A note on F_B -convergence

MURSALEEN

1. Introduction

Let *m* and *c* be the Banach spaces of bounded and convergent sequences $\mathbf{x} = \{x_k\}$ with the usual norm $||\mathbf{x}||_{\infty} = \sup |x_k|$, and let v be the space of sequences of bounded variation, i.e.

$$
v = \{x: ||x|| \equiv \sum_{k=0}^{\infty} |x_k - x_{k-1}| < \infty \ (x_{-1} = 0)\}.
$$

Suppose that $B = (B_i)$ is a sequence of infinite complex matrices with $B_i = (b_{np}(i))$. Then $x \in m$ is said to be F_B -convergent [5] to the value Lim Bx, if

$$
\lim_{n\to\infty} (B_i x)_n = \lim_{n\to\infty} \sum_{p=0}^{\infty} b_{np}(i) x_p = \lim B x,
$$

uniformly for $i=0, 1, 2, ...$

The space F_B of F_B -convergent sequences depends on the fixed chosen sequence $B=(B_i)$. In case $B=B_0=(I)$ (unit matrix) the space F_B is same as c and for $B = B_1 = (B_1^{(1)})$ it is the same as the space f of almost convergent sequences [2], where $B_i^{(1)} = (b_{np}^{(1)} (i))$ with

$$
b_{np}^{(1)}(i) = \begin{cases} \frac{1}{n+1}, & i \leq p \leq i+n, \\ 0 & \text{otherwise.} \end{cases}
$$

Let s be the space of all complex sequences and define

$$
\mathbf{e}_k = \{0, 0, ..., 0, 1, 0, ...\}, \quad \mathbf{e} = \{1, 1, 1, ...\},
$$

$$
d_B = \{\mathbf{x} \in s: B\mathbf{x} = ((B_i\mathbf{x})_n) \quad exists\},
$$

and

 $F_B = \{x \in (d_B \cap m): \lim_{n \to \infty} t_n(i, x) \text{ exists uniformly in } i \ge 0 \text{ and is independent of } i\},\$

Received May 24, 1983.

170 Mursaleen

where

(1.1)
$$
t_n(i, \mathbf{x}) = \begin{cases} \sum_{p=0}^{\infty} b_{np}(i)x_p & (n \ge 1), \\ \sum_{p=0}^{\infty} b_{op}(i)x_p & (n = 0), \end{cases}
$$

and

$$
b_{op}^{(i)} = \begin{cases} 1 & if \quad p = i \\ 0 & otherwise. \end{cases}
$$

Let X and Y be two nonempty subsets of s. Let $A = (a_{nk})$ $(n, k = 0, 1, 2, ...)$ be an infinite matrix of complex numbers. We write $Ax = (A_n(x))$ if $(Ax)_n =$ $= \sum_{k=0} a_{nk} x_k$ converges for each *n*. If $x \in X \Rightarrow Ax \in Y$, we say that *A* is (X, Y) -matrix.

In [5], STIEGLITZ has characterized (c, F_B) -, (m, F_B) -, and (f, F_B) -matrices. These classes of matrices give directly the known characterizations in special cases of the matrix sequence B. In this paper, we characterize (v, F_B) -matrices which will give directly the characterizations for (v, c) -, and (v, f) -matrices as choosing $B=B_0$ and $B=B_1$ respectively.

2. Main result

By (1.1) , we get

$$
t_n(i, Ax) = \begin{cases} \sum_{p=0}^{\infty} b_{np}(i) A_p x, & (n \ge 1), \\ \sum_{p=0}^{\infty} b_{op}(i) A_p x, & (n = 0), \end{cases}
$$

(2.1)
$$
= \sum_{p=0}^{\infty} g_{nk}(i)x_k, \text{ say,}
$$

$$
g_{nk}(i) = \begin{cases} \sum_{p=0}^{\infty} b_{np}(i)a_{pk} & (n \ge 1), \\ \sum_{p=0}^{\infty} b_{op}(i)a_{pk} & (n = 0). \end{cases}
$$

Theorem. Let $A=(a_{nk})$ be an infinite matrix and $B=(B_i)$ be a sequence of *infinite matrices with*

$$
\sup_{0\leq n<\infty}\sum_{p=0}^{\infty}|b_{np}(i)|<\infty,\quad \text{for each }i.
$$

Then A is (v, F_B) *-matrix, if and only if*

(i)
$$
\sup_{p,k} \left| \sum_{i=k}^{\infty} a_{pi} \right| < \infty,
$$

(ii) there is a constant M such that for r , $i=0, 1, 2, ...$

$$
\sup_n\big|\sum_{k=r}^\infty g_{nk}(i)\big|\leq M,
$$

- (iii) $\lim_{n \to \infty} g_{nk}(i) = \alpha_k$ *uniformly for* $n = 0, 1, 2, \ldots,$ *and*
- (iv) $\lim_{n \to \infty} \sum_{n=0}^{\infty} g_{nk}(i) = \alpha$ uniformly for $n=0, 1, 2, ...$

Proof. Necessity. Condition (i) follows from the fact that A is (v, m) -matrix. Since e_k , $e \in v$, necessity of (iii) and (iv) is obvious.

