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Introduction

Following Griffith’s theory, hyperelastic brittle media subject to fracture can be
modeled by the introduction, in addition to the elastic volume energy, of a surface
term which accounts for crack initiation. In its simplest formulation, the energy of
a deformation u is of the form

(1) E (u, K)" :
)CK

f (+u)dx#jHn~1(K),

where +u is the deformation gradient, ) is the reference configuration, and K is the
crack surface. The bulk energy density f accounts for elastic deformations outside
the crack, while j is a constant given by Griffith’s criterion for fracture initiation
(see [49, 50, 54, 53, 14]). The existence of equilibria, under appropriate boundary
conditions, can be deduced from the study of minimum pairs (u, K) for the energy
(1), and a description of crack growth can be obtained by a limit of successive
minimizations at fixed time steps, as outlined in [36] (see also [27] and [40]).

The presence of two unknowns, the surface K and the deformation u, can be
overcome by a weak formulation of the problem in spaces of discontinuous
functions. The space SB»(); Rm) of ‘‘special functions of bounded variation’’ was
introduced by DE GIORGI & AMBROSIO [37] as the subset of Rm-valued functions of
bounded variation on the open set )LRn, whose measure first derivative can be
written in the form

(2) Du"+uLn4)#(u`!u~)? l
u
Hn~14S

u
,

where +u is now the approximate gradient of u, S
u
is the complement of the set of

Lebesgue points of u, which admits a unit normal l
u
, and u`, u~ are the approxi-

mate values of u on both sides of S
u
. The measuresLn andHn~1 are the n-dimen-

sional Lebesgue measure and the (n!1)-dimensional Hausdorff measure, respec-
tively. The energy in (1) can be rewritten as

(3) E (u)":
)

f (+u)dx#jHn~1(S
u
),

which makes sense on SB»(); Rm). If f is quasiconvex and satisfies some standard
growth conditions, then we can apply the direct methods of the calculus of



variations to obtain minimum points for problems involving E, using Ambrosio’s
lower semicontinuity and compactness theorems (see [4—7]). A complete regularity
theory for minimum points u for E has not yet been developed, but in some cases it
is possible to prove that the jump set S

u
is Hn~1-equivalent to its closure (see

[38, 31]) or is even more regular (see [12, 11]), and that u is smooth on )CSM
u
, and

thus to obtain minimizing pairs (u, K)"(u, SM
u
) for the functional E.

The functionals F on SB»(); Rm) which have bulk and surface parts, and
which satisfy the translation invariance conditionF (u)"F(u#c) for all constant
vectors c, can be written in the form

(4) F (u)":
)

f (x, +u) dx# :
Su

g(x, (u`!u~)? l
u
) dHn~1

(we adopt the equivalent notation g (x, u`!u~, l
u
) in the course of the paper).

Necessary and sufficient conditions for the lower semicontinuity of such func-
tionals F are described in [6, 9, 7]. In the formulation (4) are included non-
isotropic, non-homogeneous Griffith materials, when

(5) g (x, a? l)"gJ (x, l),

where the condition gJ (x, l)"gJ (x,!l) must be imposed to have a good definition
of the surface integral. We can also include in this setting surface problems in the
framework of BARENBLATT’s models, taking

g(x, a? l)"gJ ( Da D ).(6)

We shall not treat Barenblatt materials directly, but we remark that their study can
be carried on by a singular perturbation approach from the study of models of the
type (5) (see [24]). Many other problems in mathematical physics and computer
vision involve minimum pairs with a ‘‘free discontinuity set’’ K and an unknown
function u as above (see, e.g., [52, 13, 2, 25, 8, 9, 32, 33]). We shall be content to
interpret our results in the framework of nonlinear fracture mechanics.

In this paper we study the asymptotic behaviour of functionals of the type (4)
modelling cellular elastic materials with fine microstructure. The study of this kind
of nonlinear media, but without considering the possiblity of fracture (i.e., in the
framework of Sobolev functions), has been carried on by S. MU® LLER [51] and
A. BRAIDES [16] (see also [17, 18, 19, 21, 26, 47]; a wide literature exists for the linear
case, or when u is scalar-valued; we refer the interested reader to the rich bibliogra-
phy of [35]). Here we consider functionals

(7) Fe(u)"P
)

f A
x

e
, +uB dx#P

S
u

gA
x

e
, (u`!u~)? l

uB dHn~1,

where f and g are Borel functions, periodic in the first variable, which respectively
model the response of the material to elastic deformation and fracture at a micro-
scopic scale (which is given by the small parameter e). The behaviour of sequences
of minima for problems involvingFe , and of the corresponding minimizers, can be
deduced from the !-convergence of this sequence (see [39, 35]). This analysis is
usually referred to as homogenization. The main result of this paper is showing
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that, under the growth conditions

(8) a D m D p6f (x, m)6b (1#D m D p), a6g (x, m)6b

for all x3Rn, m3Mm]n, with p'1, a, b'0, we obtain, in the limit when eP0,
a minimum problem for the functional

(9) F
)0.

(u)":
)

f
)0.

(+u)dx#:
Su

g
)0.

((u`!u~)? l
u
) dHn~1 .

The integrands f
)0.

and g
)0.

can be characterized by asymptotic formulas. The
homogenized bulk energy density is the same integrand as obtained in [16] in the
case without fracture:

(10) f
)0.

(m)" lim
T?`=

inf G
1

¹ n
:

]0,¹[n

f (x, +u#m) dx : u3¼1,p
0

(]0, ¹[ n; Rm)H ,

while the function g
)0.

is given on rank-one matrices by

g
)0.

(z? l)" lim
T?`=

1

¹ n~1
inf G :

¹QlWS
u

g (x, (u`!u~)? l
u
) dHn~1:

(11)

u3SB»(¹Ql ; Rm), +u"0 a.e., u"u
z,l on L (¹Ql)H,

where Ql is any unit cube in Rn with centre at the origin and one face orthogonal to
l, and

(12) u
z,l (x)"G

z

0

if Sx, lT70,

if Sx, lT(0.

Note that by (9) it is sufficient to define g
)0.

on rank-one matrices. From (9)—(11)
we obtain that the overall behaviour of the medium described by (7) at the scale e is
that of a homogeneous material whose bulk elastic response is given by the study of
Fe only on elastic deformations without cracks, and whose response to fracture can
be derived by the examination of ‘stiff deformations’ (for which +u"0). In
particular, note that the homogenized surface energy density is not influenced by f;
this phenomenon is particular to the process of homogenization, since in general
we do have an interaction (see [3, Theorem 4.1]). We also mention that the
homogenization under SB»-growth conditions (8) gives rise to phenomena differ-
ent from those that occur when a growth of order one is allowed; i.e.,

(13) f (x, m)6c Dm D or g(x, m)6c D m D

(e.g., if g(x, · ) is positively homogeneous of degree one), in which case the homogen-
ized functional is defined and finite on the whole B»(); Rm) (see [19]).

The paper is organized as follows. In Section 1 we recall the main definitions
and preliminaries on SB» functions, and we introduce the space SB»p (); Rm) of
SB»-functions whose approximate gradient is p-summable and whose jump set is
Hn~1-finite. Section 2 is devoted to the statement of the homogenization result. In
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Sections 2—7 we deal with functionals like (7), with g satisfying the technical
assumption that

(14) a (1#D m D )6g (x, m)6b (1#D m D ),

which allows us to limit our analysis to SB»p (); Rm). The treatment of the case
with g satisfying the growth condition (8) is carried on in Section 8 by a singular
perturbation approach. The proof of the homogenization theorem relies on several
technical results. In Section 3 we give a compactness theorem with respect to
!-convergence for functionals defined in SB»p (); Rm). Its proof is based on
a ‘‘fundamental estimate’’ (Proposition 3.1), which allows the application of the
localization techniques of !-convergence (see [35]). We also prove a truncation
lemma (Lemma 3.5), which, in several cases, permits us to deal with equibounded
sequences. In Section 4 we apply the techniques of BUTTAZZO & DAL MASO [29]
and of AMBROSIO & BRAIDES [8] to give an integral representation on ¼1,p(); Rm)
and on spaces of ‘‘partitions’’ B» (); ¹ ) (¹LRm is any fixed finite set) of the
functionals given by the compactness argument of Section 3. The characterization
by formula (10) of the volume energy density which describes the integral repre-
sentation on ¼1,p (); Rm) is obtained in Section 5. In order to use the homogeni-
zation results of [16] and [51], we apply a technique introduced by AMBROSIO (see
[7]), which allows us to pass from sequences of SB»-functions with vanishing
surface energy to sequences of Lipschitz functions in the description of the !-limit
process. The construction of minimizing sequences with surface energy tending to
0 is obtained by a scaling argument, which is based on the periodic structure of the
problem. A similar procedure leads in Section 6 to the characterization by formula
(11) of the homogenized surface energy density: after a scaling argument, which
again is possible by the periodicity assumptions, we can pass from sequences in
SB»p (); Rm) with vanishing bulk energy to sequences with +u"0. This passage is
carried on by a careful use of the coarea formula. In Section 7 we prove the integral
representation (9) on SB»p(); Rm)W¸=(); Rm), from which the general result
follows by approximation. The two key points are the application of the strong
convergence results in SB»p(); Rm) of piecewise smooth functions proved by
BRAIDES & CHIADO© PIAT [23], which gives an inequality in (9) (Proposition 7.1), and,
for the opposite inequality, a blow-up argument which locally reduces the problem
to the case of linear or piecewise constant functions. The characterization of the
!-limits through formulas (10) and (11), together with the compactness argument of
Section 2 conclude the proof. Finally in Section 8 we describe the applications of
the homogenization theorem to problems in fracture mechanics.

1. Notation and preliminaries

Let m71 and n71 be fixed integers. If ) is an open subset of Rn, we denote by
A()) and B ()) families of the open and Borel subsets of ), respectively;
moreover, we setA"A (Rn) andB"B(Rn), whileA

0
stands for the family of the

bounded open subsets of Rn. If x, y3Rn, then Sx, yT denotes their scalar product;
Bo(x) is the open ball with centre x and radius o, and Sn~1 the surface of the unit

300 A. BRAIDES, A. DEFRANCESCHI & E. VITALI



ball B
1
(0); Mm]n is the space of the m]n real matrices. The usual product of

a matrix m3Mm]n and a vector x3Rn is denoted by m · x.
The Lebesgue measure and the (n!1)-dimensional Hausdorff measure in Rn

are denoted byLn andHn~1, respectively, but we also write DE D in place ofLn(E).
Moreover, u

n
"DB

1
(0) D .

If )3A, we use standard notation for the Lebesgue and Sobolev spaces
¸p(); Rm) and ¼1,p (); Rm).

Functions of bounded variation

For the general theory of the functions of bounded variation we refer to [43, 48,
42, 56]; here we just recall some definitions and results we shall use in the sequel.

Let ) be an open subset of Rn and u : )PRm be a Borel function. We say that
z3Rm is the approximate limit of u in x and we write z"ap-lim

y?x
u (y) if for every

e'0,

lim
o?0

o~n D My3Bo (x)W) : Du (y)!z D'eN D"0.

We define S
u
as the subset of ) where the approximate limit of u does not exist. It

turns out that S
u
is a Borel set, DS

u
D"0 and u is approximately continuous a.e. in );

more precisely, u (x)"ap-lim
y?x

u (y) for a.e. x3)CS
u
.

We say that u"(u1 , . . . , um)3¸1(); Rm) is a function of bounded variation if its
distributional first derivatives D

i
uj are (Radon) measures with finite total variation

in ). This space is denoted by B» (); Rm). We use Du to indicate the matrix-valued
measure whose entries are D

i
uj.

If u3B» (); Rm), then S
u
is countably (n!1)-rectifiable, i.e.,

(1.1) S
u
"NXAZ

i|N

K
iB ,

whereHn~1(N)"0 and (K
i
) is a sequence of compact sets, each contained in a C1

hypersurface !
i
. Moreover, there exist Borel functions l

u
: S

u
PSn~1 and u`, u~ :

S
u
PRm such that for Hn~1-a.e. x3S

u

lim
o?0

o~n :
Bo`(x)W)

Du (y)!u`(x) D dy"0, lim
o?0

o~n :
Bo~(x)W)

Du (y)!u~(x) D dy"0,

where B`o (x)"My3Bo(x) :Sy!x, l
u
(x)T'0N and B~o (x)"My3Bo(x): Sy!x, l

u
(x)T

(0N. Hence, for Hn~1-a.e. x3S
u
,

lim
o?0

o~n D My3Bo (x)W) : Sy!x, $l
u
(x)T'0, Du (y)!u$(x) D'eN D"0

for every e'0. The triple (u`(x), u~(x), l
u
(x)) is uniquely determined up to

a change of sign of l
u
(x) and an interchange between u`(x) and u~(x). The vector

l
u

is normal to S
u
, in the sense that, if S

u
is represented as in (1.1), then l

u
(x) is

normal to !
i
for Hn~1-a.e. x3K

i
. In particular, it follows that l

u
(x)"$l

v
(x) for

Hn~1-a.e. x3S
u
WS

v
and u, v3B»(); Rm). If x3S

u
, we define u`(x)"u~(x)"

ap-lim
y?x

u (y).
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We denote by +u the density of the absolutely continuous part of Du with
respect to the Lebesgue measure. +u(x) turns out to be the approximate differential
of u at x for a.e. x3), in the sense that

lim
o?0

o~n P
Bo(x)W)

Du (y)!u (x)!+u(x) · (y!x) D
Dy!x D

dy"0.

We point out that if u, v3B»(); Rm), then +u(x)"+v(x) for a.e. x3) such that
u(x)"v(x).

It is easy to verify that if u, v3B» (); Rm) and if u is a smooth real function
on ), then (u#v)$"u$

#v$, (uu)$"uu$, Du$

!v$ D6Eu!vE
L=(); Rm) and

+(uu)"u? +u#u+u.
We say that a function u3B» (); Rm) is a special function of bounded variation if

the singular part of Du is given by (u`!u~) ? l
u
Hn~14S

u
, i.e., if

Du"+uLn#(u`!u~)? l
u
Hn~14S

u
.

We denote the space of the special functions of bounded variation by SB»(); Rm).
This space was introduced by DE GIORGI & AMBROSIO [37]. For the properties of
the functions u3SB»(); Rm) we refer to [5] and [6]. Here we mention the
following result (see [10]): If u3SB»(); Rm) and if u :RmPRm is a Lipschitz
function with Lipschitz constant ¸, then u (u)3SB»(); Rm), Su(u)

-S
u
,

(u(u))$"u(u$), and D+u (u) D6¸ D+u D a.e. in ).
Let p'1; the space SB»p (); Rm) is defined as the space of the functions

u3SB»(); Rm) such that

Hn~1(S
u
W))(#R, +u3¸p(); Mm]n).

Sets of finite perimeter

Let )3A and E3B. We say that E has finite perimeter in ) if the characteristic
function s

E
of E belongs to B» (); R). Define the essential boundary of E as

L*E"Mx3Rn : lim sup
o?0

o~n DBo(x)WE D'0 and lim sup
o?0

o~n DBo (x)CE D'0N .

If E is a set of finite perimeter in ), then

:
)

DDs
E
D"Hn~1()WL*E );

this value is the perimeter of E in ). If u3B»(); R), then Mx3) : u(x)'tN has finite
perimeter in ) for a.e. t3R, and the following Fleming-Rishel coarea formula holds:

(1.2) :
B

DDu D"
`=
:

~=

Hn~1(BWL*Mx3) : u(x)'tN) dt

for every B3B ()). For an exposition of the theory of sets of finite perimeter see the
books quoted above for the functions of bounded variation.
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Approximation of B» functions by ¸ipschitz functions

Let k be a non-negative finite Radon measure on ½"]0, 1[n. For every x3½

let us define

M(k)(x)"supG
k(Bo (x))

DBo (x) D
: o'0 such that Bo (x)-½H .

M(k) is called the (local) maximal function of k. If k is absolutely continuous with
respect to the Lebesgue measure and h is its density, we also set M(h)"M (k). In
[7] M(k) is defined with respect to the unit ball B

1
(0) instead of ½. However, it is

easy to see that the analogues of Proposition 2.2 and Theorem 2.3 in [7] still hold,
as in the following two statements.

Proposition 1.1. ¸et k be as above. ¹hen there exists a constant c(n)'0 such that

D Mx3½ : M(k)(x)'jN D6
c (n)k(½ )

j

for every j'0. Moreover, if k is absolutely continuous with respect to the ¸ebesgue
measure and its density h belongs to ¸p(½ ) for some p'1, then

:
Y

(M(k)(x))p dx6C(n, p) :
Y

(h(x))p dx,

with C(n, p)"p2pc(n)/(p!1).

Theorem 1.2. ¸et j'0, u3B»(½; Rm)W¸=(½; Rm), and let

E"Mx3½ : M( DDu D )(x)'jN.

¹hen for every 0(e(1 there is a ¸ipschitz function v :½ePRm, where
½e"]e, 1!e[n, such that u"v a.e. on ½eCE, and the ¸ipschitz constant Lip(v, ½e)
of v on ½e satisfies the inequality

Lip(v, ½e)6mAc@(n)j#
2

e
EuE

¸= (½; Rm )B ,

for a suitable positive constant c@(n).

!-convergence

We recall briefly the notion of !-convergence [39]. Let (X, d ) be a metric space,
let F

h
:XPR1 be a sequence of functionals on X, and let F : XPR1 .

We say that (F
h
) !-converges to F at the point x3X with respect to the

topology induced by d if the following conditions are satisfied:
(i) for every sequence (x

h
) in X such that d(x

h
, x)P0, we have F(x)

6lim inf
h?`=

F
h
(x

h
) ;

(ii) there exists a sequence (x
h
) in X such that d(x

h
, x)P0 and F(x)

"lim
h?`=

F
h
(x

h
) .

Homogenization of Free Discontinuity Problems 303



We say that (F
h
) !-converges to F on the space X with respect to the topology

induced by d if (i) and (ii) hold for every x3X. In this case F is called the !-limit of
(F

h
), and we write F"!-lim

h?`=
F
h
.

