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Holomorphic retracts and intrinsic metrics in convex domains
L. LEMPERT

§ 1.

The three objects we shall be concerned here with are holomorphic retracts, the
Carathéodory and the Kobayashi distances.

1) Holomorphic retracts. A subset S of a domain DcC" is called a holomos-
phic retract if there is a holomorphic mapping r: D—~D such that r(D)cS and
r(z)=2z for z€S. Such a set is necessarily an analytic subset of D, since

S = {zeD: r(z)—z = 0}.

2) The Carathéodory distance. Let again DT C" be a domain and U the unit
disc in C. The Carathéodory distance c¢,(z, w) of two points z, we D is defined as

cp(z, w)y=sup thyp dist (F(z), F(w)): F: D—~U is holomorphic}.
F

Here hyp dist stands for the hyperbolic distance in U.
3) The Kobayashi distance is defined in a dual way: for z, weD put

(1) 6p(z, w) = inf {hyp dist ({, @): 3f: U — D holomorphic, with f({)=z, f(w) = w}.

The only difference is that 6, does not always satisfy the triangle inequality, so that
one is obliged to define the quantity

kp(z, w) = inf{ Zm'él,(zj_l, Z}) Zg=Z, Zy = w}
=1

and call it the Kobayashi distance.
Theorem 1. If D is convex, then kp=cy.

The proof of this theorem depends on the description of the one-dimensional
holomorphic retracts in a strongly convex smoothly bounded domain D. (Strong
convexity means that the normal curvatures of the boundary are everywhere positive.)
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Given z, weD, zzw, consider the extremum problem (1). A holomorphic mapping
f: U-~D for which the infimum is attained will be called extremal. If f is extremal,
the analytic disc f(U) will be called extremal disc. In [3] we proved that through any
pair of distinct points there goes exactly one extremal disc (and, moreover, these
discs have been characterized in a simple way).

Theorem 2. The one-dimensional holomorphic retracts in a strongly convex
smoothly (=C™) bounded domain are precisely the extremal discs.

In particular, any couple of points can be joined by a unique holomorphic
retract.

Both theorems hold for strongly linearly convex domains as well. D is called
linearly convex if for every z€dD there is a complex hyperplane through z which is
disjoint from D (see AIZENBERG [1]). D is strongly linearly convex if it is bounded by a
C? boundary and its small C?2 perturbations are linearly convex, The point is that
the results of [3] hold also for such domains. We shall not, however, go into details.

In the last paragraph we collect some negative results. We shall indicate why it is
incidental for a domain fo contain holomorphic retracts of dimension greater than
one. (An exceptional case is the ball, see RupiN [4].)

We shall also consider the case of a strictly pseudoconvex domain. It will be
shown that

(i) an extremal disc is not necessarily a holomorphic retract;

(i) there may exist points which cannot be joined by holomorphic retracts.

2. §

Lemma. Let DcC" be a strongly convex smoothly bounded domain. Then for
any zy, 2,€D, z,7#z,, there exist two mappings f+ U~D and F: D—U, both holo-
morphic, such that

1) 71, 2Ef(U),

2) Fof=idy.

Proof. Given z,z,¢D, consider the following extremum problem:
@) inf {£=>0: 3f1 U—~D holomorphic, with f(0)=z, f({)=z}.

In [3] we showed that there exists exactly one f that yields the minimal value
in (2). Moreover, this extremal f was proved to be “stationary” by which we meant
that

1) f extends continuously to U;

2) Using the same letter f for this extension, we have f(0U)cdD;
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3) Denote by v(z) the outward unit normal vector to dD in z€dD. Then
there is a continuous positive function p: dU-~R™ such that the mapping oU—~C"
defined by

(=~ Ov(f(D)

extends to a continuous mapping f: U~C", holomorphic in U.
Obviously this extremal f satisfies the first condition of the Lemma. To see that
it has a holomorphic left-inverse, consider the equation

€) E—f©. FQO)=0
for the unknown (€U, z being a fixed point in D. Here

(a,b)=j§nlajbj for a=(a), b= (h)eCn.

For each z€D (3) has exactly one solution {€U. Indeed, the number of the
solutions equals wind ¢, the winding number of the function ¢ ({)={z—f(0),F({))
on oU. Now
@ wind ¢ = wind { +wind z—£(), p(OYFO)) = 1,
since

Re (z—f(0), pOV(f(D) <0 for (€U

by convexity, thus the second summand in (4) is zero.

Therefore one has a function F: D-U which assigns to each z€D the corre-
sponding solution {cU of (3). F is obviously holomorphic and satisfies Fo f=idy.
Thus the Lemma is proved.

Proof of Theorem 1. First suppose that D is as in the Lemma and let
Z1, Zo€ D, 7, #2,. Furthermore, let f and F be as in the Lemma, F(z)={;, F(z)=
={,, 1.e. f({1)=z1,f({s)=2z,. Then by definition

kp(zy, zo) = 0p(zy, z) = hyp dist ({4, {o) = ¢cp(21, 22).

