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Abstract

We consider the problem of self-similar zero-viscosity limits for systems of
N conservation laws. First, we give general conditions so that the resulting
boundary-value problem admits solutions. The obtained existence theory covers
a large class of systems, in particular the class of symmetric hyperbolic systems.
Second, we show that if the system is strictly hyperbolic and the Riemann data are
sufficiently close, then the resulting family of solutions is of uniformly bounded
variation and oscillation. Third, we construct solutions of the Riemann problem
via self-similar zero-viscosity limits and study the structure of the emerging solu-
tion and the relation of self-similar zero-viscosity limits and shock profiles. The
emerging solution consists of N wave fans separated by constant states. Each wave
fan is associated with one of the characteristic fields and consists of a rarefaction,
a shock, or an alternating sequence of shocks and rarefactions so that each shock
adjacent to a rarefaction on one side is a contact discontinuity on that side. At
shocks, the solutions of the self-similar zero-viscosity problem have the internal
structure of a traveling wave.

1. Introduction

Consider the system of conservation laws in one space dimension

(1.1) L
t
º#L

x
F (º)"0

where x3R, t'0, º(x, t) takes values in RN, and the flux function F :RNPRN is
assumed smooth. If the matrix +F(º) has real and distinct eigenvalues, then (1.1) is
called strictly hyperbolic and its eigenvalues (called characteristic speeds) may be
ordered:

(1.2) j
1
(º)(j

2
(º)(. . . (j

N
(º ).



Let r
1
(º), . . . , r

N
(º ) and l

1
(º), . . . , l

N
(º ) be the corresponding right and left

eigenvectors. They are linearly independent and form a pair of local bases in the
state space.

The Riemann problem consists in solving (1.1) with initial data a single jump
discontinuity:

(1.3) º (x, 0)"G
º
~

x(0,

º
`

x'0.

It describes the local structure of BV solutions at points of shock interactions ([Dp,
Li

4
]) and serves as a building block for solving the Cauchy problem via the Glimm

scheme [G]. In solving the Riemann problem, one encounters loss of uniqueness
that has to be accounted for by imposing admissibility restrictions on solutions.
For weak waves in strictly hyperbolic systems, it suffices to impose such restrictions
only at shocks. LAX [La

1
] in the genuinely nonlinear case and LIU [Li

1
, Li

2
] in the

general case provided comprehensive shock-admissibility criteria and obtained
a unique solution of (1.1), (1.3) for weak waves. See DAFERMOS [D

3
] for a thorough

discussion of the issue of admissibility. The solution of the Riemann problem is
based on the invariance of (1.1), (1.3) under dilations of the independent variables
(x, t)>(ax, at) for a'0. Because of the expected uniqueness, one seeks solutions
º"º(m) that are functions of the single variable m"x/t. The function º is a weak
solution of the boundary-value problem

(P) !mº@#F (º)@"0, º ($R)"º
$

subject to admissibility conditions on shocks. The classical solution of (P) proceeds
in two steps: First, special solutions of rarefaction waves, shock waves or contact
discontinuities are studied, and are used to construct the elementary wave curves.
There is one elementary curve associated with each characteristic field, with the
parametrization of the curve serving as a measure of the strength of the associated
wave. Second, it is shown that the compound curves emanating from a fixed left
state º

~
give rise to an invertible map that covers a full neighborhood of right end

states º
`

(cf. [La
1
, Li

4
]).

The objective of this article is to obtain the complete solution of the Riemann
problem for weak waves by an alternative approach, in the spirit of viscosity
methods. Namely, admissible solutions of (P) are constructed as limits as eW0 of
solutions to the problem

(Pe) !mº@#F(º )@"eºA, º($R)"º
$

,

with e'0. The Problem (Pe) is an elliptic regularization of the Riemann operator
in (P). This approach was proposed by DAFERMOS [D

1
], who motivated it by

introducing an artificial ‘‘viscosity’’ regularization that preserves the invariance
under dilations of coordinates. Solutions of (P) are thus constructed as self-similar
zero-viscosity limits, and the study of the Riemann problem amounts to performing
the following steps:
(i) Construct solutions of the problem (Pe ), with e'0 fixed.
(ii) Construct solutions of (P) as limits of solutions of (Pe) as eW0.
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(iii) Study the structure of the emerging solution.
Our interest in (Pe ) stems from the connection with the problem of zero-

viscosity limits. For the system of viscous conservation laws

(1.4) L
t
º#L

x
F(º )"eL2

x
º

subject to Riemann data, the invariance under dilations (x, t)>(ax, at), a'0, no
longer holds. A simple calculation shows that the solution ºe of (1.3), (1.4) can be
expressed as

(1.5) ºe(x, t)"» A
x

t
,!

e
tB ,

where »(m, s) satisfies

(1.6) »
s
!»mm"

1

s
(!m»m#F (» )m )

for !R(m(R,!R(s(0. Therefore, the zero-viscosity-limit problem for
Riemann data is a two-parameter problem, and studying the limit of ºe as eB0
amounts to studying the limit of »(m, s) as sC0

~
. The problem (Pe ) arises when the

parabolic operator in (1.6) is replaced by an elliptic operator; its study is expected
to provide insight into the difficult problem of zero-viscosity limits. The two
regularizations have been compared for Burgers’ equation [S

2
].

The notion of self-similar zero-viscosity limits appears in the articles [Ka, Tu
1

Tu
2
, D

1
]. TUPCIEV [Tu

1
, Tu

2
] used them to formally motivate a shock-admissibility

condition for the Riemann problem that amounts to the requirement that admissible
shocks have associated shock profiles. The direct use of self-similar zero-viscosity
limits was initiated by DAFERMOS [D

1
, D

2
], who proposed it as an admissibility

criterion and devised a versatile framework for treating the analytical aspects of the
problem. The approach has been tried on several examples of strictly hyperbolic
2]2 systems [D

1
, DDp, KKr, STz

1
, Tz

2
], on a system of two equations that

exhibits change of type [S
1
, Fa

2
], and on the fluid dynamic limit for the Broadwell

model [STz
2
, Tz

1
]. It has been established at the level of such examples [D

2
, Fa

1
,

Tz
2
] that self-similar limits yield the same structure for the solution of the Riemann

problem as the structure obtained by using the shock-admissibility criteria of LAX

[La
1
] and LIU [Li

2
], or by requiring that each admissible shock have an associated

viscous shock profile. In contrast to most admissibility criteria, self-similar zero-
viscosity limits penalize the whole wave fan simultaneously. Based on that fact,
a fitting terminology would be to call admissibility via self-similar zero-viscosity
limits as the zero-viscosity wave-fan admissibility criterion.

Here, we pursue the method for strictly hyperbolic systems of more than two
equations. We address the questions of existence, of the limit eP0, and of the
structure of the emerging solution. The key step lies in controlling the diffusion-
induced wave interactions and obtaining uniform variation estimates for solutions
of (Pe ). The article is organized as follows:

In Section 2 we study the question of existence of solutions for (Pe ). We
show that for any system equipped with an ¸p estimate, the problem (Pe ) admits
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solutions for each e'0. The analysis applies to the class of symmetric hyperbolic
systems.

Sections 3—7 are the core of the article; they deal with the question of obtaining
uniform variation estimates for families of solutions to (Pe). Even for Riemann data,
waves of different families can interact through diffusion and contribute to the total
variation. Therefore, one has to devise a scheme for measuring the variation of the
solution (through the individual waves) and to calculate the effects of wave interac-
tions. We refer to Section 3, which serves as an introduction to this part, for an
outline of our strategy. The outcome is summarized in Theorem 3.1 and states that if
(1.1) is strictly hyperbolic and the data º

$
are such that Dº

`
!º

!
D is small, then (Pe)

has solutions that are of uniformly bounded (and small) oscillation and variation.
In Sections 8, 9, and 10, we develop an existence theory for the Riemann

problem (1.1), (1.3) for strictly hyperbolic systems via self-similar zero-viscosity
limits. Our approach differs from the existence theories of Lax [La

1
] and Liu [Li

1
,

Li
2
] in that it is analytical in nature and bypasses the construction (and hypotheses

required thereto) of the wave curves. The variation estimates of Section 7 are used
in Section 8 to establish the limit as eP0, and, more importantly, to study the
structure of the emerging solution º of (P). The existence result, Theorem 8.1,
states that the Riemann problem is solvable under the sole hypotheses that (1.1) is
strictly hyperbolic and Dº

`
!º

!
D is small. The emerging solution º consists of

N wave fans separated by constant states. Each wave fan is associated with one of
the characteristic fields and is either a rarefaction, or a shock satisfying a weak form
of the Lax conditions, or a composite wave consisting of an alternating sequence of
shocks and rarefactions so that each shock adjacent to a rarefaction on one side is
a contact discontinuity on that side. In Section 9 it is shown that, for shocks that do
not correspond to linearly degenerate characteristic fields, solutions of (Pe ) have the
internal structure of traveling waves. In Section 10 we compare the solution
obtained via self-similar limits to the classical solution of the Riemann problem
for genuinely nonlinear systems [La

1
] or for general strictly hyperbolic

systems [Li
1
, Li

2
]. In both cases the same structure results for the Riemann

solution. The relation with the Liu shock-admissibility criterion is indirect, and
follows from the fact that (a strict version of ) the Liu shock-admissibility criterion
is equivalent to the requirement that admissible shocks have associated shock
profiles [Li

3
, MP].

2. Existence of Connecting Trajectories for (Pe)

The objective of this section is to construct solutions of the problem (Pe ) for
fixed positive e. Problem (Pe) is a boundary-value problem for a system of non-
autonomous ordinary differential equations. First, it is shown that ¸= estimates
are sufficient to establish existence of solutions for (Pe). Then a construction
scheme, originally proposed by DAFERMOS [D

1
], is presented in Section 2.2.

Existence of connecting trajectories then relies on a priori estimates, which are
established in Section 2.3 under various structural hypotheses on (1.1). Most
notably, the analysis applies to the class of symmetric hyperbolic systems.
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2.1. Preliminaries

Assume that º is a classical solution of (Pe) satisfying the bound

(2.1) sup
~=:m:=

Dº(m)D6M,

where M is a constant that may depend on e. Integrating the differential equation

(2.2) eºA"!mº@#F (º)@

we easily see that º satisfies the identities

(2.3) º@ (m)"º@(0)e~m2@2e#
1

e
e~m2@2e

m
:
0

e~f2@2e+F(º(f))º@ (f ) df,

(2.4) eº@(m )"eº@(0)#F(º (m))!mº(m)!F(º (0))#
m
:
0

º(f) df.

Using (2.1), (2.3), and Gronwall’s inequality, we obtain

(2.5) Dº@(m) D6Dº@(0)D e(2a DmD~m2)@2e,

where a :"supDV D6M
D+F(» )D.

Integrating (2.3) over (!Je,Je) and performing a change of variables in the
resulting integrals, we arrive at the identity

(2.6) º@(0)
1
:

~1

e~m2@2 dm"
1

Je
(º (Je)!º (!Je))

#

1

e
F (º(0))

1
:

~1

e~m2@2 dm!
1

e
1
:

~1

F(º (Jem)) dm

#

1

e
1
:

~1

m
:
0

fe (f2~m2)@2 F (º (Jef )) df dm.

In turn, this leads to

(2.7) Dº@(0)D
1
:

~1

e~m2@2 dm6
1

e CJeDº(Je)!º (!Je) D

# sup
~16m61

DF (º(Jem))D (4#2
1
:
0

m
:
0

fe(f2~m2)@2 df dm)D
6

6

e
(M# sup

DVD6M

D F (») D).

On the other hand, (2.1), (2.4), and (2.7) give

(2.8) Dº@ (m) D6
C

e
(1#DmD).
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Relations (2.5), (2.7), and (2.8) imply that any solution obeying the bound (2.1)
also satisfies the first derivative estimates

(2.9) Dº@(m) D6G
C

e
if Dm D62a,

C

e
e(2a Dm D~m2)@2e if Dm D'2a,

0(e61.

