain 
(3.12), which is in the traditional control theory form. To distinguish (3.5) from (3.12), 
we have call (3.5) the "I minus A" form, or simply the IA form, and (3.12) the I form 
of the system equations. The coefficients for the matrices in (3.13) are computed using 
the results from appendix B. The results of those calculations are discussed below. 
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The values of the coefficients in the matrices of (3.12) provide some insight into 
the dynamic response of the model, so they are reproduced below. 

A = 

0 0.32 0 

0 0.72 0 

0 -0 .19  0 

(3.14) 

This shows that increases in the capital stock kt have a positive effect on future output 
and capital stock and a negative effect on future prices. 

B = 

0.048 0.0 

0.039 0.16 

0.967 0.0 

(3.15) 

Increases in the money stock decision variable mt have a positive effect on future 
output, capital stocks and prices. Also, increases in the government expenditure deci- 
sion variable gt have a positive effect on capital stocks but no first-round effects on 
output or prices. Output and prices are not affected until the second period, through 
the impact of gt on the capital stock. ~ 

C =  0 . (3.16) 

0 

There are no constant terms and no exogenous variables in the equations of the Sargent 
and Wallace model, and this is reflected in the coefficients in C. 

0 0 - 0.049 

D~ = 0 0 -0 .039 (3.17) 

0 0 0.023 

This shows that increases in expected prices in the next period P~+llt have a negative 
effect on output and capital stock, but a positive effect on prices in that period. 

DE = 

0 0 0.0005 ] 

0 0 0.0004 J. 
0 0 0.0097 

(3.18) 

It is interesting to note by comparing D1 and DE that the effects of expected price 
increases in period t + 2 have an order of magnitude less effect on output, capital stock 
and prices than expected price increases in period t + 1. Also, expected price increases 
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in the next period have a negative effect on output and the capital stock, while 
expected price increases two periods hence have a positive effect on output and capital 
stock. 

4. Experiments with the Sargent and Wallace model 

A useful set of  experiments to perform with this model is to make a perturbation of 
one of the initial values of  the state variables and to analyze the model's response. In 
the original model, all of the initial values of the state variables are zero and the 
variables in the model are interpreted not as levels, but as deviations from steady- 
state equilibrium. The model has three state variables (output, capital stock and price 
level) and two control variables (money stock and government expenditure). Also, 
the desired values of the state variables are zero, so the model is used to return to the 
steady-state path from any perturbation in the initial state variables. With this in mind, 
three experiments were performed by making perturbations in the initial values of  the 
income, price and capital stock variables. 

Values of these state variables, as taken from the Economic Report of the President 
in February 1990, are shown in the first column of table 2. However, the capital stock 
data is not available in that source and is calculated here as being three times the level 
of  output. The price level variable is the Consumer Price Index for all items from 
page 359. The output data is from page 305. 

Table 2 

State variables and perturbations. 

Level in billions Five percent 
of 1982 dollars increase 

Ratio of new to Natural log of ratio of 
equilibrium state new to equilibrium state 

Output, y 2,732 136.6 1.05 0.049 
Capital stock, k 8,196 409.8 1.05 0.049 
Price level, p 82.4 4.12 1.05 0.049 

In the first experiment, the value of output in period zero was set to 0.049 and 
the model was solved. The result was that all the optimal states and controls were 
zero except for that initial value of output. This occurs because lagged output does 
not have any effect on the model, as can be ascertained by an examination of  (3 .1) -  
(3.4). Also, this assumption is apparent in the structure of the A l matrix in (3.7), where 
the first column of that matrix, which corresponds to Yt-1, is zero in every row. 

Skipping the second experiment for the moment, consider the third, where the 
results were the same as for the first experiment and for the same reason. In this 
experiment, the initial price level was perturbed by 0.049, but the result was a zero 
solution for all states and controls except for the perturbation of prices in the initial 
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period. The reason for this result is that lagged prices have no effect on the solution, 
as is seen in (3.1)-(3.4) and in the structure of the A1 matrix in (3.7), where the third 
column of that matrix, which corresponds to Pt-1, is zero in every row. 

So, in the Sargent and Wallace model an upturn in output or prices is met with 
no policy response. This occurs because these changes have an effect only in the 
quarter in which they occur. Therefore, no policy response is necessary to restore the 
economy to equilibrium. 

