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Homogenization of Free Discontinuity Problems
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Introduction

Following Griffith’s theory, hyperelastic brittle media subject to fracture can be
modeled by the introduction, in addition to the elastic volume energy, of a surface
term which accounts for crack initiation. In its simplest formulation, the energy of
a deformation u is of the form
(1) Ew,K)= | f(Vuydx + 24" (K),

O\K

where Vu is the deformation gradient, Q is the reference configuration, and K is the
crack surface. The bulk energy density f accounts for elastic deformations outside
the crack, while 4 is a constant given by Griffith’s criterion for fracture initiation
(see [49, 50, 54, 53, 14]). The existence of equilibria, under appropriate boundary
conditions, can be deduced from the study of minimum pairs (1, K) for the energy
(1), and a description of crack growth can be obtained by a limit of successive
minimizations at fixed time steps, as outlined in [36] (see also [27] and [40]).

The presence of two unknowns, the surface K and the deformation u, can be
overcome by a weak formulation of the problem in spaces of discontinuous
functions. The space SBV (€; R™) of “special functions of bounded variation” was
introduced by DE Giorai & AMBrosio [37] as the subset of R™-valued functions of
bounded variation on the open set Q — R”, whose measure first derivative can be
written in the form

) Du=Vu?"LQ+u* —u")@v, A" 'LS,,

where Vu is now the approximate gradient of u, S, is the complement of the set of
Lebesgue points of u, which admits a unit normal v,, and u™, u~ are the approxi-
mate values of u on both sides of S,. The measures £" and #" ! are the n-dimen-
sional Lebesgue measure and the (n — 1)-dimensional Hausdorff measure, respec-
tively. The energy in (1) can be rewritten as

(3) &) = [ f(Vuydx + 24" *(S,),

which makes sense on SBV (Q; R™). If f is quasiconvex and satisfies some standard
growth conditions, then we can apply the direct methods of the calculus of
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variations to obtain minimum points for problems involving &, using Ambrosio’s
lower semicontinuity and compactness theorems (see [4—7]). A complete regularity
theory for minimum points u for & has not yet been developed, but in some cases it
is possible to prove that the jump set S, is #" -equivalent to its closure (see
[38, 31]) or is even more regular (see [12, 11]), and that u is smooth on Q\S,,, and
thus to obtain minimizing pairs (u, K) = (u, S,) for the functional E.

The functionals & on SBV(Q; R™) which have bulk and surface parts, and
which satisfy the translation invariance condition % (u) = % (u + c¢) for all constant
vectors ¢, can be written in the form

) F = [f0eVuydx + | gle, (0" —u™) @ v)dA""!

Q S,
(we adopt the equivalent notation g(x,u™ —u~,v,) in the course of the paper).
Necessary and sufficient conditions for the lower semicontinuity of such func-
tionals % are described in [6,9,7]. In the formulation (4) are included non-
isotropic, non-homogeneous Griffith materials, when

(5) g(x,a®v) = g(x,v),

where the condition §(x, v) = §(x, — v) must be imposed to have a good definition
of the surface integral. We can also include in this setting surface problems in the
framework of BARENBLATT’S models, taking

(6) glx,a®v) = g(lal).

We shall not treat Barenblatt materials directly, but we remark that their study can
be carried on by a singular perturbation approach from the study of models of the
type (5) (see [24]). Many other problems in mathematical physics and computer
vision involve minimum pairs with a “free discontinuity set” K and an unknown
function u as above (see, e.g., [52, 13, 2, 25, &, 9, 32, 33]). We shall be content to
interpret our results in the framework of nonlinear fracture mechanics.

In this paper we study the asymptotic behaviour of functionals of the type (4)
modelling cellular elastic materials with fine microstructure. The study of this kind
of nonlinear media, but without considering the possiblity of fracture (i.e., in the
framework of Sobolev functions), has been carried on by S. MULLER [51] and
A.BraDES [16] (see also [17, 18, 19, 21, 26, 47]; a wide literature exists for the linear
case, or when u is scalar-valued; we refer the interested reader to the rich bibliogra-
phy of [35]). Here we consider functionals

(7 973(14)=Jf<§, Vu) dx+Jg<§,(uJr —u)®vu>d}f”1,

where f'and g are Borel functions, periodic in the first variable, which respectively
model the response of the material to elastic deformation and fracture at a micro-
scopic scale (which is given by the small parameter ¢). The behaviour of sequences
of minima for problems involving %, and of the corresponding minimizers, can be
deduced from the I'-convergence of this sequence (see [39, 35]). This analysis is
usually referred to as homogenization. The main result of this paper is showing
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that, under the growth conditions

®) | EP=f6 )= pA+[E), a=g(x, =P

for all xeR", e M™*" with p > 1, o, f§ > 0, we obtain, in the limit when ¢ — 0,
a minimum problem for the functional

(9) %om(u) = j‘fhom(vu)dx + j. ghom((u+ - u_) ® Vu) djf"_l-

Q S,
The integrands f,om and gn.m can be characterized by asymptotic formulas. The
homogenized bulk energy density is the same integrand as obtained in [16] in the
case without fracture:

(10)  from(&) = l1m 1nf{T [ [, Vu+&dx:ueWq P10, T[" R"‘)}

Jo,7["

while the function g, is given on rank-one matrices by

. 1
rom(z @ V) = lim - mf{ [ gt @™ —u)@v)da
TOyNS,

(11)
ueSBV(TQ,;R™),Vu=0ae,u=u,, on G(TQV)},

where Q, is any unit cube in R” with centre at the origin and one face orthogonal to
y, and

(12) () = { i e vy 20,

0 if {x,v> <O.

Note that by (9) it is sufficient to define gy, On rank-one matrices. From (9)—(11)
we obtain that the overall behaviour of the medium described by (7) at the scale ¢ is
that of a homogeneous material whose bulk elastic response is given by the study of
Z, only on elastic deformations without cracks, and whose response to fracture can
be derived by the examination of ‘stiff deformations’ (for which Vu = 0). In
particular, note that the homogenized surface energy density is not influenced by f;
this phenomenon is particular to the process of homogenization, since in general
we do have an interaction (see [3, Theorem 4.1]). We also mention that the
homogenization under SBV-growth conditions (8) gives rise to phenomena differ-
ent from those that occur when a growth of order one is allowed; i.e.,

(13) Je =yl or glx, Q) =p[]

(e.g.,if g(x, - ) is positively homogeneous of degree one), in which case the homogen-
ized functional is defined and finite on the whole BV (Q; R™) (see [19]).

The paper is organized as follows. In Section 1 we recall the main definitions
and preliminaries on SBV functions, and we introduce the space SBV ?(€3; R™) of
SBV-functions whose approximate gradient is p-summable and whose jump set is
2"~ 1 finite. Section 2 is devoted to the statement of the homogenization result. In
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Sections 2-7 we deal with functionals like (7), with g satisfying the technical
assumption that

(14) a(l + &) = g(x, &) = 1 + <)),

which allows us to limit our analysis to SBV?(Q; R™). The treatment of the case
with g satisfying the growth condition (8) is carried on in Section 8 by a singular
perturbation approach. The proof of the homogenization theorem relies on several
technical results. In Section 3 we give a compactness theorem with respect to
I'-convergence for functionals defined in SBV?(Q; R™). Its proof is based on
a “fundamental estimate” (Proposition 3.1), which allows the application of the
localization techniques of I'-convergence (see [35]). We also prove a truncation
lemma (Lemma 3.5), which, in several cases, permits us to deal with equibounded
sequences. In Section 4 we apply the techniques of Buttazzo & DAL Maso [29]
and of AMBROsIO & BRAIDES [8] to give an integral representation on W 1-7(Q; R™)
and on spaces of “partitions” BV (; T') (T < R™ is any fixed finite set) of the
functionals given by the compactness argument of Section 3. The characterization
by formula (10) of the volume energy density which describes the integral repre-
sentation on W1-?(Q; R™) is obtained in Section 5. In order to use the homogeni-
zation results of [16] and [51], we apply a technique introduced by AMBROSIO (see
[7]), which allows us to pass from sequences of SBV-functions with vanishing
surface energy to sequences of Lipschitz functions in the description of the I'-limit
process. The construction of minimizing sequences with surface energy tending to
0 is obtained by a scaling argument, which is based on the periodic structure of the
problem. A similar procedure leads in Section 6 to the characterization by formula
(11) of the homogenized surface energy density: after a scaling argument, which
again is possible by the periodicity assumptions, we can pass from sequences in
SBV?(Q; R™) with vanishing bulk energy to sequences with Vu = 0. This passage is
carried on by a careful use of the coarea formula. In Section 7 we prove the integral
representation (9) on SBVP(Q; R")NL*(Q; R™), from which the general result
follows by approximation. The two key points are the application of the strong
convergence results in SBV?(Q; R™) of piecewise smooth functions proved by
BRAIDES & CHIADO P1aT [23], which gives an inequality in (9) (Proposition 7.1), and,
for the opposite inequality, a blow-up argument which locally reduces the problem
to the case of linear or piecewise constant functions. The characterization of the
I"-limits through formulas (10) and (11), together with the compactness argument of
Section 2 conclude the proof. Finally in Section 8 we describe the applications of
the homogenization theorem to problems in fracture mechanics.

1. Notation and preliminaries

Letm = 1 and n = 1 be fixed integers. If Q is an open subset of R", we denote by
o/ (Q) and #(Q) families of the open and Borel subsets of Q, respectively;
moreover, we set .o = .o/ (R") and # = #(R"), while .o/, stands for the family of the
bounded open subsets of R". If x, ye R", then {x, y) denotes their scalar product;
B,(x) is the open ball with centre x and radius p, and S"~ ! the surface of the unit
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ball B;(0); M™*" is the space of the m xn real matrices. The usual product of
a matrix £e M™*" and a vector xeR" is denoted by &- x.

The Lebesgue measure and the (n — 1)-dimensional Hausdorff measure in R”
are denoted by #" and #" !, respectively, but we also write | E| in place of #"(E).
Moreover, w, = | B;(0)].

If Qe.o/, we use standard notation for the Lebesgue and Sobolev spaces
L?(Q; R™ and W1P(Q; R™).

Functions of bounded variation

For the general theory of the functions of bounded variation we refer to [43, 48,
42, 56]; here we just recall some definitions and results we shall use in the sequel.
Let Q be an open subset of R” and u:Q — R™ be a Borel function. We say that
zeR™is the approximate limit of u in x and we write z = ap-lim,_, .u(y) if for every
e >0,
Il)ifg) p "{yeB,(x)nQ:|u(y) —z| > ¢}| = 0.

We define S, as the subset of Q where the approximate limit of u does not exist. It
turns out that S, is a Borel set, | S,,| = 0 and u is approximately continuous a.e. in €;
more precisely, u(x) = ap-lim,_,.u(y) for a.e. xe Q\S,.

We say that u = (u?,. . .,u™) e LY(Q; R™) is a function of bounded variation if its
distributional first derivatives D;u’ are (Radon) measures with finite total variation
in Q. This space is denoted by BV (Q; R™). We use Du to indicate the matrix-valued
measure whose entries are D;u.

If ue BV (Q; R™), then S, is countably (n — 1)-rectifiable, i.e.,

(1.1) S,,=NU<U Ki>,

ieN
where #"~}(N) = 0 and (K;) is a sequence of compact sets, each contained in a C*
hypersurface I';. Moreover, there exist Borel functions v,: S, - S" ' and u™, u™:
S, — R™ such that for #" '-ae. xe8,

limp™ [ |u(y)—u"(x)|dy =0, limp™ [ |u(y)—u (x)|dy =0,
p=0 B} ()nQ =0 B, (x)nQ

where B, (x) = {yeB,(x):{y — x,v,(x))> >0} and B, (x) = {yeB,(x): {y — X, v,(x))
< 0}. Hence, for #" '-ae. xe§,,

ilf(l) p "y eB,(x)NQ: {y —x, £, (x)> >0, |u(y) —u*(x)| >ef[ =0

for every ¢> 0. The triple (u™(x), u~™(x), v,(x)) is uniquely determined up to
a change of sign of v,(x) and an interchange between u* (x) and u~ (x). The vector
v, is normal to S,, in the sense that, if S, is represented as in (1.1), then v,(x) is
normal to I'; for #"~ !-a.e. x € K;. In particular, it follows that v,(x) = =+ v,(x) for
AH" lae xeS,nS, and u, ve BV (Q; R™). If xeS,, we define u™ (x) =u" (x) =
ap-lim, . u(y).
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We denote by Vu the density of the absolutely continuous part of Du with
respect to the Lebesgue measure. Vu(x) turns out to be the approximate differential
of u at x for a.e. xeQ, in the sense that

lim p~" j |u(y) — u(x) — Vu(x)-(y — x)| dy = 0.
p=0 |y — x|
By(x)nQ
We point out that if u, ve BV (Q; R™), then Vu(x) = Vo(x) for a.e. xeQ such that

u(x) = v(x).

It is easy to verify that if u, ve BV(Q; R™) and if ¢ is a smooth real function
onQ, then u+v)* =u* +v*, (pu)* =u*, |u* —v*| = |lu—v|L-qrmand
V(pu) =u® Vo + oVu.

We say that a function ue BV (Q; R™) is a special function of bounded variation if
the singular part of Du is given by (u™ —u")® v, #" " 'LS,, ie., if

Du=Vu?"+u" —u )@v, A" LS,

We denote the space of the special functions of bounded variation by SBV (Q; R™).
This space was introduced by DE Giorci & AmBRrosio [37]. For the properties of
the functions ue SBV(Q; R™) we refer to [5] and [6]. Here we mention the
following result (see [10]): If ue SBV(Q; R™) and if ¢:R™ - R™ is a Lipschitz
function with Lipschitz constant L, then ¢(u)eSBV(Q;R™), S,u) S S.,
(ew)* = @u?*), and |Vo(u)| £ L|Vu| a.e. in Q.

Let p > 1; the space SBV?(Q; R™) is defined as the space of the functions
ue SBV(€; R™) such that

H"HS,NQ) < + o, VueLP(Q; M™*").

Sets of finite perimeter

Let Qe .o/ and E € . We say that E has finite perimeter in Q if the characteristic
function y of E belongs to BV (Q; R). Define the essential boundary of E as

0*E = {xeR":lim sup p "|B,(x)nE| > 0 and lim sup p "|B,(x)\E| > 0}.
p— P

If E is a set of finite perimeter in Q, then

[ 1Dyl = A" H(QNO*E);
Q
this value is the perimeter of E in Q. If ue BV (Q; R), then {x € Q: u(x) > ¢} has finite
perimeter in Q for a.e. t € R, and the following Fleming-Rishel coarea formula holds:
+

A" HBNO*{xeQ: u(x) > t})dt

— o0

(1.2) [ 1Dul =

for every Be #(Q). For an exposition of the theory of sets of finite perimeter see the
books quoted above for the functions of bounded variation.
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Approximation of BV functions by Lipschitz functions

Let i be a non-negative finite Radon measure on Y =10, 1[". For every xe Y
let us define

(B, (x))
| B, ()]

M () is called the (local) maximal function of w. If u is absolutely continuous with
respect to the Lebesgue measure and h is its density, we also set M (h) = M (p). In
[71 M(p) is defined with respect to the unit ball B;(0) instead of Y. However, it is
easy to see that the analogues of Proposition 2.2 and Theorem 2.3 in [7] still hold,
as in the following two statements.

M(u)(x) = sup{ : p > 0 such that B,(x) = Y}.

Proposition 1.1. Let p be as above. Then there exists a constant c¢(n) > 0 such that

[{xe ¥ M) > 4] < D)

for every 4 > 0. Moreover, if  is absolutely continuous with respect to the Lebesgue
measure and its density h belongs to L*(Y) for some p > 1, then
J (M) dx < C(n, p) | (R(x))? dx,

Y

Y

with C(n, p) = p2Pc(n)/(p — 1).