For a complete treatment of the subject we refer to [35]. Here we only recall the
following facts. If (F

h
) !-converges to F, then F is lower semicontinuous. If (F

h
) is

a constant sequence, i.e., if F
h
is equal to the same functional G for every h3N, then

the !-limit exists and coincides with the lower semicontinuous envelope (or relaxed
functional) GM of G on the space X with respect to the topology induced by d (see
[28]). Under suitable coercivity conditions, !-convergence guarantees the conver-
gence of the minimum values of the functional F

h
to the minimum value of their

!-limit.

Quasiconvexity

We finally recall that a continuous function f :Mm]nPR is quasiconvex if for
every open set ) and m3Mm]n we have D) D f (m)6:

)
f (m#Du) dx for all

u3C1
0
(); Rm). Quasiconvexity is a well-known necessary and sufficient condition

for the weak lower semicontinuity of integral functionals defined on Sobolev spaces
(see [15, 1, 34, 28]).

2. Statement of the main result

Let f : Rn]Mm]nP[0,#R[ and g :Rn]Rm]Sn~1P[0,#R[ be two Borel
functions. We suppose that f satisfies
(i) for every m3Mm]n the function f ( · , m) is 1-periodic, i.e., f (x#e

i
, m)"f (x, m) for

every i"1, . . . , n and x3Rn;
(ii) there exist two constants c

1
'0 and c

2
'0 such that

c
1
D m Dp6f (x, m)6c

2
(1#D m Dp)

for a.e. x3Rn and for every m3Mm]n,
and that g satisfies
(i) g (x, s, l)"g(x,!s,!l) for every (x, s, l)3Rn]Rm]Sn~1;
(ii) g ( · , s, l) is 1-periodic for every (s, l)3Rm]Sn~1;
(iii) there exist a function u : [0,#R[P[0,#R[, continuous and non-decreasing

with u(0)"0, and a constant ¸'0, such that u (t)6¸t for t71 and

Dg (x, s, l)!g (x, t, l) D6u ( D s!t D ) for every x3Rn, s, t3Rm, v3Sn~1;

(iv) there exist two constants c
3
'0 and c

4
'0 such that

c
3
(1#D s D)6g (x, s, l)6c

4
(1#D s D )

for every (x, s, l)3Rn]Rm]Sn~1.
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For every e'0, A3A, u3SB»
-0#

(A; Rm) and B3B (A) we define

(2.1) Fe (u, B)"P
B

f A
x

e
, +uB dx# P

Su
WB

g A
x

e
, u`!u~, l

uB dHn~1 .

We remark that there exists a one-to-one correspondence between
(RmCM0N)]Sn~1 modulo the equivalence relation (s, l)&(!s,!l) and the space
of matrices of rank equal to 1. Hence we could as well write the functional in (2.1) in
the form

Fe(u, B)"P
B

f A
x

e
, +uB dx# P

Su
WB

gA
x

e
, (u`!u~)? l

uB dHn~1 ,

with the identification g (x, s? l)"g (x, s, l), to have a symmetric notation in the
two integrals. However, in the sequel we shall always use the notation (2.1) to
highlight the different behaviour of the surface integral with respect to u`!u~

and l
u
.

The following propositions introduce the functions f
)0.

and g
)0.

which will
appear in the integral representation of the limit functional of the family (Fe)e;0

.

Proposition 2.1. For every m3Mm]n there exists

f
)0.

(m)"lim
e?0

inf G P
]0, 1[n

f A
x

e
, +u#mB dx : u3¼1,p

0
(]0, 1[n ; Rm)H .

¹he function f
)0.

is quasiconvex, and for every m3Rm

c
1
D m Dp6f

)0.
(m)6c

2
(1#D m Dp ).

Moreover, for every sequence (e
h
) of positive numbers converging to 0 and for every

)3A
0

the sequence u> :
)

f (x/e
h
, +u) dx !-converges to the functional

u> :
)

f
)0.

(+u) dx on ¼1,p(); Rm) with respect to the ¸p-topology.

Proof. For the proof see [16] and [17, Theorem 2.3 and the subsequent remark,
Proposition 1.8 and Remark 1.7]. K

Proposition 2.2. For every (z, l)3Rm]Sn~1 there exists

g
)0.

(z, l)"lim
e?0

inf G P
Su

WQl

gA
x

e
, u`!u~, l

uB dHn~1 :

u3SB»(Ql ; Rm), +u"0 a.e., u"u
z,l on LQlH,

where Ql is any unit cube in Rn with centre at the origin and one face orthogonal to
l (the limit being independent of such a choice), and

u
z,l (x)"G

z

0

if Sx, lT70,

if Sx, lT(0.
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¹he function g
)0.

is continuous on (RmCM0N)]Sn~1, and

c
3
(1#D z D)6g

)0.
(z, l)6c

4
(1#D z D)

for every (z, l)3(RmCM0N]Sn~1.

The proof of Proposition 2.2 is postponed to Section 6.
For every A3A, u3SB»

-0#
(A; Rm) and B3B(A) we define

F
)0.

(u, B)":
B

f
)0.

(+u) dx# :
Su

WB

g
)0.

(u`!u~, l
u
) dHn~1.

The main result of the paper is the following homogenization theorem.

Theorem 2.3. ¸et (Fe)e;0
and F

)0.
be as above. ¸et (e

h
) be a sequence of positive real

numbers converging to 0. ¹hen for every A3A
0
,

F
)0.

( · , A)"!- lim
h?`=

Fe
h
( · , A)

on the space SB»p (A; Rm) with respect to the ¸1 (A; Rm)-topology, and on the space
SB»p (A; Rm)W¸p(A; Rm) with respect to the ¸p(A; Rm)-topology.

In the case when f and g are constant with respect to the first variable, we
immediately obtain the following relaxation result (see also [44]).

Corollary 2.4. ¸et )3A
0

and

F(u)":
)

f (+u) dx# :
Su

W)

g (u`!u~, l
u
)Hn~1

for u3SB»p(); Rm). ¹hen the lower semicontinuous envelope of F on SB»p (); Rm)
with respect to the ¸1(); Rm)-topology (or on SB»p (); Rm)W¸p(); Rm) with respect
to the ¸p(); Rm)-topology) is given by

FM (u)":
)

fM (+u) dx# :
Su

W)

gN (u`!u~, l
u
)Hn~1,

where

fM (m)"inf G :
+0,1*n

f (+u#m) dx : u3¼1,p
0

( ]0, 1[n; Rm)H ,

i.e., fM is the quasiconvex envelope of f (see [34]), and

gN (z, l)"inf G :
Su

W)l

g (u`!u~, l
u
)Hn~1 :

u3SB»(Ql; Rm), +u"0 a.e., u"u
z,l on LQlH ,

for every m3Mm]n and (z, l)3Rm]Sn~1, with Ql and u
z,l as in Proposition 2.2.
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3. A compactness result on SB»p (); Rm)

In this section we prove some general properties for functionals of the form

Fe (u, A)":
A

fe(x, +u) dx# :
Su

WA

ge(x, u`!u~, l
u
) dHn~1,

where fe :Rn]Mm]nP[0,#R[ and ge : Rn]Rm]Sn~1P[0,#R[ are Borel
functions satisfying

c
1
D m Dp6fe (x, m)6c

2
(1#D m Dp) for a.e. x3Rn and for every m3Mm]n,

c
3
(1#D s D)6ge(x, s, l)6c

4
(1#D s D ) for every (x, s, l)3Rn]Rm]Sn~1

for suitable positive constants c
i
. Moreover, we suppose that ge (x, s, l)

"ge(x,!s,!l) for every (x, s, l)3Rn]Rm]Sn~1. In particular, we can have
fe (x, m)"f (x/e, m) and ge (x, s, l)"g(x/e, s, l), where f and g are the functions
introduced in Section 2.

For every A3A, u3SB»
-0#

(A; Rm) and B3B(A) let

(3.1) H(u, B)":
B

D+u Dp dx# :
Su

WB

(1#Du`!u~ D) dHn~1.

The functional H( · , A) is lower semicontinuous on SB»
-0#

(A; Rm) with respect to
the ¸1

-0#
(A; Rm)-topology; see [6, Theorems 2.2 and 3.7] or [7, Theorem 4.5 and

Remark 4.6].
In view of the growth conditions satisfied by fe and ge , there exist c

1
, c

2
'0 such

that for every e'0,

(3.2) c
1
H(u, A)6Fe(u, A)6c

2
(H(u, A)#DA D ).

Hence, for every A3A
0

the !-limit of any sequence (Fe
h
( · A)) (e

h
P0) on a sub-

space of SB»
-0#

(A; Rm) with respect to a topology stronger than ¸1
-0#

(A; Rm) is finite
exactly on SB»p(A; Rm). Thus in the sequel we shall restrict our attention to the
space SB»p(A; Rm). The crucial properties of the !-limit are based on the so-called
fundamental estimate ([35]), of which we give now an SB»-version.

Proposition 3.1 (Fundamental Estimate). ¸et (Fe) be the family of functionals de-
fined in (2.1). For every g'0 and for every A@, AA, B3A, with A@LLAA, there exists
a constant M'0 with the following property: For every e'0 and for every
u3SB»p (AA; Rm), v3SB»p (B; Rm) there exists a function u3C=

0
(AA) with u"1 in

a neighbourhood of AM @ and 06u61 such that

Fe(uu#(1!u)v, A@XB)6(1#g) [Fe (u, AA)#Fe(v, B)]#MEu!vEp
Lp (S; Rm)#g,

where S"(AACA@)WB.

Remark 3.2. From the proof it follows that the cut-off function u can be chosen in
a finite family depending only on g, A@, and AA.
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Proof of Proposition 3.1. Let g'0, A@, AA and B be fixed as in the statement. Let
k3N satisfy

(3.3)
1

k
maxA2p~1

c
2

c
1

,
c
4

c
3

, c
2
D (AACA@)WB DB6g.

Let A
1
, . . . ,A

k`1
be open subsets of Rn such that A@LLA

1
LLA

2
LL · · ·

LLA
k`1

LLAA. For every i"1, . . . , k let u
i
be a function in C=

0
(A

i`1
) with

u
i
"1 on a neighbourhood »

i
of AM

i
. Define

M"2p~1
c
2
k

max
16i6k

E+u
i
Ep
L= .

For fixed e'0, u3SB»p(AA), and v3SB»p(B), define on A@XB the function
w
i
"u

i
u#(1!u

i
)v (where u and v are extended arbitrarily outside AA and B,

respectively). Then for i"1, . . . , k,

(3.4) Fe (wi
, A@XB)6Fe(u, (A@XB)W»

i
)

#Fe (v, BCsptu
i
)#Fe (wi

, BW(A
i`1

CAM
i
))

6Fe(u, AA)#Fe(u, B)#Fe(wi
, BW(A

i`1
CAM

i
)).

Set ¹
i
"BW(A

i`1
CAM

i
). We estimate the last term:

Fe (wi
, ¹

i
)6c

2P
¹

i

(1#D+w
i
Dp) dx#c

4 P
S
wi

W¹

i

(1#Dw`
i
!w~

i
D ) dHn~1

6c
2 A D¹

i
D#P

¹

i

Du
i
+u#(1!u

i
)+v#(+u

i
) (u!v) Dp dxB

#c
4 A P

(S
u
CS

v
)W¹

i

(1#Du`!u~ D ) dHn~1

# P
(S
v
CS

u
)W¹

i

(1#Dv`!v~ D ) dHn~1

# P
S
u
WS

v
W¹

i

(1#Du
i
(u`!u~)#(1!u

i
) (v`!v~) D ) dHn~1B

6c
2 A D¹

i
D#2p~1 P

¹

i

( D +u Dp#D+v Dp#D+u
i
Dp Du!v Dp) dxB

#c
4A P

S
u
W¹

i

(1#Du`!u~ D ) dHn~1# P
S
v
W¹

i

(1#D v`!v~ D ) dHn~1B
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62p~1
c
2

c
1
A P

¹

i

f A
x

e
, +uB dx#P

¹

i

f A
x

e
, +vB dxB

#

c
4

c
3
A P

S
u
W¹

i

g A
x

e
, u`!u~, l

uB dHn~1

# P
S
v
W¹

i

gA
x

e
, v`!v~, l

vB dHn~1B
#c

2
( D¹

i
D#2p~1(E+u

i
E
L= Eu!vE

Lp (Ti )
)p)6c (Fe(u,¹

i
)#Fe (v,¹i

))

#c
2A D¹

i
D#2p~1 A max

16i6k
E+u

i
Ep
L=B Eu!vEp

Lp(Ti )B ,

where c"max(2p~1c
2
/c

1
, c

4
/c

3
). Hence there exists i

0
3M1, . . . , kN such that

Fe(wi0
, ¹

i0
)6

1

k

k
+
i/0

Fe (wi
, ¹

i
)

6

c
k

(Fe (u, AA)#Fe(v, B))#
c
2
k

DS D#MEu!vEp
Lp(S; Rm)

where S"(AACA@)WB. From (3.4) it follows that

Fe (wi0
, A@WB)6A1#

c
kB (Fe (u, AA)#Fe (v, B))#

c
2
k

DS D#MEu!vE p̧p (S;Rm) .

By (3.3) the proof of Proposition 3.1 is accomplished. K

Proposition 3.3. ¸et (e
h
) be a sequence of positive numbers converging to 0. ¹hen

there exist a subsequence (ep(h)) of (e
h
) and a functional F

0
defined on the set M(u, A):

A3A, u3SB»p (A; Rm)W¸p(A; Rm)N with values in [0,#R] such that for every
A3A

0
,

F
0
( · , A)"!- lim

h?`=
Fep(h)

( · , A)

on the space SB»p(A; Rm)W¸p(A; Rm) endowed with the ¸p(A; Rm)-topology. More-
over, for every )3A

0
and u3SB»p(); Rm)W¸p(); Rm) the set function F

0
(u, · ) is

the restriction to A()) of a Borel measure on ).

Proof. For every e'0 let Ge :¸p(Rn; Rm)]AP[0,#R] be defined by

Ge (u, A)"G
Fe (u, A)

#R

if u D
A
3SB»p (A; Rm),

otherwise.

By Theorem 16.9 of [35] there exist a subsequence (ep(h)) of (e
h
) and a functional

G
0
:¸p (Rn; Rm)]AP[0,#R] such that G

0
"!1 (¸p(Rn; Rm))-lim

h?`=
Gep(h) . In

the notation of [35], which we refer to for details and precise definitions, this means
that G

0
is the inner regular envelope of both the !-lower and the !-upper limit of
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the sequence (Gep(h)). By (3.2)

c
1
H(u, A)6Ge (u, A)6c

2
(H(u, A)#DA D )

for every e'0, A3A and u3¸p(Rn; Rm) with u D
A
3SB»p(A; Rm). Taking into

account Proposition 3.1 we can apply the same method of proof as in Theorem 18.7
in [35]. Thus we obtain that for every A3A

0
the sequence (Gep(h) ( · , A)) of func-

tionals on ¸p (Rn; Rm) !-converges to G
0
( · , A) with respect to the ¸p(Rn; Rm)-

topology at all points u3¸p(Rn; Rm) with u D
A
3SB»p(A; Rm).

For every A3A and u3SB»p(A; Rm)W¸p(A; Rm) define F
0
(u, A)"G

0
(uJ , A),

where uJ is any ¸p-extension of u to Rn. This definition is well-posed since from the
!1 -convergence of (Gep(h)) to G

0
it follows that for every u, v3¸p(Rn; Rm), if u D

A
"v D

A
,

then G
0
(u, A)"G

0
(v, A). The stated convergence of Fep(h) ( · , A) is easily proved.

Observe now that Ge(u, · ) is the restriction toA of a Borel measure on Rn for every
u. Then, by Proposition 3.1 and by Theorem 18.5 in [35] (which holds with the
same proof for vector-valued ¸p-functions), for every u3¸p(Rn; Rm) the set function
G

0
(u, · ) is the restriction to A of a Borel measure on Rn. From this we obtain the

stated measure property of F
0
. K

We now prove some further properties of the !-limit F
0
.

Proposition 3.4. ¸et (e
h
) be a sequence of positive numbers converging to 0, and let

A3A
0

be such that the limit F
0
( · , A)"!-lim

h?`=
Feh( · , A) exists on the space

SB»p (A; Rm)W¸p(A; Rm) endowed with the ¸p(A; Rm)-topology. ¹hen for every
sequence (u

h
) in SB»p (A; Rm) converging in ¸1(A; Rm) to a function u3SB» p(A; Rm)

W¸=(A; Rm) we have F
0
(u, A)6lim inf

h?`=
Feh (uh , A).

For the proof we need a technical lemma (see also [30]).

Lemma 3.5. ¸et A3A
0

and let (u
h
) be a sequence in SB»p (A; Rm) which is bounded

in ¸1(A; Rm) and such that (H(u
h
, A)) is bounded. ¹hen for every g'0, M

0
'0 and

h3N there exists a ¸ipschitz function u
h
: RmPRm with ¸ipschitz constant less than

or equal to 1 satisfying

u
h
(y)"G

y

0

if Dy D6a
h
,

if Dy D'b
h

for suitable constants a
h
, b

h
3R with M

0
6a

h
(b

h
, such that

Feh(uh
(u

h
), A)6Feh (uh , A)#g

for every h3N. ¹he function u
h

can be chosen in a finite family independent of h.

Proof. Fix g'0, M
0
'0. Let (a

j
) be a strictly increasing sequence of positive real

numbers such that for every j3N there exists a Lipschitz function u
j
:RmPRm with

Lipschitz constant less than or equal to 1 satisfying

u
j
(y)"G

y

0

if Dy D6a
j
,

if Dy D'a
j`1

.
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The sequence (a
j
) will be determined subsequently in a suitable way (see (3.6)) and

will depend only on g and M
0
. For every h3N and j3N let wj

h
"u

j
(u

h
). Consider

the volume part of Feh (w
j
h
, A); we have

:
A

feh (x, +wj
h
) dx" :

AWMDu
h
D6a

j
N

feh (x, +u
h
) dx# :

AWMDu
h
D'a

j`1
N

feh(x, 0) dx

# :
AWMa

j
(Du

h
D6a

j`1
N

feh (x, +wj
h
) dx

6:
A

feh(x, +u
h
) dx#c

2
DAWMDu

h
D'a

j`1
N D

#c
2

:
AWMa

j
(Du

h
D6a

j`1
N

(1#D+u
h
Dp) dx.