In (2.9) the constants C and a depend only on sup
~=:m:=

Dº (m)D, while the
exponent becomes negative for DmD'2a. In addition, (2.2) yields

(2.10) DºA (m)D6
1

e
(a#DmD) Dº@(m)D,

which in conjunction with (2.9) provides an estimate for the second derivatives.

2.2. The Construction Scheme

Let e3(0, 1] be fixed and consider the two-parameter family of boundary-value
problems

(2.11) !mº@#kF(º)@"eºA, !l(m(l,

º($l)"kº
$

with parameters k3[0, 1], l71. The following theorem [D
1
, p. 3] provides suffi-

cient conditions that guarantee the existence of solutions for (Pe ). We outline its
proof for the sake of completeness.

Theorem 2.1. Assume that there is a constant M depending at most on º
!

, º
`
, the

function F (º), and e (but independent of k and l ), such that any solution º(m ) of (2.11)
satisfies the bound

(2.12) sup
~l6m6l

Dº (m) D6M.

¹hen, there exists a classical solution of (Pe) denoted again by º(m ) and defined on
(!R,R).

Proof. First, solutions of (2.11) are constructed by means of a continuation argu-
ment. Given a smooth function », we compute the solution ¼ of the boundary-
value problem

e¼A (m)#m¼ @(m)"F (» (m))@, !l(m(l,
(2.13)

¼(!l)"º
!

, ¼(#l)"º
`
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by the formula

(2.14) ¼(m )"º
~
#º

0

m

P
~l

expA!
f2
2eB df#

1

e

m

P
~l

F (» (f )) df

!

1

e2

m

P
~l

f

P
0

q expA
q2!f2

2e B F (» (q)) dq df ,

where the constant º
0
3RN is calculated by

(2.15) º
0

l

P
~l

expA!
f2
2eB df"(º

`
!º

~
)!

1

e

l

P
~l

F(» (f)) df

#

1

e2

l

P
~l

f

P
0

q expA
q2!f2

2e B F (»(q)) dq df .

Set X"C0 ([!l, l ]; RN ) and

) :"Gº3X : sup
~l6m6l

Dº (m) D(M#1H.
X with the sup-norm is a Banach space and ) is a bounded, open subset of X.
Consider the map ¹ : )1 PX carrying »3)1 to ¼"¹ (») defined by the relations
(2.14) and (2.15). ¹ is compact and continuous, and classical solutions of (2.11) are
identified with fixed points of k¹. The map I!k¹ : )1 ][0, 1]PX satisfies the
hypotheses of the Schaeffer fixed-point theorem (see, e.g., [R, Ch. V]). Hence, for
each k3(0, 1] there is at least one solution of the equation º!k¹ (º)"0 in the
set ) .

Now let º( · ; l) denote a solution of (2.11) for k"1. In the last step, solutions of
(Pe ) are constructed as limits of º( · ; l) as lPR. As in the derivation of (2.9) and
(2.10), it follows that such solutions satisfy the bounds (2.12) and

(2.16) Dº@(m ; l ) D6
C

e
e(2aDm D~m2)@2e , DºA (m ; l ) D6

C

e2
(1#Dm D) e(2aDm D~m2)@2e

with C and a depending on M but not on l. Extend º( · ; l) outside [!l, l ] by setting
º(m ; l)"º

~
for m(!l and º(m ; l )"º

`
for m'l. The Ascoli-Arzelà theorem,

together with a diagonalization argument, implies the existence of a sequence Ml
n
N,

l
n
PR, and a function º3C1((!R,R) ; RN ) such that º ( · ; l

n
)Pº and

º@( · ; l
n
)Pº@ uniformly on compact subsets of R. Because of (2.16), the conver-

gence is uniform on R, and º ($R)"º
$

. Passing to the limit l
n
PR shows that

º is a classical solution of (Pe). K
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2.3. The a priori estimates

The aim of this section is to provide the sup-norm estimates that allow the
application of Theorem 2.1. In the sequel, º (m) stands for a solution of the family of
boundary-value problems (2.11) defined on [!l, l ] and depending implicitly on
k, l and e. In the process of estimating º(m ) we pursue ideas that were developed by
DAFERMOS & DIPERNA [DDp] in the context of 2]2 systems and we use the
concept of entropy-entropy flux pairs (LAX [La

2
]).

A scalar-valued function g (º) is called an entropy for (1.1), with corresponding
entropy flux q (º), if every smooth solution satisfies the additional conservation
law

(2.17) L
t
g (º )#L

x
q(º)"0.

Such pairs (g(º), q (º )) are generated by solving the system of (linear) differential
equations

(2.18) +q(º)"+g(º)+F(º).

Trivial examples of solutions are (c ·º, c ·F (º)), with c any constant vector in RN.
Since (2.18) is overdetermined for N73, for systems of three or more equations the
existence of (nontrivial) entropies is the exception rather than the rule. Neverthe-
less, specific systems that arise in applications are often naturally endowed with
some entropy-entropy flux pairs. Also, the class of symmetric hyperbolic systems,
that is, systems for which +F(º) is a symmetric matrix, admits the pair

(2.19) g (º)"1
2
Dº D2, q(º)"º ·F (º)!g (º),

where g is a potential for F satisfying F (º)"+g(º).
Let (g (º) q(º)) be an entropy-entropy flux pair for (1.1). Using (2.18) we deduce

that solutions of (2.11) satisfy the identity

(2.20) !mg@#kq@"egA!eº@ · (+2g)º@

where g"g (º(m)), q"q (º (m)). In exploiting (2.20), it is helpful to use entropy
functions g (º) that are convex (or linear). The following lemma indicates how to
bound the total entropy production. Given a constant entropy level g6 , consider the
level set

(2.21) CgN"Mº3RN : g(º)"g6 N.

If CgN is nonempty, let

(2.22) QgN" sup
U1,U2|Cg6

Dq(º
1
)!q (º

2
)D

be the oscillation of q(º) on the level set CgN .

Lemma 2.2. Assume that g (º) is a convex entropy with corresponding entropy flux
q(º). If g6 is any constant such that

(2.23) g6 ' max
06k61

Mg (kº
~
), g(kº

`
)N,
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then

(2.24)
b
:
a
(g(º(m))!g6 ) dm6K

for any (a, b )L(!l, l ), where K"QgN if g (º(m))'g6 for some m3(a, b), and K"0
otherwise.

Proof. The proof is based on the following observation. Let g6 be a fixed entropy
level and suppose that a, b are two points in (!l, l) with the properties that a(b
and

(2.25) g (º(a))"g (º(b))"g6 with (g lº)@ (a)70, (g lº )@(b)60.

Integrating (2.20) over [a, b], we obtain

(2.26)
b
:
a

(g(º(m))!g6 ) dm#e
b
:
a

º@(m) · +2g(º(m ))º@(m ) dm

6!k[q(º(b))!q (º(a))]6QgN ,

which, upon using the convexity of g (º ), yields

(2.27)
b
:
a

(g (º(m))!g6 ) dm6QgN .

If g(º(m ))6g6 for !l6m6l, then (2.24) is trivially true with K"0. So
suppose that the set Mm3(!l, l) : g(º(m ))'g6 N is nonempty. It is also open and thus
admits a decomposition into a countable union of disjoint subintervals

(2.28) Mm3(!l, l) : g (º (m))'gN N"Z
k|I

(a
k
, b

k
) ,

where k ranges over an index set I (either a finite set or the integers). For g6 restricted
by (2.23) the points a

k
and b

k
lie in (!l, l ). Also, since g (º(m))'g6 for a

k
(m(b

k
with k3I, relations (2.25) are satisfied at the endpoints a

k
, b

k
.

Given any (a,b )L(!l, l ), choose a, b as follows: If g(º (a))'g6 , set
a"supMa

k
(aN; while if g (º (a))6g6 , set a"inf Ma

k
'aN. If g(º (b))'g6 , set

b"inf Mb
k
'bN, while if g (º(b ))6g6 , set b"supMb

k
(bN. If g (º(m))'g6 at some

m3(a,b ), then a and b are well defined, a(b, relations (2.25) are satisfied at a, b,
and

(2.29)
b
:
a
(g(º (m))!g6 ) dm6

b
:
a

(g (º(m))!g6 ) dm6QgN .

Otherwise (2.24) holds with K"0. K

In general, the quantity QgN depends on the form of the level set CgN as well as the
function q(º ) and may be infinite. If it happens that CgN is a compact set, then QgN is
finite and (2.24) provides an integral estimate independent of k, l, and e. An entropy
is called normal if g (º)PR as Dº DPR. If the system (1.1) is endowed with
a convex normal entropy, then nonempty level sets CgN are compact, and this leads

Zero-Viscosity Limits in Systems of Conservation Laws 9



to integral estimates of the type (2.24). For a symmetric hyperbolic system,
g(º)"1

2
Dº D2 is an example of a convex normal entropy.

Next, we present two approaches for obtaining the sup-norm estimates (2.12).
The first exploits the entropy identity (2.20) and requires the existence of a strictly
convex, normal entropy function g (º ), defined (only) on the exterior of some open
ball in the state space.

Proposition 2.3. Assume that (1.1) admits a strictly convex, normal entropy g (º)
defined on the exterior of a ball and satisfying the growth restriction: ¹here are q'0
and positive constants C and r

0
such that

(H) D+g(º) D26Cl (º)g (º)3~q for Dº D7r
0
,

where l (º) is the small eigenvalue of the Hessian +2g(º). ¹hen solutions of (Pe) exist
for every e'0.

Proof. Let g (º) be a strictly convex, normal entropy defined for
Mº3RN : Dº D7r

0
N that satisfies (H) for some q'0. Without loss of generality we

may assume that g(º ) is positive. Let º (m) be a solution of (2.11) on (!l, l). For
those m for which Dº(m) D'r

0
, equation (2.20) is satisfied.

Let r'maxMDº
`
D, Dº

~
D, r

0
N and g6

r
"maxDUD/r

g (º) be fixed, and choose two
entropy levels g6

2
'g6

1
'g6

r
'0. Consider the set

(2.30) A"Mm3(!l, l ) : g (º(m))'g6
2
, Dº(m)D'rN.

Since g (º)PR as Dº DPR, if the set A is empty, then sup
~l6m6l

Dº (m ) D6M for
some M depending on g6

2
and r, and thus (2.12) holds in this case. So, assume that

A is nonempty. It is also open and thus admits the decomposition
A"Z

k|I
(a

k
, b

k
) into a countable (or finite) union of disjoint intervals. In addition

the choice g6
2
'g6

r
implies that, for any k3I,

g (º(m))'g6
2

for a
k
(m(b

k
,

(2.31)
g(º(a

k
))"g(º (b

k
))"g6

2
, (g lº)@ (a

k
)70, (g lº )@(b

k
)60.

Henceforth we focus on a fixed interval (a
k
, b

k
). Let q

k
be a point where g (º(m))

assumes its maximum in the closed interval [a
k
, b

k
]. Using Schwarz’s inequality, the

strict convexity of g, hypothesis (H) and relations (2.31), (2.25) and (2.26) we obtain

(2.32) A
2

qB [g (º(q
k
))q@2!g(º(a

k
))q@2]"

qk

P
ak

g (º(f)) (q@2)~1+g(º(f))º@ (f) df

6C
qk

P
ak

g(º(f ))q~2

l(º(f))
D+g(º (f )) D2 dfD

1@2

C
qk

P
ak

º@ (f) · +2g(º(f ))º@(f ) dfD
1@2

6CC
qk

P
ak

g (º (f)) dfD
1@2

A
1

e
QgN 2B

1@2
.
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For those º3RN such that g(º )'g6
2
'g6

1
'0, we have

(2.33) g (º)!g6
1
'

g6
2
!g6

1
g6
2

g (º).