In the second experiment, the results are different. A perturbation was made in 
the initial capital stock by changing it from zero to 0.049, as is indicated in table 2. 
The policy response to this change is shown in table 3. 

Table 3 

Policy response to an increase in the initial capital stock. 

Time period mt gi 

0 0.0042 - 0.0014 
1 0.0031 - 0.0009 
2 0.0022 - 0.0006 
3 0.0016 - 0.0003 
4 0.0012 0.0000 

In order to properly interpret these results, it is useful to briefly review the nature 
of variables in models which are in log deviation form. Consider first a function of,  
the form 

Yt = AX~Zt z (4.1) 

and the function with equilibrium values 

Y* = A(X*  )# ( Z * ) r .  (4.2) 

The relationship in percent deviation form is the ratio of the above two functions, 

Y* = A ( X * ) # ( Z * ) r  = k,Z-;-) " (4.3) 

In logarithmic form, (4.3) is written as 

In Yt - In Y* = fl(ln Xt - In X* ) + 7(In Z t - In Z* ). 

In log deviation form, (4.4) becomes 

Yt = flxt + ~tzt, 

where 

(4.4) 

(4.5) 
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y t = l n Y t - i n Y * = l n ( ~ , ) ,  

xt = In Xt - ln X*= In(X~_),  (4.6) 

From (4.6), it is apparent that when 

Yt > Y* ~ Yt > 1 =~ In ( yY---i-t, ) y----i- = Yt > 0, (4.7) 

so that when the numbers in table 3 are positive, it means that the policy variable is 
above the equilibrium values. Also when 

Yt < Y* ~ Yt < 1 ~ In/yY~t, / y---7 = Yt < 0, (4.8) 

Therefore, negative numbers in table 3 mean that the policy variable is below equi- 
librium. 

This is further illustrated in figure 2, which provides a plot of the natural log of 
ratios. The ratios are shown on the horizontal axis and the natural log of the ratios are 
shown on the vertical axis. 

1.00 

.0.50 

0.00 
7" 

. 0 . 5 0  C 
X 

" - 1 . 0 0  

X 

- 1 . 5 0  

- 2 . 0 0  

- 2 . 5 0  

m B 

0.5 �9 1.0 1.5 2.0 

X / X *  

Figure 2. Natural log of ratios. 

In the Sargent and Wallace model, all variables are natural logs of ratios. For 
example, their output variable, Yt, is the natural log of the ratio of actual to equilib- 
rium output. Therefore, when this variable is above zero it means that the ratio of 
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actual to equilibrium output, Yt/Y*, is above one. Conversely, when a log deviate 
variable such as price, Pt, is below zero it means that the ratio of actual to equilibrium 
price, Pt/P*, is below one. 

Moreover, a careful examination of figure 2 in the range where Xt/X* is between 
1.00 and 1.50 shows that the function is approximately linear and that it maps to the 
values between 0.00 and 0.50. Thus, in the Sargent and Wallace model, when the 
solution value for Yt is 0.0162, this maps to a ratio for Yt/Y* of 1.0162. This in turn 
means that output is about 1.6 percent above its equilibrium value. 

The same procedure can be used for solution values in the Sargent and Wallace 
model which are negative, but it is necessary to subtract the result from one. Therefore, 
the government expenditure variable o f -  0.0014 in table 3 means that government 
expenditures were roughly (1.00 - 0.0014) = 0.9986, or slightly more than one tenth 
of one percent below equilibrium. 

Thus, the policy response in table 3 is for the money supply to be pushed about 
0.42 percent above equilibrium and then to slowly return to equilibrium. Similarly, 
government expenditures are cut to a value about a tenth of one percent (0.14 percent) 
below equilibrium and then slowly rise to equilibrium. Therefore, the response in 
table 3 is to raise the money supply to decrease the interest rate and to lower govern- 
ment expenditures slightly to mitigate the output effect. This is necessary to keep the 
prices fixed. Prices cannot be directly influenced by government expenditures, as is 
apparent from the B matrix. 

Table 4 

State variable results of an initial capital stock increase. 

Time period Yt kt Pt 

0 0.0000 0.0490 0.0000 

1 0.0162 0.0353 - 0.0055 

2 0.0116 0.0254 - 0.0040 

3 0.0084 0.0183 - 0.0029 

4 0.0060 0.0132 - 0.0020 

5 0.0044 0.0096 - 0 . 0 0 1 4  

The results for the state variables are shown in table 4. Output and the capital 
stock are pushed above equilibrium by the initial positive shock to the capital stock 
and then slowly drift down toward equilibrium. Prices, on the other hand, are shifted 
below equilibrium by the initial increase in the capital stock and then move upward 
towards equilibrium over time. 