As for the surface part, it is not restrictive to assume that Du~
h

D6Du`
h

DHn~1-a.e. on
S
uh
. Since (wj

h
)$"u

j
(u$

h
) we have

:
Swj

h
WA

geh (x, (wj
h
)`!(wj

h
)~, l

wj
u
) dHn~1

6 :
(SuhCMa

j`1
6Du

h
~ DNWA

geh(x, u
j
(u`

h
)!u

j
(u~

h
) , l

uh
) dHn~1 .

The set S
uh
CMa

j`1
6Du~

h
DN can be decomposed as Z5

i/1
S j
i
, where

S j
1
"M Du`

h
D(a

j
N, S j

2
"MDu~

h
D(a

j
, a

j`1
6Du`

h
DN,

Sj
3
"M Du~

h
D(a

j
6 Du`

h
D(a

j`1
N, S j

4
"Ma

j
6 Du~

h
D, Du`

h
D(a

j`1
N,

Sj
5
"Ma

j
6 Du~

h
D(a

j`1
6 Du`

h
DN.

Hence, taking into account the Lipschitz continuity of u
i
, we have

:
Swj

h
WA

geh(x, (wj
h
)`!(w j

h
)~, l

w
j
h
) dHn~1

6 :
S
j
1
WA

geh(x, u`
h
!u~

h
, l

uh
) dHn~1#c

4
:

S
j
2
WA

(1#Du~
h

D )dHn~1

#

5
+
i/3

c
4

:
S
j
i
WA

(1#Du`
h
!u~

h
D ) dHn~1 .

We now use these inequalities to estimate 1/N +N
j/1

Feh (w
j
h
, A), for every fixed h3N

and N3N. Note that each of the families (Ma
j
(Du

h
D6a

j`1
N)

j|N , (Sj
i
)
j|N (i"3, 4, 5)

consists of pairwise disjoint sets. Then

(3.5)
1

N

N
+
j/1

Feh (w j
h
, A)6Feh(uh , A)

#

1

N

N
+
j/1

(c
2
DAWM Du

h
D'a

j`1
N D#c

4
:

S
j
2
WA

(1#Du~
h

D ) dHn~1)

#

1

N
(c

2
:
A

(1#D+u
h
Dp)dx#3c

4
:

Suh
WA

(1#Du`
h
!u~

h
D ) dHn~1).
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By assumption there exists a constant c'0 such that

c
2

:
A

(1#D+u
h
Dp) dx#3c

4
:

Suh
WA

(1#Du`
h
!u~

h
D ) dHn~16c

for every h3N. Choose N3N such that c/N6g/3. Moreover (we may suppose that
c
4
71)

c7 :
S j
2
WA

Du`
h
!u~

h
D dHn~17 :

Sj
2
WA

( Du`
h

D!Du~
h

D) dHn~1

7(a
j`1

!a
j
)Hn~1(Sj

2
WA),

whence

:
Sj
2
WA

(1#Du~
h

D) dHn~16c
1#a

j
a
j`1

!a
j

.

The sequence (a
j
) is now defined recursively by the following conditions

c
2
DAWMDu

h
D'a

1
N D6

g
3

for every h3N, a
1
7M

0
,

(3.6)

c
4
c

1#a
j

a
j`1

!a
j

6

g
3

for every j3N,

which is possible by the assumed boundedness of (u
h
) in ¸1 (A; Rm). From (3.5) we

now obtain

1

N

N
+
j/1

Feh(w
j
h
, A)6Feh(uh

, A)#g.

Therefore for every h3N there exists j (h)3M1, . . . ,NN such that
Feh (w

j(h)
h

, A)6Feh(uh , A)#g. The function u
h
"u

j(h)
is the Lipschitz function we

were looking for. Note that N is independent of h. K

Remark 3.6. From its proof it follows immediately that the previous lemma still
holds for the functionals of the type Feh(uh , A)":

A
feh (x, +u) dx or Feh(u, A)

":
Su

WA
geh(x, u`!u~, l

u
) dHn~1, with feh and geh as above.

Proof of Proposition 3.4. We can assume that (Feh (uh , A)) converges to a finite
value. Fix g'0. By applying Lemma 3.5 to the sequence (u

h
) with M

0
"EuE

=
, we

obtain a sequence (v
h
) in SB»p (A; Rm)W¸=(A; Rm), bounded in ¸= (A; Rm), such

that v
h
Pu in ¸p (A; Rm) and lim inf

h?`=
Feh (vh , A)6lim inf

h?`=
Feh(uh , A)#g.

By the !-convergence of (Fer(h)) we have F
0
(u, A)6lim inf

h?`=
Feh(uh

, A). The
arbitrariness of g yields the proof. K

In the following lemma we assume that feh(x, m)"f (x/e
h
, m) and geh (x, s, l)

"g (x/e
h
, s, l) where f and g are the functions introduced in Section 2.
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Lemma 3.7. ¸et (e
h
) be a sequence of positive numbers converging to 0 such that for

every A3A
0

the limit F
0
( · , A)"!-lim

h?`=
Feh( · , A) exists on SB»p (A; Rm)W

¸p(A; Rm) with respect to the ¸p(A; Rm)-topology. ¹hen for every
u3SB»p (A; Rm)W¸p(A; Rm), a3Rm and y3Rn,

(i) F
0
(u#a, A)"F

0
(u, A), (ii) F

0
(q

y
u, q

y
A)"F

0
(u, A),

where (q
y
u)(x)"u (x!y) and q

y
A"A#y.

Proof. First we prove (i). Let (u
h
) in SB»p(A; Rm)W¸p(A; Rm) be a sequence con-

verging to u in ¸p(A; Rm) and such that (Feh(uh , A)) converges to F
0
(u, A). Then

(u
h
#a) converges to u#a in ¸p (A; Rm) and

F
0
(u#a, A)6lim inf

h?`=
Feh (uh#a, A)"lim inf

h?`=
Feh(uh , A)"F

0
(u, A).

On the other hand, F
0
(u, A)"F

0
((u#a)#(!a), A)6F

0
(u#a, A).

We now prove (ii). There exists a sequence (z
h
) in Zn such that y

h
"e

h
z
h

converges to y. Let (u
h
) be a sequence as in the proof of (i). Set

v
h
"q

yh
u
h
: A#y

h
PRm. By taking the periodicity assumptions on f and g into

account we get

Feh(uh , A)"P
A

f A
x#y

h
e
h

, +u
hB dx# P

S
uh

WA

gA
x#y

h
e
h

, u`
h
!u~

h
, l

uhB dHn~1

" P
A`yh

f A
x

e
h

, +u
hB dx# P

S
vh

W(A#y
h
)

gA
x

e
h

, v`
h
!v~

h
, l

vhB dHn~1.

Let BLLA; for h sufficiently large we may assume A#y
h
.B#y; hence

Feh(uh , A)7 P
B#y

f A
x

e
h

, +v
hB dx# P

S
vh

W(B#y)

gA
x

e
h

, v`
h
!v~

h
, l

vhB dHn~1 ,

which yields F
0
(u, A)7F

0
(q

y
u, B#y), since (v

h
) converges to q

y
u. By the arbitrari-

ness of BLLA we also have F
0
(u, A)7F

0
(q

y
u, q

y
A). We conclude the proof of (ii)

by noticing that F
0
(q

y
u, q

y
A)7F

0
(q

~y
(q

y
u), q

~y
(q

y
A))"F

0
(u, A). K

4. Integral representation on W 1,p(); Rm) and on partitions

On account of Proposition 3.3 we shall try to identify the !-limit of convergent
sequences of functionals Fe . Therefore, up to Section 7 we assume that a sequence
(e
h
) of positive numbers converging to 0 is given, such that for every A3A

0
the limit

(4.1) F
0
( · , A)"!- lim

h?`=
Feh ( · , A)

exists on the space SB»p(A; Rm)W¸p(A; Rm) endowed with the ¸p(A; Rm)-topology.
In particular, F

0
( · , A) is lower semicontinuous with respect to the ¸p (A; Rm)-

topology. As we have seen, for every )3A
0

and u3SB»p(); Rm)W¸p(); Rm) the
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set function F
0
(u, · ) can be extended to a Borel measure on ). Such a measure is

given by (see [35, Theorem 14.23])

(4.2) F
0
(u, B)"infMF

0
(u, A) :A3A()), B-AN

for every B3B()). Moreover, from the considerations at the beginning of Section
3 it follows that there exist two constants c

1
, c

2
'0 such that for every

u3SB»p (A; Rm)W¸p(A; Rm) we have c
1
H (u, A)6F

0
(u, A)6c

2
(H(u, A)#DA D ),

where H is defined in (3.1). By (4.2) we immediately obtain

(4.3) c
1
H (u, B)6F

0
(u, B)6c

2
(H(u, B)#DB D)

for every B3B ()).

Proposition 4.1. ¹here exists a unique quasiconvex function fI :Mm]nP[0, #R[
with the following properties:
(i) ¹here exist c

1
, c

2
'0 such that c

1
D m Dp6fI (m)6c

2
(1#D m Dp) for every m3Mm]n.

(ii) F
0
(u, A)":

A
fI (+u) dx for every A3A

0
and u3¼1,p (A; Rm).

Proof. Let )3A
0

and consider F
0
:¼1,p (); Rm)]A())P[0,#R[. This func-

tional satisfies the assumptions of Theorem 1.1 in [29], i.e., for every
u, v3¼1,p (); Rm) and A3A()):

(a) F
0
(u, A)"F

0
(v, A) whenever u D

A
"v D

A
.

(b) The set function F
0
(u, · ) is the restriction toA ()) of a Borel measure on ).

(c) F
0
(u, A)6c :

A
(1#DDu Dp) dx, with c a positive constant.

(d) F
0
(u#a, A)"F

0
(u, A) for every a3Rm.

(e) F
0
( · , A) is sequentially weakly lower semicontinuous on ¼1,p (); Rm).

In fact, properties (b), (c), and (d) follow from Proposition 3.3, estimate (4.3) and
Lemma 3.7, respectively, while (a) and (e) can be obtained immediately from the fact
that F

0
( · , A) is the !-limit (4.1).

By [29, Theorem 1.1] the Carathéodory function fI :Rn]Mm]nP[0,#R[
defined by

(4.4) fI (x, m)"lim sup
o?0

F
0
(um , Bo (x))

DBo (x) D

(um is the linear function defined by um(x)"m · x) gives the integral representation

F
0
(u, ))":

)
fI (x, Du) dx

for every u3¼1,p(); Rm). The function fI (x, · ) is quasiconvex for a.e. x3Rn, and,
from (4.4) and Lemma 3.7, we deduce that fI (x, m) is constant with respect to x3Rn.
Consequently we can drop the dependence on x. Finally, the uniqueness of fI
follows from (4.4), while (i) follows from (ii) and (4.3). K

The next step is to obtain an integral representation formula for F
0

on finite
partitions, i.e., on those B» functions which take only a finite set of values. It will be
achieved by applying a theorem due to AMBROSIO & BRAIDES. Given )3A

0
and
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a finite subset ¹ of Rm we denote by B»(); ¹ ) the set of functions u :)P¹ which
belong to B» (); Rm). It turns out that B» (); ¹ )-SB»p (); Rm)W¸=(); Rm).

Proposition 4.2. ¹here exists a unique function gJ :Rm]Sn~1P[0,#R[ continuous
in the second variable and such that
(i) gJ (!s, !l)"gJ (s, l) for every (s, l)3Rm]Sn~1;
(ii) for every finite subset ¹ of Rm,

F
0
(u, S)":

S

gJ (u`!u~, l
u
) dHn~1

for every A3A
0
, u3B»(A; ¹ ) and S a Borel subset of S

u
WA.

Proof. Let ¹ be a finite subset of Rm and let )3A
0
. For every A3A()) and

u3B»(); ¹ ) we define G
T
(u, A)"F

0
(u, S

u
WA), where F

0
(u, S

u
WA) is defined in

(4.2). Let us show that the assumptions of Theorem 3.1 in [8] are satisfied by
G

T
:B» (); ¹ )]A ())P[0,#R[ in the following form:

(i) 06G
T
(u, A)6KHn~1(AWS

u
) with K3R fixed.

(ii) G
T
(u, · ) is the restriction to A()) of a Borel measure on ).

(iii) G
T
(u, A)"G

T
(v, A) whenever u"v a.e. in A.

(iv) If u
h
Pu a.e. in A, then G

T
(u, A)6lim inf

h?`=
G

T
(u

h
, A).

(v) G
T
(q

y
u, q

y
A)"G

T
(u, A) (where (q

y
u) (x)"u (x!y) and q

y
A"A#y) for every

y3Rn whenever q
y
A-).

Property (i) follows immediately from the definition of G
T

and from estimate
(4.3). As for (ii), the Borel measure F

0
(u, · ) on ) (see (4.2)), restricted to S

u
, is an

extension of G
T
(u, · ). The proof of (iii) follows immediately from (4.1) and the

definition (4.2) of F
0
(u, · ) on Borel sets.

Let us come to (iv). If u
h
Pu a.e. on A, by the equiboundedness of (u

h
), it turns

out that u
h
Pu in ¸p(A; Rm). For every open subset E of A with S

u
WA-E we have

F
0
(u, E)6lim inf

h?`=
F

0
(u

h
, E).

Furthermore, by (4.3),

F
0
(u

h
, E)"F

0
(u

h
, S

uh
WE)#F

0
(u

h
, ECS

uh
)6F

0
(u

h
, S

uh
WA)#c

2
DE D .

Thus,

F
0
(u, E)6lim inf

h?`=
F
0
(u

h
, S

uh
WA)#c

2
DE D .

By taking the infimum over all open sets E.S
u
WA, we get

F
0
(u, S

u
WA)6lim inf

h?`=
F

0
(u

h
, S

uh
WA).

Finally, for the proof of (v) it is enough to refer to the property of translation
invariance shown for F

0
in Lemma 3.7.
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At this point we can apply Theorem 3.1 of [8], which yields the existence of
a unique continuous function g)

T
: )]¹]¹]Sn~1P[0,#R[ such that

g)
T
(x, a, b, l)"g)

T
(x, b, a, !l) and

(4.5) F
0
(u, S

u
WA)"G

T
(u, A)" :

S
u
WA

g)
T
(x, u`, u~, l

u
) dHn~1

for every u3B» (); ¹ ) and A3A()). Define

ua,b
x0,l (x)"G

a

b

if Sx!x
0
, lT70,

if Sx!x
0
, lT(0,

P
x0,l"My3Rn : Sy!x

0
, lT"0N

whenever x, x
0
3Rn, a, b3Rm and l3Sn~1. The continuity of g)

T
( · , a, b, l) yields

that

(4.6) g)
T
(x

0
, a, b, l)"lim

o?0

F
0
(ua,b

x0,l , Px0,lWBo(x0
))

Hn~1(P
x0,lWBo(x0

))

for every (x
0
, a, b, l)3)]¹]¹]Sn~1. This allows us to replace the integrand in

(4.5) by a function gJ (x, a, b, l), independent of ) and ¹, defined on
Rn]Rm]Rm]Sn~1. From (4.6) and Lemma 3.7 we also obtain that gJ is indepen-
dent of x and depends on (a, b) through the difference a!b. Therefore we can write

F
0
(u, S

u
WA)" :

Su
WA

gJ (u`!u~, l
u
) dHn~1

for every finite subset ¹ of Rm, A3A
0

and u3B»(A; ¹ ). Since F
0
(u, · )4S

u
is

a regular Borel measure, this immediately yields the integral representation on the
Borel subsets of S

u
stated in the proposition. K

5. Characterization of the homogenized bulk energy density

The goal of this section is to prove that the function fI given in Proposition 4.1
is precisely the function f

)0.
introduced in Proposition 2.1. This is achieved in the

next two propositions. We use the notation ½"]0, 1[n.

Proposition 5.1. fI (m)6 f
)0.

(m) for every m3Mm]n.

Proof. Fix m3Mm]n. From the definition of f
)0.

, for every p'0 there exists
e"e (p)'0 and a function v3¼1,p

0
(½; Rm) such that

:
Y

f (x/e , m#+v(x)) dx6f
)0.

(m)#p.

We still denote by v the 1-periodic extension of v to Rn. For every h3N define

u
h
(x)"m ·x#

e
h
e

v A
e
e
h

xB for x3Rn. Since AvA
e
e
h

xBB
h

is bounded in ¸p(½; Rm), we

have that (u
h
) converges to m ·x in ¸p(½; Rm). We may assume that e"1

k
for

316 A. BRAIDES, A. DEFRANCESCHI & E. VITALI



a suitable k3N, so that the function x> f A
x

e
, gB is ½-periodic for every g. Hence,

by the definition of F
0
,

F
0
(m ·x, ½ )6lim inf

h?`= P
½

f A
x

e
h

, m#(+v)A
e
e
h

xBB dx

6lim inf
h?`= A

e
h
eB

n

P
([e/e

h
]#1)½

f A
x

e
, m#+v(x)B dx

"lim inf
h?`= A

e
h
eB

n

AC
e
e
h
D#1B

n

P
½

f A
x

e
, m#+v(x)B dx .

Therefore F
0
(m ·x, ½ )6f

)0.
(m)#p. The conclusion follows from Proposition 4.1

and the arbitrariness of p'0. K

Proposition 5.2. For every m3Mm]n, we have fI (m)7f
)0.

(m).

Proof. For the sake of clarity, the proof is divided into three steps. Fix m3Mm]n .

Step 1. ¹here exist a sequence of positive real numbers (a
h
) converging to 0 and

a sequence of functions (w
h
) in SB»p(½; Rm)W¸p(½; Rm) such that

(i) w
h
Pm ·x in ¸p(½; Rm),

(5.1) (ii) lim
h?`=

Hn~1(S
wh

W½ )"0,

(iii) lim sup
h?`=

P
Y

f A
x

a
h

, +w
h
(x)B dx6fI (m).

Proof. By assumption there exists a sequence (v
h
) in SB»p (½; Rm)W¸p (½; Rm) such

that v
h
P0 in ¸p(½; Rm) and

lim
h?`=

Feh (m · x#v
h
, ½ )"F

0
(m · x, ½ )"fI (m).

Set u
h
(x)"m · x#v

h
(x), Ev

h
E
Lp (½; Rm)"p(n@p)`1

h
, b

h
"k

h
e
h
. It is easy to see that there

exists a divergent sequence (k
h
) of natural numbers such that

b
h
P0,

p
h

b
h

P0.