Then (2.32) yields the estimate

(2.34) g (º (q
k
))q@26(g6

2
)q@2#A

q

2B A
Cg6

2
e (g6

2
!g6

1
)
QgN 2B

1@2

A
qk
:
ak

(g(º(f ))!g6
1
) dfB

1@2
.

Set a"inf Mm3(!l, a
k
) : g (º (f))'g6

1
on (m, a

k
)N, b"sup Mm3(b

k
, l ) : g (º(f))'g6

1
on

(b
k
, m )N. Since Dº($l ) D(r and g6

1
'g6

r
, it follows that a, b are well defined and

satisfy !l(a(a
k
(b

k
(b(l. In addition, (2.25) holds and, as in the proof of

Lemma 2.2,

(2.35)
qk
:
ak

(g(º (m ))!g6
1
) dm6

b
:
a

(g (º (m))!g6
1
) dm6QgN 1 .

Consequently, the right-hand side of (2.34) is bounded independently of k, and
(2.12) holds in the case that A is nonempty. The conclusion now follows from
Theorem 2.1. K

Regarding the growth assumption (H), the following remarks are in order. If the
strictly convex, normal entropy function is of the form g (º)"(1/p) Dº Dp, with
p'1, we easily calculate that

(2.36) +g(º)"DºDp~2º, +2g(º)"Dº Dp~2I#(p!2) Dº Dp~4º?º.

The Hessian of g is a positive-definite matrix having eigenvalue (p!1) Dº Dp~2 with
corresponding eigenvector º, and eigenvalue Dº Dp~2 of multiplicity N!1 with
corresponding eigenvectors º

o any vectors orthogonal to º. Hypothesis (H) is
then satisfied with q"2. On the other hand, if g (º ) and +g(º) grow like a power,
i.e., if

(2.37)
1

c
Dº Dp6g (º)6c Dº Dp, D+g(º) D6c Dº Dp~1,

for some positive constant c, then (H) becomes a restriction on the decay of the
minimum eigenvalue for º large and is satisfied provided that l(º)7Dº D~s for
some s(p#2.

As a consequence of these remarks and Proposition 2.3, we have

Theorem 2.4. If (1.1) is a symmetric hyperbolic system, then solutions of (Pe ) exist for
every e'0.

In the interest of developing technique, we present an alternative way for
establishing (2.12) for symmetric hyperbolic systems. The actual result is weaker
than Theorem 2.4, as it requires a growth assumption on the flux F(º ), but the
approach may be useful for other problems.

Zero-Viscosity Limits in Systems of Conservation Laws 11



Proposition 2.5. Suppose that (1.1) is a symmetric hyperbolic system such that the
flux function satisfies the growth assumption

(2.38) DF(º) D6C(1#Dº D)p

for some positive constants C and p63. ¹hen solutions of (Pe ) exist for every e'0.

Proof. Symmetric hyperbolic systems are endowed with the entropy-entropy flux
pair (2.19), for which (2.20) takes the form

(2.39) !m (Dº D2)@#2k (º · F(º )!g (º))@"e (Dº D2)A!2eDº@D2.

The function g is a potential for F satisfying F(º )"+g(º). It can be defined by

(2.40) g (º)"

1

P
0

d

dt
g (tº ) dt"

1

P
0

F (tº) · º dt,

where g has been normalized by setting g (0)"0. Assumption (2.38) induces
a growth restriction on g:

(2.41) Dg (º)"K
1
:
0

F (tº ) · º dt K6C(1#Dº D)p`1.

Set r"maxMDº
~

D, Dº
`
DN and consider any point m3(!l, l) such that Dº(m) D'r

and (d Dº D2/ dm) (m)'0. Define m@"inf Mf3(m, l] : Dº(f)D(Dº(m) DN and observe that
m@ is well defined with m(m@(l. Moreover, Dº (m@ D"Dº(m) D, (d Dº D2/dm) (m@ )60,
and Dº(f ) D7Dº(m ) D for m6f6m@. Integrating (2.39) over [m, m@], we obtain

(2.42) !

m @

:
m

f (Dº D2)@ (f) df#2e
m{
:
m

Dº@ (f) D2 df

#2k [º (m@ ) · F (º(m@ ))!g (º(m@))!º (m) · F (º(m ))#g(º(m ))]

"eA
d Dº D2

dm B (m@ )!eA
d Dº D2

dm B (m ).

Since

(2.43) !

m{
:
m

f (Dº D2)@ (f ) df"
m{
:
m

(Dº (f) D2!Dº (m) D2) df70,

(2.42) together with (2.38) and (2.41) yields

(2.44) e
d Dº D2

dm
(m )68C(1#Dº(m) D)p`1.

Note that the bound (2.44) holds for any m3(!l, l) such that Dº(m ) D'r.
To conclude the proof, fix two levels r

1
and r

2
, with r

2
'r

1
'r, and consider

the set B"Mm3(!l, l) : Dº(m) D'r
2
N. If B is empty, then (2.12) holds and Theorem

2.1 implies the desired result. If B is nonempty, then it can be decomposed into an
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at most countable union of disjoint subintervals (a
k
, b

k
) such that

Dº(a
k
) D"Dº(b

k
) D"r

2
and Dº(m) D'r

2
for a

k
(m(b

k
. In each of the intervals

[a
k
, b

k
] the differential inequality (2.44) is satisfied. Next, fix k and let q

k
3[a

k
, b

k
] be

a point where Dº(q
k
) D"max

ak6m6bk
Dº(m) D. Lemma 2.2, applied for the entropy

g(º)"Dº D2 and the level g6 "r2
1
, implies that

(2.45)
qk
:
ak

(Dº(m ) D2!r2
1
) dm6Q

r21
(R.

Since the ratio DºD1~p (1#Dº D)1`p/(Dº D2!r2
1
) remains bounded for Dº D7r

2
, using

(2.44) and (2.45) we deduce

(2.46) e
qk

P
ak

Dº(m) D1~p
d Dº D2

dm
dm6C @

qk

P
ak

(Dº(m) D2!r2
1
) dm6C @Q

r21
.

In turn, performing the integration in (2.46) yields

(2.47) Dº(q
k
) D3~p6(r

2
)3~p#

3!p

2e
C @Q

r21
for p(3,

(2.48) Dº(q
k
) D6r

2
exp(C @Q

r21
/2e) for p"3.

In either case, (2.12) holds and the proof is complete. K

3. Solution Decomposition. The Main Result

The aim of this article is to construct solutions of the Riemann problem (P) as
limits of solutions of (Pe ) as eP0. The central difficulty lies in obtaining variation
estimates independent of e for families of solutions of (Pe ). The reason is that, even
for Riemann data, there are wave interactions induced by the coupling through the
self-similar viscosity that need to be accounted for. The derivation of the variation
estimates follows from a lengthy analysis, carried out in Sections 3—7. The present
section serves as an introduction, where we outline the general strategy, introduce
the main hypotheses, and present certain interesting geometric properties.

Our approach is motivated by a detailed study of the following problem:
Suppose we are given a family of solutions to (Pe ) of uniformly small oscillation:

(C
0
) sup

~=:m:=

Dºe (m)!º
~

D6k.

Such a family would also satisfy uniform ¸= bounds

(C
"
) sup

~=:m:=

Dºe (m)D6M,

where the constants M and k are independent of e and k is also small. Determine
under what structural hypotheses on (1.1) the family MºeNe;0

is of uniformly
bounded variation:

(S) ¹»
(~=,=)

ºe6C.
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It is instructive to give a proof of (S) for the single conservation law, which
contains some ingredients of the approach followed for systems. Let MueNe;0

be
a family of scalar-valued functions satisfying

(3.1) euAe"!m u@e#f (ue)@, ue ($R)"u
$

and the uniform bounds (C
"
) (which are easily justifiable in this case). Let

j(u)"f @ (u) be the characteristic speed of the associated hyperbolic equation. It is
easy to see that solutions of (3.1) satisfy the representation formula

(3.2) u@e (m)"(u
`
!u

~
)

e~ge (m)@e
:=
~=

e~ge (f)@e df
,

where

(3.3) ge (m)"
m
:
a
s!j (ue (s)) ds.

From the form of (3.2), it follows that Mu@eN are uniformly bounded in ¸1, and thus
MueN is of uniformly bounded variation.

Returning to the general case, we note that the system (1.1) is assumed to be
strictly hyperbolic, but that no other structural assumptions are imposed. The
eigenvalues of +F (º) are denoted by

(3.4) j
1
(º)(j

2
(º)(. . .(j

N
(º )

and are ordered. The corresponding right eigenvectors r
1
(º), . . . , r

N
(º) and left

eigenvectors l
1
(º), . . . , l

N
(º) are linearly independent and satisfy the relations

(3.5) +F(º)r
i
(º)"j

i
(º)r

i
(º ),

(3.6) l
i
(º ) · +F(º )"j

i
(º) l

i
(º),

(3.7) l
i
(º) · r

j
(º) G

"0, i9j,

90, i"j.

Mr
i
N and Ml

i
N form a pair of local bases in the state space RN. By normalizing one of

these bases we can attain

(3.8) l
i
(º) · r

j
(º)"d

ij
.

The family MºeNe;0
consists of solutions to the boundary-value problem (Pe)

that connect two fixed end states º
~

and º
`

. Conditions that guarantee existence
of solutions for (Pe ) are given in Section 2; nevertheless, the forthcoming analysis is
independent of such considerations, and eventually it will also suggest a construc-
tion scheme. We assume the members of MºeNe;0

satisfy the hypothesis (C
0
) of small

oscillation uniformly in e and (a fortiori) the uniform bound (C
"
). This restricts the

data º
$

to satisfy

(H
D
) Dº

`
!º

~
D(r
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with r sufficiently small. Also, each wave speed is bounded by constants j
k~

, j
k`

independent of e :

(3.9) j
k~

6j
k
(ºe (m))6j

k`
.

By choosing k sufficiently small, we guarantee that the wave speeds are totally
separated along the family MºeNe;0

, that is,

(3.10) j
1~

6j
1
(ºe (m ))6j

1`
(j

2~
6j

2
(ºe (m))6j

2`
(. . .

(j
(N~1)~

6j
N~1

(ºe(m))6j
(N~1)`

(j
N~

6j
N
(ºe(m))6j

N`
.

The bound (C
"
) implies that the derivatives of ºe satisfy the estimates (2.9) and

(2.10) with the constants C and a independent of e. In the sequel we use the
following conventions on notation: The e-dependence is suppressed from functions,
except at places where emphasis is needed. By contrast, any e-dependence of
constants is explicitly indicated by either recording the precise dependence or by
using e as a subscript.

Consider the decomposition of º @e in the basis of right eigenvectors evaluated at
the local value of the solution ºe :

(3.11) º @e (m)"
N
+
k/1

a
k
(m)r

k
(ºe(m)).

The amplitudes a
k
can be recovered by using (3.8):

(3.12) a
k
(m )"l

k
(ºe (m)) · º@e(m ).

Also, integrating (3.11) over (!R,R), we have

(3.13) º
`
!º

~
"

N
+
k/1

=
:

~=

a
k
(f )r

k
(ºe (f )) df.

To compute the equations that a
k
satisfy, take the inner produce of (2.2) with l

k
(ºe)

to obtain

(3.14) !ma
k
#j

k
(ºe (m))a

k
"e l

k
(ºe (m)) · ºAe

"ea@
k
!e+ l

k
(ºe (m))º@e · º@e ,

and hence

(3.15)

ea@
k
#[m!j

k
(ºe(m ))] a

k
"e

N
+

m/1

N
+
n/1

[+ l
k
(ºe(m ))r

m
(ºe(m)) · r

n
(ºe(m ))]a

m
a
n
.