Theorem 1.2. Let 1 >0, ue BV (Y; R")NnL*(Y; R"™), and let
E = {xeY:M(|Dul)(x) > A}.

Then for every 0<e<1 there is a Lipschitz function v:Y,— R™, where
Y, =1e, 1 —¢&[", such that u = v a.e. on Y,\E, and the Lipschitz constant Lip(v, Y,)
of v on Y, satisfies the inequality

. , 2
Lip(v, Y,) = m<c (n)i + " [ u L°°(Y:R"’)>z

for a suitable positive constant ¢'(n).

I'-convergence

We recall briefly the notion of I'-convergence [39]. Let (X, d) be a metric space,
let F,: X — R be a sequence of functionals on X, and let F: X — R.
We say that (F),) I'-converges to F at the point xe X with respect to the
topology induced by d if the following conditions are satisfied:
(1) for every sequence (x,) in X such that d(x,, x)—>0, we have F(x)
< lim inf, .  , Fy(x);
(i) there exists a sequence (x;) in X such that d(x,, x)—>0 and F(x)
= limy,-, 4 o, Fp(Xp).
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We say that (F,) I'-converges to F on the space X with respect to the topology
induced by d if (i) and (ii) hold for every x € X. In this case F is called the I'-limit of
(F}), and we write F = I'-lim,,, 4 , F).

For a complete treatment of the subject we refer to [35]. Here we only recall the
following facts. If (F,) I'-converges to F, then F is lower semicontinuous. If (F}) is
a constant sequence, i.e., if F, is equal to the same functional G for every he N, then
the I'-limit exists and coincides with the lower semicontinuous envelope (or relaxed
functional) G of G on the space X with respect to the topology induced by d (see
[28]). Under suitable coercivity conditions, ['-convergence guarantees the conver-
gence of the minimum values of the functional F), to the minimum value of their
I-limit.

Quasiconvexity

We finally recall that a continuous function f: M™*" — R is quasiconvex if for
every open set Q and e M™" we have |Q|f(¢) <[, f(&+ Du) dx for all
ue%$(Q; R™). Quasiconvexity is a well-known necessary and sufficient condition
for the weak lower semicontinuity of integral functionals defined on Sobolev spaces
(see [15, 1, 34, 287]).

2. Statement of the main result

Let f:R"x M™" [0, + co[ and g:R"xR™x S$""1 - [0, 4+ oo[ be two Borel
functions. We suppose that f satisfies
(i) for every &€ M™*" the function f (-, &) is 1-periodic, i.e., f (x + e;, &) = f(x, &) for
everyi=1,...,nand xeR"
(i) there exist two constants ¢; > 0 and ¢, > 0 such that

alllP =f(x 8 = 21+ 1E]7)

for a.e. xeR" and for every Ee M™*",
and that g satisfies
1) g(x,s,v) = g(x, — s, — v) for every (x, s, v)eR"xR" x S" " 1;
(i) g(-,s,v)is 1-periodic for every (s, v)e R™ x S"~ 1;
(iii) there exist a function w: [0, 4+ co[ — [0, + o[, continuous and non-decreasing
with w(0) =0, and a constant L > 0, such that w(t) < Lt for t = 1 and

lg(x,s,v) —g(x,t,v)| £ w(|s — t|) for every xeR", s, teR™, veS" !;
(iv) there exist two constants ¢3 > 0 and ¢, > 0 such that
(1 +Is) = glx, s, v) S ca(l + [s])

for every (x,s,v)eR" x R"x §" " 1,
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For every ¢ > 0, Ae.o/, ue SBV,.(4; R") and Be %#(A) we define

@.1) F,(u, B):ff(%,%) dx + f g<§,u+ —u,v,,)d%”l.

S,nB

We remark that there exists a one-to-one correspondence between
(R™{0}) x $"~! modulo the equivalence relation (s, v) ~ ( — s, — v) and the space
of matrices of rank equal to 1. Hence we could as well write the functional in (2.1) in

the form
X X _ _
Fg(u,B)=Jf<z,Vu>dx+ J g(—\,(u*—u )®vu>d7f” L
B

&
S.nB

with the identification g(x, s ® v) = g(x, s, v), to have a symmetric notation in the
two integrals. However, in the sequel we shall always use the notation (2.1) to
highlight the different behaviour of the surface integral with respect to u™ — u~
and v,.

The following propositions introduce the functions f;,, and gpen Which will
appear in the integral representation of the limit functional of the family (F,),s¢.

Proposition 2.1. For every £€ M™*" there exists

from(€) = lim inf{ f f(Z Vu + 5) dx:ue WP (10, 1["; R’")}.
Jo, 1"
The function fi,om is quasiconvex, and for every e R™
1] €17 = from(€) = ca(1 + [<]7).

Moreover, for every sequence (g,) of positive numbers converging to 0 and for every
Qe.ofy, the sequence ur> jg f(x/ey, Vu) dx T-converges to the functional
u > [ from(Vu) dx on W1P(Q; R™) with respect to the LP-topology.

Proof. For the proof see [16] and [17, Theorem 2.3 and the subsequent remark,
Proposition 1.8 and Remark 1.7]. [

Proposition 2.2. For every (z, v)eR™ x §"~ ! there exists
: : X + - n—1
Ghom(2, V) = 11n(1) mf{ J g (, ut —u, vu> dx"t.
Find &
SuNQy

ueSBV(Q,; R, Vu=0ae.,u=u,, on OQV},

where Q, is any unit cube in R" with centre at the origin and one face orthogonal to
v (the limit being independent of such a choice), and

2 if vy =20,
Uz, (X) = 0 if {x,v) <.
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The function gyem is continuous on (R™{0}) x S"~ 1, and
c3(1 +12]) = ghom(z, v) = ca(l +2])
for every (z,v)e(R™\{0} x S"~ 1.

The proof of Proposition 2.2 is postponed to Section 6.
For every Ae.o/, ue SBV ,.(4; R™) and Be #(A) we define

Fhom(ur B) = j‘fhom(vu)d-x + j ghom(u+ - u—’ Vu) d%nil'
B

SunB

The main result of the paper is the following homogenization theorem.

Theorem 2.3. Let (F,),~ ¢ and Fy,y, be as above. Let (&) be a sequence of positive real
numbers converging to 0. Then for every A€ .o/,

Fhom(.aA) =T- lim Fs,,(.aA)

h—+ o

on the space SBV P(A; R™) with respect to the L'(4; R™)-topology, and on the space
SBV?(A; R")NLP(A; R™) with respect to the LP(A; R™)-topology.

In the case when f and g are constant with respect to the first variable, we
immediately obtain the following relaxation result (see also [44]).

Corollary 24. Let Qe .o/, and
Fu) = [f(Vuydx+ | g™ —u",v)#" !
Q

SuNQ

for ue SBV?(Q; R™). Then the lower semicontinuous envelope of F on SBV ?(€; R™)
with respect to the L'(Q; R™)-topology (or on SBV?(Q; R™)nLP(Q; R™) with respect
to the LP(€; R™)-topology) is given by

F(u) = jf_(Vu)dx + j gut —u,v) "1,
o SunQ
where

flo= inf{ [ f(Vu+&dx:ueWwqs?(10, 10" R’")},

10,1["

i.e., fis the quasiconvex envelope of f (see [34]), and

gz, v) = inf{ [ g™ —u",v)m "

SunQ,
ueSBV(Q,;R"), Vu=0ae,u=u,,on 5Qv},

for every Ee M™ " and (z,v)eR™ x S" ™1, with Q, and u._, as in Proposition 2.2.
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3. A compactness result on SBV?(Q; R™)

In this section we prove some general properties for functionals of the form

jfg(x Vuydx + | g.(x,u™ —u",v)dA"",

SynA

where f,:R"x M™" > [0, + co[ and g,:R"xR"xS" ! [0, + co[ are Borel
functions satisfying

| &P £ fi(x, &) S (1 +[€]7) for a.e. xeR" and for every Ee M™*",
c3(1 +15]) £ gu(x, 8, v) S ca(l + |s]) for every (x,s, v)eR"xR™x S~ 1

for suitable positive constants c¢;. Moreover, we suppose that g.(x,s, V)
=g.(x, —s, —v) for every (x,s,v)eR"xR™xS§"" 1. In particular, we can have
fo(x, &) =f(x/e, &) and g,(x, s, v) = g(x/e, s,v), where f and g are the functions
introduced in Section 2.

For every Ae.o/, ue SBV,.(4; R™) and Be %(A) let

3.1) H(u, B) = §|Vu|1’dx+§ (1 +|u* —u|)dam 1.

S,nB

The functional H(-, A) is lower semicontinuous on SBV,.(A4; R™) with respect to
the L. (4; R™)-topology; see [6, Theorems 2.2 and 3.7] or [7, Theorem 4.5 and
Remark 4.6].

In view of the growth conditions satisfied by f, and g,, there exist y;, y, > 0 such
that for every ¢ > 0,

(3.2 71H(u, A) £ Fy(u, A) = y,(H(u, A) + | AJ).

Hence, for every Ae .o/, the I'-limit of any sequence (F, (- A4)) (e, — 0) on a sub-
space of SBV,.(4; R™) with respect to a topology stronger than Li,.(4; R™)is finite
exactly on SBV?(A4; R™). Thus in the sequel we shall restrict our attention to the
space SBV ?(A; R™). The crucial properties of the I'-limit are based on the so-called
fundamental estimate ([35]), of which we give now an SBV-version.

Proposition 3.1 (Fundamental Estimate). Let (F,) be the family of functionals de-
fined in (2.1). For everyn > 0 and for every A', A", Be o/ ,with A’ = < A", there exists
a constant M > 0 with the following property: For every ¢ >0 and for every
ueSBV?(A"; R™), ve SBV?(B; R"™) there exists a function ¢ € Cy(A”) with ¢ = 1 in
a neighbourhood of A" and 0 < ¢ < 1 such that

Fy(pu + (1 — @)v, AUB) = (1 + n)[Fy(u, A") + Fy(v, B)] + M ||u — 0| Lrs.pm) + 715
where S = (A"\A")nB

Remark 3.2. From the proof it follows that the cut-off function ¢ can be chosen in
a finite family depending only on #, A, and A4".
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Proof of Proposition 3.1. Let n > 0, A’, A” and B be fixed as in the statement. Let
ke N satisfy

1 .
(3.3) ~ max <2p1 9,‘—4,c2|(A"\A/)mB|> <

k C1 C3
Let A4,,...,A4;+, be open subsets of R” such that ' cc A cc A, cc -
cc Ay << A" Forevery i = 1,. ..,k let ¢; be a function in C§(4;,,) with

¢; = 1 on a neighbourhood V; of A4;. Define

_ . C
M =2r"'=% max | Ve, |-.
1<i<k

k

For fixed ¢ >0, ueSBV?(4"), and ve SBV?(B), define on A'UB the function
w; = ou + (1 — @;)v (Where u and v are extended arbitrarily outside 4” and B,
respectively). Then fori=1,. ..k,

(3.4) F,(w;, AUB) £ F (u,(A'uB)"V})
+ Fs(va B\Spt(pl) + FS(WD Bm(AiJr I\Zl))
< F,(u, A”) + F,(u, B) + F,(w;, Bn(A4;41\4;)).

Set T; = BN (A;+\A4;). We estimate the last term:

Fy(w;, Ti)éch(1+|VWi|p)dx+C4 f (1 + 1w —w [)da"!
T:

i Syw,NT;

<e <|Ti| ; jno,-w (1= )Vo + (Vo) — v>|pdx>

T;

+c4< J A +jut —u |)dwx" !

(S:\Sp)NT;

+ J 1+ |o* —v [)d#"!

S\Su)NT;

; f <1+|qoi<u*—u>+<1—<pi>(v+—v)|>M"1)

SunSynT;

§62<|Ti| +207! f(qul” + | Vol? + |V</)i|”|u—v|”)dX>

T,

i

+C4< J A+Jut —u )d#" ' + J (1+|U+—U_|)d%"_1>

SunT; SynT;
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<ort E—j < ff(% Vu> dx + Jf(% w> dx>

T; T;
+L—4< f g<f,u+—u,vu>d}f"1
C3 &
SunT;
X + - pn—1
+ J g(—,v - ,vv>d% >
&

SynT;

+ (1T + 227 (I Vil | u — vl poerp)?) < 9(Fo(u, T;) + Fo(v, T;))

+Cz<| T;| +2°7! < max | Ve, |i°°> ”—Ui"(Tf)>,
1<izk

where y = max (27~ ¢,/cy, c4/c3). Hence there exists ipe {1,. .. ,k} such that

k
T:,) z (i, T;)

F(w;

||/\
==

92

[IA
=

c
(Folut, A") + Fofo, B) + 2 1S| + M [|u — 0] s
where S = (A"\A")nB. From (3.4) it follows that

C
F(wiys A'0B) < (1 + Z) (Fulu, A') 4 F(0, B) + 2]+ Ml — 0] frs

By (3.3) the proof of Proposition 3.1 is accomplished. []

Proposition 3.3. Let (g,) be a sequence of positive numbers converging to 0. Then
there exist a subsequence (¢,) of (e) and a functional F defined on the set {(u, A):
Ae.of,ue SBV?(A; R™NL?(A; R™)} with values in [0, + oo] such that for every
Aedd,,

Fo(-,A)=T- hm F,

Ea(h)

(. A)

on the space SBV?(A4; R™)NLP(A; R™) endowed with the L?(A4; R™)-topology. More-
over, for every Qe .o/, and ue SBV?(Q; R")NLP(Q; R™) the set function Fo(u, ) is
the restriction to </ (Q) of a Borel measure on Q.

Proof. For every ¢ > 0 let G,: L(R"; R") x &/ — [0, 4+ oo] be defined by
G.(u, A) = {Fg(u, A) ifu|Ae.SBV”(A; R™),
+ otherwise.

By Theorem 16.9 of [35] there exist a subsequence (&,,) of (¢,) and a functional
Go:L?(R"; R™) x .o/ - [0, + o] such that G, = T'(L?(R"; R™))-lim,_, + ., G- In
the notation of [ 357, which we refer to for details and precise definitions, this means
that G, is the inner regular envelope of both the I'-lower and the I'-upper limit of
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the sequence (G, _ ). By (3.2)

7iH(u, A) = G,(u, A) = 7,(H(u, 4) + [A])

for every ¢ >0, Ae.o/ and ue L?(R"; R™) with u|,eSBV?(A; R™). Taking into
account Proposition 3.1 we can apply the same method of proof as in Theorem 18.7
in [35]. Thus we obtain that for every A €./, the sequence (G,_, (-, A)) of func-
tionals on LP(R™ R™) I'-converges to Gy(-, A) with respect to the LP(R"; R™)-
topology at all points ue L?(R"; R™) with u| ,€ SBV?(A4; R™).

For every Ae.o/ and ue SBV?(A4; R")NnLP(A; R™) define Fy(u, A) = Go (i, A),
where i is any LP-extension of u to R". This definition is well-posed since from the
I'-convergence of (G,,,,) to Gy it follows that for every u, ve LP(R", R™), if u| 4 = v| 4,
then Go(u, A) = Go(v, A). The stated convergence of F, , (-, A) is easily proved.
Observe now that G,(u, - ) is the restriction to .« of a Borel measure on R” for every
u. Then, by Proposition 3.1 and by Theorem 18.5 in [35] (which holds with the
same proof for vector-valued LP-functions), for every u e L?(R”"; R™) the set function
Go(u,) is the restriction to o7 of a Borel measure on R”. From this we obtain the
stated measure property of Fy. []

Ea(h)y

We now prove some further properties of the I'-limit F.