Now, in order to be able to introduce the sequence (w
h
), let us consider for every

h3N and j3Nn the set Q
h,j"b

h
(j#½ ). Let j (h)3Nn be the index of a ‘‘minimal

cube’’, i.e.,

Feh(uh , Qh,j(h))6Feh (uh , Qh,j)
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for every j3Nn with Q
h,j-½, and set

Q
h
"Q

h,j(h) , x
h
"b

h
j (h), w

h
(x)"m · x#

1

b
h

v
h
(x

h
#b

h
x), x3½.

Let us prove (5.1) (i). Easy computations show that

Ew
h
!m · x E

¸p (½; Rm)"
1

(b
h
) (n@p)`1 A :

Q
h

Dv
h
(y) Dp dyB

1@p

6

1

(b
h
) (n@p)`1

Ev
h
E

¸p (½; Rm)"A
p
h

b
h
B
(n@p)`1

.

The conclusion is now immediate by our assumptions on p
h
/b

h
.

Let us prove (5.1) (ii). For every h3N,

Feh(uh , ½ )7C
1

b
h
D
n
Feh(uh , Qh

)7C
1

b
h
D
n
c
3
Hn~1(S

uh
WQ

h
).

Therefore, since the sequence (Feh(uh , ½ )) is bounded, there exists a constant C'0
such that

Hn~1(S
uh
WQ

h
)6

C

[1/b
h
]n

for every h3N.

On the other hand, S
wh

W½"

1

b
h

((S
vh
WQ

h
)!x

h
)"

1

b
h

( (S
uh
WQ

h
)!x

h
), which implies

that

Hn~1(S
wh

W½)"
1

(b
h
)n~1

Hn~1(S
uh
WQ

h
)6CA

1/b
h

[1/b
h
]B

n~1
·

1

[1/b
h
]
.

Since (b
h
) converges to 0 as h tends to #R, the proof of (5.1) (ii) is accomplished.

Let us now define a
h
"e

h
/b

h
. Then a

h
P0 as hP#R. We now prove (5.1) (iii).

By taking into account the periodicity assumption on f and the fact that b
h
/e

h
3N,

we have

P
½

f A
x

a
h

, +w
h
(x)B dx"P

½

f A
x

a
h

, m#(+v
h
) (x

h
#b

h
x)B dx

"

1

(b
h
)n P

Q
h

f A
y!x

h
e
h

, m#+v
h
(y)B dy

"

1

(b
h
)n P

Q
h

f A
y

e
h

, m#+v
h
(y)B dy

6A
1/b

h
[1/b

h
]B

n

C
1

b
h
D
n
Feh (uh , Qh

)6A
1/b

h
[1/b

h
]B

n
Feh(uh , ½ ).

Hence lim sup
h?`= P

Y

f A
x

a
h

, +w
h
(x)B dx6 lim

h?`=
Feh (uh , ½)"fI (m), which proves (5.1) (iii).
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Step 2. For every fixed g'0 the sequence (w
h
) can be chosen so that

(i) &K'0 such that Ew
h
E

¸=(½; Rm )6K ∀h3N,

(5.2)
(ii) w

h
Pm · x in ¸p(½; Rm) ,

(iii) lim
h?`=

Hn~1(S
wh

W½ )"0,

(iv) lim sup
h?`= P

Y

f A
x

a
h

, +w
h
(x)B dx6fI (m)#g.

Proof. Apply Remark 3.6 to the sequence of functionals u> :
Y

f (xa
h
, +u(x)) dx.

Thus, Lemma 3.5 applied to (w
h
), with M

0
"Em · x E

L= (½; Rm) , furnishes a sequence
u
h
(w

h
) which satisfies properties (5.2), as one can easily check on account of

properties (5.1) and the fact that Su
h(wh)

-S
wh

. Now the functions u
h
(w

h
) are

renamed w
h
.

Step 3. We replace the sequence (w
h
) with a suitable sequence in ¼1,p (actually

Lipschitz functions), still satisfying properties similar to (5.2) (ii) and (5.2) (iv), and
apply the homogenization results in ¼1,p.

Proof. We first need a preliminary remark. By Proposition 1.1, for every h3N we
have

P
½

Mp ( D+w
h
D ) dx6C(p, n) P

½

D+w
h
Dp dx6

C (p, n)

c
1

P
½

f A
x

a
h

, +w
hB dx.

Then the sequence (Mp ( D+w
h
D)) is bounded on ¸1 (½). This ensures, as proved in

[1, Lemma 1.7], a weak equi-integrability property for (Mp( D +w
h
D)). More precise-

ly, for any e'0 there exist a Borel set Ce-½, d'0 and an infinite set S-N such
that DCe D(e and for all C3B(½ ),

if CWCe"0 and DC D(d, then :
C

Mp( D+w
h
D )dx(e for all h3S.

Fix e'0 and let Ce and d enjoy this property. It is not restrictive to assume that
S"N. Since (Mp( D+w

h
D )) is bounded in ¸1 (½), we can choose je71 such that for

every j7je and h3N,

D Mx3½ : M( D+w
h
D )'jN D(d,

K
e
(j,

where K is given in (5.2) (i).
By Theorem 1.2, for every h3N and j7je fixed, there exists a Lipschitz

function w
h,j :½ePRm whose Lipschitz constant does not exceed 2m(c@(n)#1)j

such that w
h,j"w

h
a.e. on ½eCE

h,j , where

E
h,j"Mx3½ :M( DDw

h
D )'2jN.
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Since M( DDw
h
D )6M( D+w

h
D )#M( DDsw

h
D), by Proposition 1.1 we have

DE
h,jCCe D6D Mx3½CCe : M( D+w

h
D )(x)'jN D#D Mx3½ : M( DDsw

h
D )(x)'jN D

6D Mx3½ CCe : Mp (D+w
h
D) (x)'jpN D#j~1c(n) DDsw

h
D (½ )

6j~p :
MM ( D +w

h
D)'jNCCe

Mp ( D+w
h
D ) dx

#2j~1c(n)Ew
h
E

¸=(½; Rm)Hn~1(S
wh

W½ )

6ej~p#2j~1c(n)KHn~1(S
wh

W½ ).

This implies by (5.2) (iii) that

(5.3) lim sup
h?`=

jp D E
h,jCCe D6e.

Moreover, for a suitable constant K"K(n, m)'0 we have

(5.4) 06f A
x

a
h

, +w
h,jB6Kjp on ½e .

Thus, since +w
h,j"+w

h
on ½eCE

h,j , we get

P
½eCCe

f A
x

a
h

, +w
h,jB dx6 P

(½eCCe)CE
h,j

f A
x

a
h

, +w
hB dx#Kjp DE

h,jCCe D

6P
½

f A
x

a
h

, +w
hB dx#Kjp D E

h,jCCe D .

By taking into account (5.2) (iv) and (5.3), the previous inequality yields

(5.5) lim sup
h?`= P

½eCCe

f A
x

a
h

, +w
h,jB dx6lim sup

h?`= P
½

f A
x

a
h

, +w
hB dx#Ke

6fI (m)#Ke#g.

From (5.4) we also deduce that for every j7je there exist an increasing sequence
(p(h)) of natural numbers and a function u3¸= (½e) such that f (x/ap(h) , +wp(h),j)Nu
in w*-¸=(½e). In particular, for all B3B(½e),

(5.6) P
B

u (x) dx" lim
h?`= P

B

f A
x

ap(h)
, +wp(h),jB dx.

On the other hand, by passing, if necessary, to a further subsequence (still depend-
ing on j) we can assume with no loss of generality that there exists wj3¼1,= (½e)
such that wp(h),jNwj in w*-¼1,= (½e). By Proposition 2.1,

P
A

f
)0.

(+wj) dx6lim inf
h?`= P

A

f A
x

ap(h)
, +wp(h),jB dx"P

A

u (x) dx
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for all A3A(½e). It follows that f
)0.

(+wj (x))6u(x) for a.e. x3½e . Then (5.5) and
(5.6) with B"½eCCe imply that

P
½eCCe

f
)0.

(+wj) dx6lim sup
h?`= P

½eCCe

f A
x

a
h

, +w
h,jB dx6fI (m)#Ke#g.

Therefore,

(5.7) f
)0.

(m) D½eCCe,j D" :
½eCCe,j

f
)0.

(m) dx6fI (m)#Ke#g,

where Ce,j"CeXMx3½e : wj9m · xN, and j7je .
Since ( DDw

h
D (½ )) is a bounded sequence, by Proposition 1.1 there exists a con-

stant C'0 such that

D Mx3½e : wp(h),j9wp(h)N D6DEp(h),j D6
C

j
.

By the lower semicontinuity of the functional w> D Mx3½e :w (x)90N D with re-
spect to the convergence in measure we infer that

D Mx3½e : wj (x)9m ·xN D6
C

j
.

Hence, from (5.7), f
)0.

(m) ((1!e)n!e!C/j)6fI (m)#Ke#g. The conclusion now
follows if we consider successively the limits as jP#R, eP0`, and gP0`. K

6. Characterization of the homogenized surface energy density

Here we first prove Proposition 2.2, where the function g
)0.

is introduced.
Then, as we did in the previous section for the volume part, we prove that the
function gJ , which represents F

0
on finite partitions according to Proposition 4.2, is

actually the function g
)0.

.

Proof of Proposition 2.2. For every orthonormal basis l"(l
0
, l

1
, . . . , l

n~1
) of Rn,

set
Ql"Ma

0
l
0
# · · ·#a

n~1
l
n~1

: a
0
, . . . , a

n~1
3]!1

2
, 1
2
[N,

and for every z3Rm and e'0, set

(6.1) Ie(l)"infG :
S
u
WQl

g (x/e, u`!u~, l
u
) dHn~1 : u3SB»p (Ql; Rm),

+u"0 a.e., u"u
z,l0 on LQlH.

For the following four steps we consider z3Rm fixed.

Step 1. ¸et l"(l
0
, l

1
, . . . , l

n~1
) and l@"(l

0
, l@

1
, . . . , l@

n~1
) be two orthonormal

bases of Rn with equal first vector. Suppose that l is an orthonormal ‘‘rational basis’’,
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i.e., for all i3M0, . . . , n!1N there exists r
i
3RCM0N such that r

i
l
i
3Zn. ¹hen

lim supe?0
Ie(l@)6lim infe?0

Ie(l).

Proof. For every i"1, . . . , n!1 let c
i
'0 be such that v

i
"c

i
l
i
3Zn. If we set

P"Ma
1
l
1
# · · ·#a

n~1
v
n~1

: a
1
, . . . , a

n~1
3[!1

2
, 1
2
[N ,

then the function g is P-periodic in the first variable, in the sense that
g(x#l

1
v
1
# · · ·#l

n~1
v
n~1

, w, k)"g (x, w, k) whenever (x, w, k)3Rn]Rm]Sn~1

and l
1
, l

2
, . . . , l

n~1
3Z.

Let e'0, g'0 and p'0 be fixed. Let ue3SB»(Ql; Rm) with +ue"0 a.e. and
ue"u

z,l0 on LQl be such that

(6.2) :
S
ue

WQl

g (x/e, u`e !u~e , l
ue
) dHn~16Ie (l)#p.

For every j"(j
1
, . . . ,j

n~1
)3Zn~1 set

xj"g (j
1
v
1
# · · ·#j

n~1
v
n~1

), Qj"xj#
g
e

Ql .

We have to choose the centres xj properly. Let

K"K (g, e)"Gj3Zn~1 : Qj-Ql@ , &l"(l
1
, . . . , l

n~1
)3Zn~1,

such that xj3
n~1
+
i/1

l
i
(g/e#gc

i
)l

i
#gPH .

It is easy to see that
(i) The cubes of the family (Qj)j are pairwise disjoint.
(ii) Denoting by S"S

ux,l0
the hyperplane Sx, l

0
T"0, we have

lim
g?0

Hn~1ASWAQl@C Z
j|K

QjBB"0

(i.e., limg?0
(g/e)n~1dK(g, e)"1).

Define ug :Ql@PRm by

ug (x)"G
ue(e(x!xj)/g)

u
z,l0 (x)

if x3Qj , j3K ,

otherwise.

It turns out that S
ug
-SXZ

j|KQj , and clearly

Ig (l@)6 :
S
ug

WQl@

g(x/g, u`g !u~g , l
ug
) dHn~1 .

We can estimate this integral. We have

I
1
, :

S
ug

WZ
j|KQl

g(x/g, u`g !u~g , l
ug
) dHn~1

"+
j

(g/e)n~1 :
S
ue

WQl

g(y/e#j
1
v
1
# · · ·#j

n~1
v
n~1

, u`e !u~e , l
ue
) dHn~1 ,
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where the change of variable x> e(x!xj)/g has been applied on Qj . Then, by the
P-periodicity of g and by (6.2)

I
1
6(g/e)n~1dK(g, e)(Ie(l)#p).

Let us consider Sug
W(SCZj|KQj):

I
2
, :

S
ug

W(SCZ
j|KQl)

g (x/g, u`g !u~g , l
ug

) dHn~1

6c
4
(1#Dz D)Hn~1ASWAQl@C Z

j|K

QjBB.
The estimates now obtained for I

1
and I

2
, together with property (ii) satisfied by K,

yield

lim sup
g?0

Ig(l@)6Ie (l)#p.

We conclude by taking the lower limit for eP0 and by considering the arbitrari-
ness of p'0.

Step 2. ¸et l"(l
0
, l

1
, . . . , l

n~1
) and l@"(l

0
, l@

1
, . . . , l@

n~1
) be two orthonormal

rational bases of Rn with equal first vector. ¹hen the limits lime?0
Ie (l) and

lime?0
Ie(l@) exist and are equal.

Proof. By applying Step 1 with l"l@ we obtain the existence of the limits. By
exchanging the roles of l and l@ we obtain that they are equal.

Step 3. For every p'0 there exists d'0 (independent of z3Rm) such that if
l"(l

0
, l

1
, . . . , l

n~1
) and l@"(l@

0
, l@

1
, . . . , l@

n~1
) are two orthonormal bases of Rn

with D l
i
!l@

i
D(d for every i"0, . . . , n!1, then

lim inf
e?0

Ie (l)!Kp6lim inf
e?0

Ie(l@)6lim sup
e?0

Ie (l@)6lim sup
e?0

Ie (l)#Kp,

where K"1#2c
4
(1#Dz D ).

Proof. We use the notation

Ql,g"(1!g)Ql (with l an orthonormal basis for Rn, 0(g(1).

Let p'0 be fixed and let 0(g(1 be such that

(6.3) 2(1!(1!2g)n~1)(p.

It is easy to see that there exists d'0 with the property that for every pair
l"(l

0
, l

1
, . . . , l

n~1
) and l@"(l@

0
, l@

1
, . . . , l@

n~1
) of orthonormal bases of Rn, if

D l
i
!l@

i
D(d (i"0, . . . , n!1), then

(i) LQl@,g-QlCQM l,2g ,

(ii) Hn~1((LQl@,g)W(HDH @))(p,

where H and H @ denote the half spaces Sx, l
0
T'0 and Sx, l@

0
T'0, respectively.

Fix l and l@ with this property. Given e'0 there exists u3SB»(Ql; Rm) such that
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+u"0 a.e., u"u
z,l0 on LQl and

:
S
u
WQl

g (x/e, u`!u~, l
u
) dHn~16Ie(l)#p.

We consider u extended with value u
z,l0 on the whole Rn. Then we can define

v :RnPRm, v (x)"u (x/(1!2g)).

We have S
v
WQl"((1!2g)S

u
)WQl , and

P
S
u
WQl

gA
x

e(1!2g)
, v`!v~, l

vB dHn~1

"(1!2g)n~1 P
S
u
W( 1————

1~2g
Ql)

g (y/e, u`!u~, l
u
) dHn~1

6 P
S
u
WQl

g (y/e, u`!u~, l
v
) dHn~1#c

4
(1#Dz D)[1!(1!2g)n~1];

hence

(6.4) P
S
u
WQl

gA
x

e(1!2g)
, v`!v~, l

vB dHn~1

6Ie(l)#p#c
4
(1#Dz D ) [1!(1!2n)~1

n
].

Define w :Ql@PRm by

w (x)"G
v

u
z,l@0

on Ql@,g ,
on Ql@CQl@,g .

Clearly

(6.5) Ie(1~2g)(l@)6 P
S
w
WQl@

gA
x

e(1!2g)
, w`!w~, l

wB dHn~1.

We estimate the integral. We have

S
w
WQl@-(S

v
WQl@,g)X(S

w
WLQl@,g)X(Su

z,l@0
W(Ql@CQl@,g)).

Note that (LQl@, g)W(HWH @ ) is contained in the open set (QlCQM l, 2g)WHWH@ (property
(i)); since on this open set the function v takes the value z, we conclude that
S
w
W(LQl@, g)WHWH@"0. In the same way we obtain that S

w
W((LQl@, g)C

(HM XHM @ ))"0. Therefore, up to a Hn~1-negligible set,

S
w
W(LQl@, g)-(LQl@, g)W(HDH@ ).
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Moreover, Dw`!w~ D6Dz D on (LQl@, g)W(HWH @ ) (v takes the values 0 or z on the
open set QlCQM l,2g.LQl@, g). Thus, in view of property (ii) above,

P
S
w
WQl@

gA
x

e(1!2g)
,w`!w~, l

wB dHn~1

6 P
S
v
WQl

gA
x

e(1!2g)
, v`!v~, l

vB dHn~1#c
4
(1#Dz D) (p#1!(1!g)n~1),

and, by (6.4) and (6.5),

Ie(1~2g) (l@)6Ie (l)#p#c
4
(1#Dz D) (p#2(1!(1!2g)1~n)).

In view of our choice of g,

Ie(1~2g)(l@)6Ie (l)#Kp

(with K"1#2c
4
(1#Dz D)). Finally, by letting e tend to 0 we have

lim inf
e?0

Ie (l@)6lim inf
e?0

Ie(l)#Kp,

lim sup
e?0

Ie (l@)6lim sup
e?0

Ie (l)#Kp.

The symmetry of the roles of l and l@ allows us to exchange them, thus concluding
the proof of Step 3.

Step 4. ¸et l"(l
0
, l

1
, . . . , l

n~1
) and l@"(l

0
, l@

1
, . . . , l@

n~1
) be two orthonormal

bases of Rn with equal first vector. ¹hen the limits lime?0
Ie(l) and lime?0

Ie(l@) exist
and are equal. (For this reason and for our purposes we take the freedom to denote
by l both a vector of Sn~1 and any orthonormal basis of Rn with l as first element.)