Now, we can easily see that for fixed p and j

$$
\sum_{k=0}^j a_{pk} x_k
$$

is a continuous linear functional on v. We are given that, for all $\mathbf{x}\in\mathbf{v}$ it tends to a limit as $j \rightarrow \infty$ (for fixed p) and hence by Banach--Steinhaus theorem [3], this limit, $(Ax)_p$ is also a continuous linear functional on v.

Put for $i \ge 0$

$$
q_i(\mathbf{x}) = \sup_n |t_n(i, Ax)|,
$$

then q_t is a continuous seminorm on v, and $\{q_t\}$ is pointwise bounded on v. Therefore, by another application of the Banach--Steinhaus theorem, there exists a constant M , such that

(2.2) $q_i(\mathbf{x}) \leq M \|\mathbf{x}\|$.

Apply (2.2) with $\mathbf{x} = \{x_k\}$ defined by

$$
x_k = \begin{cases} 1 & (k \geq r), \\ 0 & (k < r). \end{cases}
$$

Hence, (ii) must hold.

Sufficiency. Suppose that conditions (i) — (iv) hold and that $x \in v$. By virtue of condition (i), it is clear that $A\mathbf{x}$ is bounded. Now, by conditions (iv) and (i), it follows that

$$
\sum_{k=0}^{\infty}g_{nk}(i)
$$

converges for all i, n . Hence if we write

$$
h_{nk}(i)=\sum_{l=k}^{\infty}g_{ni}(i),
$$

then $h_{nk}(i)$ exists, also for fixed i, n, we have

(2.1) $h_{nk}(i) \to 0$

as $k \rightarrow \infty$. Since

(2.2)
$$
h_{nk}(i) = h_{no}(i) - \sum_{l=0}^{k-1} g_{nl}(i).
$$

Now,

(2.3)
$$
\sum_{k=0}^{\infty} g_{nk}(i)x_k = \sum_{k=0}^{\infty} [h_{nk}(i) - h_{n,k+1}(i)]x_k = \sum_{k=0}^{\infty} h_{nk}(i) (x_k - x_{k-1})
$$

by (2.1) and boundedness of x_k . Therefore,

$$
|t_n(i, Ax)| = \left|\sum_{k=0}^{\infty} g_{nk}(i)x_k\right| \leq \sum_{k=0}^{\infty} |x_k - x_{k-1}| |h_{nk}(i)| \leq M ||x||
$$

(by condition (ii)) for $x \in v$. Also,

(2.4)
$$
\lim_{n \to \infty} t_n(i, Ax) = \lim_{n \to \infty} \sum_{k=0}^{\infty} g_{nk}(i) x_k = \sum_{k=0}^{\infty} (x_k - x_{k-1}) \lim_{n \to \infty} h_{nk}(i).
$$

By (2.2) and conditions (iii) and (iv), we have

(2.5)
$$
\lim_{n \to \infty} h_{nk}(i) = \lim_{n \to \infty} h_{no}(i) - \sum_{l=0}^{k-1} \lim_{n \to \infty} g_{nl}(i) = \alpha - \sum_{l=0}^{k-1} \alpha l.
$$

Therefore, (2.4) and (2.5) give

$$
\lim_{n\to\infty}t_n(i, Ax)=\sum_{k=0}^{\infty}(x_k-x_{k-1})(\alpha-\sum_{l=0}^{k-1}\alpha_l)=\alpha\lim_{k\to\infty}x_k+\sum_{k=0}^{\infty}x_k\alpha_k.
$$

Hence $A x \in F_B$ for $x \in v$.

This completes the proof.

Remark. For $B = B_0$ in the above theorem, we get the known characterization for (v, c) -matrices due to HAHN [1], and in case $B = B₁$, we have (v, f) -matrices due to NANDA [4].

References

- [1] H. HAHN, Über Folgen linearer Operationen, *Monatsh. Math.*, 32 (1922), 3-88.
- [2] G. G. LORENTZ, A contribution to the theory of divergent series, Acta *Math.,* 80 (1948), 167--190.
- [3] I. J. MADDOX, *Elements of functional analysis,* Cambridge Univ. Press. 1970.
- [4] S. NANOA, Matrix transformations and almost convergence (Russian), *Math. Vestnik,* 13 (28) (1976), 305--312.
- [5] M. SaTEGLITZ, Eine Verallgemeinerung des Begriffs der Fastkonvergenz, *Math. Japon.,* 18 (1973), $53 - 70.$

Заметка об F_B -сходимости MYPCAJIEH

M. Штиглиц ввел понятие F_B -сходимости, дающее широкое обобщение классического понятия почти сходимости, данного Г. Г. Лоренцом. Штиглиц получил при этом необходимые и достаточные условия для характеризации $(c, F_B) - (m, F_B)$ - и (f, F_B) -матриц. В настоящей работе получена характеризация (v, F_B) -матриц.

ALIGARH MUSLIM UNIVERSITY DEPARTMENT OF MATHEMATICS ALIGARH--202001 INDIA