Holomorphic retracts and intrinsic metrics in convex domains

L. LEMPERT

$§$ 1.

The three objects we shall be concerned here with are holomorphic retracts, the Carathéodory and the Kobayashi distances.

1) *Holomorphic retracts.* A subset S of a domain $D \subset \mathbb{C}^n$ is called a holomorphic retract if there is a holomorphic mapping $r: D \rightarrow D$ such that $r(D) \subset S$ and $r(z)=z$ for $z \in S$. Such a set is necessarily an analytic subset of D, since

$$
S = \{z \in D : r(z) - z = 0\}.
$$

2) *The Carathéodory distance*. Let again $D \subset \mathbb{C}^n$ be a domain and U the unit disc in C. The Caratheodory distance $c_p(z, w)$ of two points $z, w \in D$ is defined as

$$
c_{\mathbf{D}}(z, w) = \sup_{F} \{ \text{hyp dist } (F(z), F(w)) : F : \mathbf{D} \to U \text{ is holomorphic} \}.
$$

Here hyp dist stands for the hyperbolic distance in U.

3) *The Kobayashi distance* is defined in a dual way: for $z, w \in D$ put

(1) $\delta_D(z, w) = \inf \{\text{hyp dist } (\zeta, \omega) : \exists f: U \to D \text{ holomorphic, with } f(\zeta) = z, f(\omega) = w\}.$

The only difference is that δ_p does not always satisfy the triangle inequality, so that one is obliged to define the quantity

$$
k_D(z, w) = \inf \left\{ \sum_{j=1}^m \delta_D(z_{j-1}, z_j) : z_0 = z, z_m = w \right\}
$$

and call it the Kobayashi distance.

Theorem 1. If D is convex, then $k_p = c_p$.

The proof of this theorem depends on the description of the one-dimensional holomorphic retracts in a strongly convex smoothly bounded domain D. (Strong convexity means that the normal curvatures of the boundary are everywhere positive.)

Received June 19, 1981.

Given $z, w \in D$, $z \neq w$, consider the extremum problem (1). A holomorphic mapping *f:* $U \rightarrow D$ for which the infimum is attained will be called extremal. If f is extremal, the analytic disc $f(U)$ will be called extremal disc. In [3] we proved that through any pair of distinct points there goes exactly one extremal disc (and, moreover, these discs have been characterized in a simple way).

Theorem 2. *The one-dimensional holomorphic retracts in a strongly convex smoothly* $(=C^{\infty})$ *bounded domain are precisely the extremal discs.*

In particular, any couple of points can be joined by a unique holomorphic retract.

Both theorems hold for strongly linearly convex domains as well. D is called linearly convex if for every $z \in \partial D$ there is a complex hyperplane through z which is disjoint from D (see AIZENBERG [1]). D is strongly linearly convex if it is bounded by a $C²$ boundary and its small $C²$ perturbations are linearly convex. The point is that the results of [3] hold also for such domains. We shall not, however, go into details.

In the last paragraph we collect some negative results. We shall indicate why it is incidental for a domain to contain holomorphic retracts of dimension greater than one. (An exceptional case is the ball, see RUDIN [4].)

We shall also consider the case of a strictly pseudoconvex domain. It will be shown that

(i) an extremal disc is not necessarily a holomorphic retract;

(ii) there may exist points which cannot be joined by holomorphic retracts.

2.w

Lemma. Let $D \subset \mathbb{C}^n$ be a strongly convex smoothly bounded domain. Then for any $z_1, z_2 \in D, z_1 \neq z_2$, there exist two mappings $f: U \rightarrow D$ and $F: D \rightarrow U$, both holo*morphic, such that*

1)
$$
z_1, z_2 \in f(U)
$$
, $\sum_{i=1}^{n} z_i$

$$
2) \tF \circ f = id_{U}.
$$

Proof. Given $z_1, z_2 \in D$, consider the following extremum problem:

(2) inf $\{\xi > 0: \exists f: U \rightarrow D \text{ holomorphic, with } f(0) = z_1, f(\xi) = z_2\}.$

In [3] we showed that there exists exactly one f that yields the minimal value in (2). Moreover, this extremal f was proved to be "stationary" by which we meant that

1) f extends continuously to \overline{U} ;

2) Using the same letter f for this extension, we have $f(\partial U) \subset \partial D$;

3) Denote by $v(z)$ the outward unit normal vector to ∂D in $z \in \partial D$. Then there is a continuous positive function $p: \partial U \rightarrow \mathbb{R}^+$ such that the mapping $\partial U \rightarrow \mathbb{C}^n$ defined by

$$
\zeta \mapsto \zeta p(\zeta)\,\overline{\nu(f(\zeta))}
$$

extends to a continuous mapping $\tilde{f}: \overline{U} \rightarrow C^n$, holomorphic in U.