Proof. Let p'0 be fixed, and let d'0 as in Step 3. Let k"(k
0
, k

1
, . . . , k

n~1
) and

k@"(k
0
, k@

1
, . . . ,k@

n~1
) be two rational orthonormal bases of Rn with

D k
0
!l

0
D(d, D k

i
!l

i
D(d, D k@

i
!l@

i
D(d (i"1, . . . , n!1).

Ie(k) and Ie (k@) converge to the same limit l when eP0. Then it is enough to
observe that Step 3 yields

l!Kp6lim inf
e?0

Ie (l)6lim sup
e?0

Ie (l)6l#Kp

and the analogous inequalities for l@.

Step 5. For every z3Rm the function g
)0.

(z, · ) is continuous on Sn~1, uniformly with
respect to z when the latter varies on bounded sets.

Proof. The proof follows immediately from Steps 3 and 4.

Step 6. For every l3Sn~1 the function g
)0.

( · , l) is continuous on RmCM0N.

Proof. Let l3Sn~1 and let Ql be any unit cube in Rn with centre at the origin and
one face orthogonal to l. Fix a, z3RmCM0N.
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For every p'0, from the definition of g
)0.

it follows that there exists e
0
'0

such that for every e(e
0

we can find u3SB» (Ql; Rm) with +u"0 a.e., u"u
a,l on

LQl and

(6.6) :
Su

WQl

g(x/e, u`!u~, l
u
) dHn~16g

)0.
(a, l)#p.

We introduce the notation E sE"max
16i6m D s

i
D , when s"(s

1
, . . . , s

m
)3Rm.

Assuming, for simplicity, that EaE"Da
1
D , we define a matrix C"(c

ij
)3Mm]m

by
c
i1
"(z

i
!a

i
)/a

1
for i"1, . . . , m, c

ij
"0 otherwise.

Note that (C#I )a"z; hence, for every e(e
0
, if we denote by Ie the infimum (6.1)

corresponding to Ql , we have

Ie6 :
Su

WQl

g(x/e, (C#I )(u`!u~), l
u
) dHn~1

6 :
Su

WQl

g(x/e , u`!u~, l
u
) dHn~1# :

Su
WQl

u ( DC(u`!u~ D ) dHn~1;

hence, from (6.6),

Ie6g
)0.

(a, l)#p# P
S
u
WQl

uA
Dz!a D
EaE

Du`!u~ DB dHn~1 .

We estimate the last term on the right-hand side. Note that there exists a constant
K'0 such that u(t)6K(1#t) for every t70. Then, for every a'0,

P
S
u
WQl

uA
Dz!a D
EaE

Du`!u~ DB dHn~1

6K P
S
u
WQlWMDu`!u~D'aN

A1#
D z!a D
EaE

Du`!u~ DB dHn~1

# P
S
u
WQl

uA
Dz!a D
EaE

aB dHn~1

6K A
1

a
#

Dz!a D
EaE B P

S
u
WQl

Du`!u~ D dHn~1#uA
Dz!a D
EaE

aBHn~1 (S
u
WQl)

6CK A
1

a
#

D z!a D
EaE B#uA

Dz!a D
EaE

aBD
1

c
3
P

Su
WQl

g(x/e, u`!u~, l
u
) dHn~1.

Inserting this in the estimate of Ie and recalling (6.6) we get

Ie6g
)0.

(a, l)#p#
1

c
3
AKA

1

a
#

D z!a D
EaE B#uA

Dz!a D
EaE

aBB (g
)0.

(a, l)#p).
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Now we let e and p tend to 0 successively, obtaining

(6.7) g
)0.

(z, l)6g
)0.

(a, l)#
1

c
3
AKA

1

a
#

D z!a D
EaE B#uA

Dz!a D
EaE

aBB g
)0.

(a, l).

This inequality holds for every a, z3RmCM0N and a'0. Now fix a3RmCM0N. From
(6.7), with a"1, we deduce that there exists a constant K

1
(a)'0 such that

g
)0.

(z, l)6K
1
(a) for every z3Bd(a), d"Da D .

Observe now that (6.7) clearly holds with the roles of a and z reversed. Hence for
every z3Bd (a),

(6.8) g
)0.

(a, l)6g
)0.

(z, l)#
1

c
3
CKA

1

a
#

Dz!a D
EzE B#uA

D z!a D
EzE

aBDK
1
(a).

Let z tend to a in (6.7) and (6.8). Then for every a'0,

lim sup
z?a

g
)0.

(z, l)6g
)0.

(a, l)#
K

ac
3

g
)0.

(a, l),

lim inf
z?a

g
)0.

(z, l)7g
)0.

(a, l)!
K

ac
3

K
1
(a).

We complete the proof by letting a tend to #R.

Step 7. We prove the stated estimates of g
)0.

.

Proof. From the analogous estimates for g it follows that it is enough to prove that

inf G :
Su

WQl

(1#Du`!u~ D) dHn~1 : u3SB»(Ql; Rm), +u"0 a.e., u"u
z,l on LQlH

71#Dz D .

Let u be an admissible function for this infimum; we regard u as extended to the
whole of Rn with value u

z,l on Mx3Rn : D Sx, lT D'1
2
N and by periodicity on

Mx3Rn : D Sx, lT D(1
2
N. For every k3N let u

k
: QlPRm be defined by u

k
(x)"u(kx). It

is easy to see that (u
k
) converges to u

z,l in ¸1 (Ql; Rm). Since the functional
u> :

Su
WQl

(1#Du`!u~ D) dHn~1 is ¸1(Ql; Rm)-lower semicontinuous (see [6,
Theorem 3.7]), we have

1#Dz D6lim inf
k?`=

:
Suk

WQl

(1# Du`
k
!u~

k
D ) dHn~1" :

Su
WQl

(1#Du`!u~ D) dHn~1 .

This concludes the proof. K

Proposition 6.1. gJ (z, l)6g
)0.

(z, l) for every (z, l)3Rm]Sn~1.

Proof. Since gJ and g
)0.

are continuous in the second variable, we can restrict our
attention to the case in which tl3Qn for some t3RCM0N. Without loss of generality
we can suppose that l"e

1
. Indeed, let (e@

1
, . . . , e@

n
) be a ‘‘rational basis’’ of Rn (see

Step 1 of the previous proposition) with e@
1
"l. Then there exist r

1
, . . . , r

n
3RCM0N
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such that v
1
"r

1
e@
1
, . . . , v

n
"r

n
e@
n
belong to Zn. It follows that a 1-periodic function

u on Rn satisfies u (x)"u (x#v
i
) for every i"1, . . . , n and x3Rn. As a conse-

quence, if A is the n]n matrix such that Av
i
"e

i
(i"1, . . . , n), then the change of

variable x> y"Ax transforms 1-periodic functions into 1-periodic functions and
the direction of l into the direction of e

1
.

Define Q"]!1
2
, 1
2
[ n and

(6.9) u
z
(x)"G

z

0

if Sx, e
1
T70,

if Sx, e
1
T(0.

Fix p'0; there exist e"e (p)'0 and v3SB» (Q; Rm) with +v"0 a.e. and v"u
z

on LQ such that

(6.10) :
Sv

WQ

g(x/e, v`!v~, l
v
) dHn~16g

)0.
(z, e

1
)#p.

We regard the function v as extended to Rn with value u
z

on RnCMx3Rn :
DSx, e

1
T D'1

2
N and by periodicity on Mx3Rn : D Sx, e

1
T D(1

2
N. For every h3N we

define

w
h
(x)"v A

e
e
h

xB , x3Q .

The sequence (w
h
) converges to u

z
in ¸p(Q; Rm):

:
Q

Dw
h
!u

z
Dp dx"A

e
h
eB

n
:

eQ/e
h

D (v!u
z
) (y) D p dy

"A
e
h
eB

n
:

( e—e
h

Q)WMDSx, e
1
TD("N

D (v!u
z
) (y) D p dy

6A
e
h
eB

n

AC
e
e
h
D#2B

n~1
:
Q

Dv (y)!u
z
(y) Dp dy ,

which tends to 0 as h tends to #R. Fix g'0 and set Qg"Mx3Q : D Sx, e
1
T D(gN.

By the definition of F
0

we have

F
0
(u

z
, Qg)6lim inf

h?`= A :
Qg

f (x/e
h
, 0) dx# :

S
wh

WQg

g(x/e
h
, w`

h
!w~

h
, lw

h
)dHn~1B

6c
2
DQg D#lim inf

h?`= A
e
h
eB

n~1
:

( e—e
h

Qg)WSl

g(y/e, v`!v~, l
v
) dHn~1.

We may suppose that e"1/k for a suitable k3N. Then the function y>g (y/e, s, l)
is 1-periodic. Hence

F
0
(u

z
,Qg)6c

2
DQg D#lim inf

h?`= A
e
h
eB

n~1

AC
e
e
h
D#2B

n~1
:

QWS
v

g (y/e, v`!v~, l
v
) dHn~1.
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By (6.10),
F
0
(u

z
, Qg)6c

2
DQg D#g

)0.
(z, e

1
)#p,

and, by means of Propositions 4.1 and 4.2,

fI (0) DQg D#gJ (z, e
1
)6c

2
DQg D#g

)0.
(z, e

1
)#p.

As gP0` and pP0` we obtain gJ (z, e
1
)6g

)0.
(z, e

1
). K

Proposition 6.2. gJ (z, l)7g
)0.

(z, l) for every (z, l)3Rm]Sn~1.

Proof. Fix (z, l)3(RmCM0N)]Sn~1. As in the proof of the previous proposition,
without loss of generality we may suppose that l"e

1
. Let u

z
be defined by (6.9).

Fix p3]0, 1[ and define Qp"]!p
2
, p
2
[]]!1

2
, 1
2
[n~1. There exists a sequence (v

h
)

in SB»p(Qp; Rm)W¸p(Qp ; Rm) such that

v
h
Pu

z
in ¸p (Qp ; Rm), Feh(vh , Qp)PF

0
(u

z
, Qp).

By applying the truncation Lemma 3.5 for every g3]0, 1[ we can find a sequence
(u

h
) in SB»p(Qp ; Rm)W¸=(Qp ; Rm) such that (u

h
) is equibounded, and u

h
Pu

z
in

¸p(Qp ; Rm) and Feh(uh , Qp)6Feh (vh , Qp)#g for every h3N, so that

lim sup
h?`=

Feh(uh , Qp)6F
0
(u

z
, Qp)#g"fI (0)p#gJ (z, e

1
)#g.

In the last equality we have taken into account Propositions 4.1 and 4.2.
It is easy to see that there exists a nondecreasing sequence (n

h
) of natural

numbers such that (n
h
) tends to #R, (n

h
e
h
) tends to 0 and

1

(n
h
e
h
)n

:
Qp

Du
h
!u

z
Dp dxP0.

For every h3N we set b
h
"n

h
e
h
, and for j3M0N]Zn~1,

x
h,j"b

h
j, Q

h,j"x
h,j#b

h
Qp .

Let j (h)3M0N]Zn~1 be the index of a ‘‘minimal cube’’, i.e.,

Feh(uh , Qh,j(h))6Feh (uh , Qh,j)

for every j3M0N]Zn~1 with Q
h,j-Qp . We define

x
h
"x

h,j(h) , Q
h
"Q

h,j(h) , w
h
(x)"u

h
(x

h
#b

h
x), x3Qp .

Clearly w
h
3SB»p (Qp; Rm)W¸=(Qp; Rm). Let us prove that

(i) (w
h
) is equibounded,

(ii) w
h
Pu

z
in ¸p(Qp; Rm),

(6.11)
(iii) :

Qp

D +w
h
D p dxP0,

(iv) lim sup
h?`= P

S
wh

WQp

g A
x

a
h

, w`
h
!w~

h
, l

whB dHn~16fI (0)p#gJ (z, e
1
)#g,

where (a
h
) is a suitable sequence tending to 0.
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Property (i) is obvious, while (ii) is checked as follows:

:
Qp

Dw
h
!u

z
Dp dx"

1

bn
h

:
Qp

Du
h
!u

z
Dp dy6

1

bn
h

:
Qp

Du
h
!u

z
D p dy ,

which tends to 0 as h tends to #R thanks to our assumptions on b
h
. Let C be an

upper bound for the sequence (Feh(uh
, Qp)). Then

(6.12) C7Feh(uh , Qp)7 +
j3M0N]Zn~1

Q
h,j-Qp

Feh (uh , Qh,j)7C
1

b
h
D
n~1

Feh(uh
, Q

h
)

7C
1

b
h
D
n~1

P
Q
h

f A
x

e
h

, +u
hB dx

7c
1C

1

b
h
D
n~1

P
Q
h

D +u
h
Dp dx.

We now estimate :
Qp

D+w
h
Dp dx. We have

:
Qp

D+w
h
Dp dx" :

Qp

D b
h
(+u

h
)(x

h
#b

h
x) D p dx"bp~n

h
:
Qp

D+u
h
(y) D p dy ;

hence, by (6.12) :
Qp

D+w
h
D p dx6bp~n

h

C/c
1

[1/b
h
]n~1

, which tends to 0 as h tends to

#R. Thus (6.11) (iii) holds.
Finally, we prove (6.11) (iv), with a

h
"e

h
/b

h
. Taking into account that x

h
/e

h
3Zn

we have

P
S
wh

WQp

g A
x

a
h

, w`
h
!w~

h
, l

whB dHn~1

" P
S
wh

WQp

g A
x

e
h
/b

h

, u`
h

(x
h
#b

h
x)!u~

h
(x

h
#b

h
x), l

whB dHn~1

"

1

bn~1
h

P
x
h
#b

h
(S

wh
WQp)

g A
y!x

h
e
h

, u`
h

(y)!u~
h

(y), l
uhB dHn~1(y)

"

1

bn~1
h

P
S
uh

WQ
h

g A
y

e
h

, u`
h
!u~

h
, l

uhB dHn~1(y)

6

1

bn~1
h

Feh(uh , Qh
)6

1

bn~1
h

1

[1/b
h
]n~1

Feh (uh , Qp) .
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Therefore,

lim sup
h?`= P

S
wh

WQp

g A
x

a
h

, w`
h
!w~

h
, l

whB dHn~16lim sup
h?`=

Feh(uh , Qp)

6fI (0)p#gJ (z, e
1
)#g,

which proves (6.11) (iv).
We now modify the sequence (w

h
) to satisfy the boundary condition u

z
on LQp .

Let Kg be a compact subset of Qp such that

(6.13) c
2
DQpCKg D#c

4
(1#D z D)Hn~1(S

uz
W(QpCKg))6g.

We apply the fundamental estimate (Proposition 3.1) with A@ a neighbourhood of
Kg strictly contained in Qp , AA"Qp and B"QpCKg . Then there exist a constant
M'0 and, for every h3N, a function u

h
3C=

0
(Qp) with 06u

h
61 such that

Fah(uh
w
h
#(1!u

h
)u

z
, Qp)6(1#g) [Fa

h
(w

h
, Qp)#Fa

h
(u

z
, QpCKg)]

#M Ew
h
!u

z
E p
Lp (Qp ; Rm )#g.

Set wL
h
"u

h
w
h
#(1!u

h
)u

z
; by (6.13) we have

Fa
h
(wL

h
, Qp)6(1#g)[Fa

h
(w

h
, Qp)#g]#MEw

h
!u

z
E p
Lp(Qp ; Rm)#g,

and lim sup
h?`=

Fa
h
(wL

h
, Qp)6(1#g) lim sup

h?`=
Fa

h
(u

h
, Qp)#3g. Moreover, by

Remark 3.2, the functions u
h
can be chosen in a finite family independent of h. This

implies that the sequence (E+u
h
E
L
R(Qp; Rn)) is bounded, so that ( :

Qp
D+wL

h
D p dx)

converges to 0.
In summary, for every g'0 we have found a sequence (wL

h
) in

SB»p (Qp; Rm)W¸=(Qp; Rm) such that

(i) (wL
h
) is equibounded,

(ii) :
Qp

D +wL
h
D p dxP0,

(6.14)

(iii) lim sup
h?`= P

S
wL h

WQp

g A
x

a
h

, wL `
h
!wL ~

h
, l

wL hB dHn~1

6(1#g) [(c
2
#fI (0))p#gJ (z, e

1
)#g]#3g,

(iv) wL
h
"u

z
on a neighbourhood of LQp .

Our next aim is to obtain from (wL
h
) a suitable sequence (v

h
) with +v

h
"0 a.e. Let (k

h
)

be a divergent sequence in N such that

lim
h?`=

k
hA :

Qp

D+wL Dp dxB
1@p

"0.

It is not restrictive to assume that 2/k
h
(Dzi D for every i"1, . . . , m with zi90. Let

M3N be such that EwL
h
E
L= (Qp ; Rm)(M for every h3N. By the coarea formula (1.2),
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for every i"1, . . . ,m,

:
Qp

D +wL i
h
Ddx" :

QpCS
wL h

D+wL i
h
Ddx" :

QpCS
wL h

DDwL i
h
D

"

M
:

~M

Hn~1((QpCSwL
h
)WL*(Mx3Qp :wL i

h
(x)'tN)) dt.

Then for every l3Z, with !k
h
M6l(k

h
M, there exists t i

l
3D

l

k
h

,
l#1

k
h
C such that

(6.15) :
Qp

D+wL i
h
D dx7

khM~1
+

l/~khM

1

k
h

Hn~1 ((QpCSwL
h
)WL*(Mx3Qp : wL i

h
(x)'t i

l
N)).

In addition, we define t i
l
"!M if l"!k

h
M!1 and t i

l
"M if l"k

h
M. For

every l3Z, with !k
h
M!16l(k

h
M, set Z i

l
"Mx3Qp : t i

l
(wL i

l
(x)6t i

l`1
N. We

have Qp"Z
l
Z i

l
; therefore we can define v

h
: QpPRm by

vi
h
D
Z

i
l
"G

0 if ti
l
(06ti

l`1
,

zi if t i
l
(zi6t i

l`1
,

t i
l

otherwise.