On the other hand, as a trivial consequence of the Schwarz lemma one has

ep(z1, 22) = kp(2y, 22)

(for any domain; see e.g. KoBavasaI [2]). Therefore kp=cj.
The general case (of an arbitrary convex domain) can be obtained from this spe-
cial one by a simple approximation process.

Proof of Theorem 2. Any extremal disc is of the form f(U), where f is
a mapping which gives the minimum in (2) (for some fixed z;, z,). Furthermore, let
F be a left-inverse of f, whose existence has been proved in the Lemma. Then foF:
D—f(U) is a retraction on f(U).
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Conversely, suppose that r: D—S is a holomorphic retraction on S. Choose two
distinct points z;, z, in S and denote again by f the unique mapping U—~D for
which the minimum in (2) is attained. Then rof is another mapping with the same
property, so that by uniqueness rof=f, whence f(U)cS. S must be irreducible,
since D is; therefore, if it is one-dimensional, f(U)=S. This completes the proof of
Theorem 2.

§3.

a) Higher dimensional retracts. It would be a nice situation if (in convex domains)
every triplet of points were contained in some two-dimensional holomorphic retract.
That this is not the case can be seen from the following considerations.

Suppose that S is a two-dimensional holomorphic retract in a strongly convex
smoothly bounded domain D C3. Choose three points zq, z,, 3¢S, not contained
in any one-dimensional retract. Denote by S;, Ss, S; the one-dimensional holo-
morphic retracts determined by z, and z;, z; and z,, z, and z,, respectively. In the
second part of the proof of Theorem 2 we have seen that if S’ contains two points, it
must also contain the one-dimensional retract determined by them. Therefore S;CS.
Furthermore, if S, denotes the one-dimensional retract that joins z; and z€S;,
then we also have S,cS.

Fix now zy€ S\ {22, z3} and a point we Szo\SzocaD. It is easy to see that
wé¢ §;US,US;. If the boundary 0D is perturbed in a closed neighbourhood of w dis-
joint from S, S,, §;, then Sy, S, and S still remain holomorphic retracts in the new
domain D’ (see the characterization of extremal discs by conditions 1)—3) in the
Lemma). Also, for z€S; near to z, or z3, S, will persist to be a holomorphic retract.
Thus, if S’ is a two-dimensional holomorphic retract in D’ containing z, z, z;,
we will have §,C8’ for z€S; near to z, or zs.

Now we shall suppose that D’cD. Then SMD’ and S’ are analytic subsets in
D', and their intersection contains a real four-dimensional manifold (a portion of the
union of certain S,’s). Since S” is irreducible, this implies S'cSNDcCS. At the
same time, the perturbation can be performed in such a way (in fact, generic pertur-
bations are such) that the extremal disc in D’ determined by z, and z, does not lie in
S. (As a consequence of the behaviour of extremal discs under perturbations of the
domain described in [3].) Consequently, this extremal disc does not lie in S” either,
which is a contradiction, since S” contains two of its points. This contradiction shows
that in general there is no two-dimensional retract containing three given points.

b) Nonconvex domains. Here we shall give an example of a strictly pseudoconvex
domain D, where no couple of points can be joined by some one-dimensional holo-
morphic retract.

Let D be any strictly pseudoconvex but not convex Reinhard domain. To be
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specific; let

®) D = {(% »)EC?: (L+[x(A+[y[?) < 25}.

Let Z,c0D be a nonconvex point, i.e. where D does not admit a supporting hyper-
plane (e.g. Zy=(2,2)), andlet Z=2Z,/2. We claim that there is no one-dimensional
holomorphic retract containing 0 and Z.
Indeed, suppose there were such a retract S and denote by # the retraction D-S.
It is a simple consequence of the Schwarz lemma that the unique extremal disc
through 0, Zis Uz = {AZ,: A€ U}. It follows then as in the proof of Theorem 2 that
§=Uyg,. So,all we have to show is that there is no holomorphic retraction r: D~ Uy,
To this end, let the mapping R be defined by

2z
R(z) = —?:1; 6[ e r(ze%) dg.
Then R is also a holomorphic retraction D—»UZD. Moreover, R is linear, as can be
seen by expanding r into a series of homogeneous polynomials.

Consider R as a linear mapping C"—~C". It follows that DcR™(Uz) and
R7(Uy,) is convex. Since Z, is a boundary point of R™ (Ug,), this latter domain
admits a supporting hyperplane in Z,, which would be a supporting hyperplane to D,
as well. However, this contradicts the choice of Z,. Therefore, there is no one-dimen-
sional holomorphic retract in D containing 0 and Z.

Note also that U, is an extremal disc in D, which fails to be a holomorphic
retract.
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Tosromopdubie peTpakThi # BHYTPEHHME METPHKH B BBINYKJIOH 00.1acTH
JI. IEMIIEPT

HoxaspisaeTcs, IT0 B BBIIYKILIX 06macTax B C” MeTpuku Kapareogopu u Kobasnmm coBmanaior.
VcTanasiaMBaeTCa CBs3h MEKIY TEONESHICCKAMM 3THX METPHK B OTHOMEPHBIMH TOJOMODDHEIME
peTpakTamu.
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