Obviously this extremal f satisfies the first condition of the Lemma. To see that it has a holomorphic left-inverse; consider the equation

$$
\langle z-f(\zeta),\,\tilde{f}(\zeta)\rangle=0
$$

for the unknown $\zeta \in U$, z being a fixed point in D. Here

$$
\langle a, b \rangle = \sum_{j=1}^{n} a_j b_j
$$
 for $a = (a_j), b = (b_j) \in \mathbb{C}^n$.

For each $z \in D$ (3) has exactly one solution $\zeta \in U$. Indeed, the number of the solutions equals wind φ , the winding number of the function $\varphi(\zeta) = \langle z - f(\zeta), \tilde{f}(\zeta) \rangle$ on *OU.* Now

(4)
$$
\text{wind } \varphi = \text{wind } \zeta + \text{wind } \langle z - f(\zeta), \ p(\zeta) \overline{v(f(\zeta))} \rangle = 1,
$$

since

$$
\operatorname{Re}\langle z-f(\zeta),\ p(\zeta)\overline{\nu(f(\zeta))}\rangle<0\quad\text{for}\quad \zeta\in U
$$

by convexity, thus the second summand in (4) is zero.

Therefore one has a function $F: D \rightarrow U$ which assigns to each $z \in D$ the corresponding solution $\zeta \in U$ of (3). F is obviously holomorphic and satisfies $F \circ f = id_u$. Thus the Lemma is proved.

Proof of Theorem 1. First suppose that D is as in the Lemma and let $z_1, z_2 \in D$, $z_1 \neq z_2$. Furthermore, let f and F be as in the Lemma, $F(z_1) = \zeta_1$, $F(z_2) =$ $=\zeta_2$, i.e. $f(\zeta_1)=z_1, f(\zeta_2)=z_2$. Then by definition

$$
k_D(z_1, z_2) \leq \delta_D(z_1, z_2) \leq \text{hyp dist}\left(\zeta_1, \zeta_2\right) \leq c_D(z_1, z_2).
$$

On the other hand, as a trivial consequence of the Schwarz lemma one has

$$
c_D(z_1, z_2) \leq k_D(z_1, z_2)
$$

(for any domain; see e.g. KOBAYASHI [2]). Therefore $k_D = c_D$.

The general case (of an arbitrary convex domain) can be obtained from this special one by a simple approximation process.

Proof of Theorem 2. Any extremal disc is of the form $f(U)$, where f is a mapping which gives the minimum in (2) (for some fixed z_1, z_2). Furthermore, let F be a left-inverse of f, whose existence has been proved in the Lemma. Then $f \circ F$: $D \rightarrow f(U)$ is a retraction on $f(U)$.

Conversely, suppose that $r: D \rightarrow S$ is a holomorphic retraction on S. Choose two distinct points z_1, z_2 in S and denote again by f the unique mapping $U \rightarrow D$ for which the minimum in (2) is attained. Then $\tau \circ f$ is another mapping with the same property, so that by uniqueness $r \circ f = f$, whence $f(U) \subset S$. S must be irreducible, since D is; therefore, if it is one-dimensional, $f(U) = S$. This completes the proof of Theorem 2.

\S 3.

a) *Higher dimensional retracts.* It would be a nice situation if (in convex domains) every triplet of points were contained in some two-dimensional holomorphic retract. That this is not the case can be seen from the following considerations.

Suppose that S is a two-dimensional holomorphic retract in a strongly convex smoothly bounded domain $D \subset \mathbb{C}^3$. Choose three points $z_1, z_2, z_3 \in S$, not contained in any one-dimensional retract. Denote by S_1 , S_2 , S_3 the one-dimensional holomorphic retracts determined by z_2 and z_3 , z_3 and z_1 , z_1 and z_2 , respectively. In the second part of the proof of Theorem 2 we have seen that if S contains two points, it must also contain the one-dimensional retract determined by them. Therefore $S_i \subset S$. Furthermore, if S_z denotes the one-dimensional retract that joins z_1 and $z \in S_1$, then we also have $S_z \subset S$.