5. Conclusions 

We have presented a methodology of dealing with forward-looking variable in a 
quadratic-linear control model framework by adapting the Fair-Taylor procedure 



H.M. Amman,  D.A. Kendrick  / Forward-looking variables 155 

from simulation models for use with control models. The method we have presented 
is applied first to the MacRae model then to the Sargent and Wallace model. In 
contrast to Sargent and Wallace, our procedure focuses on the short and mid-term 
effects of forward-looking variables on economic policy. Our method can be imple- 
mented easily and can be applied to a broad class of economic models which contain 
forward-looking variables. 

Appendix A: Derivation of the system equations of the Sargent and Wallace model 

In this appendix, the model is reduced from four equations (3.1)-(3.4) to three 
equations in state space form. This is done by solving the LM equation for rt and 
substituting it into the IS and productive capacity equations. Then the aggregate 
supply equation is inverted so that it becomes a price equation. For ease of reference, 
equations (3.1)-(3.4) are reproduced here. As is indicated in the text, the variables 
are all defined as natural logarithms unless otherwise noted. 

Aggregate supply 

IS curve 

LM curve 

Capital stock 

Yt a l k t - I  + a2 (Pt  e = - P t l t _ l ) ;  

Yt = b l k t - 1  + b2 [rt - (Pt+ll/-1 - P t l t - I  )]; 

mt  = Pt + c lY t  + c2rt;  

kt  = d l k t - 1  + d2[rt  - (Pt+ll t- t  - Ptlt-I )] + d3gt" 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Begin by solving the LM curve (3.3) for r t to obtain 

where 

1 Cl 1 
= - - m t  - - - Y t  - - -  

C2 C2 C2 
Pt 

= o~mt - f lY t  - a P t ,  (A.1) 

1 _ C 1 

C 2 C2 

Then substitute (A.1) into (3.2) and (3.4) to obtain 

and 
Y t  = b l k t - 1  + b 2 [ a m t  - f l Y t  - ~  - ( P t + l l t - 1  - P t l t - 1  )] ( A . 2 )  

kt = d i k t - 1  + d 2 [ a m t  - f lY t  - a p t  - (Pt+llt-1 - Ptlt-X)] + d 3 g t .  (A.3) 

Next, invert the aggregate supply equation (3.1) so that is becomes a price equation: 
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a2 (Pt  - Pt l t -1  ) = Yt - a l k t - 1  (A.4) 
or 

1___ a 1 
Pt = a2 Y t -  '~2 k t -1  + Pt l t -1  (A.5) 

or 

Pt = rlYt - v k t - 1  + P t l t - 1 ,  (A.6) 
where 

1 al 
~ - - ~  1 ) =  - - ,  

a2 a2 

The model now consists of three equations (A.2), (A.3) and (A.6) in the state 
vector 

Yt 

x t  = kt 

Pt 
and the control vector [m] 

U t ~ . 

gt 

The model can be written in state space form beginning with (A.2) by collecting 
the time period t variables on the left-hand side 

(1 + b2 f l ) y  t + b20tpt  = b l k t -1  + b 2 a m t  - b2p~+ll t -1  + b2P t l t -1 .  (A.7) 

Then transform (A.3) in the same way to obtain 

d2f lY t  + kt + d20tPt = d l k t _  1 + d20trnt - d 2 P t + l l t _  1 + d2Pt l t_  1 + d3g t. (A.8) 

Also, transform (A.6) in the same way to obtain 

e 
OYt -- Pt = 1)kt-1 - P t l t - l .  (A.9) 

Next, write the state equations in a form similar to the form which is used by Pindyck 
[11], i.e. 

xt  = Aox t  + A l X t _ l  + BlUr_ 1 + C l Z t _ l ,  (A.10) 

where z is a vector of exogenous variables and C1 is the appropriate matrix of 
parameters. Placing the state variable for each of the equations (A.7), (A.8) and (A.9) 
alone on the left-hand side and arranging the other variables in the proper order yields 