This definition is well-posed since 2/k
h
(Dzi D if zi90. Each set Z i

l
has finite

perimeter in Qp since it is the difference MwL i
h
'ti

l
NCMwL i

l
'ti

l`1
N of two sets of finite

perimeter. It follows that v
h
3SB»(Qp; Rm). Furthermore, by (6.14) (iv), it is clear

that v
h
"u

z
on a neighbourhood of LQp . From the definition of v

h
we also have that

max
16i6m Evi

h
!wL i

h
E
L=(Qp; Rm)62/k

h
. If we now consider v

h
extended to Q"

]!1
2
, 1
2
[n with value u

z
on Q/Qp , then v

h
is an admissible function for the formula

defining g
)0.

(z, e
1
). Hence let us estimate :S

vh
WQ g(x/a

h
, v`

h
!v~

h
, lv

h
) dHn~1. First

of all, notice that Sv
h
WQp-Z

i
Z

l
(L*Z i

l
)WQp . Since Z i

l
"MwL i

h
'ti

l
NCMwL i

h
'ti

l`1
N , it is

easy to see that

L*Zi
l
-L*Mx3Qp :wL i

h
(x)'t i

l
NXL*Mx3Qp :wL i

h
(x)'t i

l`1
N

and therefore

Sv
h
WQp-

m
Z
i/1

khM~1
Z

l/~khM

(L*Mx3Qp :wL i
h
(x)'ti

l
N)WQp

(the terms corresponding to l"!k
h
M!1 and l"k

h
M do not contribute). Then

we have

:
(S

vh
WQ)CS

wL h

g (x/a
h
, v`

h
!v~

h
, l

vh
) dHn~1

6c
4
(1#2M)Hn~1(Sv

h
W(QpCSwL

h
))

6c
4
(1#2M)

m
+
i/1

khM~1
+

l/~khM

Hn~1 ((QpCSwL
h
)WL*Mx3Qp : wL i

h
(x)'t i

l
N) .
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Thus, by (6.15),

:
(S

vh
WQ)CS

wL h

g(x/a
h
, v`

h
!v~

h
, l

vh
) dHn~16c

4
(1#2M)k

h

m
+
i/1

:
Qp

D+wL i
h
Ddx

6ck
hA :

Qp

D+wL
h
DpdxB

1@p

for a suitable positive constant c. Hence, by the condition on (k
h
) we get

(6.16) lim
h?`=

:
(S

vh
WQ)CS

wL h

g (x/a
h
, v`

h
!v~

h
, l

vh
) dHn~1"0.

On the other hand, by taking into account the continuity properties of g and that
lv

h
"lwL

h
Hn~1-a.e. on Sv

h
WSwL

h
, we get

:
(S

vh
WQ)WS

wL h

g (x/a
h
, v`

h
!v~

h
, lv

h
) dHn~1

6 :
S
vh

WS
wL hWQp

g (x/a
h
, wL `

h
!wL ~

h
, lwL

h
) dHn~1

# :
S
vh

WS
wL hWQp

u( Dv`
h
!wL `

h
D#D v~

h
!wL ~

h
D ) dHn~1

6 :
S
wL hWQp

g (x/a
h
, wL `

h
!wL ~

h
, lwL

h
) dHn~1

#Hn~1(Sv
h
WSwL

h
WQp)u(4/k

h
).

From (6.14) (iii) and the coercivity condition of g we obtain thatHn~1(SwL
h
W(Qp)) is

bounded and that

lim sup
h?`=

:
(S

vh
WQ)WS

wL h

g (x/a
h
, v`

h
!v~

h
, lv

h
) dHn~1

6lim sup
h?`=

:
S
wL hWQp

g(x/a
h
, wL `

h
!wL ~

h
, lwL

h
) dHn~1

6(1#g) [(c
2
#fI (0))p#gJ (z, e

1
)#g]#3g.

From this and (6.16) we conclude that

g
)0.

(z, e
1
)6lim sup

h?`=
:

S
vh

WQ

g (x/a
h
, v`

h
!v~

h
, lv

h
) dHn~1

6(1#g) ((c
2
#fI (0))p#gJ (z, e

1
)#g)#3g.

By letting g and p tend to 0`, we finally obtain g
)0.

(z, e
1
)6gJ (z, e

1
). K

7. Integral representation of the homogenized functional

We first study the homogenized functional F
0

on the space SB»p (); Rm)W
¸=(); Rm), with )3A

0
.
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Proposition 7.1. ¸et )3A
0

and u3SB»p(); Rm)W¸=(); Rm). ¹hen

F
0
(u, ))6:

)
f
)0.

(+u) dx# :
S
u
W)

g
)0.

(u`!u~, l
u
) dHn~1 .

Proof. We proceed as in [23, Lemma 6.2]. Let K be a compact subset of S
u
with

finite (n!1)-dimensional upper Minkowski content, i.e., with the property that
there exists a constant C'0 such that for every h3N,

(7.1) h DB
h
D6C, where B

h
"Mx3Rn : dist(x, K )(1/hN .

We can assume that B
h
-) for every h3N.

For any given sequence (p
h
) of positive numbers, tending to 0, with the same

technique used in the last part of the proof of Proposition 6.2, we can find
a sequence v

h
3B»(B

h
; ¹

h
), for suitable finite subsets ¹

h
of Rm, such that

Eu!v
h
E

¸=(B
h
; Rm )6p

h
,

(7.2)

Hn~1((Sv
h
WB

h
)CS

u
)6

Jm

p
h

:
B
h

D+u Ddx .

For every h3N consider a function u
h
3C=

0
(B

h
) with u

h
"1 on B

2h
, 06u

h
61

and E+u
h
E
L=(); Rn )6c

0
h, where c

0
'0 is independent of h. Define

u
h
"u

h
v
h
#(1!u

h
)u. Then (v

h
) converges to u in ¸= (); Rm), so that

(7.3) F
0
(u, ))6lim inf

h?`=
F

0
(u

h
, )).

We have

(7.4) F
0
(u

h
, ))6F

0
(v

h
, B

2h
)#F

0
(u

h
, B

h
CK)#F

0
(u, )Csptu

h
)

6F
0
(v

h
, B

2h
WS

u
WSv

h
)#F

0
(v

h
, B

2h
C(S

u
WSv

h
))

#F
0
(u

h
, B

h
CK)#F

0
(u, )CSM

u
)#F

0
(u, SM

u
CK).

We now estimate each term.
By the integral representation of F

0
on finite partitions (Propositions 4.2, 6.1

and 6.2) and on ¼1,p(); Rm) (Propositions 4.1, 5.1 and 5.2) we have

F
0
(v

h
, B

2h
WS

u
WSv

h
)" :

S
vh

WS
u
WB

2h

g
)0.

(v`
h
!v~

h
, lv

h
) dHn~1

6 :
S
u
W)

g
)0.

(v`
h
!v~

h
, l

u
) dHn~1,

F
0
(u, )CSM

u
)6:

)

f
)0.

(+u) dx.
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Moreover, by (4.3), (7.1) and (7.2) we have

F
0
(v

h
, B

2h
C(S

u
WSv

h
))6c

2A DB
2h

D# :
(S

vh
WB

2h
)CS

u

(1# Dv`
h
!v~

h
D ) dHn~1B

6c( DB
2h

D#Hn~1((S
vh
WB

2h
)CS

u
))

6cA DB
2h

D#
1

p
h

:
B
h

D+u DdxB
(c denotes a positive constant independent of h and K and which may vary from
line to line),

F
0
(u

h
, B

h
CK)6cA DB

h
D# :

B
h

Dv
h
!u Dp D+u

h
D p dx#:

B
h

D+u Dp dx

# :
(S

vh
WB

2h
)CS

u

(1# D v`
h
!v~

h
D ) dHn~1#Hn~1((S

u
CK)WB

h
)B

6cACh~1#Chp~1pp
h
#:

B
h

D+u Dp dx#
1

p
h

:
B
h

D+u D dx#Hn~1(S
u
CK)B.

Since

:
B
h

D+u D dx6DB
h
D1~1@pA :

B
h

D+u Dp dxB
1@p

6A
C

hB
1~1@p

A :
B
h

D+u Dp dxB
1@p

,

choosing (p
h
) so that h1~1@pp

h
"(:

Bh
D+u Dp dx)1@2p, we have

hp~1pp
h
P0,

1

p
h

:
B
h

D+u D dxP0 as hP#R.

In conclusion, from (7.3) and (7.4) we obtain

F
0
(u, ))6:

)

f
)0.

(+u) dx#lim inf
h?`=

:
S
u
W)

g
)0.

(v`
h
!v~

h
, l

u
) dHn~1

#cHn~1(S
u
CK)#F

0
(u, SM

u
CK),

and, in view of the continuity of g
)0.

( · , l),

F
0
(u, ))6:

)

f
)0.

(+u) dx# :
S
u
W)

g
)0.

(u`!u~, l
u
) dHn~1

#cHn~1(S
u
CK)#F

0
(u, SM

u
CK).

By (1.1) and by Lemma 3.2.38 in [43] we can find a sequence (K
h
) of compact

subsets of S
u

with finite (n!1)-dimensional upper Minkowski content and such
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that Hn~1(S
u
CK

h
)P0 as hP#R. Therefore

(7.5) F
0
(u, ))6:

)

f
)0.

(+u) dx# :
S
u
W)

g
)0.

(u`!u~, l
u
) dHn~1#F

0
(u, SM

u
CS

u
) .

We now use the ‘‘strong approximation’’ result in SB»p(); Rm) given by
Lemma 5.2 and Remark 5.3 in [23], which guarantees the existence of a sequence
(u

h
) in SB»p(); Rm) such that Eu

h
E

¸=(); Rm) 6EuE
L= (); Rm ) and

(i) u
h
Pu in ¸p(); Rm),

(ii) +u
h
P+u in ¸p (); Mm]n),

(iii) Hn~1(Su
h
DS

u
)P0,

(iv) :
S
uh

XS
u

( Du`
h
!u` D#Du~

h
!u~ D ) dHn~1P0,

(v) Hn~1(SM u
h
CSu

h
)P0.

Then F
0
(u

h
, SM u

h
CS

uh
)P0 by (4.3), so that the application of (7.5) to the functions

u
h
yields

F
0
(u, ))6lim inf

h?`=
F
0
(u

h
, ))

6lim inf
h?`= A :

)

f
)0.

(+u
h
) dx# :

S
uh

W)

g
)0.

(u`
h
!u~

h
, l

uh
) dHn~1B.

We conclude the proof by passing to the limit, taking into account the strong
convergence of (u

h
). K

By (4.3), F
0
(u, · )"F

0
(u, · ) 4()CS

u
)#F

0
(u, · ) 4S

u
is the decomposition of

F
0
(u, · ) into the sum of two Borel measures on ) which are absolutely continuous

with respect to Ln and Hn~14S
u
, respectively. We denote by

dF
0
(u, · )

dLn
and

dF
0
(u, · )

d(Hn~14S
u
)
, respectively, their densities.

Proposition 7.2. ¸et )3A
0

and u3SB»p(); Rm)W¸=(); Rm). ¹hen

F
0
(u, )CS

u
)7:

)

f
)0.

(+u) dx.

Proof. It is enough to prove that

dF
0
(u, · )

dLn
7f

)0.
(+u) Ln-a.e. on ).

For Ln-a.e. x
0
3) the function u is approximately differentiable in x

0
and

(7.6)
dF

0
(u, · )

dLn K
x0

" lim
o?0`

F
0
(u, Bo(x0

))

u
n
on

.
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Let x
0
3) be a point with both these properties. Fix 0(d(1 and

0(o(dist(x
0
, L))?1. We can find a sequence (u

h
) (depending on o) in

SB»p (Bo(x0
); Rm)W¸p(B

p
(x

0
); Rm ) such that

u
h
P

h
u in ¸p (Bo (x0

); Rm), Fe
h
(u

h
, Bo (x0

))P
h

F
0
(u, Bo (x0

)).

Consider a sequence (m
h
) in Rn converging to x

0
and such that m

h
/e

h
3Zn. There

exists h
0
3N (depending on d and o) such that m

h
#oBd (0)-Bo(x0

) for every
h7h

0
. We can then define

u
h,o :Bd(0)PRm, u

h,o (y)"
1

o
(u

h
(m

h
#oy)!u(x

0
))

for every h7h
0

and uo : B
1
(0)PRm, uo(y)"1o (u(x

0
#oy)!u (x

0
)). Clearly,

u
h,o3SB»p(Bd (0); Rm) and uo3SB»p (B

1
(0); Rm). From the convergence of

(u
h
) to u in ¸p(Bo (x0

); Rm) and from the continuity of translations in ¸1 it follows
that

(7.7) u
h,oP

h
uo in ¸1(Bo (0); Rm).

Moreover, if for every A3A
0

and v3SB»p(A; Rm) we define

F
h,o(v, A)"P

A

f A
y

e
h
/o

, +uB dy#c
3 P

S
v
WA

(1#Dv`!v~ D) dHn~1

(c
3

is the constant appearing in property (iv) satisfied by g (Section 2)), then

(7.8) lim sup
h?`=

F
h,o (uh,o , Bd(0))6

F
0
(u, Bo (x0

))

on
.

Indeed, for every v3SB»p (Bd(0); Rm) we have

F
h,o (v, Bd(0))6 P

Bd(0)

f A
y

e
h
/o

, +vB dy

#

c
3
o P

S
v
WBd (0)

(1#o Dv`!v~ D ) dHn~1

6 P
Bd(0)

f A
y

e
h
/o

, +vB dy

#

1

o P
S
v
WBd (0)

gA
y

e
h
/o

, o (v`!v~), l
vB dHn~1.
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Then for every h7h
0
,

F
h,o(uh,o , Bd (0))6 P

Bd(0)

f A
oy

e
h

, (+u
h
) (m

h
#py)B dy

#

1

o P
Su

h,o
WBd(0)

g A
oy

e
h

, (u`
h
!u~

h
) (m

h
#py), lu

h,oB dHn~1

"

1

on P
m
h
#oBd (0)

f A
x!m

h
e
h

, (+u
h
) (x)B dx

#

1

on P
Su

h
W(m

h
#oBd (0))

g A
x!m

h
e
h

, u`
h
!u~

h
lu

hB dHn~1

6

1

on A P
Bo (x0

)

f A
x

e
h

, +u
hB dx

# P
Su

h
WBo (x

0
)

g A
x

e
h

, u`
h
!u~

h
lu

hB dHn~1B .

By taking the upper limit we obtain (7.8).
Now let (o

k
) be a sequence of positive numbers tending to 0 with

0(o
k
(dist(x

0
, L))?1. In view of (7.7) and (7.8), for every k3N there exists

h
k
3N such that the function v

k
"uh

k
,o

k
has the following properties:

(7.9) Ev
k
!uo

k
E

¸1(Bd (0);Rm)6
1

k
,

(7.10) Fh
k
,o

k
(v

k
, Bd(0))6

F
0
(u, Bo

k
(x

0
))

on
k

#

1

k
.

Moreover, h
k
can be chosen so that the sequence (eh

k
/o

k
) tends to 0 as kP#R. We

can apply Proposition 3.3 to the sequence (F
hk,ok

)
k

to obtain the existence of
a strictly increasing sequence (p (k)) of natural numbers such that for every A3A

0
the limit

FI
0
( · , A)"!- lim

k?`=
Fhp(k),op(k)

( · , A)

exists on the space SB»p(A; Rm)W¸p(A; Rm) endowed with the ¸p (A; Rm)-
topology.
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Since we assumed that u is approximately differentiable in x
0
, if we define

w(y)"+u(x
0
) · y, (y3Rn), then for every o'0,

P
B
1
(0)

Duo (y)!w (y) D dy"
1

on P
Bo (x

0
)

Du(x)!u(x
0
)!+u(x

0
) · (x!x

0
) D

o
dx

6

1

on P
Bo (x

0
)

Du (x)!u (x
0
)!+u(x

0
) · (x!x

0
) D

Dx!x
0
D

dx,

which tends to 0 as o tends to 0. Hence (uo) converges to w in ¸1 (B
1
(0); Rm) as

o tends to 0. It follows, by (7.9), that (v
k
) converges to w in ¸1(Bd(0); Rm). We now

apply Proposition 3.4 to the sequence of functionals (Fhp(k),op(k)
) . By (7.10),

FI
0
(w, Bd(0))6lim inf

k?`=
Fhp(k),op(k)

(vp(k) , Bd(0))

6lim inf
k?`=

F
0
(u, Bop(k)

(x
0
))

onp(k)
" lim

o?0`

F
0
(u, Bo (x0

))

on
.

Propositions 4.1, 5.1 and 5.2 applied to FI
0

yield

u
n
dn f

)0.
(+u(x

0
))6 lim

o?0`

F
0
(u, Bo(x0

))

on
.

Let now dP1. The conclusion follows from (7.6). K

Proposition 7.3. ¸et )3A
0

and u3SB»p(); Rm)W¸=(); Rm). ¹hen

F
0
(u, S

u
W))7 :

S
u
W)

g
)0.

(u`!u~, l
u
) dHn~1.

Proof. We use the same blow-up technique employed for Proposition 7.2. It is
clearly enough to prove that

dF
0
(u, · )

d (Hn~14S
u
)
7g

)0.
(u`!u~, l

u
) Hn~1-a.e. on S

u
.

We know that forHn~1-a.e. x
0
3S

u
the triple (u`(x

0
), u~(x

0
), l

u
(x

0
)) is defined, and,

by the Besicovitch Differentiation Theorem (see, e.g., [55, Theorem 4.7]), that

(7.11)
dF

0
(u, · )

d (Hn~14S
u
)
" lim

o?0`

F
0
(u, Bo(x0

))

u
n~1

on~1

(recall that Hn~1-a.e. on S
u
the (n!1)-dimensional density of Hn~14S

u
is 1 (see

[43, Theorem 3.2.19]). Let x
0
3S

u
be such a point. Fix 0(d(1 and

0(o(dist(x
0
, L)). Let (u

h
), (m

h
) and h

0
be as in the proof of the previous

proposition. We can then define

u
h,o : Bd(0)PRm, u

h,o (y)"u
h
(m

h
#oy)

for every h7h
0

and uo : B
1
(0)PRm, uo(y)"u (x

0
#oy). Clearly,

u
h,o3SB»p(Bd (0); Rm)W¸p (Bd(0); Rm), uo3SB»p(B

1
(0); Rm)W¸=(B

1
(0); Rm),

Homogenization of Free Discontinuity Problems 339



and

(7.12) u
h,oP

h
uo in ¸p(Bd (0); Rm).