Proposition 3.4. Let (g,) be a sequence of positive numbers converging to 0, and let
A€ol be such that the limit Fo(-, A) = I'-lim,_ ,,, F, (-, A) exists on the space
SBV?(A4; R")NLP(A; R™) endowed with the LP(A; R™)-topology. Then for every
sequence (uy) in SBV?(4; R™) converging in L' (A4; R™) to a function ue SBV ?(4; R™)
NL*(A4; R™) we have Fy(u, A) < lim infy,— 4, F;, (up, A).

For the proof we need a technical lemma (see also [30]).

Lemma 3.5. Let A€ .o/, and let (u,) be a sequence in SBV ?(A; R™) which is bounded
in L1(4; R™) and such that (H(uy, A)) is bounded. Then for every n > 0, My > 0 and
heN there exists a Lipschitz function ¢, :R™ — R™ with Lipschitz constant less than
or equal to 1 satisfying

(p(y):{y if |y < an,
" 0 if [yl > b,

for suitable constants ay, b,e R with My < a, < by, such that

Fz:,,(q)h(uh)y A) é Fs,,(um A) + n
for every heN. The function ¢, can be chosen in a finite family independent of h.
Proof. Fix n >0, M, > 0. Let (a;) be a strictly increasing sequence of positive real

numbers such that for every j e N there exists a Lipschitz function ¢;: R™ — R™ with
Lipschitz constant less than or equal to 1 satisfying

o)) = y if |yl Za;,
/ 0 1f|y|>a1+1.
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The sequence (a;) will be determined subsequently in a suitable way (see (3.6)) and
will depend only on 17 and M. For every he N and je N let wj, = ¢;(u;). Consider
the volume part of F a,,(Wha A); we have

[ fi(x, Vwj)dx = [ fo,(x V) dx + | £, (x, 0)dx

A {lup| < aj} An{lupl > ajiq}

+ | o (x, Vi) dx

Anfaj <lup| S ajt1}

= jfsh()@ Vupdx + cx [An{|uy| > a4 1}
4

+ cy j (1+|Vuh|p)dx

An{aj<|up| S aj+1}
As for the surface part, it is not restrictive to assume that [u;, | < |u; | #" -ae. on
S,,- Since (wh)— = (pj(uhi) we have

f geh(x7 (‘/V}Jl)Jr _(W}{)i, Vw'i)d%n71

Sy;nA

g j gsh(xa @J(u;) - @j(u;), vuh)d%nil'

(SuMaj+1 S lui [jnA
The set S, \{a;+; < |u, |} can be decomposed as Ul . S{, where
S{={lu | <a}, Si={luy|<aja;<]|ul},
Si={lw | <a;< luy | <ajer}s Sh={a;< uy |, luy | < aj5,),
Si= {a; < Juy | < ajpy < uy |}
Hence, taking into account the Lipschitz continuity of ¢;, we have

[ go e i)t —wi) ", vy doa =t

S,;nA4

< [ galoun —uy v, dA" e [ (L Juy A

SinA SinA

+ Z Cq j (1+|uh —uh |)d%n 1
i=3 Sin4
We now use these inequalities to estimate 1/N Zj\’: F sh(w,{ , A), for every fixed he N
and N € N. Note that each of the families ({a; < |uy| < @41 })jens (S))jen (i = 3,4, 5)
consists of pairwise disjoint sets. Then

1 X ;
(35) N ‘Zl Fsh (Wéa A) é Fsh(uha A)
j=

+ (2l An{luy > a; 1}l +ca [ (14w, [)da")

1 SinA

z| =
VP

J

1
+ (e f (U + Vw1 dx +3ca [ (1 +[uy —uy [)doa"™Y).
A

Sy,nA

2
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By assumption there exists a constant ¢ > 0 such that

e [+ | Vuy|P)dx +3¢cq | (L4 |uy —uy, |)d#" ' <c
4

Su,NA

for every he N. Choose N € N such that ¢/N < 7/3. Moreover (we may suppose that
sz 1)

ez [ u —w ld [ (luy | — |uy o™

SinA SinA
= (a1 — aj) A" H(S5NA),
whence

1 .
[ty doant se 0

Sind dj+1 — 4;

The sequence (a;) is now defined recursively by the following conditions

calAn{|u,| > aq}| §g for every heN, a; = M,,
(3.6) 1
qcﬁgﬁ for every jeN,
aj+1—a; 3

which is possible by the assumed boundedness of (u,) in L'(4; R™). From (3.5) we
now obtain

1 N
N Z Wh: < Fah(uh’ A) + .

Therefore for every heN there exists j(h)e{l,...,N} such that
F, (wﬁ(h), A) £ F, (uy, A) + 5. The function ¢, = @;, is the Lipschitz function we
were looking for. Note that N is independent of h. []

Remark 3.6. From its proof it follows immediately that the previous lemma still
holds for the functionals of the type F, (u;, A) = | Jox, Vuydx or F, (u, A)
=[g e (x,u™ —u,v,)dA""", with f, and g,, as above.

Proof of Proposition 3.4. We can assume that (F,,(u;, A)) converges to a finite
value. Fix # > 0. By applying Lemma 3.5 to the sequence (u;,) with My = ||u| ., we
obtain a sequence (v;) in SBV?(4; R")NL*(A4; R™), bounded in L*(4; R™), such
that v, - u in L?(4;R™) and lim inf,,_ ; , F, (vs, 4) £ lim inf,_ ; , F,, (us, 4) + 1.
By the I'-convergence of (F, ) we have Fo(u, A) < liminfy-, , ,, F,,(u, A). The
arbitrariness of 5 yields the proof. []

In the following lemma we assume that f, (x, &) = f(x/es, &) and g,,(x, s, v)
= g(x/ey, s, v) where f and g are the functions introduced in Section 2.
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Lemma 3.7. Let (¢,) be a sequence of positive numbers converging to O such that for
every Ae./q the limit Fo(-, A) = I'-limy_ ,,, F, (-, A) exists on SBV?(4;R™)N
LP(A;R™)  with respect to the LP(A;R™)-topology. Then for every
ue SBV?(A; R")NLP(A; R™), aeR™ and yeR",

(1) FO(u + a, A) = FO(ua A)a (11) FO(Tyua TyA) = FO(”) A):
where (t,u)(x) = u(x — y) and 1,A = A + ).
Proof. First we prove (i). Let (u,) in SBV?(A4; R™)NL?(A; R™) be a sequence con-

verging to u in LP(4; R™) and such that (F,,(u,, A)) converges to Fo(u, A). Then
(uy + a) converges to u + a in L?(A4; R™) and

Fo(u+a, A) < lpilerianSh(u,, +a, A) = lgm+inf F, (uy, A) = Fo(u, A).

On the other hand, Fo(u, A) = Fo((u + a) + ( — a), A) < Fo(u + a, A).

We now prove (ii). There exists a sequence (z;) in Z" such that y, = gz,
converges to y. Let (u,) be a sequence as in the proof of (i). Set
vy = Ty,uy: A + y, = R™. By taking the periodicity assumptions on f and g into
account we get

Fsh(uh,A)=ff<x+yh,Vuh>dx+ J g<x-:yh,u;fr —u{,vuh>d%"‘1
A

n h
Sy,nA
X X _ _
= fl=, Vu, )dx + gl =, o8 —uvn, v, |dr" 1.
& én
Aty Svhﬁ(A + v

Let B < < A; for h sufficiently large we may assume A + y, = B + y; hence

Fah(um A) g f f(gi, VU;,) dx + J‘ g(;j Uh+ _ U;:, vvh> d%nfl’
h h

B+y Sy, (B +y)

which yields Fo(u, A) = Fo(t,u, B + y), since (v,) converges to t,u. By the arbitrari-
ness of B « = A we also have Fo(u, A) = Fo(t,u, t,4). We conclude the proof of (ii)
by noticing that Fo(t,u, 1,4) = Fo(t—,(t,u), T ,(1,4)) = Fo(u, A). O

4. Integral representation on W"7(Q; R™) and on partitions

On account of Proposition 3.3 we shall try to identify the I"-limit of convergent
sequences of functionals F,. Therefore, up to Section 7 we assume that a sequence
(&) of positive numbers converging to 0 is given, such that for every 4 €./, the limit

4.1 FO(-,A)zr-hlim F.(-,A)
-+ o0

exists on the space SBV ?(4; R™)nL?(4; R™) endowed with the L?(4; R™)-topology.
In particular, Fy(-, A) is lower semicontinuous with respect to the LP(A4; R™)-
topology. As we have seen, for every Qe .o/, and ue SBV?(Q; R")nL?(Q; R™) the
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set function F(u, - ) can be extended to a Borel measure on Q. Such a measure is
given by (see [35, Theorem 14.23])

4.2) Fo(u, B) = inf{Fo(u, A): Ac /(Q), B < A}

for every B e %(Q). Moreover, from the considerations at the beginning of Section
3 it follows that there exist two constants j;,7, >0 such that for every
ueSBV?(A; R™MNLP(A; R™) we have y H(u, A) < Fo(u, A) <y, (H(u, A) + | A]),
where H is defined in (3.1). By (4.2) we immediately obtain

(4.3) 71H(u, B) = Fo(u, B) = 7>(H(u, B) + | B|)
for every Be 4(Q).

Proposition 4.1. There exists a unique quasiconvex function f:M’"X” — [0, + o[
with the following properties: _
(1) Thereexistyy, v, > 0suchthaty,|E|? < f (&) < y,(1 + | &) for every E€ M™™",

(i) Folu, A) = jA f(Vu)ydx for every Ae.o/y and ue W1-?(4;R™).

Proof. Let Qe.o7, and consider Fy: W 1?(Q; R™) x o7 (Q) — [0, + oo[. This func-
tional satisfies the assumptions of Theorem 1.1 in [29], ie., for every
u,ve WHP(Q; R™ and A e.o/(Q):

(a) Fo(u, A) = Fo(v, A) whenever u| 4 = v] 4.

(b) The set function F(u, -) is the restriction to ./ (€) of a Borel measure on Q.

(c) Fo(u, A) Zc fA(l + | Du|?)dx, with ¢ a positive constant.

(d) Fo(u + a, A) = Fo(u, A) for every acR™

(e) Fo(-, A) is sequentially weakly lower semicontinuous on W 1-7(Q; R™).
In fact, properties (b), (c), and (d) follow from Proposition 3.3, estimate (4.3) and
Lemma 3.7, respectively, while (a) and (e) can be obtained immediately from the fact
that Fy(-, A) is the I'-limit (4.1).

By [29, Theorem 1.1] the Carathéodory function f:R”x M™*" [0, + oo
defined by

FO(”&) Bp(x))

(4.4) J(x, &) = lim sup B,0)|

(ue 1s the linear function defined by u:(x) = - x) gives the integral representation

Fo(u, Q) = f x, Du)dx

for every ue W -?(Q; R™). The function f (x, ) is quasiconvex for a.e. xeR”", and,
from (4.4) and Lemma 3.7, we deduce that f (x, ¢) is constant with respect to x € R”.
Consequently we can drop the dependence on x. Finally, the uniqueness of [
follows from (4.4), while (i) follows from (ii) and (4.3). [

The next step is to obtain an integral representation formula for F, on finite
partitions, i.e., on those BV functions which take only a finite set of values. It will be
achieved by applying a theorem due to AMBROsIO & Braipes. Given Qe .o/, and
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a finite subset T of R™ we denote by BV (Q; T) the set of functions u:Q — T which
belong to BV (€ R™). It turns out that BV (Q; T) < SBV?(Q; R")NL* (€ R™).

Proposition 4.2. There exists a unique function §:R™ x "~ — [0, + oo[ continuous
in the second variable and such that

(1) G(—s, —v)=dg(s,v) for every (s,v)eR"x "~ 1;

(i1) for every finite subset T of R,

FO(”) S) = jgN(u+ - u_a vu)d%n_l
s
for every Ae .o/, ue BV(A; T) and S a Borel subset of S,nA.

Proof. Let T be a finite subset of R™ and let Qe.«/,. For every Ae.o/(Q) and
ue BV (Q; T) we define Gy(u, A) = Fy(u, S,nA), where Fy(u, S,nA) is defined in
(4.2). Let us show that the assumptions of Theorem 3.1 in [8] are satisfied by
Gr:BV(Q; T)x o/(Q)— [0, + oo[ in the following form:

(i) 0 £ Gy(u, A) £ A#" 1 (ANS,) with AR fixed.

(i) Gr(u,-) is the restriction to .7 (€2) of a Borel measure on Q.
(i) Gy(u, A) = Gp(v, A) whenever u = v a.e. in A.
(iv) If u, > u a.e. in A4, then Gy(u, A) < lim inf, - ; , Gr(u,, A).

(v) Gr(tyu, 1,4) = Gr(u, A) (where (t,u)(x) = u(x — y) and 1,4 = A + y) for every
yeR" whenever 1,4 < Q.

Property (i) follows immediately from the definition of G; and from estimate
(4.3). As for (ii), the Borel measure Fy(u, ) on Q (see (4.2)), restricted to S,, is an
extension of Gr(u,-). The proof of (iii) follows immediately from (4.1) and the
definition (4.2) of Fy(u, -) on Borel sets.

Let us come to (iv). If u, - u a.e. on A, by the equiboundedness of (1), it turns
out that u, —» u in L?(4; R™). For every open subset E of A with S,n4 < E we have

Fo(u, E) < lim inf Fo(u, E).

Furthermore, by (4.3),
FO(uha E) = FO(uhy SuhmE) + FO(”ha E\Suh) é FO(uhs SuhmA) + V2|E|
Thus,
Fo(u, E) = l}i’m+inf Fo(uy, S,,nA) + 72| El.
By taking the infimum over all open sets E = S,n A4, we get

Fo(u, S,nA) < 1;1;m+ian0(uh, Su,NA).

Finally, for the proof of (v) it is enough to refer to the property of translation
invariance shown for F, in Lemma 3.7.
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At this point we can apply Theorem 3.1 of [8], which yields the existence of
a unique continuous function ¢$:QxTxTxS" ! 5[0, + o[ such that
gng(xa a, b) V) = gs%(xa b7 a, — V) and

(45) FO(ua SumA) = GT(“! A) = j ggTZ‘(xs u+a uia vu)d%n71

SynA

for every ue BV (Q; T) and A4 € .o/ (Q). Define

wh ):{a if {(x—xq,v> =0,

u I,,,={yeR":{y —xq,v) =0}

To¥ b if (x —xq,v)> <0,

whenever x, xo€R", a,beR™ and veS"'. The continuity of g%(-, a, b, v) yields
that

(46) g%(an a, b> V) = lim P

for every (xo, a, b, Ve Q x T x T x "~ 1. This allows us to replace the integrand in
(4.5 by a function ¢(x,a,b,v), independent of Q and T, defined on
R"xR™"x R"x S"~!. From (4.6) and Lemma 3.7 we also obtain that § is indepen-
dent of x and depends on (g, b) through the difference a — b. Therefore we can write

Folu,S.nA)= | gw* —u=,v)da"!

S,NA

for every finite subset T of R", Ae.</, and ue BV (A; T). Since Fo(u, )L S, is
a regular Borel measure, this immediately yields the integral representation on the
Borel subsets of S, stated in the proposition. []

5. Characterization of the homogenized bulk energy density

The goal of this section is to prove that the function fgiven in Proposition 4.1
is precisely the function fi,,, introduced in Proposition 2.1. This is achieved in the
next two propositions. We use the notation Y =70, 1[".

Proposition 5.1. f(&) £ from(&) for every &€ M™".

