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Holomorphic retracts and intrinsic metrics in convex domains 

L. L E MPERT 

w 

The three objects we shall be concerned here with are holomorphic retracts, the 
Carathtodory and the Kobayashi distances. 

1) Holomorphic retracts. A subset S of a domain DmC" is called a holomor- 
phic retract if there is a holomorphic mapl~ing r: D ~ D  such that r ( D ) c S  and 
r (z )=z  for zCS. Such a set is necessarily an analytic subset of D, since 

S = {zED: r ( z ) - z  = 0}. 

2) The CarathOodory distance. Let again D e C "  be a domain and U the unit 
disc in C. The Carathtodory distance co(z, w) of two points z, wED is defined as 

co(z, w)=sup {hyp dist (F(z), F(w)): F: D ~ U  is holomorphic}. 

Here hyp dist stands for the hyperbolic distance in U. 
3) The Kobayashi distance is defined in a dual way: for z, w~D put 

(l) 60 (z, w) = inf {hyp dist (~, o9): 3 f :  U -~ D holomorphic, with f ( ~ ) -  z, f(co) = w}. 

The only difference is that 6 o does not always satisfy the triangle inequality, so that 
one is obliged to define the quantity 

k~(z, w) : inf 6D(Zj_x, zj): zo=z, zm = w 

and call it the Kobayashi distance. 

T h e o r e m  1. I f  D is convex, then kD=cD. 

The proof of this theorem depends on the description of the one-dimensional 
holomorphic retracts in a strongly convex smoothly bounded domain D. (Strong 
convexity means that the normal curvatures of the boundary are everywhere positive.) 
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Given z, wED, z # w, consider the extremum problem (1). A holomorphic mapping 
f: U-~D for which the infimum is attained will be called extremal. I f f  is extremal, 
the analytic discf(U) will be called extremal disc. In [3] we proved that through any 
pair of distinct points there goes exactly one extremal disc (and, moreover, these 
discs have been characterized in a simple way). 

T h e o r e m  2. The one-dimensional holomorphic retracts in a strongly convex 
smoothly ( = C  =) bounded domain are precisely the extremal discs. 

In particular, any couple of points can be joined by a unique holomorphic 
retract. 

Both theorems hold for strongly linearly convex domains as well. D is called 
linearly convex if for every zEOD there is a complex hyperplane through z which is 
disjoint from D (see AIZENBERG [1]). D is strongly linearly convex if it is bounded by a 
C z boundary and its small C ~ perturbations are linearly convex. The point is that 
the results of [3] hold also for such domains. We shall not, however, go into details. 

In the last paragraph we collect some negative results. We shall indicate why it is 
incidental for a domain to contain holomorphic retracts of dimension greater than 
one. (An exceptional case is the ball, see RUDIN [4].) 

We shall also consider the case of a strictly pseudoconvex domain. It will be 
shown that 

(i) an extremal disc is not necessarily a holomorphic retract; 
(ii) there may exist points which cannot be joined by holomorphic retracts. 

2.w 

Lemma.  Let DEC" be a strongly convex smoothly bounded domain. Then for 
any z 1, z~ED, zl#z2, there exist two mappings f: U~D and F: D~U,  both holo- 
morphic, such that 

1) zl, z~Ef(U), 
2) Fof=idv. 

P r o o f. Given zl, z~ED, consider the following extremum problem: 

(2) inf{~>0: 3f :  U~D holomorphic, with f(0)--za, f(~)=z~}. 

In [3] we showed that there exists exactly one f that yields the minimal value 
in (2). Moreover, this extremal f was proved to be "stationary" by which we meant 
that 

1) f extends continuously to U; 
2) Using the same le t ter f  for this extension, we have f(OU)cOD; 
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3) Denote by v(z) the outward unit normal vector to 017 in zEOD. Then 
there is a continuous positive function p: OU~R + such that the mapping OU--,C" 
defined by 

~-~ ~p (~) v (f(~)) 

extends to a continuous mapping f :  U-~C ", holomorphic in U. 
Obviously this extremalfsatisfies the first condition of the Lemma. To see that 

it has a holomorphic left-inverse; consider the equation 

(3) (z-f(~), f(~)) = 0 

for the unknown ~E U, z being a fixed point in D. Here 

<a,b}= ~ a j b j  for a = ( a j ) ,  b=(bj)EC". 
j = l  

For each zED (3) has exactly one solution ~E U. Indeed, the number of the 
solutions equals wind ~0, the winding number of the function ~o(~)= (z-f(~),f(~)) 
on OU. Now 

wind (p = wind ~+wind (z-f(~), p(~)v(f(~))} = 1, (4) 
since 

Re<z-f(~), p(~)v(f(~))} ~: 0 for ~EU 

by convexity, thus the second summand in (4) is zero. 
Therefore one has a function F: D ~ U which assigns to each zED the corre- 

sponding solution ~EU of (3). F is obviously holomorphic and satisfies Fof=idv. 
Thus the Lemma is proved. 

P r o o f  of  T h e o r e m  1. First suppose that D is as in the Lemma and let 
zl, z~ED, zlCz2. Furthermore, l e t f and  F be as in the Lemma, F(Zl)=~l, F(z2)= 
=~2, i.e. f(~O=zl,f(~2)=z2. Then by definition 

kD(zl, z~) <= 5o(z~, z2) <= hyp dist (~1, ~2) =< c,(z~, z~). 