Let g'0 and define Ag,d"Bd(0)W+
g
, with +

g
"Mx3Rn : D Sx, l

u
(x

0
)TD(gN. We

have

(7.13) lim sup
h?`=

Fe
h @o

(u
h,o , Ag,d)6

F
0
(u, Bo(x0

))

on~1
#c

2
DAg,d D

whenever o is such that c
1
/op~17c

2
. Indeed, for every o'0 such that

c
2
6c

1
/op~1 and for every v3SB»p (Bd(0); Rm)W¸p(Bd (0); Rm) we get

Fe
h
/o(v , Ag,o)6c

2 P
Ag,d

(1#D+v Dp)dy# P
S
v
WAg,d

gA
y

e
h
/o

, v`!v~, l
vB dHn~1

6

c
1

op~1 P
Bd(0)

D+v D p dy# P
S
v
WBd(0)

gA
y

e
h
/o

, v`!v~, l
vB dHn~1#c

2
DAg,d D

6o P
Bd(0)

f A
y

e
h
/o

,
1

o
+vB dy# P

S
v
WBd(0)

gA
y

e
h
/o

, v`!v~, l
vB dHn~1

#c
2
DAg,d D .

Then for h7h
0

Fe
h
/o(uh,o , Ag,d)6o P

Bd (0)

f A
oy

e
h

, (+u
h
) (m

h
#oy)B dy

# P
Su

h,o
WBd(0)

g A
oy

e
h

, u`
h,o!u~

h,o , lu
h,oB dHn~1#c

2
DAg,d D

"

1

on~1 P
m
h
#oBd (0)

f A
x!m

h
e
h

, +u
h
(x)B dx

#

1

on~1 P
m
h
#o(S

uh,o
WBd(0))

g A
x!m

h
e
h

, u`
h
!u~

h
, l

uhB dHn~1#c
2
DAg,d D

6

1

on~1 A P
Bo (x

0
)

f A
x

e
h

, +u
h
(x)B dx

# P
S
uh

WBo (x
0
)

g A
x

e
h

, u`
h
!u~

h
, l

uhB dHn~1B#c
2
DAg,d D .

By taking the upper limit we get (7.13).
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Now let (o
k
) be a sequence of positive numbers tending to 0. We can assume

that the condition c
1
/op~1

k
7c

2
is satisfied for every k3N. In view of (7.12) and

(7.13), for every k3N there exists h
k
3N such that the function v

k
"u

hk,ok
has the

properties:

(7.14) Ev
k
!uo

k
E
Lp (Bd(0); Rm)6

1

k
,

(7.15) Fe
hk

/o
k
(v

k
, Ag,d)6

F
0
(u, Bok

(x
0
))

on~1
k

#c
2
DAg,d D#

1

k
.

Moreover, h
k
can be chosen so that the sequence a

k
"e

hk
/o

k
tends to 0 as k tends to

#R. We can apply Proposition 3.3 to the sequence (Fa
k
)
k
, obtaining the existence

of a subsequence (Fap(k)
) such that for every A3A

0
the limit

FI
0
( ·, A)"!- lim

k?`=
Fap(k)

( · , A)

exists on the space SB»p(A; Rm)W¸p (A; Rm) endowed with the ¸p(A; Rm)-topology.
It is easy to see that (uo

k
) converges in ¸p(Bd (0); Rm) to the function

w (y)"G
u~(x

0
)

u`(x
0
)

if Sx, l
u
(x

0
)T(0,

if Sx, l
u
(x

0
)T70.

It follows, by (7.14), that (v
k
) converges to w in ¸p (Ag,d ; Rm). Hence, by (7.15),

FI
0
(w, Ag,d)6lim inf

k?=
Fap(k)

(vp(k) , Ag,d)6lim inf
k?=

F
0
(u, Bop(k)

(x
0
))

on~1p(k)
#c

2
DAg,d D

" lim
o?0`

F
0
(u, Bo(x0

))

on~1
#c

2
DAg,d D .

Since S
w
WBd (0)-Ag,d , we deduce that

FI
0
(w, S

w
WBd(0))6 lim

o?0`

F
0
(u, Bo(x0

))

on~1
#c

2
DAg,d D .

We can apply Propositions 4.2, 6.1 and 6.2 to FI
0
, thus obtaining

u
n~1

dn~1g
)0.

(u`(x
0
)!u~(x

0
), l

u (x0)
)6 lim

oP0`

F
0
(u, Bo(x0

))

on~1
#c

2
DAg,d D .

Finally, let dP1, gP0 and recall (7.11). K

Conclusion of the proof of Theorem 2.3. Let (e
h
) be a sequence of positive numbers

tending to 0 such that for every A3A
0

the limit

(7.16) F
0
( · , A)"!- lim

h?`=
Fe

h
( · , A)

exists on the space SB»p (A; Rm)W¸p (A; Rm) endowed with the ¸p(A; Rm)-topology
(see (4.1)). So far, in view of Propositions 7.1, 7.2 and 7.3, we have obtained that

(7.17) F
0
(u, A)"F

)0.
(u, A) for every u3SB»p(A; Rm)W¸=(A; Rm),
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where F
)0.

(u, A)":
A

f
)0.

(+u) dx#:S
u
WAg

)0.
(u`!u~, l

u
) dHn~1 . We now prove

that for every A3A
0
,

(7.18) !- lim
h?`=

Fe
h
( · , A)"F

)0.
( · , A)

on the space SB»p (A; Rm) endowed with the ¸1(A; Rm)-topology, and on the space
SB»p (A; Rm)W¸p(A; Rm) with respect to the ¸p(A; Rm)-topology. To this end fix
u3SB»p (A; Rm).

Step 1. F
)0.

(u, A)6lim inf
h?`=

Fe
h
(u

h
, A) for every sequence (u

h
) in SB»p(A; Rm)

converging to u in ¸1 (A; Rm) .

Proof. We can assume that the lower limit in the right-hand side is actually a limit
and is finite. Fix g'0 and k3N, and apply Lemma 3.5 to the sequence (u

h
) with

M
0
"k. We find a subsequence (ep (h)) of (e

h
) and a Lipschitz function u

k
: RmPRm

having compact support, having a Lipschitz constant less than or equal to 1 and
satisfying u

k
(y)"y if Dy D6k, such that for every h3N

Fep(h)
(u

k
(up(h)), A)6Fep(h)

(up(h) , A)#g.

Since (u
k
(up(h)))h converges to u

k
(u) in ¸p(A; Rm), from (7.16) and (7.17) it follows

that

F
)0.

(u
k
(u), A)6lim inf

h?`=
Fep(h)

(u
k
(up(h)), A)

6 lim
h?`=

Fep(h)
(up(h) ), A)#g"lim inf

h?`=
Fe

h
(u

h
, A)#g.

By the arbitrariness of g'0, it only remains to prove that

(7.19) lim
k?`=

F
)0.

(u
k
(u), A)"F

)0.
(u, A).

For every k3N set

E
k
"Mx3) : Du (x) D'kN, S

k
"Mx3S

u
: Du`(x) D7k or Du~(x) D7kN.

Then

DF
)0.

(u
k
(u), A)!F

)0.
(u, A) D

"K :E
k

( f
)0.

(+(u
k
(u))!f

)0.
(+u)) dx

#:
S
k

(g
)0.

(u
k
(u`)!u

k
(u~), l

u
)!g

)0.
(u`!u~, l

u
)) dHn~1 K

6K A :
E
k

(1#D +u Dp) dx#:
S
k

(1#Du`!u~ D) dHn~1B ,

for a suitable constant K'0. Since DE
k
D and Hn~1(Mx3S

u
: Du$(x) D7k)N tend to

0 as k tends to #R, we obtain (7.19).
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Step 2. ¹here exists a sequence (u
h
) in SB»p (A; Rm)W¸p(A; Rm) which converges to

u in ¸1(A; Rm) (or in ¸p(A; Rm) if u3¸p(A; Rm)) and which satisfies

lim sup
h?`=

Fe
h
(u

h
, A)6F

)0.
(u, A).

Proof. For every k3N let u
k
:RmPRm be a Lipschitz function with compact

support, with a Lipschitz constant less than or equal to 1 and such that u
k
(y)"y if

Dy D6k. Since u
k
(u)3SB»p (A; Rm)W¸=(A; Rm), by (7.16) and (7.17) there exists

a sequence (vk
h
)
h
in SB»p (A; Rm)W¸p (A; Rm) with the properties that

vk
h
P

h
u

k
(u) in ¸p(A; Rm), Fe

h
(vk

h
, A)P

h
F

)0.
(u

k
(u), A)

as h tends to #R. Therefore for every k3N we can find h
k
3N such that h

k
(h

k`1
and

Evk
h
!u

k
(u)E

¸p(A; Rm)61/k, DFe
h
(vk

h
, A)!F

)0.
(u

k
(u), A) D61/k

for every h7h
k
. Define u

h
"vk

h
if h

k
6h(h

k`1
. Taking into account (7.19) and

that (u
k
(u)) converges to u in ¸1(A; Rm) (or in ¸p (A; Rm) if u3¸p(A; Rm)), we

conclude that (u
h
) is the required sequence.

In view of Proposition 3.3 and of what we have proved up to now for
a convergent sequence of functionals Fe , Theorem 2.3 follows by applying Proposi-
tion 8.3 in [35], which asserts that (Fe

h
) converges to F

)0.
if and only if every

subsequence of (Fe
h
) contains a further subsequence converging to F

)0.
. K

8. Homogenization in fracture mechanics

In this section we consider the homogenization of the functionals Fe under
prescribed boundary conditions. The result is then applied to the homogenization
of a boundary-value problem for functionals whose surface energy density satisfies
Griffith’s growth conditions. Throughout this section n72.

Let Fe (e'0) and F
)0.

be the functionals introduced in Section 2 and let ) be
a bounded open subset of Rn with piecewise C1 boundary. In order to prescribe
boundary values to functions in SB»p (); Rm), we introduce a bounded open subset
)@ of Rn containing ) a function /3SB»p()@; Rm) and we define

D
”
"Mu3SB»p()@; Rm) : u"/ a.e. on )@C)N.

Now let c")@WL), and for every u3D
”

and e'0 set

F”e "Fe(u, )Xc), F”
)0.

(u)"F
)0.

(u, )Xc).

Theorem 8.1. Assume that /3SB»p ()@; Rm)W¸=()@; Rm) andHn~1(c)(#R. ¸et
(e
h
) be a sequence of positive numbers tending to 0. ¹hen F”

)0.
"!-lim

h?`=
F”e

h
onD

”
with respect to the ¸1 ()@; Rm)-topology.

For the proof we need two lemmas, the first of which collects simple facts whose
proof is omitted.
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Lemma 8.2. (a) ¸et M be a non-empty subset of Rn and let t : RnPR be defined by
t(x)"dist(x, M). ¹hen t is differentiable a.e. in Rn and DDt(x) D"1 at every point
of differentiability x 4MM .

(b) ¸et ) be an open subset of Rn with a C1 boundary, and let M be a non-empty
subset of L). Assume that M is open in L) and let x

0
3M. If l(x

0
) denotes the inner

unit normal of L) is x
0
, then

lim
xPx

0x3A

Dt(x)"l(x
0
),

with A the subset of ) where t is differentiable.

Lemma 8.3. ¸et / and c be as in ¹heorem 8.1. ¹hen for every u3D
”
W¸=()@; Rm)

and p'0 there exists up3D”
W¸=()@; Rm) such that

(i) upPu in ¸p()@; Rm) as pP0,
(ii) Hn~1(S

up
Wc)"0 for every p'0,

(iii) lim supp?0
F
)0.

(up , )Xc)6F
)0.

(u, )Xc).

Proof. By a simple reflection argument, it is not restrictive to assume that
Hn~1(S

”
Wc)"0. Note that if u3SB»()@; Rm) for Hn~1-a.e. x

0
3S

u
Wc, then the

vector l
u
(x

0
) is normal to c; in such a case we agree to choose as l

u
(x

0
) the inner

normal with respect to ). Then it easily turns out that

(8.1) lim
o?0

1

u
n
on

D Mx3Bo(x0
)W) : Du(x)!u`(x

0
) D'eND"0 for every e'0.

Let u3D
”
W¸=()@; Rm) and let p'0 be fixed. Define v"u!/. Since

Hn~1(S
”
Wc)"0, we have

u`(x
0
)!u~(x

0
)"v`(x

0
) for Hn~1-a.e. x

0
3S

u
Wc.

For every x3c we denote by l (x) the unit inner normal to c in x with respect to ).
Let E be the set of the points x

0
3S

u
Wc such that l

u
(x

0
)"l(x

0
) and there exists

o
1
(x

0
)'0 with the property for all o6o

1
(x

0
),

(8.2)

K
1

u
n~1

on~1
:

Bo (x
0
)Wc

g
)0.

(u`!u~, l
u
) dHn~1!g

)0.
(v` (x

0
), l

u
(x

0
))dHn~1 K6p.

By the Besicovitch differentiation theorem for Radon measures and the fact that
the (n!1)-dimensional density of Hn~14c is 1 Hn~1-a.e. on c, we obtain that
Hn~1(S

u
WcCE)"0. Let x

0
be fixed in E. Since g

)0.
is continuous in (v`(x

0
), l(x

0
))

there exists g'0 such that for all (s, l)3Rm]Sn~1,

if D s!v`(x
0
) D6g and D l!l(x

0
) D6g, then Dg

)0.
(s, l)!g

)0.
(v`(x

0
), l (x

0
)) D6p.

Moreover, by (8.1), there exists o
2
(x

0
)'0 such that

∀o6o
2
(x

0
) DMx3Bo (x0

)W) : Dv (x)!v` (x
0
) D'gN D6pon.
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Let t : RnP[0,#R[ be defined by t (x)"dist(x, c). By Lemma 8.2 we can
suppose that

DDt(x)!l (x
0
) D6g for a.e. x3Bo

2
(x

0
) (x0

).

Then, if we set

Zo"Mx3Bo (x0
)W) : t is differentiable in x,

Dg
)0.

(v (x), Dt(x))!g
)0.

(v`(x
0
), l(x

0
)) D'pN,

we clearly have

(8.3) ∀o6o
2
(x

0
), DZo D6pon.

For every t'0 define

»
t
"Mx3) : t (x)(tN, c

t
"Mx3) : t(x)"tN")WL»

t
,

S
t
(x

0
)"Mx3Rn : DSx!x

0
, l (x

0
)T D6tN.

We show that there exists o
3
(x

0
)'0 such that

(8.4) ∀o6o
3
(x

0
), ∀t'0, »

t
WBo(x0

)-Sd(x0
)WBo(x0

) with d"t#po.

Indeed, from

lim
xPx

0x3c

D Sx!x
0
, l(x

0
)TD

Dx!x
0
D

"0

(which holds for Hn~1-a.e. x
0
3c) we deduce the existence of o

3
(x

0
)'0 such that

B2o
3
(x

0
) (x0

)WL)-c and

∀o62o
3
(x

0
), ∀x3cWBo(x0

), D Sx!x
0
, l (x

0
)T D61

2
po .

Let o6o
3
(x

0
) and x3»

t
WBo (x0

). If xN 3cN is such that t(x)"Dx!xN D , then
DxN !x

0
D(2o, and

D Sx!x
0
, l (x

0
)T D6D Sx!xN , l(x

0
)T D#DSxN !x

0
, l (x

0
)T D6t#po.

This proves (8.4).

Finally let us set oN (x
0
)"minMo

1
(x

0
), o

2
(x

0
), o

3
(x

0
), pN. In addition to (8.2),

(8.3) and (8.4), by the regularity of c we can also suppose (possibly discarding from
E a further Hn~1-negligible subset) that for every o6oN (x

0
),

Hn~1(cWBo (x0
))71

2
u

n~1
on~1 ,

(8.5)
Hn~1(c

t
WBo(x0

))6(1#p)u
n~1

on~1 for every t(oN (x
0
), BM o(x0

)-)@.

Let F"MBM o (x0
) :x

0
3E, 0(o6oN (x

0
)N, where o6 (x

0
) is defined above, and let

G be an open set containing E. By the Besicovitch Covering Theorem (see [56])
there exists a countable disjoint subcollection G"MBM oi

(x
i
) : i3NN of F which

covers E up to a Hn~1-negligible set and whose elements are contained in G.
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Let i3N be fixed and define

tN
i
"supMt3]0, o

i
] :Hn~1(Zoi

Wcq)'Jpon~1
i

for a.e. q3]0, t]N.

We show that

(8.6) tN
i
(Jpo

i
.

We can assume that tN
i
'0; otherwise there is nothing to prove. By the coarea

formula (1.2) and Lemma 8.3 we have

DZo
i
D" :

Zoi

DDt(x) D dx"
o
i

:
0

Hn~1(Zo
i
Wc

t
) dt

'

tN
i
:
0

Jpon~1
i

dt"Jpon~1
i

tN
i
,

so that (8.3) implies (8.6).
Since t is differentiable a.e. and DS

u
D"DS

”
D"0, from (8.6) and the coarea

formula we deduce that there exists 0(t
i
(Jpo

i
such that

t is differentiable Hn~1-a.e. on ct
i
WBo

i
(x

i
),

(8.7) Hn~1(S
u
Wct

i
WBo

i
(x

i
))"0, Hn~1(S

”
Wct

i
WBo

i
(x

i
))"0,

Hn~1(Zo
i
Wct

i
)6Jpon~1

i
.

Define

up"G
/
u

on A,

otherwise on )@
where A"Z

i|N

»t
i
WBo

i
(x

i
).

By the subadditivity of the perimeter we have

Hn~1()WL*A)6
=
+
i/1

Hn~1()WL(»t
i
WBo

i
(x

i
))).

Therefore, since )WL(»t
i
WBo

i
(x

i
))-(c

ti
WBo

i
(x

i
))X(»M t

i
WLBo

i
(x

i
)), we have

(8.8) Hn~1()WL*A)6
=
+
i/1

(Hn~1(c
ti
WBo

i
(x

i
))#Hn~1(»M t

i
WLBo

i
(x

i
))).