Yt = - b 2 f l Y t  - b2otPt + b l k t -1  + b20~mt - b2Pt+l l t_  1 + b2Pt l t_  1, (A.11) 

k t = - d 2 f l Y t  - d20tpt  + d l k t _  1 + d2o~mt + d3g t - d 2 P t + l l t _  1 + d2Ptlt_l,e (A.12) 

e (A.13) Pt = ~lYt - ~  + P t l t - l "  



H.M. Amman, D.A. Kendrick / Forward-looking variables 157 

Equations (A.11)-(A.13) are not yet in the Pindyck form, but rather in the form 

^ ^ e 
X t = AoX t + AlXt_  1 + Blfi t + ClZt_ 1 + DlXtl t_  1 + D2Xt+ll t_ l ,  ( A . 1 4 )  

where 
x~'tjt- 1 = the expected value of the state vector at time t 

as projected from time period t -  1. 

The differences between (A.14) and the Pindyck form are that the control vector 

t~t is not lagged and that there are two forward-looking variables which are expected 
values of the state variables. The lag in the control variables is created by defining 
decision variables which precede money stock and government expenditure variables 
by one period, i.e. 

Ut = Ut-1, (A.15) 
where 

Imt  - 1 ] 

ut-1 = [ g t - I  .]" 
(A.16) 

(m = decision variable for the money stock, g = decision variable for government 
expenditures). 

Substitution of (A.15) into (A.14) leaves 

= ^ ^ e ( A . 1 7 )  Xt Aoxt  + AlXt_  1 + BlUt_ 1 + ClZt_ 1 + DlX;i t_ 1 + D2Xt+lj t_  1 , 

that is, the same as (3.5) in the main text of the paper. 
Then, comparing (A. 17) to (A. 11)-(A. 13) and using the coefficient definitions 

after (A. 1) and (A.6), one obtains the matrices 

A 0 = 

- -  b2fl 0 - b2a ~ 
1 

o~ 

,i h b2 --  - 2  C - - - ~  0 

C2 C2 

d2Cl 0 d2 
c2 c-2 
1 

- -  0 0 
a2 

(A.18) 

A 1 = 

n 1 = 

0 b 1 

0 d~ 

0 - v  

b2t~ 

d 2 ~  

0 

0 0 bl 

0 = 0 d 1 

0 0 al 
a2 

b2 o] o 
d2 d3 = 

0 0 

C 1 = 0 , 

0 

(A.19) 

(A.20) 
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with 

D1 = 

X l ~ 

o o b21 [oo b2] 
0 0 d2 , [)2 = 0 0 -- dE , 

0 0 1 0 0 0 Y] [] 
mt 

kt , u t =  , Zk =[1]. 
gt 

Pt 

(A.21) 

(A.22) 

These matrices and vectors are included as (3.6)-(3.10) in the main text of the paper. 

Appendix B: Derivation of  coefficient matrices in system equations for the 
Sargent and Wallace model 

Using the parameter values in (3.11) and the definitions of the coefficient matrices in 
(3.6)-(3.9), one obtains 

A 0 = 

b2 Cl 
- c2 

d2Cl 
C2 

l__ 
a2 

b 2 -  
0 --i-~2 

d2 
0 - c2  

0 0 

(-0.15)(0.6) -0 .15  
o 

-0 .12  (-0.12)(0.6)  0 

~ o o 

- 9  0 - 15  ] 

= - 7 . 2  0 - 1 2  , 

20 0 0 

(B.1) 

A 1 = 

0 b I 0 

0 d 1 0 

0 al 0 
a2 

0 

= 0 

0 

0.30 

0.70 
0.33 
0.05 

0 

0 = 

0 

0 0.30 0 ] 

0 0.70 0 ], 
0 -6.6 0 

(B.2) 

][015 ][ l 0 0 ~ 0 15.0 0.0 

d2 - 0.12 
B I =  ~-2 d3 = ~ 0A6 = 12.0 0.16 , 

0 0 0 0.0 0.0 

o [ooo  
[31= o o = o o -o .12  , 

o o o o 1.oo 

o o Ii~176 
f)2 0 0 - d  2 = 0 0.12 . 

0 0 0 0.00 

(B.3) 

(B.4) 

(B.5) 
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These matrices are further transformed using (I - A0)-1 in (3.13) to convert the system 
equations from the IA (Pindyck) form to the I (standard) form. The resulting values 
of the A, B, C, D 1 and D2 matrices are presented in the main text of the paper in 
(3.14)-(3.18). 
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