Fix now $z_0 \in S_1 \setminus \{z_2, z_3\}$ and a point $w \in S_{z_2} \setminus S_{z_3} \subset \partial D$. It is easy to see that $w \notin \overline{S}_1 \cup \overline{S}_2 \cup \overline{S}_3$. If the boundary ∂D is perturbed in a closed neighbourhood of w disjoint from \bar{S}_1 , \bar{S}_2 , \bar{S}_3 , then S_1 , S_2 and S_3 still remain holomorphic retracts in the new domain D' (see the characterization of extremal discs by conditions 1)-3) in the Lemma). Also, for $z \in S_1$ near to z_2 or z_3 , S_z will persist to be a holomorphic retract. Thus, if S' is a two-dimensional holomorphic retract in D' containing z_1, z_2, z_3 , we will have $S_z \subset S'$ for $z \in S_1$ near to z_2 or z_3 .

Now we shall suppose that $D' \subset D$. Then $S \cap D'$ and S' are analytic subsets in D' , and their intersection contains a real four-dimensional manifold (a portion of the union of certain S'_z 's). Since S' is irreducible, this implies $S' \subset S \cap D \subset S$. At the same time, the perturbation can be performed in such a way (in fact, generic perturbations are such) that the extremal disc in D' determined by z_1 and z_0 does not lie in S. (As a consequence of the behaviour of extremal discs under perturbations of the domain described in $[3]$.) Consequently, this extremal disc does not lie in S' either, which is a contradiction, since S' contains two of its points. This contradiction shows that in general there is no two-dimensional retract containing three given points.

b) *Nonconvex domains.* Here we shall give an example of a strictly pseudoconvex domain D, where no couple of points can be joined by some one-dimensional holomorphic retract.

Let D be any strictly pseudoconvex but not convex Reinhard domain. To be

specific; let

(5)
$$
D = \{(x, y) \in \mathbb{C}^2 : (1+|x|^2)(1+|y|^2) < 25\}.
$$

Let $Z_0 \in \partial D$ be a nonconvex point, i.e. where D does not admit a supporting hyperplane (e.g. $Z_0 = (2, 2)$), and let $Z = Z_0/2$. We claim that there is no one-dimensional holomorphic retract containing 0 and Z.

Indeed, suppose there were such a retract S and denote by r the retraction $D \rightarrow S$.

It is a simple consequence of the Schwarz lemma that the unique extremal disc through 0, Z is $U_{Z_0} = \{ \lambda Z_0 : \lambda \in U \}$. It follows then as in the proof of Theorem 2 that $S = U_{Z_0}$. So, all we have to show is that there is no holomorphic retraction r: $D \rightarrow U_{Z_0}$.

To this end, let the mapping R be defined by

$$
R(z) = \frac{1}{2\pi} \int_{0}^{2\pi} e^{-is} r(ze^{is}) d\theta.
$$

Then R is also a holomorphic retraction $D \rightarrow U_{Z_0}$. Moreover, R is linear, as can be seen by expanding r into a series of homogeneous polynomials.

Consider R as a linear mapping $C^n \rightarrow C^n$. It follows that $D \subset R^{-1}(U_Z)$ and $R^{-1}(U_{Z_0})$ is convex. Since Z_0 is a boundary point of $R^{-1}(U_{Z_0})$, this latter domain admits a supporting hyperplane in Z_0 , which would be a supporting hyperplane to D, as well. However, this contradicts the choice of Z_0 . Therefore, there is no one-dimensional holomorphic retract in D containing 0 and Z .

Note also that U_{Z_n} is an extremal disc in D, which fails to be a holomorphic retract.

References

- [1] L. A. AIZENBERG, Linear convexity in \mathbb{C}^n and the separation of singularities of holomorphic functions (Russian), *Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.*, 15 (1967), 487--495.
- [2] S. KOBAYASHI, *Hyperbolic manifolds and holomorphic mappings,* Dekker (New York, 1970).
- [3] L. LEMPERT, La m6trique de Kobayashi et la repr6sentation des domaines sur la boule, *Bull. Soc. Math. France*, 109 (1981), 427-474.
- [4] W. RUDIN, *Function theory in the unit ball of* $Cⁿ$, *Springer* (New York-Heidelberg-Berlin, 1980).

FO.~OMOp~Hbie peTpaKTb! H BHyTpeHHHe MeTpHKH B Bbmyi~iOfi o6aaCTH л. лемперт

Локазывается, что в выпуклых областях в $Cⁿ$ метрики Каратеодори и Кобаящи совпадают. Устанавливается связь между геодезическими этих метрик и одномерными голоморфиыми ретрактами.

L. LEMPERT EÖTVÖS LORÁND UNIVERSITY
DEPARTMENT OF MATHEMATICS
MÚZEUM KRT. 6--8.
1088 BUDAPEST, HUNGARY