Proof. Fix {e M™*". From the definition of f,,, for every ¢ > 0 there exists
¢ = ¢(o) > 0 and a function ve W{?(Y; R™) such that

[ £(x/e, &+ Vo(x) dx < from(©) + 0.

We still denote by v the 1-periodic extension of v to R". For every heN define

u(x)=¢-x+ & v <i x> for xeR". Since <v <£ x>> is bounded in L?(Y; R™), we
e & En h

have that (u,) converges to ¢-x in LP(Y;R™). We may assume that ¢ = for
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a suitable ke N, so that the function x — f (f, 17> is Y-periodic for every . Hence,
€
by the definition of F|,

Fo(¢-x, ¥) < lim inf f f(j £+ (Vo) < x>> dx
’ “h “h
< lim inf <ﬂ> j f(f, E+ Vu(x)) dx
h—+ o & &
([efen] + DY

— lim inf <‘°"> <[‘°} + 1” f<x, £+ Vv(x)> dx.
h>+oo \ & & g

Therefore Fo(¢-x, V) < from(€) + 0. The conclusion follows from Proposition 4.1
and the arbitrariness of ¢ > 0. []

Proposition 5.2. For every &€ M™*", we have f (&) = from(E).
Proof. For the sake of clarity, the proof is divided into three steps. Fix £e M™*".
Step 1. There exist a sequence of positive real numbers (a;,) converging to 0 and
a sequence of functions (wy) in SBV?(Y; R")NLP(Y; R™) such that

(i) wy,—>&-x in LP(Y; R™),
(5.1) (i) lim #""'(S,nY)=0,

h—+

(i) lim sup Jf< th(x)> dx < f(&).

h—+

Proof. By assumption there exists a sequence (v,) in SBV?(Y; R")nL?(Y; R™) such
that v, > 0 in L?(Y; R™) and

Jim F(Cox 4oy, Y) = Fo(Ex, Y) = fle.

Set u,(x) = & X + v(x), | s | Loy rmy = GWP L, Bl = ke 1t is easy to see that there
exists a divergent sequence (k;) of natural numbers such that

Op
pr—0, —-0.
B

h

Now, in order to be able to introduce the sequence (wy), let us consider for every
heN and 2eN" the set Q) ; = f,(2 + Y). Let A(h)e N" be the index of a “minimal
cube”, i.e

Fsh(uha Qh,/l(h)) =< Fa;,(”ha 0.1
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for every Ae N" with Q,, ; < Y, and set
1
On=Onm> Xn=Pur(h), wy(x)=<¢x + ﬁ_ v(xp + Brx), xeY.
h

Let us prove (5.1) (i). Easy computations show that

1/p
H Whp — i'x ” LP(Y;R™) = (ﬂ (n/p)+1 <j |Uh |pdy>

S (S
=S it Il ey = | & .
(B B

The conclusion is now immediate by our assumptions on a;/f3;,.
Let us prove (5.1) (ii). For every he N,

F (uhv Y) = |:ﬁh:|n eh(uh’ Qh) g |:%:|"c3%n_l(suthh)'

Therefore, since the sequence (F,,(u;, Y)) is bounded, there exists a constant C > 0
such that

_ C
A" NS, N0 < SIEAE for every heN.
On the other hand, §,, Y = i((S,}th,,) — X)) = i((Suth,,) — Xp), Which implies
that ﬂh ﬁh
1 g\ 01
H"YS,, Y H"L(S, < : .
TR <[1/ﬁh1> [1/6:]

Since (f3,) converges to 0 as h tends to + oo, the proof of (5.1) (ii) is accomplished.

Let us now define o, = ¢;,/f,. Then oy, > 0 as h » + oo. We now prove (5.1) (iii).
By taking into account the periodicity assumption on f and the fact that 8, /e, €N,
we have

f f(af th(x>> dx = f f(aﬁ &+ (Vo) (xi + ﬁm) dx

1 Y =X
~ i | (e e )

On

_ b Y
-7 J f(b = Vvh(y)> dy

On

1/ﬁh l/ﬁh n
<[1/5h]> [d Fo\(u, Qn) = <[1/ﬂh]> F,, (uy Y).

Hence lihm sup ff(::, Vw,,(x)) dx < hlir+n F, (uy, Y) = (&), which proves (5.1) (ii).
-+ o0 h -+ o0

Y
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Step 2. For every fixed n > 0 the sequence (wy) can be chosen so that
(1) 34 > 0 such that | wy|| L>y.rmy = A4 VheN,

(i) w,—> & x in LP(Y;R"™),
(5.2 T _
(iii) th+n A"(S,,nY) =0,

(iv) lihnj sup Jf<ai th(X)> dx < f(&) +n.

Y

Proof. Apply Remark 3.6 to the sequence of functionals u — jy [ G, Vu(x))dx.
Thus, Lemma 3.5 applied to (wy), with Mo = || &- x || = (y.rm), furnishes a sequence
¢@n(wy) which satisfies properties (5.2), as one can easily check on account of
properties (5.1) and the fact that Sy, ., S S,,. Now the functions ¢,(w,) are
renamed wy,.

Step 3. We replace the sequence (w,) with a suitable sequence in W 7 (actually
Lipschitz functions), still satisfying properties similar to (5.2) (ii) and (5.2) (iv), and
apply the homogenization results in W -2,

Proof. We first need a preliminary remark. By Proposition 1.1, for every he N we
have

jM"(IVWhI)dx < C(p, n)flehl"dx §C(p’n)ff<::, th>dx.

Cq
Y Y Y
Then the sequence (M?(|Vw,|)) is bounded on L*(Y). This ensures, as proved in
[1, Lemma 1.7], a weak equi-integrability property for (M?(| Vwy|)). More precise-
ly, for any ¢ > 0 there exist a Borel set C, = Y, 6 > 0 and an infinite set S < N such
that |C,| < ¢ and for all Ce 4(Y),

if CnC,=0 and |C|<, then jM”(|th|)dx <¢ forall heS.
C
Fix ¢ > 0 and let C, and ¢ enjoy this property. It is not restrictive to assume that

S = N. Since (M?(|Vwy])) is bounded in L*(Y), we can choose Z, = 1 such that for
every 4 = A, and heN,

A
[{xeY:M(|Vw,]) > A}| <9, ;<A,

where A is given in (5.2) (i).

By Theorem 1.2, for every he N and A = A, fixed, there exists a Lipschitz
function wy, ;: Y, —» R™ whose Lipschitz constant does not exceed 2m(c’(n) + 1)A
such that w, ; = w, a.e. on Y \E, ;, where

Eh,/lz {XGYM(|DW;,|) >2)L}
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Since M(|Dwy|) < M(|Vw,|) + M(|D*wy]), by Proposition 1.1 we have

|Ep :\Ce| < [{xe Y\C,: M(|Vw,|)(x) > A} + [{x€ Y : M (| D*wy|)(x) > A} |
S [{xe Y\C,: MP([Vwy|) (x) > A7} | + A7 Te(n) | Dwy |(Y)
AP | MP(|Vw,|)dx

{M(IVwp]) > Z\Ce
+ 227 Ye(n) [ wy || Lo rerm A" (Sy,0 YY)
S el + 227 e(mAA N (S,,NY).
This implies by (5.2) (iii) that

[IA

(5:3) lim sup 27| E, ;\C, | < e.
Moreover, for a suitable constant K = K(n, m) > 0 we have
(5.4) 0< f<§h Vw,,J) <KJ)* onY,.
Thus, since Vw,, ; = Vw;, on Y \E, ;, we get

J f(xa VWh,l) dx < J f<x ) th> dx + K27 E, ;\C,|
th OCh

Y A\Ce (Y \C\Ep, 2

< f f(i, w,,) dx + KJ?| E, \Cil.
o
' h
By taking into account (5.2) (iv) and (5.3), the previous inequality yields
. X ) X
(5.5 lim sup j f(—, VWM> dx < lim sup ff(—, th> dx + Ke
h—>+ o0 oy h—>+ o0 oy
Y\C, Y
<f(© +Ke+n.
From (5.4) we also deduce that for every 1 = A, there exist an increasing sequence

(o(h)) of natural numbers and a function ¢ € L*(Y,) such that f (x/otz ), VWem. 1) — @
in w*-L*(Y,). In particular, for all Be #(Y,),

. X
(5.6) Jq;(x) dx = hllrfw Jf<oc o Vw(,(h)_,1> dx.

B B

On the other hand, by passing, if necessary, to a further subsequence (still depend-
ing on ) we can assume with no loss of generality that there exists w, e W1 *(Y,)
such that w,g,. ,— w;, in w*-W 1= (Y,). By Proposition 2.1,

thom(Vw,l) dx < 1}m+infjf< al , VWJ(,,),;) dx = J(p(x) dx
-+ Ol (h)

A A A
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for all Ae.o/(Y,). It follows that f,,(Vw,(x)) < ¢(x) for a.e. xe Y,. Then (5.5) and
(5.6) with B = Y,\C, imply that

h—+
Y \C, YA\Ce

f Jhom(VW;)dx < lim sup f f(;ca VWh,A) dx §J7(f) + Ke + 1.
h

Therefore,

(57) fhom(é)| Ya\Ce,/l| = j fhom(é) dx é (é) + KS + '/Ir

YAC, 2
where C, , = C,u{xe Y :w, &+ ¢ x},and 1 = /,.
Since (| Dw,|(Y)) is a bounded sequence, by Proposition 1.1 there exists a con-
stant C > 0 such that

H{XE Y, Wom.2 F Wom) | S 1 Egmy. 2] = =

By the lower semicontinuity of the functional w — |{xe Y, :w(x) + 0}| with re-
spect to the convergence in measure we infer that

~| 0

[{xeY, wi(x) =& x}| <

Hence, from (5.7), from(&) (1 — &)" — & — C/2) < f(¢) + Ke + n. The conclusion now
follows if we consider successively the limits as A - + o0, e > 0%, and n - 0". [

6. Characterization of the homogenized surface energy density

Here we first prove Proposition 2.2, where the function gy, is introduced.
Then, as we did in the previous section for the volume part, we prove that the
function g, which represents F on finite partitions according to Proposition 4.2, is
actually the function gyop.

Proof of Proposition 2.2. For every orthonormal basis v = (vg, v{,. . .,v,—1) of R",
set

0, ={aovo + """ + Oye 1 Vao1:%0se - - s 0%—1€] — 3, 3[}

and for every ze R™ and ¢ > 0, set

(6.1) I(v) = inf{ [ glx/e,u™ —u=,v)dA"" " :ue SBV?(Q,;R™),

5400y
Vu=0ae,u=u,, on GQV}.
For the following four steps we consider ze R™ fixed.

Step 1. Let v =(vg, Vi,...,Vu—1) and v/ = (vo, Vi,...,vn—1) be two orthonormal
bases of R" with equal first vector. Suppose that v is an orthonormal “rational basis”,
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ie, for all ie{0,...,n—1} there exists r;eR\{0} such that ry;eZ". Then
lim sup,-ol,(v') < lim inf,_ oI, (v).

Proof. Foreveryi=1,...,n—1let y; > 0 be such that v; = y;v;€ Z". If we set
P={oavi+ - 4 0y qUyq:04,. .. ,“n—1€[—%,%[},

then the function g is P-periodic in the first variable, in the sense that
gx + lLivy + -+ + 1, 10,1, W, t) = g(x, w, u) whenever (x, w, p) e R" x R" x §" 1
and l;,1,,...,l,_€Z.

Let e > 0,7 > 0 and ¢ > 0 be fixed. Let u,e SBV(Q,; R™) with Vu, = 0 a.e. and
u, = u,,,, on 0Q, be such that

(6.2) [ ogx/e,u” —u v, )dA" " <L) + 0.
Suzr\Q‘.

For every A = (A1,...,n_1)€Z" ! set
n
xlzi”(;ulvl —‘r o . +;“n—lvn—1)y Ql:x}v—i_EQv'
We have to choose the centres x; properly. Let

A=A, ¢) = {iGZ"”IQa cQv, A=(,....L,-)eZ"",

n—1
such that x;€ Y. Li(n/e + ny)v: + HP}

i=1

It is easy to see that
(i) The cubes of the family (Q,), are pairwise disjoint.
(i) Denoting by S = Sug., the hyperplane <{x, vo) = 0, we have

i (3n(2U 0.)) =0

reA

(i.e., lim,_o(n/e)" * #A(n, &) = 1).
Define u,:Q, — R™ by

i (x) = u(e(x — x,)/m) if xeQ;, 1eA,
T ey (X) otherwise.

It turns out that S, = SulJ,.,0,, and clearly
LS [ g/mouy —uy,v,)damt
Su"me
We can estimate this integral. We have
I, = | g(x/muy —uy v, )dA" !
SuvaAsAQV

:Z(W/g)"_l j. g(y/s + /llvl + o+ j~n—lvn—1: M: - us_a vu,;)d%n_la
A

Su,NQy
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where the change of variable x + ¢(x — x;)/n has been applied on Q. Then, by the
P-periodicity of g and by (6.2)

I < (/e # A, o)U(v) + o).
Let us consider Sy, N(S\U,c,Q.):

I, = | g(x/n, uy —uy ,v,)dA" !
Su,ns\U,, ,21)

ca(l + IZI)ff"—l(Sﬂ(er\ U Qa))-

Aed

lIA

The estimates now obtained for I; and I,, together with property (ii) satisfied by A,
yield
lim sup L(v)=I.(v) + 0.
.

We conclude by taking the lower limit for ¢ - 0 and by considering the arbitrari-
ness of ¢ > 0.

Step 2. Let v = (vg, Vi,.-.,Vy—1) and v = (vo, Vi,. . . ,Vn—1) be two orthonormal
rational bases of R" with equal first vector. Then the limits lim,_yI,(v) and
lim,, oI, (V') exist and are equal.

Proof. By applying Step 1 with v =" we obtain the existence of the limits. By
exchanging the roles of v and v' we obtain that they are equal.

Step 3. For every o > 0 there exists 0 > 0 (independent of zeR™) such that if
V=0, Vis...,Vu—1) and v' = (vo, Vi,. .., Vy—1) are two orthonormal bases of R"
with |v; — vi| < 0 for every i =0,...,n—1, then

lim %)nf I,(v) — Ko < lim %)nf I.(v) < lim sup I,(v') £ lim sup I.(v) + Ko,
where K =1 4 2¢4(1 + | z]).

Proof. We use the notation
0,,=1—n0Q, (withvan orthonormal basis for R", 0 <n < 1).
Let 0 > 0 be fixed and let 0 <5 < 1 be such that

(6.3) 20— =2p" H<o.
It is easy to see that there exists 6 > 0 with the property that for every pair
v =g, Vi,...,V—q1) and v' = (vg, vy, ... ,v,—1) of orthonormal bases of R", if

[v; —vi|<o(i=0,...,n—1), then
(1) an’,n = QV\Q_V,Z}"!
(i) #"1(0Qy,)N(HAH")) < o,

where H and H' denote the half spaces {(x, vo> > 0 and {x, vo)> > 0, respectively.
Fix v and v with this property. Given ¢ > 0 there exists ue SBV(Q,; R™) such that
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Vu=0ae,u=u,, ondQ, and

| 9ot —u )"t SLO) o

SunQy

We consider u extended with value u, ,, on the whole R". Then we can define
v:R">R"™  v(x) =u(x/(1 —2n)).