If we introduce the notation

(3.16) j
k
"j

k
(ºe (m)) ,

(3.17) b
k,mn

"b
k,mn

(ºe(m))"+ l
k
(ºe (m))r

m
(ºe(m )) · r

n
(ºe (m)),
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Figure 1.

then a
k
satisfy the coupled system of ordinary differential equations with variable

coefficients

(3.18) ea@
k
#(m!j

k
)a

k
"e

N
+

m/1

N
+
n/1

b
k,mn

a
m
a
n
.

At this point several remarks are in order. First, the decomposition (3.11) is
partly motivated by the classical solution of the Riemann problem (LAX[La

1
], LIU

[Li
2
]). It is expected to capture the behavior near rarefactions, but it is not a priori

clear that it should work well near shocks. Good overall performance would
indicate that (3.11) captures the nature of diffusion-induced averaging at a shock.
The quadratic terms in (3.18) represent the effect induced on the k-family by
interactions of waves of all the families, and the b

k,mn
measure the weights of such

contributions. By virtue of (C
"
), the b

k,mn
are uniformly bounded:

(3.19) Db
k,mn

D6B.

Let g
k

be the antiderivative of

(3.20) g@
k
"m!j

k
"m!j

k
(ºe (m))

defined within an arbitrary constant of integration by

(3.21) g
k
"

m
:
a
s!j

k
(ºe (s)) ds.

In view of (3.9), we have

(3.22) s!j
k`

6s!j
k
(ºe (s))6s!j

k~
,

which in turn implies that g@
k
'0 for m'j

k`
, g@

k
(0 for m(j

k~
, and g

k
looks like

a potential-well function (see Figure 1). Let o
ke be a point where g

k
attains its global
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minimum, g
k
(o

ke)"min g
k
(m). Then j

k~
6o

ke6j
k`

while the value of g
k
(o

ke)
depends on the choice of the arbitrary constant in (3.21). By setting

(3.23) g
k
(m) :"

m
:
oke

s!j
k
(ºe(s)) ds,

we attain g
k
(m)7g

k
(o

ke)"0 for m3R. Furthermore, j
k
(ºe (oke))"o

ke and
g
k
(m)"O(DmD2) as DmDPR.
Consider the linearization of the system (3.18). It consists of the decoupled

system of equations

(3.24) e @u
k
#(m!j

k
)u

k
"0,

whose solutions are constant multiples of

(3.25) u
k
"

expA!
1

e
g
kB

P
=

~=

expA!
1

e
g
kB df

"

expA!
1

e P
m

oke

s!j
k
(ºe (s)) dsB

P
=

~=

expA!
1

e P
f

oke

s!j
k
(ºe(s)) dsB df

.

Due to their form Mu
keN are strictly positive functions that are uniformly (in e)

bounded in ¸1.
In the case of the scalar equation, it is precisely the representation formula (3.2)

that provides the variation bounds (compare to (3.25)). Due to the quadratic terms
in (3.18), though, this is insufficient for systems of conservation laws. There are two
problems that we need to account for in the case of systems. First, we need to
understand the effect of the quadratic terms. Second, differential systems like (3.18)
are best handled with pointwise conditions. On the other hand, the only existing
information (3.13), relating the data º

$
with the amplitudes a

k
, is of integral type.

It is thus necessary to devise a scheme that connects pointwise with integral
information.

We proceed by introducing a decomposition of a
k
of the form

(3.26) a
k
"q

k
u
k
#h

k
,

where u
k
is given by (3.25) and h

k
satisfies the system of differential equations

(3.27) eh@
k
#(m!j

k
)h

k
"e

N
+

m/1

N
+
n/1

b
k,mn

(q
m
u

m
#h

m
) (q

n
u
n
#h

n
).

Then the sum q
k
u
k
#h

k
is a solution of (3.18). The idea is to seek an asymptotic

expansion of the wave amplitude a
k

in a parameter q"(q
1
, . . . , q

N
), where q

k
is

thought of as a measure of the strength of the k-th wave, and to construct an
expansion uniform in e in the ¸1-norm. In this expansion q

k
u
k
is the leading term

and h
k
is the error, which should be of order O(Dq D2) as DqD"Dq

1
D# · · ·#Dq

N
DP0.

Clearly, such an expansion depends on the data provided, and the key question is
to determine under what conditions we can solve (3.27).

Next, we outline the strategy we follow and the attained results concerning
those problems: Fix c

1
, c

2
, . . . , c

N
to be the respective middle points of the
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intervals [j
1~

, j
1`

], [j
2~

, j
2`

], . . . , [j
N~

,j
N`

]. Given a constant vector
q"(q

1
, q

2
, . . . , q

N
)3RN, we consider (3.27) subject to the conditions

(3.28) h
k
(c

k
)"0,

and, for DqD sufficiently small, we construct a solution h
k
(m ; q) that satisfies the

estimate

(3.29) Dh
k
( · ; q) D6C DqD2

N
+

m/1

u
m
.

This construction is performed in Section 5. It is based on detailed estimates that
are presented in Section 4, on the functions u

k
, and on integrals involving u

m
u
n
and

capturing wave interactions. The method is to apply the uniform contraction
principle to a weighted space of continuous functions. The selection of the weight is
motivated by the analysis of Section 4. The analysis of Section 5 validates the
asymptotic expansion

(3.30) a
k
( · ; q)"q

k
u

k
( · )#h

k
( · ; q)

for the amplitude a
k

in the parameter q. Note that a
k

satisfy the pointwise
information

(3.31) a
k
(c

k
; q)"q

k
u

k
(c

k
)

and satisfy (3.18) but not necessarily (3.13).
The objective of Section 6 is then to show that there exists a choice of

q"(q
1
, . . . , q

N
) such that (3.13) is fulfilled. To this end, we consider the map

S : RNPRN that connects the wave strengths to the boundary data by taking q to

(3.32) S (q)"º
~
#

N
+
k/1

=
:

~=

[q
k
u
k
(f )#h

k
(f ; q)]r

k
(ºe(f)) df.

We show in Section 6 that S is locally invertible in a neighborhood of q"0, and
that the inverse map S~1 is uniformly bounded independently of e.

In Sections 4—6, we identify the precise hypotheses (supplementary to (3.10)), on
the behavior of the wave speeds j

k
and the right and left eigenvectors r

k
and l

k
along

solutions ºe , that are necessary to carry out the intermediate steps. All
these hypotheses are fulfilled if the oscillation of the family MºeNe;0

is restricted,
uniformly in e. It is convenient to phrase the analysis by using a general function
» of restricted oscillation, supm|R D» (m)!º

~
D6k, in the place of a member of

MºeNe;0
. Apart from splitting naturally the various parts of the analysis, this has

another advantage: The considerations of Sections 4—6 motivate a construction
scheme that enables us, given Riemann data º

$
with Dº

`
!º

~
D small, to use the

Schauder fixed-point theorem and construct solutions ºe of (Pe ) that are of
uniformly small oscillation as well as of uniformly small variation. One interesting
feature of the scheme is that it is based on the quadratic equation (3.18) rather than
on a linearized equation. This final part of the analysis is carried out in Section 7. It
justifies in particular Hypothesis (C

0
) and leads to the following theorem.
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Theorem 3.1. Assume that (1.1) is strictly hyperbolic and let º
~

be fixed. ¹here
exists an r sufficiently small such that for e'0 and Dº

`
!º

~
D(r the problem (Pe)

has a solution ºe with the properties:
(i) ¹he family MºeNe;0

satisfies (C
0
) with some k independent of e.

(ii) ¹he solutions ºe satisfy the representation formula

(3.33) º@e"
N
+
k/1

[q
k, euk

#h
k
( · ; qe)] r

k
(ºe),

where u
k
is given by (3.25), h

k
( · ; q) satisfies (3.29), and qe satisfies S (qe)"º

`
.

(iii) ¹he family Mº@eNe;0
is uniformly bounded in ¸1(R), and MºeNe;0

is of uniformly
bounded (and small) variation.

We list below certain properties of S"F (º) relating to the coefficients
b
k,mn

"+ l
k
r
m

· r
n
. First, Mr

k
N and Ml

k
N form bases of the (trivial) tangent and

cotangent spaces of the state space at each º. Let f j be the components of F and
consider the action of the Hessian +2F(a, b) on the vectors a, b3RN. +2F(a, b) is
vector-valued with components a · +2f jb. Since +2f j is symmetric, it follows that
+2F(a, b)"+2F(b, a). For º fixed, t3R and a, b3RN, equation (3.6) implies that

(3.34) l
k
(º#ta) · +F(º#ta)b"j

k
(º#ta)l

k
(º#ta) · b.

Differentiating (3.34) with respect to t and setting t"0 in the resulting equation, we
deduce the identity

(3.35) l
k
·+2F (a, b)"(+j

k
· a) (l

k
· b)!(+l

k
a) · (+F!j

k
I)b,

which, in turn, yields the well-known identities

(3.36) l
k
·+2F (r

m
, r

n
)"(+j

k
· r

m
) (l

k
· r

n
)#(j

k
!j

n
) (+l

k
r
m
· r

n
)

"G
(j

k
!j

n
) (+l

k
r
m
· r

n
), k9n,

(+j
k
· r

m
) (l

k
· r

k
), k"n.

The coefficients b
k,mn

are related to the second derivatives l
k
· +2F(r

m
, r

n
) whenever

k9m or k9n. There is also the formula

(3.37) (j
k
!j

n
) (+l

k
r
k
· r

n
)"(+j

k
· r

n
) (l

k
· r

k
), n9k.

The coefficient b
k,kk

"+l
k
r
k
· r

k
does not appear in the above relations. To

explain this, consider the effect of renormalizing the eigenvectors on the coefficients
b
k,mn

and especially on b
k,kk

. Let MrL
k
N and M lª

k
N be a given set of right and left

eigenvectors and set r
k
"q

k
rL
k
, l
k
"s

k
lª
k
where q

k
"q

k
(º) and s

k
"s

k
(º) are renor-

malizing factors with q
k
'0, s

k
'0. A simple computation shows

+l
k
"lª

k
?+s

k
#s

k
+lª

k
and thus

(3.38) b
k,mn

"+l
k
r
m
· r

n
"q

m
q
n
[(rL

m
· +s

k
) ( lª

k
· rL

n
)#s

k
+lª

k
rL
m
· rL

n
]

"q
m
q
n
[(rL

m
· +s

k
) ( lª

k
· rL

n
)#s

k
bK
k,mn

].

If k9n, the renormalization has no effect on the sign of b
k,mn

. However, if k"n,
the renormalization of the left eigenvectors affects b

k,mk
and can make it to be zero.
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In particular, on a small neighborhood of some state º, we can choose
a renormalization so that the resulting eigenvectors satisfy simultaneously

(3.39) l
k
· r

k
"1, +l

k
r
k
· r

k
"0.

To this end, first choose s
k

so that

(3.40) (rL
k
· +s

k
) ( lª

k
· rL

k
)#s

k
+lª

k
rL
k
· rL

k
"0.

Relation (3.40) is a hyperbolic equation for s
k
. If we assign data for s

k
on a hypersur-

face S transversal to the vector field rL
k
, then the Cauchy problem for (3.40) has

locally a unique solution. If the data are positive, then s
k
'0. Next, q

k
is chosen so

that q
k
s
k
lª
k
· rL

k
"1. The resulting Mr

k
N, Ml

k
N have the desired properties.

4. Properties of the Functions u
k
— Wave Interaction Estimates

Let C0(!R,R) stand for the space of the continuous, bounded (scalar or
vector-valued) functions. Consider the set

(4.1) )1 "M»3C0 (!R,R) : sup
m|R

D» (m )!º
~
D6kN

and suppose that k is so small that the wave speeds j
k
(» ) are bounded and totally

separated for »3)1

(A
1
) j

k~
6j

k
(» (m))6j

k`
,

(A
2
) j

1~
6j

1
(» (m))6j

1`
(j

2~
6j

2
(» (m))6j

2`
(· · ·

(j
(N~1)~

6j
N~1

(» (m))6j
(N~1)`

(j
N~

6j
N
(» (m))6j

N`
.