By (8.5) we haveHn~1(ct
i
WBo

i
(x

i
))62(1#p)Hn~1(cWBo

i
(x

i
) ) . Moreover, by (8.4)

and the inequality t
i
(Jpo

i
we obtain

Hn~1(»M t
i
WLBo

i
(x

i
))6Hn~1(St

i
#po

i
(x

i
)WLBo

i
(x

i
))64(n!1)u

n~1
on~1
i

Jp ,

so that, by (8.5),

(8.9) Hn~1(»M t
i
WLBo

i
(x

i
) )68(n!1)Hn~1(cWBo

i
(x

i
))Jp .

Since the balls Bo
i
(x

i
) are pairwise disjoint, and sinceHn~1(c)(#R, we conclude

that Hn~1()WL*A)(#R and that A is a set of finite perimeter. In particular,
up3SB»p()@; Rm).
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Taking into account that Dt is the outer normal to ct
i

with respect to
»t

i
WBo

i
(x

i
), and that u and / are approximately continuous Hn~1-a.e. on ct

i
, we

have

:
S
upW(c

ti
WBoi

(x
i
))

g
)0.

(u`p !u~p , lup
) dHn~1

" :
c
ti
WBoi

(x
i
)

g
)0.

(v, Dt) dHn~1

6 :
c
ti
WBoi

(x
i
)CZoi

(g
)0.

(v`(x
i
), l (x

i
))#p) dHn~1

#c
4
(1#Eu!/E

L=)Hn~1(ct
i
WZo

i
).

In view of (8.5) and (8.2) the first of these two terms does not exceed

(1#p) (g (v` (x
i
), l (x

i
))#p)u

n~1
on~1
i

6(1#p)A :
cWBoi

(x
i
)

g
)0.

(u`!u~, l
u
) dHn~1#2pu

n~1
on~1
i B ,

and by (8.5) again this is estimated by

(1#p)A :
cWBoi

(x
i
)

g
)0.

(u`!u~, l
u
) dHn~1#4pHn~1(cWBo

i
(x

i
))B .

Moreover, by (8.7) (and (8.5)),

Hn~1(ct
i
WZo

i
)6Jpon~1

i
6

2

u
n~1

Hn~1(cWBo
i
(x

i
))Jp .

All these inequalities yield that

(8.10)
=
+
i/1

:
S
up

W(c
ti
WBoi

(x
i
)

g
)0.

(u`p !u~p , l
up

) dHn~1

6(1#p) :
cWG

g
)0.

(u`!u~, l
u
) dHn~1#CHn~1(c)Jp ,

for a suitable constant C'0 independent of p.
We finally show that the family (up) satisfies the required properties. Clearly

up3D”
W¸=()@; Rm), and property (i) holds. Since Hn~1-a.e. x

0
3cCS

u
is a point of

approximate continuity for both / and u, we obtain that Hn~1(Sup
W(cCS

u
))"0.

Moreover,Hn~1-a.e. point x
0
in E belongs to Bo

i
(x

i
) for some i3N. Since up"/ in

a neighborhood of x
0

and Hn~1(S
”
Wc)"0, we conclude that x

0
4S

up
. Therefore

Hn~1(Sup
Wc)"0.

It remains only to prove (iii). We have

F
)0.

(up , )Xc)6:
)

f
)0.

(+u) dx# :
cX»p

f
)0.

(+/) dx

# :
S
u
W)

g
)0.

(u`!u~, l
u
) dHn~1

# :
S
up

W)WL*A

g
)0.

(u`p !u~p , l
up

) dHn~1.
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Since ct
i
WBo

i
(x

i
)-L*A(up to a set of zero Hn~1-measure), we have

Hn~1A)WL*ACZ
i|N

(ct
i
WBo

i
(x

i
))B"Hn~1()WL*A)!

=
+
i/1

Hn~1(ct
i
WBo

i
(x

i
));

therefore, in view of (8.8) and (8.9),

Hn~1A)WL*ACZ
i|N

(ct
i
WBo

i
(x

i
))B68(n!1)Hn~1(c)Jp.

This and (8.10) yield that

:
S
up

W)WL*A

g
)0.

(u`p !u~p , l
up

) dHn~16(1#p) :
cWG

g
)0.

(u`!u~ , l
u
) dHn~1#cJp

for a suitable c'0 independent of p. Then

F
)0.

(up , )Xc)6:
)

f
)0.

(+u) dx# :
S
u
W)

g
)0.

(u`!u~, l
u
) dHn~1

# :
»p

f
)0.

(+/) dx# :
S
”
W»p

g
)0.

(/`!/~, l
u
) dHn~1

#(1#p) :
cWG

g
)0.

(u`!u~, l
u
) dHn~1#cJp ;

hence

lim sup
p?0

F
)0.

(up , )Xc)6:
)

f
)0.

(+u) dx# :
S
u
W)

g
)0.

(u`!u~, l
u
) dHn~1

# :
cWG

g
)0.

(u`!u~, l
u
) dHn~1.

We conclude the proof by using the arbitrariness of the open setG containing E. K

Proof of Theorem 8.1. ¸et u3D
”
, and let (u

h
) be a sequence in D

”
which converges

to u in ¸1()@; Rm). Then, by Theorem 2.3,

F”
)0.

(u)6F
)0.

(u, )@)6lim inf
h?`=

Fe
h
(u

h
, )@)

6lim inf
h?`=

F”eh (uh)#c
2

:
)@C)1

(1#D+/ Dp) dx

#c
4

:
S
”
W()@C)1 )

(1#D/`!/~ D) dHn~1.

Note that the values of F”e
h
and F

)0.
do not depend on )@, provided )@WL) remains

unchanged. Therefore, we can let )@ shrink to ), thus obtaining

F”
)0.

(u)6lim inf
h?`=

F”e
h
(u

h
).

It remains to prove that for every u3D
”

we can find a sequence (u
h
) in D

”
which

converges to u in ¸1()@; Rm), and

lim sup
h?`=

Fe
h
(u

h
, )Wc)6F

)0.
(u, )Xc).
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For the moment we assume that u3¸=()@; Rm). Then we can consider the functions
up(p'0) given by Lemma 8.3. By (i) and (iii) of this lemma, it is not difficult to
realize that it suffices to show that

(8.11)

F
)0.

(up , )Xc)7inf G lim sup
h?`=

Fe
h
(u

h
,)Xc) : (u

h
) inD

”
, u

h
Pup in ¸1()@; Rm)H.

Since (Fe
h
( · , ))) !-converges to F

)0.
( · , )), for every p'0, there is a sequence (v

h
)

in SB»p(); Rm)W¸p(); Rm) converging to up in ¸p(); Rm) and such that

lim
h?`=

Fe
h
(v

h
, ))"F

)0.
(up , )).

For every g'0 let Kg be a compact subset of ) with the property that

(8.12) :
)CKg

(1#D +up Dp) dx(g, Hn~1(Sup
W()Xc)CKg)(g;

this is possible since Hn~1(Sup
Wc)"0. Now we join v

h
and up by means of

Proposition 3.1 with AA"), A@LL) a neighbourhood of Kg and B")@CKg .
Then we get a sequence (w

h
) inD

”
which converges to up in ¸p()@; Rm) and satisfies

the inequality

Fe
h
(w

h
, )@)6(1#g) [Feh (vh , ))#Fe

h
(up , )@CKg)]#MEv

h
!upE

¸p (); Rm)#g

for a suitable constant M independent of h. Since w
h
"up"/ on )@C)1 , we have

Fe
h
(w

h
, )Xc)6(1#g) [Fe

h
(v

h
, ))#Fe

h
(up , ()Xc)CKg]#gFe

h
(/ , )@C)1 )

#MEv
h
!upE

¸p (); Rm)#g,

and, denoting by I the right-hand side of (8.11), by (8.12) we have

I6lim sup
h?`=

Fe
h
(w

h
,)Xc)6(1#g) (F

)0.
(up,))#cg)#gAlim sup

h?`=
Fe

h
(/,)@C)1 )#1B,

for a suitable constant c depending only on EupE
¸= ()@; Rm) . We can now let g tend to

0, obtaining I6F
)0.

(up , ))6F
)0.

(up , )Xc); i.e., (8.11).
Finally, consider the general case; u3D

”
. For every R'0 let u

R
: RmPRm be

a Lipschitz function with compact support and Lipschitz constant less than or
equal to 1, and such that u

R
(y)"y when Dy D6R. We have lim

R?̀ =
F
)0.

(u
R
(u),)Xc)

"F
)0.

(u, )Xc) (recall (7.19)); moreover, if R7E/E
L= , then u

R
(u)3D

”
. An easy

diagonalization argument yields the conclusion. K
We turn now to the application of the above results to functionals whose

surface energy densities satisfy Griffith’s growth conditions. More precisely, we
consider a Borel function g :Rn]Rm]Sn~1P[0,#R[ such that

(i) g (x, s, l)"g(x,!s,!l) for every (x, s, l)3Rn]Rm]Sn~1,
(ii) g ( · , s, l) is 1-periodic for every (s, l)3Rm]Sn~1,
(iii) there exists a function u : [0,#R[P[0,#R[ continuous and non-decreas-

ing, such that u(0)"0 and

Dg (x, s, l)!g (x, t, l) D6u( D s!t D ) for every x3Rn, s, t3Rm, l3Sn~1,
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(iv) there exist two positive constants a and b such that

a6g(x, s, l)6b for every (x, s, l)3Rn]Rm]Sn~1.

Note that these assumptions on g differ from those of Section 2 only in the growth
conditions.

We also consider a function f : Rn]Mm]nP[0,#R[, which represents the
bulk energy density and satisfies the same properties as in Section 2. The function
f gives rise to the function f

)0.
according to Proposition 2.1. Moreover, under the

present growth conditions on g, Steps 1 through 5 in the proof of Proposition 2.2
remain unchanged and Step 7 still works with minor modifications. Thus, for every
(z, l)3Rm]Sn~1 there exists

g
)0.

(z, l)"lim inf
e?0 G :

S
u
WQl

g (x/e , u`!u~, l
u
) dHn~1:

u3SB»(Ql; Rm), +u"0, a.e., u"u
z,l on LQlH,

where Ql is any unit cube in Rn with centre at the origin and one face orthogonal to
l, and

a6g
)0.

(z, l)6b.

For every u3D
”

and e'0 define

Fe (u)":
)

f (x/e, +u) dx# :
S
u
W()Xc)

g (x/e, u`!u~, l
u
) dHn~1,

F
)0.

(u)":
)

f
)0.

(+u) dx# :
S
u
W()Xc)

g
)0.

(u`!u~, l
u
) dHn~1.

Theorem 8.4. ¸et (e
h
) be a sequence of positive number tending to 0. Assume that

there exists a sequence (u
h
) in D

”
such that

lim
h?`=AFe

h
(u

h
)!inf

D
”

Fe
hB"0, sup

h|N

Eu
h
E

¸= (); Rm)(#R.

¹hen the functional F
)0.

attains its infimum on D
”

and minD
”
F
)0.

"lim
h?`=

infD
”
Fe

h
. Moreover, there exists a subsequence (up(h)) of (u

h
) which con-

verges in ¸1(); Rm) to a minimizer of F
)0.

on D/ .

Proof. For every e'0, j3N define

Fe(u, B)":
B

f (x/e, +u) dx# :
S
u
WB

g(x/e, u`!u~, l
u
) dHn~1,

F je (u, B)"Fe (u, B)# :
S
u
WB

( Du`!u~ D!2 j)@0 dHn~1,

Fj
)0.

(u, B)":
B

f
)0.

(+u) dx# :
S
u
WB

g j
)0.

(u`!u~, l
u
) dHn~1
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whenever A3A, u3SB»p(A; Rm) and B3B (A), where (see Proposition 2.2)

gj
)0.

(z, l)"lim
e?0

inf G :
S
u
WQl

(g (x/e, u`!u~, l
u
)#( Du`!u~ D!2j )@0) dHn~1:

u3SB»(Ql; Rm), +u"0 a.e., u"u
z,l on LQlH

for every (z, l)3Rm]Sn~1.
Let us show that for every (z, l)3Rm]Sn~1,

(8.13) lim
j?`=

gj
)0.

(z, l)"g
)0.

(z, l).

Let (z, l)3Rm]Sn~1 be fixed. For every p'0 there exists hp3N and
up3SB»(Ql; Rm) such that +up"0 a.e., up"u

z,l on LQl and

(8.14) :
S
up

WQl

g(hpx, u`p !u~p , lup
) dHn~1(g

)0.
(z, l)#p.

Let u
R

: RmPRm be a Lipschitz function with compact support and such that
u
R
(y)"y if Dy D6R. Then (8.14) still holds with up replaced by u (up), provided R is

sufficiently large. Thus we may assume that up is bounded.
Consider up extended with value u

z,l on Mx3Rn : D Sx, lT D71
2
N and by periodic-

ity on Mx3Rn : D Sx, lT D(1
2
N. Then it is possible to define

up
k
(x)"up (kx), x3Rn.

Clearly up
k
3SB»(Ql; Rm), +up

k
"0 a.e. on Ql , up

k
"u

z,l on LQl and
Eup

k
E

¸= (Ql; Rm)"EupE
¸=(Ql; Rm). Moreover, by a change of variable, we have

:
Sup

k
WQl

g(khpx, (up
k
)`!(up

k
)~, lup

k
)dHn~1" :

S
up

WQl

g(hpx, u`p !u~p , l
up

)dHn~1.

Therefore, for every j7EupE
¸=(Ql; Rm) ,

gj
)0.

(z, l)" lim
k?`=

infG :
S
u
WQl

(g(khpx, u`!u~, l
u
)#( Du`!u~ D!2j )@0) dHn~1 :

u3SB»(Ql; Rm), +u"0 a.e., u"u
z,l on LQlH

6lim sup
k?`=

:
S
upk

g (khpx, (up
k
)`!(up

k
)~, lup

k
) dHn~16g

)0.
(z, l)#p.

Since g j
)0.

7g
)0.

, we obtain (8.13).
We now prove that (u

h
) has a subsequence which converges in ¸1 to a minimizer

of F
)0.

. Note that

lim sup
h?`=

Fe
h
(u

h
, )@)6lim sup

h?`=
(Fe

h
(u

h
, )Xc)#Fe

h
(/, )@C)1 ))

6lim sup
h?`= Ainf

D
”

Fe
h
( · , )Xc)#Fe

h
(/, )@C)1 )B

6lim sup
h?`=

Fe
h
(/, )@)6KA :

)@

(1#D +/ Dp) dx#Hn~1(S
”
W)@ )B
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for a suitable constant K. Hence, from the growth conditions of f and g from below
we obtain the boundedness of the sequence (:)@ D+u

h
Dpdx#Hn~1(S

uh
W)@))

h
. Since

(u
h
) is equibounded, we can apply AMBROSIO’s compactness and lower semicontinu-

ity theorems ([4, 6]), deducing the existence of a subsequence (up(h)) of (u
h
) which

converges in ¸1()@; Rm) to a function u
0
3SB»p ()@; Rm). Clearly u

0
3D

”
. Moreover,

for every j7sup
h
Eu

h
E

¸= (); Rm)@E/E
L= (Q@; Rm)

:
)@

f
)0.

(+u
0
) dx# :

S
u
WQ@

g
)0.

(u`
0
!u~

0
, l

u0
) dHn~1

6F j
)0.

(u
0
, )@)6lim inf

h?`=
Fep(h)

(uep(h)
, )@ ).

Therefore, if we set

c)@" :
)@C)1

f
)0.

(+/) dx# :
S
”
W()@C)1 )

g
)0.

(/`!/~, l
”
) dHn~1!lim sup

h?`=
Fe

h
(/, )@C)1 ),

we obtain

F
)0.

(u
0
)#c)@6lim inf

h?`=
inf
D
”

Fep(h)
.

Note that for every e'0 the value infD
”
Fe is clearly independent of the choice of

)@, provided )@WL) remains unchanged. By means of a diagonalization argument
we can make the subsequence (ep(h)) independent of )@ if the latter is taken in
a sequence ()@

n
) which shrinks to ). Thus we obtain

(8.15) F
)0.

(u
0
)6lim inf

h?`=
inf
D
”

Fe
(h)
.

On the other hand, for every fixed u3D
”
, by Theorem 8.1 applied to the sequence

(Fje
h
)
h
, there exists a sequence (v

h
) in D

”
such that

lim
h?`=

F je
h
(v

h
, )Xc)"Fj

)0.
(u, )Xc).

Therefore

F j
)0.

(u, )Xc)7lim sup
h?`=

Fe
h
(v

h
, )Xc)7lim sup

h?`=
lin
D
”

Fe
h
.

Let j tend to #R and apply (8.13); then

F
)0.

(u)7lim sup
h?`=

inf
D
”

Fe
h
.

This, together with (8.15), immediately implies that u
0

is a minimizer of F
)0.

and
that the subsequence (infD

”
Fep(h)

), and hence the whole sequence (infD
”
Fep(h)

), con-
verges to minD

”
F
)0.

. K
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Example 8.5 (Homogenization of a composite medium with a chessboard struc-
ture). We illustrate the homogenization process by a simple example, which shows
how the bulk and surface energy behaviours can differ. Let m"1, n"2, and let
a : R2P[0,#R[ be the 1-periodic function defined on [0, 1[2 by

a (x
1
, x

2
)"G

1

2

if Dx
1
D@Dx

2
D61

2
or Dx

1
D?Dx

2
D71

2
,

otherwise.

Consider the functionals

Fe(u, ))"P
)

a A
x

eB D +u D2 dx# P
)WS

u

aA
x

eB dHn~1,

i.e., we take f (x, m)"a(x) D m D2, and g(x, s, l)"a (x). The functional Fe represents
a composite, with a chessboard structure of mesh size e, of two isotropic materials
whose local energies are

jA :
A

D+u D2 dx#Hn~1(AWS
u
)B

with j"1 and 2, respectively. The homogenized functional of (Fe) is

F
)0.

(u, ))"J2 :
)

D+u D2 dx# :
)WS

u

t (l) dHn~1,

where the function t : S1P[0,#R) is given by

t(l)"(J2!1) minM Dl
1
D , D l

2
DN#maxM D l

1
D , D l

2
DN.

In fact, it is proved in [41] (see also [45 Proposition 3.1]) that the homogenization

of :)a (x/e) D +u D2 dx in ¼1,2()) gives J2 :) D+u D2 dx, while the formula for t is
obtained from [22, Example 5.2], once we note that in the definition of g

)0.
we can

restrict to the case of u taking values in M0, 1N. Note the loss of isotropy in the
surface term.
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