We have S,nQ, = (1 — 29)S,)n0Q,, and

X + - ypn—1
_ — , A"
J\ g<8(1 — 2’7)70 v 5VL>

SuNQy
T R
Sun(25,0v)

= fg(m“—u‘,vod%"‘l+c4(1+|z|)[1—(1_zn)"”];

S.nQy
hence

X
6.4 X - A1
(64) jg(g(l_zm,v v ,vv>
SN0,y

<L(v)+o+ci(1+]z)[1 -1 —2n),"].
Define w:Q,, — R" by
v on Qv’ ns
w(x) = { .
uz,vb on Q\"\Qv’,n-
Clearly

’ X - n—
(6.5) L —2p(V) = J g(mﬂ\ﬁ —-w ,Vw>d~7f g
SwNQ,y

We estimate the integral. We have

Swva’ < (SvmQv',r])u(swman’,n)U(SuZ'wfwm(Q\"\Qv',q))'

Note that (0Q, ,)n(HNH') is contained in the open set (Q,\Q,.»,)nHNH' (property
(1)); since on this open set the function v takes the value z, we conclude that
S,N(@Q, ) "HNH =0. In the same way we obtain that S,n((@Q, )\
(HUH')) = 0. Therefore, up to a #™"~ '-negligible set,

S, (00,.,) < (00, ,)(HAH").
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Moreover, |[w* —w™ | <|z| on (0Q, ,)N(HNH') (v takes the values 0 or z on the
open set 0,\0, 5, 2 0, ). Thus, in view of property (ii) above,

X + - n—1
X A
J g<s(1—2;7)’w v ’“”)

SwnOy

< J g(ﬁ,v*—v,v,))d%"1+c4(1+|z|)(a+1—(1—n)"1),

Sy 0Oy

and, by (6.4) and (6.5),
Lig—ap() S L) + 0 4+ ca(l 4+ |2))(0 + 2(1 — (1 —2n)' 7).
In view of our choice of 7,
Ii-2p(V) = 1(v) + Ko
(with K =1 + 2¢4(1 + |z])). Finally, by letting ¢ tend to 0 we have

lim %)nflg(v/) < lim %)nflg(v) + Ko,
lim sup I,(v') £ lim sup I.(v) + Ko.

The symmetry of the roles of v and v" allows us to exchange them, thus concluding
the proof of Step 3.

Step 4. Let v = (vg, Vi,...,Vy—1) and v' = (vo, v{,...,Vs—1) be two orthonormal
bases of R" with equal first vector. Then the limits lim,_ oI, (v) and lim,_, oI,(v') exist
and are equal. (For this reason and for our purposes we take the freedom to denote
by v both a vector of $"~! and any orthonormal basis of R” with v as first element.)

Proof. Let o > 0 be fixed, and let 6 > 0 asin Step 3. Let u = (uo, it1,. - - » tty—1) and
W= (fo, 1, .., My—1) be two rational orthonormal bases of R" with

lo —vol <0, |y —wil <0, |wi—vil<o (=1,....n—1)

I(p) and I,(y') converge to the same limit / when ¢ — 0. Then it is enough to
observe that Step 3 yields

| — Ko <lim ionflg(v) < lim sup I,v) =1+ Ko

and the analogous inequalities for v'.

Step 5. For every zeR™ the function gyom(z, *) is continuous on S"~ 1, uniformly with
respect to z when the latter varies on bounded sets.

Proof. The proof follows immediately from Steps 3 and 4.
Step 6. For every veS"~ ! the function gnom(*,v) is continuous on R™\{0}.

Proof. Let ve S"~! and let Q, be any unit cube in R" with centre at the origin and
one face orthogonal to v. Fix a, ze R™\{0}.
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For every ¢ > 0, from the definition of g, it follows that there exists ¢y > 0
such that for every ¢ < ¢, we can find ue SBV (Q,; R™) with Vu = 0 a.e.,u = u, , on
0Q, and

(66) j. g(X/S, u+ - uia Vu) dﬂnil é ghom(a7 V) + o.
SunQy
We introduce the notation || s| = max; <;<,|s;|, when s =(sy,. . .,s,)eR™
Assuming, for simplicity, that || a| = |a,|, we define a matrix C = (¢;;) e M™*™
by
¢y =(z;—a)fa; fori=1,...,m, ¢;=0 otherwise.

Note that (C + I')a = z; hence, for every ¢ < g, if we denote by I, the infimum (6.1)
corresponding to Q,, we have

L= | glx/e(CH D™ —u),v)drm!

SunQy
< [ ogfeu” —umv)da" ™+ o C” —uT [)dam
SunQy S,N0,

hence, from (6.6),

|z —al

lall

I; £ ghom(a, V) + 0 + J w( |u+—u—|>dgf"—1,

SunQy

We estimate the last term on the right-hand side. Note that there exists a constant
K > 0 such that w(t) < K(1 + ¢) for every t = 0. Then, for every o > 0,

J w<|2_a| |u* —u_|>d=}’(’"_1
lal

Sun0y
a
SunQyn{lu” —u”| > o}
+ f w<|2_a|oc>dc%"_1
lal
SunQy
1 |z—al . . |z —al -1
<K(-+ lu™ —u" |d#"" '+ o o | A" H(S,NO,)
o la| llall
SunQy
1 - - 1
é[K<+|Z a|>+w<|z alaﬂ JQ(X/&W—M‘,VM)M"”.
o lal lal C3

SN0,

Inserting this in the estimate of I, and recalling (6.6) we get

1 1 — —
Iséghom(a: V)+O-+<K<+|Z a|)+w<|z a|a>>(ghom(aa V)+O').
c3 o lal lall
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Now we let ¢ and ¢ tend to 0 successively, obtaining

(67) Grom(z 1) = grom(ds ) + <I<(1 Ll “') + w('z —al oc)) Grom(ds V).

& o a lall

This inequality holds for every a, ze R™\{0} and o > 0. Now fix ae R™\{0}. From
(6.7), with o = 1, we deduce that there exists a constant K;(a) > 0 such that

Ihom(z, V) < Kq(a) for every ze Bs(a), o =|al.

Observe now that (6.7) clearly holds with the roles of a and z reversed. Hence for
every z € B;(a),

(68) ghom(a9 V) é ghom(Zy V) + Ci |:I<<1 + |Z — a|> + w<|z|:a| OC>:|I<1(a)

3 o Iz

Let z tend to a in (6.7) and (6.8). Then for every o > 0,

. K
lim sup ghom(za V) é ghom(a7 V) + E ghom(a; V)a
z—a 3

. K
lim inf ghom(za V) Z ghom(aa V) - Kl(a)'
z—a oC3
We complete the proof by letting « tend to + oo.
Step 7. We prove the stated estimates of gy, -
Proof. From the analogous estimates for g it follows that it is enough to prove that

inf{ [ O+ u" —u"|)d#""":ueSBV(Q,;R™), Vu=0ae,u=u,, on 5Q‘}

SunQy
=1+]z].

Let u be an admissible function for this infimum; we regard u as extended to the
whole of R" with value u,, on {xeR":|{x,v)| >3} and by periodicity on
{xeR":|{x,v)| < }}. Forevery ke N let u;: Q, — R™ be defined by u(x) = u(kx). It
is easy to see that (u,) converges to u., in L'(Q,;R™). Since the functional
u g o (4 u" —u”)d#"" ' is L'(Q,; R™)-lower semicontinuous (see [6,
Theorem 3.7]), we have
L+ |zl <liminf | 1+ | —w NdA" ' = | (14 u® —u" )da"" .
k>t s, no, 5.0,

This concludes the proof. []
Proposition 6.1. §(z, V) £ grom(z, V) for every (z, v)eR™ x "~ 1.

Proof. Since § and g;,,, are continuous in the second variable, we can restrict our
attention to the case in which tve Q" for some t € R\{0}. Without loss of generality
we can suppose that v = e;. Indeed, let (e7,. . . ,¢,) be a “rational basis” of R" (see
Step 1 of the previous proposition) with ¢ = v. Then there exist rq,. . . ,r,€ R\{0}
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such that vy = ryé},. .., v, = r,e, belong to Z". It follows that a 1-periodic function
¢ on R" satisfies ¢(x) = ¢(x + v;) for every i = 1,...,n and xeR". As a conse-
quence, if 4 is the n x n matrix such that Av; = ¢; (i = 1,. . . ,n), then the change of

variable x — y = Ax transforms 1-periodic functions into 1-periodic functions and
the direction of v into the direction of e;.
Define Q =] — 3, 3[" and

0() = {z if {(x,e;>=0,

(69) 0 if <x,e;> <O.

Fix ¢ > 0; there exist ¢ = ¢(0) > 0 and ve SBV(Q; R™) with Vv = 0 a.e. and v = u.
on 0Q such that

(610) j g(X/S, U+ - Uﬁa Vu)d%n71 é ghom(zs el) + 0.
S,n0

We regard the function v as extended to R” with value u, on R"\{xeR™:
|{x,ey»| >3} and by periodicity on {xeR":|{x,e;>| <3}. For every heN we

define
wi(x) = v<£x>, xeqQ.

Eh

The sequence (w,) converges to u, in L?(Q; R™):

J 1wy — | P dx = | 1w —u)(y)|"dy
0

GON{Kxep] <3}

" ([i} N 2)"_ [ 1o(y) — w37 dy,
En (4]

which tends to 0 as i tends to + co. Fix > 0 and set Q, = {xeQ:[{x, e; )| < n}.
By the definition of F, we have

‘°”‘>" [ o —u)()|7dy

FO(uz> Qn) é I;mgnf< j'f(x/'shs O)dx + j g(X/Sh, W}:L - W}:: th)d%n_1>
>+ o 2,

SWJ.mQﬂ
. . En "l .ot - opn—1
<¢|0,] + liminf | = [ g/e,v™ —v7,v)da .
h—+ o & B
0,)NS,

We may suppose that ¢ = 1/k for a suitable k € N. Then the function y +— g(y/s, s, v)
is 1-periodic. Hence

n—1 n—1
Fo(ti:.0p) < 210y +1,gm+inf<i"> <m + 2) J (et = v v)dam
-t ’ 9

2nS,
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By (6.10),
FO(“za Qﬂ) g Cs | Qr]' + ghom(za el) + a,

and, by means of Propositions 4.1 and 4.2,

f(0)|Ql1| + g~(Z, el) é c2|Qr1| + ghom(za el) + 0.

Asn—07% and ¢ —» 0" we obtain §(z, e1) £ Gnom(z, €1). [
Proposition 6.2. §(z, V) = gnom(z, v) for every (z,v)eR™ x S" 1,

Proof. Fix (z, v)e(R™\{0}) x $"~'. As in the proof of the previous proposition,
without loss of generality we may suppose that v = ¢,. Let u, be defined by (6.9).
Fix 6€]0, 1[ and define Q, =] — %, 5[ x ] — 3, 3[" "~ *. There exists a sequence (1)
in SBV?(Q,; R™MNL?(Q,; R™) such that

Up = U, iIl Lp(Qa; Rm), Fs,,(vha Qa) g FO(uz, QO’)'

By applying the truncation Lemma 3.5 for every €70, 1[ we can find a sequence
(uy) iIn SBV?(Q,; R")NL*(Q,; R™) such that (u,) is equibounded, and u;, - u, in
L?(Q,; R™) and F, (u,, Q,) < F,, (vy, Q,) + 1 for every heN, so that

lim sup Fy, (s, Q0) < Fo(uz, Qo) + 1 = (0)0 + §(z, e1) + 11
In the last equality we have taken into account Propositions 4.1 and 4.2.

It is easy to see that there exists a nondecreasing sequence (n,) of natural
numbers such that () tends to + oo, (n,¢;,) tends to 0 and

(nh—ﬁh)"gjq lu, — u.|Pdx — 0.
For every he N we set f§, = mye;, and for e {0} x Z" 1,
Xn 2= Pt Onz = Xna + BuQos-
Let A(h)e {0} x Z" ! be the index of a “minimal cube”, i.e.,
Fsh(uh: Qnamy) = Fs;,(uha On.2)
for every 2e{0} x Z"~! with Q, ;, = Q,. We define
Xn = Xnamys  On = Onam> WalX) =un(xy + Brx), x€Q,.
Clearly w,e SBV?(Q,; R")NnL*(Q,; R™). Let us prove that
(1) (wy) is equibounded,
(ii) wy, > u, in LP(Qg; R™),

(iii) | |Vwy|?dx —0,
Qs

(6.11)

(iv) lihmfup J g <:: Wi — Wi, vwh> d#" 1 < f(0)o + G(z, e1) + 1,
e .
Sw,N0s

where (o) is a suitable sequence tending to 0.
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Property (i) is obvious, while (ii) is checked as follows:

1 1
f Wy — u|Pdx =n j |“h—uz|de§7 f lup — u|Pdy,
Qs h 0, ﬂhQ:r

which tends to 0 as & tends to + oo thanks to our assumptions on f;,. Let C be an
upper bound for the sequence (F,,(u;, Q,)). Then

1 n—1
(612) C g Fah(uha Qo’) g Z th(uha Qh,/l) é |:E:| Fs;,(uh’ Qh)
Je{oyxz" !

h1 S Qa

1]t X
= M K <V>d

On

1 n—1
=cy ﬁ_ f|Vu,,|pdx.
h

O

\

We now estimate [, |Vw,|?dx. We have

J IVl Pdx = [ | Bu(Vun) (i + Bix) |7 dx = B7" [ [ Vu(1)]” dy;
o, 0, 0,

hence, by (6.12) [, |Vw,|?dx < pr~" C/ey

SRV
+ oo. Thus (6.11) (iii) holds.
Finally, we prove (6.11) (iv), with oy, = &,/f,. Taking into account that x; /e, € Z"

we have
X _ _
g\ —> W}T — W 5Vw,, dAa" !
Ay

which tends to 0 as h tends to

Sw,N0s
X + - n—1
= f g <, u (X + Bux) — uy (x4 + rx), Vw,,> ax#
en/ P
Sy,N0Qq
1 Yy —=Xn 4 - n—1
=Tn=1 g - st () — uy (§), vy, | dA" ()
h Ch
Xp + Br(Sw,nQ0)
1
= ‘[ g<y,u,fr —uh_,v,,h>dc%”_1(y)
Bi En
Su,"Qn
1 1 1
é Fsh(uha Qh) é (uh: Qo‘)

7 B TR
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Therefore,

lim sup J g<faWJ——whvw>d%”léﬁpsupF%wmQJ
o -+ o0

h— + oo h
Swy"Qa

<07 +§(z e1) +,

which proves (6.11) (iv).
We now modify the sequence (w;) to satisfy the boundary condition u, on 0Q,.
Let K, be a compact subset of Q, such that

(6.13) 2| QK| + cal + [2) A" 1SN (Q\K,) S 1.

We apply the fundamental estimate (Proposition 3.1) with 4" a neighbourhood of
K, strictly contained in Q,, A" = Q, and B = Q,\K,.. Then there exist a constant
M > 0 and, for every he N, a function ¢, e C&(Q,) with 0 < ¢, < 1 such that

Fo (0w + (1 — @n)uz, Q5) = (1 4+ n) [F,,(Wa, Q) + F,, (uz, Q,\K,)]
+ M | wy, — u | £rg,vm + -
Set Wy, = @wy, + (1 — @) u.; by (6.13) we have

Fo, 00, Qo) = (1 + [F,, (Wi, Qo) + 1] + M || wy, — || £rgxm) + 1

and lim supy, 1 o F,,(Wy, Q,) = (1 + n) lim supy- 4 o, F,, (u, Q,) + 3n. Moreover, by
Remark 3.2, the functions ¢, can be chosen in a finite family independent of h. This
implies that the sequence (|| V| =g, r") i1s bounded, so that (§Q0|th|de)
converges to 0.
In summary, for every >0 we have found a sequence (W, in

SBV?(Q,; R")NL*(Q,; R™) such that

() (W) is equibounded,

(i) | [VW,|7dx -0,
(6.14) e

(iii) lim sup f g <ﬁ, Wi — Wi, vwh> A=
h— + 0 oy
Sw,NQq
< (L+ ez +70)0 +g(z e1) + 1] + 3n,
(iv) W, = u. on a neighbourhood of 0Q,.
Our next aim is to obtain from (W) a suitable sequence (v;,) with Vv, = 0 a.e. Let (k;)
be a divergent sequence in N such that

1/p
lim k,,(j |wv|vdx> =0.
h—+ 0,

It is not restrictive to assume that 2/k, < |z'| foreveryi = 1,...,m with z* & 0. Let
M eN be such that || Wy || L=(,.rm < M for every he N. By the coarea formula (1.2),
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foreveryi=1,...,m,

[IViildx= [ |VWildx= [ |Dwi|
Qs Q5\S%, Q5\Si,

= _f A" H(Q\S,)NO*({x € Qyp: Wh(x) > t})) dt

I 1+1
Then for every [e Z, with — k,M < < k,M, there exists t; e:| o : |: such that
h h

kM —1

Al 1 n— AL i
(6.15 [ |Vigldx= k_,,yf H((Q5\Sy, ) N*({x € Qg :v04(x) > 1/ }).
1= —k,M
In addition, we define tj = — M if [= —k,M — 1 and t; = M if | = k,M. For
every leZ, with —k,M — 1 <1< kM, set Zl = {xeQ,:t] < wi(x) <t!,,}. We
have Q, = |J,Z}; therefore we can define v,:Q, — R™ by

0 if<0<t,,,
H zi= Zif o <2 <ty

¢t} otherwise.