Consider the linearized equation

(4.2) eu@
k
#(m!j

k
(» (m )))u

k
"0.

The fundamental solution of (4.2) may be written in the form

(4.3) u
k
"

expA!
1

e
g
kB

P
=

~=

expA!
1

e
g
k
(f)B df

"

1

I
ke

expA!
1

e P
m

ok

s!j
k
(» (s)) dsB ,

where

g
k
"

m

P
ok

[f!j
k
(» (f))] df ,

(4.4)

I
ke"

=

P
~=

expA!
1

e
g
kB df"

=

P
~=

expA!
1

e P
f

ok

s!j
k
(» (s)) dsB df .
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Recall that g
k
has the form of a potential-well function (cf. Figure 1) and that o

k
is

selected as a point where g
k
achieves its global minimum. As a result, o

k
satisfies

j
k~

6o
k
6j

k`
, j

k
(» (o

k
))"o

k
and

(4.5) g
k
(m)7g

k
(o

k
)"0, m3R.

The aim of this section is to establish various estimates on the functions u
k

and
integrals involving them that are needed in the forthcoming constructions.

We begin with a careful analysis of the behavior of u
k
in the limit eP0. Given

a positive function h (e), we use the customary notation f (e)"O(h (e)) as eP0 to
mean that there are constants e

0
sufficiently small and C such that D f (e) D6Ch(e)

for 0(e6e
0
.

Lemma 4.1. Suppose that the wave speed j
k
(» ) satisfies (A

1
).

(i) If d
k
"j

k`
!j

k~
'0, then as eP0,

(4.6)
1

O (1)

e
d
k

6I
ke6d

k
#J2ne,

(4.7) 0(u
k
(m)6O (1)

d
k
e

for m3R,

u
k
(m)6O(1)

d
k
e

expA!
1

2e
(m!j

k~
)2B for m(j

k~
,

(4.8)

u
k
(m)6O(1)

d
k
e

expA!
1

2e
(m!j

k`
)2B for m'j

k`
.

(ii) If d
k
"j

k`
!j

k~
"0, then

(4.9) I
ke"J2ne, u

k
(m )"

1

J2ne
expA!

1

2e
(m!j

k~
)2B .

Proof. Assume first that d
k
'0. Performing the change of variable f"o

k
#Jeg

in the integral (4.4), we obtain

(4.10) I
ke"

=

P
~=

expA!
1

e
g
k
(f)B df"Je

=

P
~=

expA!
1

e
g
k
(o

k
#Je g)B dg

"Je
=

P
~=

expA!
1

e
ok`Jeg

:
ok

s!j
k
(» (s)) dsB dg.
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Using again the change of variables s"o
k
#Jeq and (4.5), we obtain

(4.11)
1

e
g
k
(o

k
#Je g)"

1

e

ok`Jeg

P
ok

s!j
k
(» (s)) ds

"

g

P
0

Gq!
1

Je
[j

k
(» (o

k
#Jeq))!j

k
(» (o

k
))]H dq

70 for g3R.

We notice that for g'0,

(4.12)

g

P
0

q!
1

Je
[j

k
(» (o

k
#Jeq))!j

k
(» (o

k
))] dq6

g2

2
#

1

Je
(j

k`
!j

k~
) g,

while for g(0,

(4.13)

g

P
0

q!
1

Je
[j

k
(» (o

k
#Jeq))!j

k
(» (o

k
))] dq6

g2

2
!

1

Je
(j

k`
!j

k~
) g.

Therefore (4.10)—(4.13) provide the estimate

(4.14)

I
ke"Je

0

P
~=

expA!
g

P
0

q!
1

Je
[j

k
(» (o

k
#Jeq))!j

k
(» (o

k
))] dqB dg

#Je
=

P
0

expA!
g

P
0

q!
1

Je
[j

k
(» (o

k
#Jeq))!j

k
(» (o

k
))] dqB dg

7Je expA
d2
k

2eB
0

P
~=

expA!
1

2 Ag!
d
k

JeB
2

B dg

#Je expA
d2
k

2eB
=

P
0

expA!
1

2 Ag#
d
k

JeB
2

B dg

"Je expA
d2
k

2eBA
~dk@Je

P
~=

expA!
f2
2 B df#

=

P
dk@Je

expA!
f2
2 B dfB.
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The asymptotic behavior of the last integrals can be evaluated by using the limits

(4.15) lim
x?=

=
:
x

e~f2@2 df

1

x
e~x2@2

" lim
x?=

!e~x2@2

!

1

x2
e~x2@2!e~x2@2

"1,

(4.16) lim
xP~=

x
:

~=

e~f2@2 df

!

1

x
e~x2@2

" lim
xP~=

e~x2@2

1

x2
e~x2@2#e~x2@2

"1

and for small e yields

(4.17) I
ke7Je ed

2
k@2eA

1

O(1)

Je
d
k

e~d
2
k @2e#

1

O(1)

Je
d
k

e~d
2
k @2eB"

1

O (1)

e
d
k

.

Next, observe that for m'j
k`

7o
k
,

(4.18) g
k
(m)"

m
:

jk`

s!j
k
(» (s)) ds#g

k
(j

k`
)

7

m
:

jk`

(s!j
k`

) ds"1
2
(m!j

k`
)2,

while for m(j
k~

6o
k
,

(4.19) g
k
(m)"

m
:

jk~

s!j
k
(» (s)) ds#g

k
(j

k~
)

7!

jk~
:
m

(s!j
k~

) ds"1
2
(m!j

k~
)2.

Therefore, (4.4) and (4.5) imply that

(4.20) I
ke6

jk~

P
~=

expA!
1

2e
(f!j

k~
)2B df#d

k
#

=

P
jk`

expA!
1

2e
(f!j

k`
)2B df

"d
k
#Je

=

P
~=

expA!
1

2
g2B dg"d

k
#J2ne ,

which together with (4.17) completes the proof of (4.6).
Estimates (4.7) and (4.8) follow from

(4.21) u
k
(m )"

expA!
1

e
g
k
(m)B

I
ke

6O(1)
d
k
e

expA!
1

e
g
k
(m )B ,
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Figure 2.

a consequence of (4.3) and (4.6), in conjunction with (4.5), (4.18) and (4.19). Finally, if
d
k
"0, then j

k
(» ) remains constant, say j

k~
, and (4.9) follows from (4.3) and (4.4)

via a direct calculation. K

Remark. To expand on the implications of the lemma, suppose that we are given
a family of functions MºeNe;0

L)1 and that for each ºe we define the corresponding
solution u

ke of (3.24). Then (4.8) implies that u
keP0 as eP0 uniformly on any

interval of the form (!R, a
k
]X[b

k
,R) with a

k
(j

k~
6j

k`
(b

k
. The family

Mu
keNe;0

is uniformly bounded in ¸1, and thus there exists a subsequence u
ken with

e
n
P0 and a finite Borel measure /

k
with supp /

k
L[j

k~
, j

k`
] such that u

ken N/
k

weak-w in measures. For the single conservation law or the equations of isothermal
elasticity, objects similar to /

k
yield the same structure for the solution to the

Riemann problem as that obtained by the Liu shock-admissibility criterion
(cf. [Tz

2
]).

Our next task is to study certain integrals involving u
m

and u
n
that account for

the effect of interactions between elementary waves. It is convenient to introduce
the notation:

d
k
"length of the interval [j

k~
, j

k`
],

c
k
"midpoint of the interval [j

k~
, j

k`
],

d(m, j
k
)"distance between the point m and the interval [j

k~
, j

k`
],

D
mn
"d(j

m
, j

n
)"distance between the intervals [j

m~
, j

m`
] and [j

n~
, j

n`
].

Because of (A
2
), D

mn
'0. Also, we may assume without loss of generality that

d
k
'0 by replacing (4.9) with the weaker estimates (4.6)—(4.8). Lemma 4.1 indicates

that u
k
has the form shown in Figure 2. The behavior of u

k
is uncontrolled in the

interval [j
k~

, j
k`

], where the wave speed j
k
(» ) takes values, but its amplitude is at

most of order O(1/e). For m 4 [j
k~

, j
k`

], u
k
decays like O(1e exp(!1

2ed (m, j
k
)2). It is

expedient to fix points a
k
, b

k
, k"1, . . . , N, such that

(4.22) a
1
(j

1~
6j

1`
(b

1
(a

2
(j

2~
6j

2`
(b

2
(· · ·

(a
N~1

(j
(N~1)~

6j
(N~1)`

(b
N~1

(a
N
(j

N~
6j

N`
(b

N
,

and to introduce the notation

(4.23) s
k
(e)" max

m 4 *ak,bk+

u
k
(m ), a

k
"1

2
minMDa

k
!j

k~
D2, Db

k
!j

k`
D2N.
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Then (4.8) implies that

(4.24) u
k
(m)6s

k
(e)6d

k
OA

1

e
e~ak @eB, m 4 [a

k
, b

k
],

and s
k
(e) serves as a global bound outside the main support of the wave. The

function h
k
"1e e~ak @e describing the decay rate behaves as follows: As e increases

h
k

increases from 0 to its maximum value 1/ea
k
, achieved at e"a

k
, and then

decreases down to 0 as ePR.

Lemma 4.2. Suppose that the wave speeds j
k
(» ) satisfy (A

2
) and

(A
3
) (1#J3) (d

m
#d

k
)(d (j

k
, j

m
)"D

km

for »3)1 . ¹hen there exist constants a
km
'0 depending on d

k
, d

m
, D

km
but indepen-

dent of e, » such that

(4.25)

K expA!
1

e
g
kB

m

P
ck

expA
1

e
g
k
(f)B u

m
(f) df K6G

1

D
km

eu
m
#O (e~akm @ e)

d
k
d
m

D
km

u
k
, m9k,

Dm!c
k
Du

k
, m"k.

Proof. When m"k, (4.25) follows from a direct calculation. So suppose that
m9k. Using the notation j

k
"j

k
(» (m)) and (4.3), we obtain the chain of identities

(4.26) expA!
1

e
g
kB

m

P
ck

expA
1

e
g
k
(f)B u

m
(f) df

"expA!
1

e

m

P
ok

s!j
k
dsB

m

P
ck

expA
1

e

f

P
ok

s!j
k
dsB

expA!
1

e
f
:
om

s!j
m

dsB
I
me

df

"

1

I
me

expA!
1

e

m

P
om

s!j
m

dsB
m

P
ck

expA
1

e

f

P
m

s!j
k
dsB expA!

1

e

f

P
m

s!j
m

dsB df

"u
m

m

P
ck

expA
1

e

f

P
m

j
m
!j

k
dsB df.
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In view of (A
2
), we have

(4.27)

K
m

P
ck

expA
1

e

f

P
m

j
m
!j

k
dsB df K6K$

m

P
ck

expA
1

e

f

P
m

j
m
!j

k
dsB

Dj
m
!j

k
D

d (j
m
, j

k
)
df K

"

1

D
mk
Ke

m

P
ck

expA
1

e

f

P
m

j
m
!j

k
dsB dA

1

e

f

P
m

j
m
!j

k
dsB K

6

e
D

mk
A1#expA!

1

e

m

P
ck

j
m
!j

k
dsBB .

Combining (4.26) with (4.27) and using (4.3), we arrive at the estimate

(4.28) Ke~gk@e
m
:
ck

egk@e u
m

df K

6

e
D

mk C u
m
#

expA!
1

e
m
:
om

s!j
m

dsB
I
me

expA!
1

e
m
:
ok

j
m
!j

k
dsB expA

1

e
ck
:
ok

j
m
!j

k
dsBD

"

e
D

mk C u
m
#

expA!
1

e
ok
:
om

s!j
m

dsB
I
me

expA!
1

e
m
:
ok

s!j
k
dsB expA

1

e
ck
:
ok

j
m
!j

k
dsB D

"

e
D

mk

u
m
#

e
D

mk

1

I
me CexpA!