On the other hand, as a trivial consequence of the Schwarz lemma one has 

CD(Zl, z~) <= kD(z~, z~) 

(for any domain; see e.g. KOBAYASHI [2]). Therefore kD=CD. 
The general case (of an arbitrary convex domain) can be obtained from this spe- 

cial one by a simple approximation process. 

P r o o f  of  Theorem 2. Any extremal disc is of the form f(U), where f is 
a mapping which gives the minimum in (2) (for some fixed zi, z~). Furthermore, let 
F be a left-inverse off,  whose existence has been proved in the Lemma. Then foF: 
D~f(U)  is a retraction on f(U). 
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Conversely, suppose that r: D-+S is a holomorphic retraction on S. Choose two 
distinct points zl, z~ in S and denote again by f the unique mapping U--,D for 
which the minimum in (2) is attained. Then rof is another mapping with the same 
property, so that by uniqueness rof=f, whence f ( U ) c S .  S must be irreducible, 
since D is; therefore, if it is one-dimensional, f(U) = S. This completes the proof of 
Theorem 2. 

w 

a) Higher dimensional retracts. It would be a nice situation if (in convex domains) 
every triplet of points were contained in some two-dimensional holomorphic retract. 
That this is not the case can be seen from the following considerations. 

Suppose that S is a two-dimensional holomorphic retract in a strongly convex 
smoothly bounded domain D c C 3. Choose three points zl, z~, zzE S, not contained 
in any one-dimensional retract. Denote by $1, $2, Sz the one-dimensional holo- 
morphic retracts determined by z~ and z,, z3 and zl, zl and z~, respectively. In the 
second part of the proof of Theorem 2 we have seen that if S contains two points, it 
must also contain the one-dimensional retract determined by them. Therefore S j c  S. 
Furthermore, if S~ denotes the one-dimensional retract that joins zl and zES1, 
then we also have S~cS. 

Fix now zoESl~{Z2, z3} and a point wE'3=o\S~ocOD. It is easy to see that 
w~ S1U S~U $3. If the boundary OD is perturbed in a closed neighbourhood of w dis- 
joint from S~, S~, ~ ,  then S~, $2 and Sz still remain holomorphic retracts in the new 
domain D' (see the characterization of extremal discs by conditions 1)--3) in the 
Lemma). Also, for zE $1 near to z2 or zz, Sz will persist to be a holomorphic retract. 
Thus, if S '  is a two-dimensional holomorphic retract in D' containing zl, z2, zz, 
we will have SzcS" for zES~ near to z~ or za. 

Now we shall suppose that D'cD.  Then SAD" and S" are analytic subsets in 
D', and their intersection contains a real four-dimensional manifold (a portion of the 
union of certain S~'s). Since S" is irreducible, this implies S ' c S f q D c S .  At the 
same time, the perturbation can be performed in such a way (in fact, generic pertur- 
bations are such) that the extremal disc in D" determined by z~ and z0 does not lie in 
S. (As a consequence of the behaviour of extremal discs under perturbations of the 
domain described in [3].) Consequently, this extremal disc does not lie in S" either, 
which is a contradiction, since S" contains two of its points. This contradiction shows 
that in general there is no two-dimensional retract containing three given points. 

b) Nonconvex domains. Here we shall give an example of a strictly pseudoconvex 
domain D, where no couple of points can be joined by some one-dimensional holo- 
morphic retract. 

Let D be any strictly pseudoconvex but not convex Reinhard domain. To be 
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specific; let 

(5) D = {(x, y)CC~: (l+[xl~)(l+fy[ 2) < 25}. 

Let ZoCOD be a nonconvex point, i.e. where D does not  admit a supporting hyper- 
plane (e.g. Zo=(2,  2)), and let Z=Zo/2 .  We claim that there is no one-dimensional 
holomorphic retract containing 0 and Z. 

Indeed, suppose there were such a retract S and denote by r the retraction D-~S.  
It is a simple consequence of the Schwarz lemma that the unique extremal disc 

through 0, Z is Uzo = {2Z0: 2E U}. It follows then as in the proof  of  Theorem 2 that 
S = Uzo. So, all we have to show is that there is no holomorphic retraction r: D-~ Uz0. 

To this end, let the mapping R be defined by 

27r 

1 f e_iOr(ze,~)d~. R ( z )  = 2-~ o 

Then R is also a holomorphic retraction D-~ Uzo. Moreover, R is linear, as can be 
seen by expanding r into a series of homogeneous polynomials. 

Consider R as a linear mapping C"-~C". It  follows that D c R - I ( U z o )  and 
R-I(Uzo) is convex. Since Z0 is a boundary point of  R-l(Uz0 ), this latter domain 
admits a supporting hyperplane in Z0, which would be a supporting hyperplane to D, 
as well. However, this contradicts the choice of Z0. Therefore, there is no one-dimen- 
sional holomorphic retract in D containing 0 and Z. 

Note also that Uzo is an extrernal disc in D, which fails to be a holomorphic 
retract. 
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FO.~OMOp~Hbie peTpaKTb! H BHyTpeHHHe MeTpHKH B Bbmyi~iOfi o6aaCTH 
.TI..TIEMYIEPT 

~oKa3r,]BaeTc~t, ~TO B BbmyKablX O6:~aCTaX n C "  MeTpKK~ K a p a T e o ~ o p ~  rt K o 6 a a m r r  COBrta~a.~tOT. 

YcTaHaBJna~aeTcz  CB~/3b Mezc~y reo)~e3rt~ecr, r iM~ ~gTI4X MeTpHK H O;IItOMepHBIMH FO~OMop~bHBLME 

peTpa~TaMH. 
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