This definition is well-posed since 2/k, < |z'| if z' + 0. Each set Z/ has finite
perimeter in Q, since it is the difference {W; > t{}\{W] > t/. {} of two sets of finite
perimeter. It follows that v,e SBV(Q,; R™). Furthermore, by (6.14) (iv), it is clear
that v, = u, on a neighbourhood of Q. From the definition of v, we also have that
max; << m | vk — Wi |l L7, rm < 2/ks. If we now consider v, extended to Q =
1 — 3, 3[" with value u, on Q/Q,, then v, is an admissible function for the formula
defining gpnom (2, €1). Hence let us estimate [y 0 9(X/om, vy — vy , v, )dA" " First
of all, notice that S,,nQ, = (J,,(0*Z))nQ,. Since Zi={Wh > t] )\ {Wi, > ti+ 1} itis
easy to see that

0*Zi < 0% {x e Q, Wi(x) > t]}ud*{x e Q,: Wi(X) > 1]y}
and therefore

U (0*{x€Q,: W} (x) > t}HNQ,

'CS

S,,N0, =

L=
(the terms corresponding to [ = — k,M — 1 and | = k,M do not contribute). Then
we have
f g(x/o, Uh — U,V )d%n !
(Sy,NON\S,
< o1 +2M) 2" (S,,M(Q,\Sy,)

m  kM—1

S +2M)Y Y AT, (xe Qi wix) > 1)),

i=11=—kM
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Thus, by (6.15),

I gt/omvn —on, v, )dA" " S co(1 +2M)ky 3 [ Vi |dx

(S5, NONS, i=10,
1/p
é Ckh j’ |th|pdx
QO'
for a suitable positive constant c¢. Hence, by the condition on (k;) we get
(6.16) lim | gx/am, vi — vy, v,)dA" ™t =0.
b=+ (5,n0NSg,

On the other hand, by taking into account the continuity properties of g and that
v, = Vg, A" '-ae. on S,NS,,, we get

I gG/om v — v, v,)dr !

(5,708,
< gl — b, v o
S0,08%,M 06
+ [ o(us =W+ oy — by doam?
S0, S50 Cs
< [ g0c/om Wik — Wi, vy, ) A"
SN Qg

A, 084,000 0d/ky)

From (6.14) (iii) and the coercivity condition of g we obtain that #”"~'(S;,N(Q,)) is
bounded and that

limsup | g(x/om, o4 — vy, v,)dA" "

h=t 0 (5, n0ns,

Slimsup | g(x/o Wi — Wy, ve)dA" !
b=t §an0,

S+ n)lex +7O)o + gz eq) + 1]+ 3n.
From this and (6.16) we conclude that

ghom(zy el) é lim sup j g(x/(xhﬂ Ul:— - Uh_a vvh)dfﬂn_l
h— + 5,00

< +n)((cz +F(O0)o + Gz eq) + 1) + 3n.

By letting # and ¢ tend to 07, we finally obtain gnom(z, €1) < §(z, e;). O

7. Integral representation of the homogenized functional

We first study the homogenized functional Fo on the space SBV?(Q; R™)n
L*(Q; R™), with Qe .«Z,.
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Proposition 7.1. Let Qe .o/y and ue SBV?(Q; R")nL*(Q; R™). Then

FO(“ Q < j.fhom Vu)dx + j. ghom - M_, Vu)dffn_l~

SuNQ

Proof. We proceed as in [23, Lemma 6.2]. Let K be a compact subset of S, with
finite (n — 1)-dimensional upper Minkowski content, i.e., with the property that
there exists a constant C > 0 such that for every he N,

(7.1) h|B,| < C, where B, = {xeR":dist(x, K) < 1/h}.

We can assume that B, = Q for every heN.

For any given sequence (ag;) of positive numbers, tending to 0, with the same
technique used in the last part of the proof of Proposition 6.2, we can find
a sequence v, € BV (B,,; T}), for suitable finite subsets T, of R™, such that

[ — vy L®(By: R") = Op,
(7.2) \/>
A"(S,NB\S,) < ¥— Vu|dx

For every heN consider a function ¢,e Cy°(B,) with ¢, =1 on B,,, 0 < ¢, <1
and ||V llpo@qry < coh, where ¢o>0 is independent of h. Define
= @, + (1 — @,)u. Then (v,) converges to u in L” (Q; R™), so that

(7.3) Folu, Q) < lim inf Fo(u, ).
We have
(7.4) Fo(uy, Q) < Fo(vy, Bay) + Fo(uy, BR\K) + Fo(u, Q\spto,)

=< Fo(vn, B2nnSunS,,) + Fo(vn, B2y \(SunS,,))
+ Fo(uy, B\K) + Fo(u, Q\S,) + Fo(u, S,\K).

We now estimate each term.
By the integral representation of F, on finite partitions (Propositions 4.2, 6.1
and 6.2) and on W1-2(Q; R™) (Propositions 4.1, 5.1 and 5.2) we have

Fo(Wn, BssnSunS,) = | Gnom (0 — vy, v,,)dA" !

Sp,NSunBay

j ghom(l);r - U}:: vu)d%n715

S.NQ

FO(u’ Q\gu) é jlfhom(vu) dx
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Moreover, by (4.3), (7.1) and (7.2) we have
Fo(vp, Bop\(Su0S,,)) = V2<|32h| + j I+ v — Uhl)d%n_1>
(Su,,"\BZh)\Su
< c(|Ban| + A" (S, B2n)\S.)
1
= C<|Bzh| +— |Vu|dx>
h B,
(c denotes a positive constant independent of h and K and which may vary from

line to line),

Fo(uy, B,\K) §C<|Bh| + [ o — ul?|Ve,|?dx + | |Vu|?dx

By, By,

+ A+ lu —o hdamt + f"l((su\K)ﬂBh)>

(85, B2n)\Su

1
< c(Chl + Ch*~'ay + [ |VulPdx + — [|Vul|dx + %"I(S,,\K))
O-hB;,

By
Since
1/p C 1-1/p 1/p

f|Vu|dx§|Bh|11/”<§|Vu|”dx> §<—> <I|Vu|”dx> ,

By, By, h By,
choosing () so that h' ~'7g;, = ({, |Vu|?dx)!/?", we have

—-1_p 1
W~ leh >0, — [|Vuldx—>0 ash— + .
h B,

In conclusion, from (7.3) and (7.4) we obtain

Fo(t, Q) < [ fron(Vi)dx + Iiminf | gy (o) — 07, v dA™ !
! I

© SN0
+ A" H(S,\K) + Fo(u, S,\K),
and, in view of the continuity of gnom(-, v),

FO(u: Q) é j‘fhom(vu)dx + j ghom(u+ - u_a vu)d<#n_1
Q

SunQ
+ e YS\K) + Fo(u, S,\K).

By (1.1) and by Lemma 3.2.38 in [43] we can find a sequence (K;) of compact
subsets of S, with finite (n — 1)-dimensional upper Minkowski content and such
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that "~ 1(S,\K,) — 0 as h — + oo. Therefore
(7.5) Fo(u, Q) < [ from(VU)dx + | Gnom(™ —u™,v,)d#" "' + Fo(u, S,\S.).
Q

S,NQ
We now use the “strong approximation” result in SBV?(Q; R™) given by
Lemma 5.2 and Remark 5.3 in [23], which guarantees the existence of a sequence
(up) in SBV'?(Q); R™) such that ||, || L~ @rn = |4 L*@r and

(1) u, — u in LP(Q; R™),
(i) Vu, —» Vu in LP(Q; M™*"),
(ii1) A"1(S,,48,) =0,
(iv) I (uy —u™ |+ luy —u”[)da""! >0,
Sy, VS,
(v) A" 1(S,\S,,) = 0.

Then Fy(uy, S,,\S,,) = 0 by (4.3), so that the application of (7.5) to the functions
uy, yields

Fo(u, Q) < lim inf Fo(u,, Q)
-+ o0

é 1;1;m+inf<j'fhom(vuh) dx + j ghom(u; - uh_a vuh)d%n_l>~
Stw \ g

S,,th

We conclude the proof by passing to the limit, taking into account the strong
convergence of (u,). [

By (4.3), Fo(u,") = Fo(u,") L (Q\S,) + Fo(u,") LS, is the decomposition of
Fo(u, -) into the sum of two Borel measures on Q which are absolutely continuous

. dFo(u, -
with respect to £" and #" !LS,, respectively. We denote by % and
dFy(u, - . . .\
d(%”o‘(?L)Su)’ respectively, their densities.

Proposition 7.2. Let Qe .o/, and ue SBV?(Q; R"NL*(Q; R™). Then
FO(”» Q\Su) g jfhom(vu) dx.
Q

Proof. It is enough to prove that

dFO(ua )
O > n_
dgn = fhom(vu) P"-a.e. on Q.

For #"-ae. xo,€Q the function u is approximately differentiable in x, and

dFo(u, ") . Fol(u, Bp(xo))
. —— = lim ———,
(7.6 " ., oo W,p"
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Let xoeQ be a point with both these properties. Fix 0<d <1 and
0 < p < dist(xq, Q) A 1. We can find a sequence (u,) (depending on p) in
SBVP?(B,(xo); R")NL?(B,(x0); R™) such that

Up > u in LP(B,(xo); R™), F,, (up, B,(x0)) 7 Fo(u, B,(xo))-
Consider a sequence (&) in R” converging to x, and such that &,/¢,eZ". There

exists hoeN (depending on ¢ and p) such that &, + pB;(0) = B,(x,) for every
h = hy. We can then define

1
up,,:B5(0) = R™, uy ,(y) = ;(uh(fh + py) — u(xo))

for every h=hy and u,:B;(0)>R™ u,(y)=}(u(xo+ py) — u(xo)). Clearly,
up,,€SBVP(Bs;(0); R™) and u,eSBV?(B{(0); R™). From the convergence of
(up) to u in LP(B,(xo); R™) and from the continuity of translations in L' it follows
that

(7.7 Un,p > Uy in L*(B,(0); R™).

Moreover, if for every A€ .o/, and ve SBV?(4; R™) we define

en/p’

A S,nA

Fh,p(v,A)=Jf<L Vu>dy+c3 f (1 4 v — o~ ) dant

(c3 is the constant appearing in property (iv) satisfied by g (Section 2)), then

F B
8 lim sup (1, B(0) < -2 Pel¥0))
msu :

Indeed, for every ve SBV?(B;s(0); R™) we have
Fusv B0 S | f(i, w) dy
en/p

B5(0)

+% J (1 +plot — v |)damt

S, Bs(0)

f<L, Vv) dy
en/p

B5(0)

1
+ - J g<y,p(v+ —v7), vv>d%”_1.
p en/p

S,0B;(0)

lIA
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Then for every h = hy,

py
) (

Fy, p(uy, ,, B5(0)) = f f<£ Vu,) (&, + PY)> dy

h

1 - —
+ - J g (py’ (" — u ) (& + py), Vu,,,,1> A1

p €n
Suy B5(0)
1 _
- f f(" 5”,(Vuh)(x>>dx
Ep
Ep + pBs(0)

IIA
)=
TN
—

~
N
> | =

<

=

=
N

IS

=

Su,NB,(xo)

i

By taking the upper limit we obtain (7.8).

Now let (p) be a sequence of positive numbers tending to 0 with
0 < py < dist(xg, Q) A 1. In view of (7.7) and (7.8), for every ke NN there exists
heN such that the function v, = u,_, has the following properties:

1
(7.9) | vk — Up, I LUB,O0LR™ = %,

FO(ua Bnpk(xo)) + 1

Pk

(710) Fhk,pk(vka B&(O)) é

Moreover, h can be chosen so that the sequence (g, /p;) tends to O as k — + c0. We
can apply Proposition 3.3 to the sequence (F,_, ); to obtain the existence of
a strictly increasing sequence (o (k)) of natural numbers such that for every 4 €./,
the limit

FO( K A) = F-kLiIPoo Fha(k),pd(k)( ) A)

exists on the space SBV?(A4; R™")NLP(4;R™) endowed with the LP(4;R™)-
topology.
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Since we assumed that u is approximately differentiable in x,, if we define
w(y) = Vu(xo)- y,(y€R"), then for every p > 0,

[ 10 = winay =5 | [u(9) — ulxo) = Vulxo) (x = o)l ;

0
B4(0) B (xo)
1 — u(xo) — Vu(xo) " (x —
<L [ 1=t Vol e ol
p |x — Xo]
B,(xo0)

which tends to 0 as p tends to 0. Hence (u,) converges to w in L'(B;(0); R™) as
p tends to 0. It follows, by (7.9), that (v;) converges to w in L*(B4(0); R™). We now
apply Proposition 3.4 to the sequence of functionals (F), ). By (7.10),

Fo(w, B;(0)) < lim inf F), . ,,., (Va9 Bs(0)

(k) Pa(k)

< i ing PO B G0 _ Pl Byt
k=>+w ) p=0” p

Propositions 4.1, 5.1 and 5.2 applied to F, yield

00" from (Vit(Xo)) < lim M'
p—

n

Let now 6 — 1. The conclusion follows from (7.6). []

Proposition 7.3. Let Qe .o/, and ue SBV?(Q; R™")nL*(Q; R™). Then
FO(“» Squ) g j ghom(u+ - u_a Vu)d%n_l-

S,nQ

Proof. We use the same blow-up technique employed for Proposition 7.2. It is
clearly enough to prove that

dFO(us') +
- 77>
d(cyfnill_su) = ghom(u

We know that for #"~ !-a.e. xo € S, the triple (u™ (x,), u ™ (xo), vu(xo)) is defined, and,
by the Besicovitch Differentiation Theorem (see, e.g., [55, Theorem 4.7]), that

dFO(ua.) = i FO(u: Bp(xo))
Tan—1; o am ————
d('}f l—Su) P20+ Wy—1p

(recall that #" '-a.e. on S, the (n — 1)-dimensional density of #" 1S, is 1 (see
[43, Theorem 3.2.19]). Let x,eS, be such a point. Fix 0<d<1 and
0 < p < dist(xq, 0Q). Let (uy), (¢,) and hy be as in the proof of the previous
proposition. We can then define

up,p: B5(0) > R™,  uy ,(y) = up(S + py)
for every h = hy and u,: B{(0) = R™, u,(y) = u(xo + py). Clearly,

uy, , € SBVP(B;5(0); R")nL?(B;(0); R™), u,eSBV?(B;(0); R")nL*(B;(0); R™),

—u,v,) H#" lae. onS§,.