1

e
ok
:
om

s!j
m

ds#
1

e
ck
:
ok

j
m
!j

k
dsBD I

keuk
.

The goal is to show that under (A
3
) the term in parentheses decays as eP0. To

this end, observe that

(4.29) !

ok
:
om

s!j
m

ds6!1
2
D2

km
,

(4.30)
ck
:
ok

j
m
!j

k
ds6d

k
(D

km
#d

k
#d

m
).

It suffices to show that

(4.31) !a
km

:"!1
2
D2

km
#(d

k
#d

m
)D

km
#(d

k
#d

m
)2(0.

Since the roots of the quadratic !1
2
x2#x#1 are 1$J3, hypothesis (A

3
)

implies the inequality (4.31), and thus there exists a positive constant a
km

such
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that

(4.32) expA!
1

e
ok
:
om

s!j
m

ds#
1

e
ck
:
ok

j
m
!j

k
dsB6O(e~akm @e).

The proof of the lemma follows from (4.28), (4.32), and (4.6). K

Our next objective is to use the facts that each u
k
is essentially supported on the

interval [j
k~

, j
k`

] and that such intervals are distinct in order to estimate the
integrals

(4.33) F
k,mn

(m )"e~gk (m)@ e
m
:
ck

egk (f)@e u
m
(f )u

n
(f) df.

We begin with

Lemma 4.3. Suppose that j
k
(» ), k"1, . . . , N, satisfy (A

2
) and (A

3
). ¹hen

(i) for m"1, . . . , N,

(4.34) Ke~gk @ e
m
:
ck

e gk @ eu
m
u
k
df K6u

k
,

(ii) for m, n"1, . . . , N, with m9n, m9k, and n9k,

(4.35)

Ke~gk @ e
m
:
ck

egk @ e u
m
u
k
df K6

es
m
(e)

D
kn

u
n
#

es
n
(e)

D
km

u
m

#Csm(e)O(e~akn @e)
d
k
d
n

D
kn

#s
n
(e)O(e~akm @e)

d
k
d
m

D
km
D u

k
.

Proof. First we show (i). Since

(4.36) F
k,mk

"e~gk @ e
m

P
ck

egk @ eu
m

e~gk @e
I
ke

df"u
k

m

P
ck

u
m

df,

it follows that DF
k,mk

D6u
k
, and (4.34) is proved. Observe next that because of (A

2
),

(4.37) u
m
u
n
6s

m
(e)u

n
#s

n
(e)u

m
for m9n, m3R.

Using (4.25) with m9k and n9k, we obtain

(4.38) DF
k,mn

D6s
m
(e) K e~gk @ e

m
:
ck

egk @ eu
n
df K#s

n
(e) Ke~gk @ e

m
:
ck

egk @eu
m
df K

6

s
m
(e)

D
kn

(eu
n
#O (e~akn @e) d

k
d
n
u

k
)#

s
n
(e)

D
km

(eu
m
#O(e~akm @e)d

k
d
m
u
k
),

which in turn yields (4.35). K
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It remains to estimate the integrals F
k,mn

with m9k, which account for the
effect of self-interactions. Using (4.3), we write F

k,mm
in the form

(4.39)

F
k,mm

"e~gk @ e
m

P
ck

egk @e u2
m

df

"expA!
1

e

m

P
ok

s!j
k
dsB

m

P
ck

exp A
f

P
ok

1

e
s!j

k
dsB

expA!
2

e
f
:
om

s!j
m

dsB
I2
me

df

"

expA!
2

e
m
:
om

s!j
m

dsB
I2
me

m

P
ck

expA
1

e

f

P
m

s!j
k
dsB expA!

2

e

f

P
m

s!j
m

dsBdf

"u2
m

m

P
ck

expA!
1

e

f

P
m

s!"
km

dsB df,

where we have set

(4.40) "
km

(º)"2j
m
(º)!j

k
(º )"j

m
(º)#(j

m
(º)!j

k
(º)).

Note that the ordering is j
k
(º )(j

m
(º )("

km
(º) when k(m and "

km
(º)

(j
m
(º)(j

k
(º) when k'm. In order to estimate F

k,mm
, it is necessary to study

the ranges of the wave speeds j
k
(» ) and j

m
(» ) relative to the range of the

composite speed "
km

(» ), for »3)1 , and to impose conditions that guarantee
non-resonance between the wave speeds and the composite speed. Note that
"

km
(» ) is bounded by

(4.41) "
km~

6"
km

(» (m))6"
km`

where the constants "
km~

, "
km`

, and d
km

, the length of the range of "
km

(» ),
depend only on k. We introduce the notation:
d(m, "

km
)"distance between the point m and the interval ["

km~
, "

km`
],

d(j
m
,"

km
)"distance between the intervals [j

m~
, j

m`
], ["

km~
,"

km`
],

and impose a strengthened version of Hypothesis (A
3
):

(A
4
) 7(d

m
#d

k
)"7[(j

m`
!j

m~
)#(j

k`
!j

k~
)](d (j

k
, j

m
)"D

km
.

It is easy to calculate d
km
""

km`
!"

km~
"2d

m
#d

k
, d(j

m
,"

km
)"D

km
!d

m
, and

to note that the ranges of j
k
(» ), j

m
(» ) and "

km
(» ) are separated for »3)1 (see

Figure 3). Since the lengths d
k
are of order O(k) while the distances D

km
are of order

O(1) as kP0, hypotheses (A
3
) and (A

4
) are not particularly restrictive for solutions

of small oscillation. Hypotheses (A
3
), (A

4
) are imposed for all k, m"1, . . . , N, and
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Figure 3. The ranges of j
k
(» ), j

m
(» ) and "

km
(» ) for m'k.

points a
km

, b
km

are selected (near the support of "
km

(» )) so that, upon rearranging
a
m
, b

m
if necessary, we obtain

(4.42a)

a
k
(j

k~
6j

k`
(b

k
(a

m
(j

m~
6j

m`
(b

m
(a

km
("

km~
6"

km`
(b

km
.

when k(m, and

(4.42b)

a
km
("

km~
6"

km`
(b

km
(a

m
(j

m~
6j

m`
(b

m
(a

k
(j

k~
6j

k`
(b

k
,

when k'm. Such choices are clearly possible. The points a
k
, b

k
are now fixed, while

the points a
km

, b
km

will be selected subject to (4.42) in the course of proving

Lemma 4.4. Suppose that j
k
(» ), j

m
(» ) satisfy (A

2
)—(A

4
). ¹here are choices of a

km
,

b
km

and constants a
km

, b
km
'0, depending on d

k
, d

m
, D

km
but not on e, such that

(a) if k(m, then

(4.43a) Ke~gk@e
m
:
ck

e gk@eu2
m

df K

6G
1

d (a
km

,"
km

)
eu2

m
#

d2
m
d
k

d (j
k
,"

km
)
OA

1

e
e~2akm@eB u

k
, m6a

km
,

d
km

d
m
OA

1

e
e~bkm @ eB u

m
, m7a

km
,

(b) if k'm, then

(4.43b) Ke~gk@e
m
:
ck

egk@eu2
m

df K

6G
d
km

d
m
OA

1

e
e~bkm @ eB u

m
, m6b

km
,

1

d (b
km

,"
km

)
eu2

m
#

d2
m
d
k

d (j
k
,"

km
)
OA

1

e
e~2akm@eB u

k
, m7b

km
,

Proof. Let k(m. We first prove (a). The ranges of j
k
(» ), j

m
(» ), and "

km
(» ) for

»3)1 are as in Figure 3, and a
km

is any point compatible with (4.42). Let o
km

be
a point where the function :ma s!"

km
(» (s))ds achieves its global minimum. Then
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"
km

(» (o
km

))"o
km

, "
km~

6o
km
6"

km`
, and

(4.44) G
km

(m )"
m
:
okm

s!"
km

(» (s)) ds70 for m3R.

Consider first the region m6a
km
("

km~
. In this region, F

k,mm
in (4.39) is

decomposed into the integrals

(4.45) F
k,mm

"u2
m

expA
1

e

m

P
okm

s!"
km

dsB

]A
m

P
~=

expA!
1

e

f

P
okm

s!"
km

dsB df!
ck

P
~=

expA!
1

e

f

P
okm

s!"
km

dsBdfB.

The first integral is dominant when m'c
k
and the second is dominant when m(c

k
.

Since f(m6a
km
("

km~
, the first integral is estimated by

(4.46)

m

P
~=

expA!
1

e

f

P
okm

s!"
km

dsB df6
m

P
~=

expA!
1

e

f

P
okm

s!"
km

dsB A
"

km
!f

"
km
!mB df

6e
m

P
~=

expA!
1

e

f

P
okm

s!"
km

dsB
d(m,"

km
)

dA!
1

e

f

P
okm

s!"
km

dsB

"

e
d(a

km
, "

km
)
expA!

1

e

m

P
okm

s!"
km

dsB .

In a similar fashion, the second integral is estimated by

(4.47)

ck

P
~=

expA!
1

e

f

P
okm

s!"
km

dsB df6
e

d (c
k
,"

km
)
expA!

1

e

ck

P
okm

s!"
km

dsB

6

e
d (j

k
,"

km
)
expA!

1

e

ck

P
okm

s!"
km

dsB .
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Let D
1
"d (a

km
,"

km
), D

2
"d (j

k
,"

km
) and combine (4.45), (4.46), (4.47), and (4.3) to

obtain

(4.48) DF
k,mm

D6u2
mA

e
D

1

#

e
D

2

expA
1

e
m
:
ck

s!"
km

dsBB

"

e
D

1

u2
m
#

e
D

2

expA!
2

e
m
:
om

s!j
m

dsB
I2
me

]expA
1

e
ok
:
ck

s!"
km

dsB expA
1

e
m
:
ok

s!"
km

dsB
"

e
D

1

u2
m
#

e
D

2

1

I2
me Aexp A!

2

e
ok
:
om

s!j
m

ds#
1

e
ok
:
ck

s!"
km

dsBB I
ke uk

.

It suffices to show that the term in parentheses decays as eP0. Using the
estimations

!2
ok
:
om

s!j
m

ds6!D2
km

,

(4.49)
ok
:
ck

s!"
km

ds6("
km`

!j
k~

) d
k
62[D

km
#(d

m
#d

k
)] (d

m
#d

k
),

together with the fact that (A
3
) implies that (4.31) is satisfied, we conclude that

(4.50) exp A!
2

e
ok
:
om

s!j
m

ds#
1

e
ok
:
ck

s!"
km

dsB6O (e~2akm @e ) .

In conjunction with (4.48) and (4.6), inequality (4.50) shows (4.43) for m6a
km

,
k(m.

Consider now the region m7a
km

. An argument similar to the one leading to
(4.20) shows that

(4.51)

K
m

P
ck

expA!
1

e
f
:
okm

s!"
km

dsBdf K6
=

P
~=

expA!
1

e
f
:
okm

s!"
km

dsB df6d
km
#J2ne.

Therefore, (4.39) and (4.40) give

(4.52) DF
k,mm

D6O(1) d
km

u2
m

expA
1

e
m
:
okm

s!"
km

dsB

"O(1) d
km

u
m

expA!
1

e
m
:
om

s!j
m

dsB
I
me

]
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]expA
1

e
m
:
okm

s!j
m

dsB expA!
1

e
m
:
okm

j
m
!j

k
dsB

6O(1) d
km

u
m A

d
m
e

exp A!
1

e
okm
:
om

s!j
m

dsB expA!
1

e
m
:
okm

j
m
!j

k
dsBB .

The goal is to choose a
km

so that the term in parentheses decays as eP0 for any
m7a

km
. Since o

km
4 [j

m~
, j

m`
], the first term decays as eP0, and its decay rate can

be estimated by noting that

(4.53) !

okm
:
om

s!j
m

ds6!

"
km~
:

jm`

s!j
m`

ds

"!1
2
("

km~
!j

m`
)2"!1

2
(D

km
!d

m
)2.