(7.11)
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and

(7.12) Un,p —> Up in L?(B;(0); R™).

Let # > 0 and define 4, 5 = B;(0)n),, with ). = {xeR":[{x, v,(x0)>| < n}. We
have

. Fy(u, B
(7.13) llhm sup F,, (unp, Ays) = O(Mp,,_pl(xO)) + ¢y 4,51

whenever p is such that c;/p?" ! =c,. Indeed, for every p >0 such that
¢, < ¢y/p?~ ! and for every ve SBV?(B;(0); R™)NLP(B;s(0); R™) we get

Fopv, Ay, =z J (I +|Vo|P)dy + J g<£,v+ - v,vv>d«7f”1
h

Ays Sen4,.s
Cq p y + - pon—1
é p—1 |VU| dy+ g\—/— v —0v ,V, ax +c2|An,6|
p en/p
B;(0) S,nBs(0)
J <— —Vv)dy—l— f g<i,v+—v,vv>dyf"l
én/p
B,(0) S,nB;(0)
+ 3|45

Then for h = h,

P;:h/p(uh,p; An, 5) g P J f<€y> (Vuh) (fh + py)> dy

“h
B5(0)

+ J g(%,u;p—uh,p, uh)d%" Yo Ay sl

[ 5o
s

S"n ,NBs(0)

Ch+l'Ba
+ uy —uy v, |dATE 4yl A, )
n—1 s Uph h > Vu, 4 2 7,0
p En
gh+pSw,ﬁr\350)
§ < < Vu,,(x))dx
B(vo
Y —uy dxa"1 A
+ g ;auh — Uy, Vy, |4 + ¢l 4,51
h
Su,NBy(x0)

By taking the upper limit we get (7.13).
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Now let (p,) be a sequence of positive numbers tending to 0. We can assume
that the condition ¢;/pf ™" = ¢, is satisfied for every ke N. In view of (7.12) and
(7.13), for every keN there exists h, €N such that the function v, = u, , has the
properties:

1
(7-14) [ vk — Up, [ LP(B,(0); R™) =< %,
Fo(u, B, (xo)) 1
(7.15) Fuygn(ts Ano) S =250 4 cal Ayl + 4

Moreover, hy can be chosen so that the sequence o, = ¢, /p; tends to 0 as k tends to
+ 0o. We can apply Proposition 3.3 to the sequence (F,, ), obtaining the existence
of a subsequence (F, ) such that for every Ae.«/ the limit

Fo(-, A)=T- lim F. (. 4)

% (k)

exists on the space SBV?(A4; R™)n L?(A4; R™) endowed with the L?(A4; R™)-topology.
It is easy to see that (u,,) converges in L?(B;(0); R"™) to the function

fu(xo) o malxo)) <0,
YOV Ut () G valxo)y 2 0.

It follows, by (7.14), that (v,) converges to w in LP(A4, ;; R™). Hence, by (7.15),

Fo(w, 4,5 < ligioan%(k,(Ua(k), Ay5) S hlrlionfm + ¢ Ay sl
Fo(u, B,(xo))
—lim o Ayl
p—0* P

Since S,,nB;(0) = 4,, 5, we deduce that
~ Fo(u, B,(x0))
FO(Wa Smeé(O)) é 111}')1 pn—pl + CZ|AVI»5|‘
p—0*

We can apply Propositions 4.2, 6.1 and 6.2 to F,, thus obtaining

FO(ua Bp(xO))

wn—15n7 lghom(u+(x0) - ui(xO)a Vu(xo)) é hn(} T + CZ|A’1’5|'
p—

Finally, let 6 —» 1,  —» 0 and recall (7.11). ]

Conclusion of the proof of Theorem 2.3. Let (¢;) be a sequence of positive numbers
tending to 0 such that for every 4 € .o/, the limit

(7.16) Fo(*,A)=T-1lim F,(-,A)

h—+ o

exists on the space SBV ?(A4; R")nL?(A4; R™) endowed with the L?(A4; R™)-topology
(see (4.1)). So far, in view of Propositions 7.1, 7.2 and 7.3, we have obtained that

(7.17) Fo(u, A) = Fyom(u, A) for every ue SBV?(A4; R™")nL*(A4; R™),



342 A. BRAIDES, A. DEFRANCESCHI & E. VITALI

where Fom(u, A) = jA Jfrom(Vu) dx + fsumhqh(,m(u+ —u~,v,)dA#A" 1. We now prove
that for every A e .o/,

(7.18) - lim F, (-, A) = Fyom(-, 4)

h—+

on the space SBV ?(4; R™) endowed with the L*(4; R™)-topology, and on the space
SBV?(A4; R")nLP(A; R™) with respect to the L?(4; R™)-topology. To this end fix
ueSBVP?(A; R™).

Step 1. From(u, A) < lim infy, -, 4, F, (up, A) for every sequence (uy) in SBV?(A; R™)
converging to u in L'(4; R™) .

Proof. We can assume that the lower limit in the right-hand side is actually a limit
and is finite. Fix 7 > 0 and ke N, and apply Lemma 3.5 to the sequence (u;,) with
M, = k. We find a subsequence (g, ) of (¢,) and a Lipschitz function ¢, :R™ — R"™
having compact support, having a Lipschitz constant less than or equal to 1 and
satisfying ¢, (y) = y if | y| < k, such that for every he N

F, . (@x(usm), A) = F, , (Ugm, A) + 1.

Since (@x(Uym))n converges to @y (u) in LP(A; R™), from (7.16) and (7.17) it follows
that

Fhom((pk(u)> A) é llllr_l;l_'_lgf Fs,,(h)((pk(uo'(h))s A)

= hErJPOOFS"("‘(uG(h))’ A) + n= lilll_l:lJrlgf Fsh(uha A) + n.

By the arbitrariness of # > 0, it only remains to prove that

(719) khr-P Fhom((pk(u)a A) = Fhom(us A)

For every ke N set
E.={xeQ:lux)| >k}, Sp={xeS,:|lu*(x)|=kor|u (x)|=k}.

Then
| From(@(u), A) — From(u, A)|
= bj (fhom (V(@1(1) — from(Vur)) dx
+ Sf (Gnom (@) — QU™ ), V) = Ghom(™ — ™, v,))dA" !
< K<j (I +|VulP)dx + [ (1 + |u” —u|)d,7f"1>,
Ey Sk
for a suitable constant K > 0. Since | E,| and #"~ '({xeS,:|u* (x)| = k)} tend to

0 as k tends to + oo, we obtain (7.19).
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Step 2. There exists a sequence (uy) in SBV?(A; R™)NLP(A; R™) which converges to
uin L*(A4; R™) (or in LP(A; R™) if ue L*(A4; R™)) and which satisfies

lim SUPp— + ochh (uha A) é Fhom(ua A)

Proof. For every keN let ¢,:R™ > R"™ be a Lipschitz function with compact
support, with a Lipschitz constant less than or equal to 1 and such that ¢, (y) = yif
|y| < k. Since ¢, (u)e SBV?(A; R")NL*(A4; R™), by (7.16) and (7.17) there exists
a sequence (vk), in SBV ?(A4; R")nL?(4; R™) with the properties that

vh = gulu) in LA(A R, F, (0, 4) > From(@y(u), A)

as htends to + oo. Therefore for every k € N we can find h, € N such that h, < hy .,
and

H Uﬁ - (pk(u) HL"(A;R"‘) é l/ka |F1:h(vﬁ> A) - Fhom((pk(u)s A)| é l/k

for every h = hy. Define u;, = v}, if hy < h < h;, ;. Taking into account (7.19) and
that (¢ (1)) converges to u in L'(4;R™) (or in L?(4;R™) if ueL?(4;R™)), we
conclude that (u;,) is the required sequence.

In view of Proposition 3.3 and of what we have proved up to now for
a convergent sequence of functionals F,, Theorem 2.3 follows by applying Proposi-
tion 8.3 in [35], which asserts that (F,) converges to Fy,y, if and only if every
subsequence of (F,,) contains a further subsequence converging to Fu,n. [

8. Homogenization in fracture mechanics

In this section we consider the homogenization of the functionals F, under
prescribed boundary conditions. The result is then applied to the homogenization
of a boundary-value problem for functionals whose surface energy density satisfies
Griffith’s growth conditions. Throughout this section n = 2.

Let F, (¢ > 0) and F,,, be the functionals introduced in Section 2 and let Q be
a bounded open subset of R” with piecewise C! boundary. In order to prescribe
boundary values to functions in SBV ?(€Q; R™), we introduce a bounded open subset
Q' of R" containing Q a function ¢ e SBV?(Q’; R™) and we define

P4 ={ueSBV?(Q;R™):u= ¢ ae. on Q\Q}.
Now let y = Q'n0Q, and for every ue 7, and ¢ > 0 set
Fad) = FS(M, QUV)» F}?om(“) = Fhom(”: QUV)
Theorem 8.1. Assume that ¢ e SBVP(Q'; R™)NL*(Q'; R™) and #" 1(y) < + oo. Let

(&) be a sequence of positive numbers tending to 0. Then F{,,, = T-lim,_, , ., F;ﬁ on,
with respect to the L'(Q'; R™)-topology.

For the proof we need two lemmas, the first of which collects simple facts whose
proof is omitted.
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Lemma 8.2. (a) Let M be a non-empty subset of R" and let s : R" — R be defined by
Y (x) = dist(x, M). Then  is differentiable a.e. in R" and | Dyy(x)| = 1 at every point
of differentiability x ¢ M.

(b) Let Q be an open subset of R" with a C* boundary, and let M be a non-empty
subset of 0Q. Assume that M is open in 0Q and let xq€ M. If v(x,) denotes the inner
unit normal of 0Q is x,, then

lim Dy (x) = v(xo),

X = Xgo

xeA

with A the subset of Q where  is differentiable.

Lemma 8.3. Let ¢ and y be as in Theorem 8.1. Then for every ue Z,nL*(Q; R™)
and ¢ > O there exists u,€ 2,nL*(Q; R™) such that

(1) uy > uin LP(Q;R™ as ¢ -0,

(i) A"~ 1(S,,ny) =0 for every ¢ > 0,
(111) hm SUPg -0 Fhom(uw QUV) é Fhom(ua QU’V)

Proof. By a simple reflection argument, it is not restrictive to assume that
A"~ 1(S,ny) = 0. Note that if ue SBV(Q; R™) for #"~ '-ae. xo€S,ny, then the
vector v,(xo) is normal to y; in such a case we agree to choose as v,(x() the inner
normal with respect to Q. Then it easily turns out that

1
(8.1)  lim — [{x€B,(xo)nQ:|u(x) — u*(xo)| > ¢}| =0 for every ¢ > 0.

=0 W, P

Let ue7,nL*(Q;R™) and let ¢ >0 be fixed. Define v =u — ¢. Since
A"~ 1(S,ny) =0, we have

ut(xo) —u (x0) =v"(xo) for #" l-ae. xqeS,Ny.

For every x ey we denote by v(x) the unit inner normal to y in x with respect to Q.
Let E be the set of the points x, € S,n7y such that v,(xo) = v(xo) and there exists
p1(xo) > 0 with the property for all p < p;(xo),

(8.2)
1
T -1 5 ghom(u+ _u_avu)djfn_1 _ghom(v+(x0)a Vu(xo))d?f"_l é .
Wp—1pP B,(x0)y

By the Besicovitch differentiation theorem for Radon measures and the fact that
the (n — 1)-dimensional density of #" 1y is 1 #" !-a.e. on y, we obtain that
H"HS,nP\E) = 0. Let x, be fixed in E. Since gyom is continuous in (v (xo), v(xo))
there exists # > 0 such that for all (s, V)eR™x S" "1,

if [s — 0" (x0)| = and |v — v(xo)| =, then | gnom(S, V) — Gnom (V™" (Xo), v(Xo))| < 0.
Moreover, by (8.1), there exists p,(xq) > 0 such that
Vo < pa(xe) [{x€B,(x0)nQ:|0(x) — v* (xo)| > n}] < ap"
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Let Y:R"— [0, + o[ be defined by y(x) = dist(x, y). By Lemma 8.2 we can
suppose that

IDY(x) —v(xo)| =5 for a.e. xeB, (,(Xo).

Then, if we set

Z, = {x€B,(xo)nQ:y is differentiable in x,

| Ghom (0(x), DY (X)) = Ghom (V™ (Xo), V(x0))| > o,
we clearly have
(8.3) Vo = p2(Xo), 1Z,| = 0p”.
For every ¢t > 0 define
V,={xeQ:y(x)<t}, p={xeQ:(x)=1t}=QnaV,
Si(xo) = {xeR":|{x — X0, v(xo) )| < t}.

We show that there exists p3(xo) > 0 such that
(84) Vp = ps(xe), V>0, V,nB,(x0) S Ss(x0)NB,y(xo) Wwith d =1t + ap.
Indeed, from

i 1€ = %0, v(xo) |
1m

X = Xo |x - XOl

xey

y

=0

(which holds for #"~ *-a.e. xo€7) we deduce the existence of p3(xo) > 0 such that
B, (x(X0)N0Q = 7 and

Vp <2p3(x0), VXxEYNB,(x0), |{x — X, V(Xo)>| <3 0p.

Let p < ps3(xo) and xeV,nB,(xo). If Xej is such that y(x) =|x — x|, then
|X — xo| < 2p, and

[<{x — X0, V(X)) | S [{x — X, v(xo)) | + [{X — X0, V(Xo)D| = T + 0p.
This proves (8.4).

Finally let us set p(xo) = min{p;(xo), p2(Xo), p3(xo), a}. In addition to (8.2),
(8.3) and (8.4), by the regularity of y we can also suppose (possibly discarding from
E a further #"~ !-negligible subset) that for every p < p(xo),

A" HOB, (X)) Z T 019"
(8.5) P =2 )
H" (0 B,(x0)) £ (1 4 0)w,—1p" " for every t < p(xo), B,(xo) € Q'

Let 7 = {B,(x0):X0€E, 0 < p < p(xo)}, where p(x,) is defined above, and let
G be an open set containing E. By the Besicovitch Covering Theorem (see [56])
there exists a countable disjoint subcollection % = {B, (x;):ie N} of # which
covers E up to a #" '-negligible set and whose elements are contained in G.



346 A. BRAIDES, A. DEFRANCESCHI & E. VITALI

Let ieN be fixed and define

i; = sup{te]0, pi]: A"~ (Z,ny) > Jopi ! for ae. t€]0,1]).
We show that
(8.6) i, < /op:.
We can assume that ¢; > 0; otherwise there is nothing to prove. By the coarea

formula (1.2) and Lemma 8.3 we have

Pi
|Z,| = [ IDY(x)|dx = [ A"~ NZ,y)dt
z, 0

SN BN
0

so that (8.3) implies (8.6).
Since y is differentiable a.e. and |S,| =|S;| =0, from (8.6) and the coarea
formula we deduce that there exists 0 < t; < \/op; such that

Y is differentiable #"~ '-a.e. on y,NB, (x)),
(8.7 A" S,y NB,(x:) =0, A" 1(Syny,NB,,(x;) =0,
A" NZo) S opi
Define
By the subadditivity of the perimeter we have

HTHOQATFA) S Y AN @AV, B, ()
i=1

i=

Therefore, since Qnd(V, NB, (x;)) < (7,nB, (x;))u(V,NIB, (x;)), we have

(8.8) H"HQNO*A) < i (A" (y.nB,(x)) + A" (V,.nB, (x)))
i=1
By (8.5) we have #"~(,nB, (x;) < 2(1 + 0)#™"~ '(ynB, (x;)). Moreover, by (8.4)
and the inequality ¢; < \/;p,- we obtain
ANV ,00B,,(x1) S A"y, 4 0 (x)NDB,, (%) < 4(n — Do, 1p} /o,
so that, by (8.5),
(8.9) A" (V,nOB,(x;) < 8(n — 1)<#”_1(W\Bpi(x,-))ﬁ.

Since the balls B, (x;) are pairwise disjoint, and since #”"~'(y) < + oo, we conclude
that #"~(Qno*A) < + co and that 4 is a set of finite perimeter. In particular,
u, e SBV?(Q'; R™).
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Taking into account that Dy is the outer normal to 7y, with respect to
V,nB,(x;), and that u and ¢ are approximately continuous #"~'-a.e. on y,, we
have

5 ghom(u; - urr_a Vu,,)d’#n_l

Sugf\(}',,(\Bﬂi(xi))

J. ghom(v> D‘ﬁ)d%n71

PO By i)

| (Grom®" (<0 v(50) + 0)dor ™!

0By (5)\Z,,
teal+ u—|p)#"  (,nZ,,).
In view of (8.5) and (8.2) the first of these two terms does not exceed

(1 + o) (g™ (), v(x) + O)w,—1pf

lIA

é(l +U)< j ghom(qu —u_,Vu)d%n71 +2O—wn—1p?_1>,

7B, (%)

and by (8.5) again this is estimated by

1+ 0)< | Ghom®™ —u=,v)dA"" " + 401/”1(ymei(xi))>.

0By, (x7)

Moreover, by (8.7) (and (8.5)),

. - 2
AN Gu0Z,) S0 S T AT GOB, ()

All these inequalities yield that

M8

(810) j‘ ghom(uz:r - Ll;, Vu,,)d%n7 !

1 8y, 00,0 Byy(xi)

S(140) [ Grom™ —u",v)dA" "+ CA" ()0,

NG

i

for a suitable constant C > 0 independent of o.

We finally show that the family (u,) satisfies the required properties. Clearly
u, € Z,nL”7(Q; R™), and property (i) holds. Since #"~'-a.e. xo€7\S, is a point of
approximate continuity for both ¢ and u, we obtain that #"~'(S, n(y\S,)) = 0.
Moreover, #"~ '-a.e. point x, in E belongs to B, (x;) for some ie N. Since u, = ¢ in
a neighborhood of x, and #"~'(S,ny) = 0, we conclude that x,¢ S, . Therefore
A"N(S,,ny) = 0.

It remains only to prove (iii). We have

Fhom(uas QU’V) é _“f‘hom(vu) dx + j‘ f‘hom(Vqs) dx
Q YUV,
+ j ghom(uJr - u79 Vu) dﬁnil

S.NQ

+ j. ghom(u: - un-_a Vu,,)d%n_1~

Sy, NQN0*A
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Since y,NB,(x;) = 0*A(up to a set of zero #"~ '-measure), we have

f"_1<Qﬂﬁ*A\U (Vtimei(xi))> = A" HQN*A) — i A" (3,NB,, (x));

ieN i=1

therefore, in view of (8.8) and (8.9),

%"1<Qma*A\U (ylimexxi») <80 — DA ().

ieN
This and (8.10) yield that
[ Ghom(d — g v, )dA" P S(1+0) | gGromlt™ —u” v)dA" ' + /o
S,,ar\Qr\r?*A e

for a suitable ¢ > 0 independent of ¢. Then

Fhom(uu's QUV < _gfhom(vu dx + j‘ ghom - Ui, v»d%nil

S,NQ

+ ffhom V¢ dx+ j ghom(]5 _¢73Vu)d%n71

Sy Vg

+(1 +G) j ghom(u —u, vu)d%n71 +C\/g,

nG

hence

hm sup Fhom( Ug, QUV < j.fhom(vu dx + jl ghom(u _s vu) d%n—l

S.NQ

+ j. ghom(u —u ,vu)d<%n_1.

NG

We conclude the proof by using the arbitrariness of the open set G containing E.  []

Proof of Theorem 8.1. Let ue Z,, and let (u,) be a sequence in &, which converges
to u in L*(Q; R™). Then, by Theorem 2.3,

F}?om(“) é Fhom(ua Ql) é lilzm iansh(uha Q/)
-+ o

<11m1an¢(uh)+cz [ (@ +|Ve|r)dx

o\Q

fes [ (41T —¢ N,

Sy N(Q'\Q)

Note that the values of F ﬂ and Fy,, do not depend on Q’, provided Q' ndQ remains
unchanged. Therefore, we can let Q' shrink to Q, thus obtaining

Fiom(u) < lim inf F (uy).
h—+
It remains to prove that for every ue &, we can find a sequence (u,) in &, which
converges to u in L*(Q’; R™), and

lim sup F, (uy, Q0y) £ From(u, QUY).

h—+ o
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For the moment we assume that ue L*(Q’; R™). Then we can consider the functions
u,(o0 > 0) given by Lemma 8.3. By (i) and (iii) of this lemma, it is not difficult to
realize that it suffices to show that

(8.11)
Fiom(us, QuUy) = inf{lihmEuprh(uh,Quy):(uh) inZ,,u, > u, in LY(Q; Rm)}.

Since (F,, (-, Q)) I'-converges to Fyom( -, Q), for every ¢ > 0, there is a sequence (vy,)
in SBV?(Q; R")NLP(Q; R™) converging to u, in L?(Q; R™) and such that

hlll}'l th(vh, Q) = Fhom(uo-a Q)

For every n > 0 let K, be a compact subset of Q with the property that
(8.12) [ (L +1Vug|Pdx <n, A" (S, n(QUY\K,) <

Q\K,

this is possible since #"~'(S, ny) =0. Now we join v, and u, by means of
Proposition 3.1 with A" = Q, A" = = Q a neighbourhood of K, and B = Q'\K,,.
Then we get a sequence (w,) in &, which converges to u, in L”(Q’; R™) and satisfies
the inequality

F, (Wi, Q) = (1 4 1) [F,, (04, Q) + F,, (ug, Q\K)] + M |04 — tt | rigrm + 1
for a suitable constant M independent of h. Since w, = u, = ¢ on Q\Q, we have
F,, (Wi, QUy) < (1 +n) [F, (00, Q) + F, (s, (QUY\K,] + nF,, (¢, Q\Q)

+ M |[|op — g || Lrorm + 10,
and, denoting by I the right-hand side of (8.11), by (8.12) we have

I< lihm sup F, (wy, QU7) = (14 1) (Fom (g, ) + cn) + 1 <lihm sup F, (¢, Q\Q) + 1>,

for a suitable constant ¢ depending only on || u, || .- @, rm. We can now let  tend to
0, obtaining I < Fpom(Uy, Q) < From(u,, QUY); ie., (8.11).

Finally, consider the general case; ue Z,. For every R > 0 let px:R™ — R™ be
a Lipschitz function with compact support and Lipschitz constant less than or
equal to 1, and such that gg(y) = y when | y| £ R. We have limg_, ; . Fyom(@r (1), QUY)
= From(u, QuU?y) (recall (7.19)); moreover, if R = || ¢ | 1», then ¢r(u)e Z,. An easy
diagonalization argument yields the conclusion. []

We turn now to the application of the above results to functionals whose
surface energy densities satisfy Griffith’s growth conditions. More precisely, we
consider a Borel function g:R"x R" x §"~ ! — [0, + oo[ such that

() g(x,s,v) =g(x, —s, —v) for every (x,s,v)eR"xR™x §" 1,
(i) g(-, s, v) is 1-periodic for every (s, v)eR™ x §" "1,
(i11) there exists a function w:[0, + co[ = [0, + oo[ continuous and non-decreas-
ing, such that w(0) =0 and

lg(x,s,v) —g(x,t,v)| < w(|s —t]) forevery xeR", s, teR™ veS" ™1,
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(iv) there exist two positive constants o and f such that
o <g(x,sv)< B forevery (x,s,v)eR"x R"x §"" 1,

Note that these assumptions on g differ from those of Section 2 only in the growth
conditions.

We also consider a function f:R"x M™*" — [0, 4+ oo[, which represents the
bulk energy density and satisfies the same properties as in Section 2. The function
f gives rise to the function fi,,,, according to Proposition 2.1. Moreover, under the
present growth conditions on g, Steps 1 through 5 in the proof of Proposition 2.2
remain unchanged and Step 7 still works with minor modifications. Thus, for every
(z, v)eR™x S"~ ! there exists

Fnom(2, V) = lim 1nf{ | gx/e,u® —u=,v)da"

620 5400y

ueSBV(Q,;R™), Vu=0, ae,u=u,, on 6Qv},

where Q, is any unit cube in R” with centre at the origin and one face orthogonal to
y, and

% = Gnom(2, V) = B.
For every ue 7, and & > 0 define

ff(x/s Vudx + | g(x/fe,u™ —u,v)dA""",

S.n(QUY)

Fhom ffhom Vu)dx + j Qhom(u+ - u_, vu)d'%n_l'

S.n(QUY)

Theorem 8.4. Let (¢,) be a sequence of positive number tending to 0. Assume that
there exists a sequence (uy) in &4 such that

hhm < ah(uh) - 15‘be,,> = 07 sup ” Uy H L*(;R™) < + .
— Dy

heN

Then the functional Fy., attains its infimum on 2, and ming Fy .
- . ¢ 0

= limy, 4 . inf, F,,. Moreover, there exists a subsequence (uq) of (u;) which con-

verges in L*(Q; R™) to a minimizer of Fyom 0n 2.

Proof. For every ¢ > 0, je N define
Fo( j"f x/e, Vuydx + | g(x/fe,u™ —u=,v)dA""",

S.NB

Fi(u,B)=F,u,B)+ [ (lu" —u"| —2j) VOdx"1,

S.nB

Fhom u, B jlfhom(vu dx + § ghom - u_a Vu)d%n_l

S.nB
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whenever A€ .o/, ue SBV?(A4; R™) and Be %#(A), where (see Proposition 2.2)

Ghom(z, v) = lirr& inf{ | (gxfe,u™ —u=v) + (lu™ —u™| = 2j) VO dra""

SunQy

ueSBV(Q,;R™),Vu=0ae,u=u,, on 6Qv}

for every (z, vJeR™x §" 1,
Let us show that for every (z, v)eR™x S" ™1,

(8.13) 1 giom(Z, V) = Ghom(2, V).
jot+ oo

Let (z,v)eR™xS""! be fixed. For every ¢ >0 there exists h,eN and
u, €SBV (Q,; R™) such that Vu, =0 a.e., u, = u,, on Q, and

(814) jl g(haxn u: - M; > vu,,)d%n71 < ghom(za V) + 0.
Su”mQ‘.

Let @r:R™—> R™ be a Lipschitz function with compact support and such that
¢@r(y) = yif|y| £ R. Then (8.14) still holds with u, replaced by ¢(u,), provided R is
sufficiently large. Thus we may assume that u, is bounded.

Consider u, extended with value u, , on {xeR":|{x, v)| = 3} and by periodic-
ity on {xeR":|{x,v)| < 3}. Then it is possible to define

up(x) = u,(kx), xeR"
Clearly ufeSBV(Q,;R™), Vu;=0 ae. on Q, uj=u,, on 0Q, and

I ug [l L=0;rm = |l tig |20, v Moreover, by a change of variable, we have
j g(khaxa (MZ)+ - (M;;)i, vuf)d%n71 = j g(hax7 u; - u;; vua)d%n7 1'
Su‘;va Sungv

Therefore, for every j = || u, || L=, r™>

Ghom(z, V) =klirp‘inf{ | (glkhox,u™ —u=,v) + (lu™ —u™ | —2j) VO dAa"":

.0,
ueSBV(Q,;R"),Vu=0ae,u=u_,,on GQV}
é hkm fupj‘ g(khaxa(u;)+ - (MZ)_a vuZ) da"- ! é ghom(za V) +o.
Since g}{om = ghom» WE Obtain (8.13).

We now prove that (u,) has a subsequence which converges in L! to a minimizer
of Fyom. Note that

lim sup F,, (u,, Q') < lim sup (F, (u,, Quy) + F,,(¢, Q\Q)
= lim sup <ipf F,(,Quy) + F, (¢, Q’\Q)>

< lim sup (¢, Q) = K <§ (1 + V|7 dx+yf"-1(s¢mg')>

(0}



352 A. BRAIDES, A. DEFRANCESCHI & E. VITALI

for a suitable constant K. Hence, from the growth conditions of fand g from below
we obtain the boundedness of the sequence (fﬂ, |Vuy|Pdx + A"~ 1(S,,nQ)),. Since
(uy,) is equibounded, we can apply AMBROSIO’s compactness and lower semicontinu-
ity theorems ([4, 6]), deducing the existence of a subsequence (u4) of (1) which
convergesin L*(Q; R™) to a function u, e SBV?(Q'; R™). Clearly ug € 2,. Moreover,
for every j = supy [l up || L=;rm V' | @ Il L= 10 r"

ffhom VMO dX+ j ghom(uo uO, uu)d%n !

Sun@’

< Fiom(uo, Q) < lim inf F Q).

Ea(h) ( fs(m >

Therefore, if we set

Co = j fhom(V¢) dx + I ghom(d)Jr - ¢7? Vd)) dﬂnil - hhrilfgjp Fsh(d)r Q/\Q),

o\Q S,n(@\D)
we obtain

From(tg) + co < 11m inf inf F

h—->+o0 9, bat®
Note that for every ¢ > 0 the value infy, F, is clearly independent of the choice of
', provided Q' ndQ remains unchanged. By means of a diagonalization argument
we can make the subsequence (¢,() independent of ' if the latter is taken in
a sequence (€2,) which shrinks to Q. Thus we obtain

(8.15) From(t) < lim inf mf F,,-

h—>+w 9

On the other hand, for every fixed ue &, by Theorem 8.1 applied to the sequence
(F? ), there exists a sequence (v;) in 24 such that

hm F (Uha QU')/) Flj;om(us QU?)

h— +

Therefore

Fhom(u Quy) = 11m sup F, (v, Quy) = hm sup l1nF

h— + oo
Letj tend to + oo and apply (8.13); then

Fpom(u) = lim sup infF, .

h=>+ow 2,

This, together with (8.15), immediately implies that u, is a minimizer of Fy,,, and
that the subsequence (infy, F, ), and hence the whole sequence (inf,, F, ), con-
verges to ming, From [

Ea(h)
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Example 8.5 (Homogenization of a composite medium with a chessboard struc-
ture). We illustrate the homogenization process by a simple example, which shows
how the bulk and surface energy behaviours can differ. Let m = 1, n = 2, and let
a:R? - [0, + oo[ be the 1-periodic function defined on [0, 1[? by

L x| Vx| S5 or x| Alxa| 23,

2 otherwise.

a(xlz x2) = {

Consider the functionals

F,(u, Q) = Ja <:> [Vu|?dx + ‘[ a(j) A1,

Qns,

ie., we take f(x, &) = a(x)|£|?, and g(x, s, v) = a(x). The functional F, represents
a composite, with a chessboard structure of mesh size ¢, of two isotropic materials
whose local energies are

]<§ |Vu|?dx + %”I(AOS,,)>
A
with j = 1 and 2, respectively. The homogenized functional of (F,) is

From(, Q) = /2 [ |Vul?dx + | yd#"1,
Q

QnS,

where the function 1 : S — [0, + o0) is given by

YO) = (/2= Dmin{|vi], val} +max{vel, v [}.
In fact, it is proved in [41] (see also [45 Proposition 3.1]) that the homogenization
of [qa(x/e)|Vul*dx in W'2(Q) gives /2 [,|Vu|*dx, while the formula for  is
obtained from [22, Example 5.27, once we note that in the definition of g;,,, we can
restrict to the case of u taking values in {0, 1}. Note the loss of isotropy in the
surface term.
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