Since j
m
(º)'j

k
(º), the second term decays for m'o

km
but grows for m(o

km
.

The fastest growth occurs for m"a
km

, and the growth rate is estimated by

(4.54) !

akm
:
okm

j
m
!j

k
ds6(j

m`
!j

k~
) (o

km
!a

km
)

6(D
km
#d

m
#d

k
) (d (a

km
,"

km
)#2d

m
#d

k
).

It suffices to give conditions on d
k
, d

m
, D

km
and to choose a

km
so that

(4.55) !b
km

:"!1
2
(D

km
!d

m
)2#(D

km
#d

m
#d

k
) (d(a

km
, "

km
)#2d

m
#d

k
)(0.

For example, if we choose a
km
""

km~
!d

k
and require that

(4.56) 4 (D
km
#d

m
#d

k
) (d

m
#d

k
)([D

km
!(d

m
#d

k
)]2,

then (4.55) is satisfied. By solving the inequality y2!6xy!3x2'0 for y/x, we see
that (A

4
) implies (4.56). Therefore (4.52) yields the estimate

(4.57) DF
k,mm

D6d
km

d
m
O (1e e~bkm @ e )u

m

for m'a
km

, k(m, and completes the proof of part (a). The proof of part (b) is
similar. K

Lemmas 4.3 and 4.4 provide estimates on the integrals F
k,mm

, which calculate
the effect of wave interactions induced by diffusion. The estimates are consequences
of the separation hypotheses (A

2
)—(A

4
) on the wave speeds. Obviously (A

4
) is the

strongest hypothesis and implies the rest. In the sequel we make use of the
following implication of (4.34), (4.35), (4.43), and (4.7).

Corollary 4.5. Suppose that j
k
(» ) satisfy (A

4
) for k, m, n"1, . . . , N. ¹hen there is

an e
0
'0 and a constant C, depending on d

k
, D

km
, D

kn
but not on e, such that

(4.58) DF
k,mn

D"De~gk @e
m
:
ok

egk @ e u
m
u
n
dfD6C

N
+
j/1

u
j

for k, m, n"1, . . . , N and 0(e6e
0
.
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Remark. It is instructive to identify which of the integrals F
k,mn

have nonzero
contributions in the limit eP0. In view of (4.36) and (4.3), the terms F

k,mk
and

F
k,km

F
k,kk

have nonzero limiting contributions supported on the k-th wave speed.
On the other hand, (4.35) and (4.7) imply that F

k,mn
P0 as eP0 when m9n,

m9k, and n9k, which suggests that diffusion-induced interactions of two distinct
families have no contribution as eP0 on a third family. (Recall that we are dealing
with solutions for Riemann data.) By contrast, (4.43) suggests that the terms F

k,mm
,

m9k, accounting for the effect of self-interactions of the m-th family on the k-th
family, have a nonzero contribution in the limit as eP0 supported on the m-th
wave speed.

5. Validation of the Asymptotic Expansion

The objective of this section is to solve the problem

eh@
k
#[m!j

k
(» (m))] h

k

(5.1) "e
N
+

m/1

N
+
n/1

[+l
k
(» (m ))r

m
(» (m)) · r

n
(» (m))] (q

m
u
m
#h

m
) (q

n
u
n
#h

n
) ,

h
k
(c

k
)"0

where »3)1 , defined in (4.1), and where q"(q
1
, . . . , q

N
) is a vector parameter in

RN. The aim is to construct solutions h
k
( · ; q) that are of order O (DqD2) in the wave

strength DqD"Dq
1
D# · · ·#Dq

N
D as DqDP0. This would validate the asymptotic

expansion (3.29).
Throughout the section we use the notation

(5.2) j
k
"j

k
(» (m)), b

k,mn
"b

k,mn
(» (m))"+l

k
(» (m))r

m
(» (m )) · r

n
(» (m))

and assume that k is so small that the hypotheses (A
1
)—(A

4
) on the wave speeds are

fulfilled for »3)1 . Moreover,

(5.3) Db
k,mn

D6B

with B depending only on k. Recall that g
k

is defined in (4.4) and that c
k

is the
midpoint of the interval [j

k~
, j

k`
]. If we use the variation-of-parameters formula,

then (5.1) is expressed as a system of integral equations

(5.4)

h
k
(m)"e~gk @ e

m
:
ck

egk @e
N
+

m,n/1

b
k,mn

(» (f)) (q
m
u

m
(f )#h

m
(f)) (q

n
u
n
(f)#h

n
(f)) df.

Our strategy is to formulate (5.4) as a fixed-point problem, and to use the uniform
contraction principle in order to construct solutions h

k
( · ; q), k"1, . . . , N.

Let C
0
(R) stand for the continuous functions that decay to zero as DmDPR, and

define

(5.5) E"Gs"(s
1
, . . . , s

N
)3[C

0
(R)]N : sup

m|R

Ds
j
(m ) D

+N
i/1

u
i
(m)

(R, j"1, . . . , NH .
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The space E with the weighted sup-norm

(5.6) EsE"
N
+
j/1

sup
m|R

Ds
j
(m) D

+N
i/1

u
i
(m )

with weight +N
i/1

u
i
'0 is a Banach space. Let Bd"Mq3RN : DqD6dN and set

(5.7) F"Ms3E : Ds
j
(m ) D6A DqD2

N
+
i/1

u
i
(m), m3R, j"1, . . . , NN,

where q3Bd and A is a constant to be determined later. F is a closed bounded
subset of E in the weighted norm E · E. Define the map ¹ that takes »3)1 , q3Bd ,
s3F to the vector-valued function ¹ (s) with components

(5.8) ¹
k
(s)"e~gk @e

m
:
ck

egk @e
N
+

m,n/1

b
k,mn

(q
m
u

m
#s

m
) (q

n
u
n
#s

n
) df,

k"1, . . . , N. The map ¹ has the following properties:

Proposition 5.1. ¹here exist positive constants A and d
0

such that for d(d
0
:

(i) ¹ : )1 ]Bd]FPF is well defined.
(ii) ¹here exists a, 0(a(1, such that

(5.9) E¹ (», q, s)!¹ (», q, s6 )E6aEs!s6 E for s, s6 3F,

and for any »3)1 , q3Bd . ¹herefore ¹ (», q, · ) : FPF is a uniform contraction.
(iii) ¹here exists a positive constant C, depending on k but independent of d, such that

(5.10) E¹ (», q, s)!¹ (», s, s)E6CdDq!s D for q, s3Bd ,

and for any »3)1 , s3F.

Proof. In the forthcoming estimates C, C @, and CA stand for generic constants that
can be estimated in terms of B, the dimension of the system N, and the constant in
the estimate (4.58). As a result, such constants ultimately depend on k in (4.1), but
are independent of d. We now establish (i). Let »3)1 , q3Bd and s3F be fixed.
Then (5.8), (5.7) and (4.58) imply that

(5.11)

D¹
k
(s) D6e~gk @e K

m
:
ck

egk @e
N
+

m,n/1

Db
k,mn

D (Dq
m
Du

m
#Ds

m
D) (Dq

n
Du

n
#Ds

n
D) df K

6Be~gk@e K
m
:
ck

egk@e
N
+

m,n/1
ADqmDu

m
#ADqD2

N
+
i/1

u
iBADqnDun

#A DqD2
N
+
j/1

u
jBdfK

6C Dq D2(1#2Ad#A2d2)
N
+

m,n/1
K e~gk @e

m
:
ck

egk @e u
m
u
n
df K

6C(1#Ad)2 Dq D2
N
+
j/1

u
j
.
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Comparing the outcome with (5.7), we see that if

(5.12) C(1#Ad)26A,

then ¹ (», q, s)3F and (i) is established.
Next, we examine (ii). Let »3)1 , q3Bd be fixed, and consider s, s6 3F. Then

(5.13) ¹
k
(s)!¹

k
(s6 )"e~gk @e

m
:
ck

egk @e
N
+

m,n/1

b
k,mn

[q
m
u

m
(s

n
!s6

n
)#q

n
u
n
(s

m
!s6

m
)

#(s
m
s
n
!s6

m
s6
n
)] df.

Using (5.6), (5.7), (5.11), and (4.58), we obtain

(5.14)

D¹
k
(s)!¹

k
(s6 )D6e~gk @e K

m
:
ck

egk @e
N
+

m,n/1

Db
k,mn

D[ Dq
m
Du

m
Ds

n
!s6

n
D#Dq

n
Du

n
Ds

m
!s6

m
D

#Ds
m
D Ds

n
!s6

n
D#Ds6

n
D Ds

m
!s6

m
D] df K

6B e~gk @e K
m
:
ck

egk @e
N
+

m,n/1
C2 Dq

m
Du

m
Es!s6 E

N
+
i/1

u
i

#2A DqD2A
N
+
j/1

u
jB Es!s6 E

N
+
i/1

u
iD df K

6C@(d#Ad2)A
N
+

m,n/1
K e~gk @e

m
:
ck

egk @e u
m
u

n
df KB Es!s6 E

6C@d (1#Ad)A
N
+
j/1

u
jB Es!s6 E,

which, on account of (5.6), in turn implies that

(5.15) E¹ (s)!¹ (s6 )E6C@d (1#Ad )Es!sN E.

Therefore ¹ is a uniform contraction on F, provided that

(5.16) C@d (1#Ad)": a(1.

Note that (5.12) and (5.16) can be simultaneously satisfied for many choices of
A and d. In the sequel, we fix A"4C and d(d

0
"minM 1

4C
, 1
2C{

N. For these choices,
1#Ad(2, both (5.12) and (5.16) are fulfilled, and the proof of (i) and (ii) is
completed.

Finally, we turn to (iii). Let »3)1 , s3F be fixed and consider q, s3Bd . Then
(upon suppressing the s and » dependence) (5.8) yields

(5.17) ¹
k
(q)!¹

k
(s)"e~gk @e

m
:
ck

egk @e
N
+

m,n/1

b
k,mn

[(q
m
q
n
!s

m
s
n
)u

m
u
n

#(q
m
!s

m
)u

m
s
n
#(q

n
!s

n
)u

n
s
m
] df.

Zero-Viscosity Limits in Systems of Conservation Laws 35



Using (5.6), (5.7), (4.58), and (5.16), we deduce that

(5.18)

D¹
k
(q)!¹

k
(s)D6e~gk @e K

m
:
ck

egk @e
N
+

m,n/1

Db
k,mn

D ([Dq
m
!s

m
D Dq

n
D#Dq

n
!s

n
D Ds

m
D]u

m
u
n

#Dq
m
!s

m
Du

m
Ds

n
D#Dq

n
!s

n
Du

n
Ds

m
D) df K

6Be~gk @e K
m
:
ck

egk @ e
N
+

m,n/1
Ad[ Dq

m
!s

m
D#Dq

n
!s

n
D] u

m
u
n

#Ad2A
N
+
j/1

u
jB [ Dq

m
!s

m
Du

m
#Dq

n
!s

n
Du

n
]B df K

6CAd(1#Ad) Dq!sD
N
+

m,n/1
K e~gk @e

m
:
ck

egk @e u
m
u
n
df K

6CAd(q!s)
N
+
j/1

u
j
,

and, by virtue of (5.6),

(5.19) E¹ (q)!¹ (s)E6CA dDq!s D.

This completes the proof of (iii). K

The properties of the map¹ are useful both for solving (5.1) and for establishing
properties of the constructed solution h"(h

1
, . . . , h

N
).

Corollary 5.2. ¸et A and d be as in Proposition 5.1. Given »3)1 , q3Bd , there exists
a unique solution h ( · ; q) of (5.1) in the class of functions satisfying

(5.20) Dh
k
( · ; q) D6A Dq D2

N
+
j/1

u
j
, DqD6d, k"1, . . . , N.

Moreover, there exists a constant C independent of d such that h( · ; q) satisfies

(5.21) Dh
k
( · ; q)!h

k
( · ; s) D6CdDq!sD

N
+
j/1

u
j

for q, s3Bd .

Proof. For each fixed »3)1 , q3Bd , the map ¹ (», q, · ) :FPF is a contraction with
a uniform contraction constant a(1. The first part of the lemma is a direct
consequence of the contraction mapping theorem.

The fixed point h depends parametrically on » and q. In the second part, we are
interested in regularity properties of h in q and need estimates that are uniform for
»3)1 , q3Bd . Instead of using general versions of the implicit-function theorem, we
opt for a direct approach that gives precise information on the bounds. Let »3)1
be fixed, and consider q, s3Bd and the corresponding fixed points h (q) and h (s) of ¹.
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Then we have

(5.22) h (q)!h (s)"[¹ (q, h (q))!¹ (q, h (s))]#[¹ (q, h (s))!¹ (s, h(s))].

Using (ii) and (iii) in Proposition 5.1, we obtain

(5.23) Eh (q)!h (s)E6E¹ (q, h (q))!¹ (q, h (s))E#E¹ (q, h (s))!¹ (s, h(s))E

6aEh (q)!h (s)E#CdDq!sD.

Hence,

(5.24) Eh(q)!h (s)E6
C

1!a
dDq!s D

and (5.21) follows from (5.6). K

6. The Map Connecting the Wave Strengths to the Riemann Data

For »3)1 the states » (m) take values in the ball Bk (º~
)"Mº3RN :

Dº!º
~
D6kN. Because of the orthogonality relations (3.8) and the continuity

properties of l
i
(º), r

i
(º ), given g'0 we can choose k such that

l
i
(º

1
) · r

i
(º

2
)71!g, º

1
,º

2
3Bk (º~

),
(6.1)

Dl
i
(º

1
) · r

j
(º

2
) D6g, º

1
,º

2
3Bk (º~

), i9j.

Also, for states in Bk(º~
) the right and left eigenvectors are bounded:

(6.2) Dr
i
(º) D6R, D l

i
(º) D6R, º3Bk(º~

), i"1, . . . , N,

by a constant R depending only on k. For our future deliberations we impose an
additional hypothesis, which complements (A

1
)—(A

4
) and concerns the behavior of

the right and left eigenvectors along functions in )1 : Namely, we fix g(1/N and
require that

l
i
(º

~
) · r

i
(» (m))71!g,

(A
5
)

Dl
i
(º

~
) · r

j
(» (m ))D6g, i9j,

for »3)1 and m3R. This is attained by restricting, if necessary, the size of k.
Consider the system of differential equations

(6.3) ea@
k
#[m!j

k
(» (m ))]a

k
"e

N
+

m/1

N
+
n/1

[+l
k
(» (m ))r

m
(» (m )) · r

n
(» (m))] a

m
a
n
,

where »3)1 . We saw in the previous section that (6.3) has solutions given by an
asymptotic expansion in a parameter q3RN of the form

(6.4) a
k
(m ; q)"q

k
u
k
(m)#h

k
(m ; q).

The expansion is valid for DqD6d uniformly for »3)1 , and h
k
( · ; q) satisfies (5.20)

and is of order O (DqD2) as Dq DP0. The parameter q is associated with the data at c
k
,
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as from (5.1):

(6.5) a
k
(c

k
; q)"q

k
u

k
(c

k
) .

It is instructive to visualize DqD"Dq
1
D# · · ·#Dq

N
D as measuring the wave strength

of the solution of the Riemann problem associated with a
k
(m ; q) (cf. (3.11)).

A comparison with the general outline in Section 3 shows that while the
solvability of (3.15) is at this point well understood, it remains to select q so that
(3.13) is satisfied. The issue emerges of studying the connection between the
parameter q and the boundary data º

$
. To this end let º

~
be fixed and consider

the map S that carries q into the end-state vector

(6.6) S(q)"º
~
#

N
+
k/1

=
:

~=

[q
k
u
k
(f )#h

k
(f ; q)]r

k
(» (f )) df.

For q3Bd"Mq3RN : DqD6dN, the map S is well defined, and depends explicitly on
» and implicitly on e. Our objective is to study the invertibility of S and to show
that the inverse map is uniformly bounded in » and e.

Proposition 6.1. Assume that (A
1
)—(A

5
) are satisfied for »3)1 . ¹here exist positive

constants r and d such that
(i) Given º

`
3B

r
(º

~
), there exists a unique solution of the equation S (q)"º

`
with

q3Bd .
(ii) For each »3)1 and e'0, the inverse map S~1 :B

r
(º

~
)PBd is well defined and

satisfies

(6.7) DS~1 (º
`
) D62bDº

`
!º

~
D,

where b is a constant which depends on k, but is independent of the particular »3)1
and e.

Proof of Proposition 6.1. Let º
~

be fixed. The equation S (q)"º
`

has the form

(6.8) º
`
!º

~
"

N
+
k/1

q
k

=
:

~=

u
k
r
k
(» (f)) df#

N
+
k/1

=
:

~=

h
k
(f ; q)r

k
(» (f)) df.

If A(» ) is the matrix whose k-th column is given by

(6.9) a
k
(» )"

=
:

~=

u
k
r
k
(» (f)) df, k"1, . . . , N,

then (6.8) reduces to

(6.10) º
`
!º

~
"A (» )q#

N
+
k/1

=
:

~=

h
k
(f ; q)r

k
(» (f )) df,

whose solvability in q we now study.
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First we show that Hypothesis (A
5
) implies that A (» ) is invertible:

Lemma 6.2. Assume that (A
5
) holds (with g(1/N). ¹he matrix A(» ) is invertible for

any »3)1 , and the inverse matrix A~1(» ) is uniformly bounded:

(6.11) DA~1(» )D6b, »3)1 ,

by a constant b independent of e.

Proof of Lemma 6.2. Since u
k

are averaging measures, the mean-value theorem
implies that

(6.12) a
k
(» )"

=
:

~=

u
k
r
k
(» (f )) df"r

k
(»*

k
)

for some »*
k
3Bk(º~

). Since Mr
i
(º

~
)N are linearly independent, by choosing k suffi-

ciently small we guarantee that the vectors r
1
(»*

1
), . . . , r

N
(»*

N
) are linearly inde-

pendent and thus A(» ) is invertible.
We now show (6.11) and in the process provide an alternative way of showing

that A(» ) is nonsingular. For q, y3RN consider the equation A(» )q"y and write
it in the form

(6.13)
N
+
k/1

q
k

=
:

~=

u
k
r
k
(» (f)) df"y.

Taking the inner product of (6.13) with l
i
(º

~
) and rearranging the terms we obtain

(6.14)

q
i

=
:

~=

u
i
[l

i
(º

~
) · r

i
(» (f ))]df"l

i
(º

~
) · y! +

k9i

q
k

=
:

~=

u
k
[l

i
(º

~
) · r

k
(» (f))] df.

Then (A
5
), (4.3), and (6.14) yield

(6.15) Dq
i
D(1!g)6Dl

i
(º

~
) · y D#g +

k9i

Dq
k
D .

Adding the resulting equations for i"1, . . . , N and using the fact that g(1/N,
we obtain the estimate

(6.16) Dq D6
1

1!Ng
N
+
i/1

Dl
i
(º

~
) · y D6bDy D"bDA (» )qD.

The first implication of (6.16) is that the only possible solution of A(» )q"0 is
the trivial solution q"0. Therefore a

1
(» ), . . . , a

N
(» ) are linearly independent and

A(» ) is invertible. In addition, (6.16) implies that

(6.17) DA~1 (» )y D6bDy D, y3RN,

which proves (6.11). K
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Next, we formulate the equation S (q)"º
`

as a fixed-point problem. Let
B
r
(º

~
) be the ball centered at º

~
of radius r, and consider the map P that takes

º
`
3B

r
(º

~
), »3)1 , q3Bd into the vector

(6.18) P (º
`
,», q)"A~1(» ) (º

`
!º

~
)!A~1(» )

N
+
k/1

=
:

~=

h
k
(f ; q)r

k
(» (f )) df.

Since A(» ) is invertible, solutions of (6.10) are fixed points of the map P (º
`

,», · ).

Lemma 6.3. ¹here exist positive constants d and r such that
P :B

r
(º

~
)])1 ]BdPBd and has the property that there exists a constant a with

0(a(1 such that

(6.19) DP(º
`
,», q)!P (º

`
,», s) D6aDq!s D, q, s3Bd ,

for any º
`
3B

r
(º

~
), »3)1 , that is, P (º

`
,», · ) is a uniform contraction on Bd .

Proof of Lemma 6.3. Let º
`
3B

r
(º

~
), »3)1 , and q3Bd . Using (6.18), (6.11), (6.2)

and (5.20), we obtain

(6.20) DP (º
`

,», q) D6DA~1(» ) DADº`
!º

~
D#

N
+
k/1

=
:

~=

Dh
k
(f ; q) D Dr

k
(» (f )) D dfB

6bAr#RA Dq D2N
N
+
j/1

=
:

~=

u
j
dfB

6b(r#RAN2d2).

The first assertion of the lemma is true, provided that r and d satisfy

(6.21) br#bRAN2d26d.

Now let q, s3Bd and observe that

(6.22)

P(º
`
,», q)!P (º

`
,», s)"!A~1(» )

N
+
k/1

=
:

~=

[h
k
(f ; q)!h

k
(f ; s)]r

k
(» (f)) df.

On account of (6.11), (6.2) and (5.21), we see that (6.22) gives

(6.23) DP(º
`
,», q)!P (º

`
,», s) D6b

N
+
k/1

=
:

~=

Dh
k
(f ; q)!h

k
(f ; s) D Dr

k
(» (f)) D df

6bRNCdDq!s D
N
+
j/1

=
:

~=

u
j
df

6bRN2CdDq!s D.

Therefore, if

(6.24) a"bRN2Cd(1,

then P (º
`
,», · ) :BdPBd is a uniform contraction.
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Note that if d61
2
minM(bRN2C)~1, (bRN2A)~1N and r6d/2b, then both (6.21)

and (6.24) are simultaneously satisfied, and the proof of the lemma is complete. K

We return to the proof of Proposition 6.1. Lemma 6.3 implies that, given
º

`
3B

r
(º

~
), there exists a unique fixed point of P (º

`
,», · ) in the ball Bd and thus

a unique solution of S (q)"º
`

. Hence, S~1 is well defined. Let º
`

and
q"S~1(º

`
) be two corresponding points related through (6.10). Using (5.20), (6.2),

and (4.3), we obtain

(6.25) DA(» )qD6Dº
`
!º

~
D#

N
+
k/1

=
:

~=

Dh
k
(f ; q) D Dr

k
(» (f )) D df

6Dº
`
!º

~
D#RANDqD2

N
+
j/1

=
:

~=

u
j
df

"Dº
`
!º

~
D#RAN2 Dq D2.

Using Lemma 6.2, in conjunction with (6.21) and the choice of d, we deduce from
(6.25) that

(6.26) Dq D6bDº
`
!º

~
D#bRAN2dDqD6bDº

`
!º

~
D#1

2
Dq D,

which implies (6.7) and completes the proof of the proposition. K

7. Proof of Theorem 3.1

This is the concluding section of the derivation of a priori estimates for (Pe). The
analysis of Section 3 to 6 is combined in order to prove the main theorem.

Let º
~

be fixed and define )1 by (4.1). )1 is a closed, convex, and bounded subset
of the Banach space C0 (!R,R) of continuous, bounded functions. Fix e'0 and
consider the map ¹ carrying »3)1 to the continuous function ¼ defined by the
following procedure:
(a) Let u

k
be as in (4.3). We obtain the solution h

k
( · ; q) of (5.1) for q3RN small, and

define a
k
( · ; q)"q

k
u
k
#h

k
( · ; q). The resulting a

k
form a solution of the system of

equations (6.3).
(b) Let S be the map defined in (6.6). Let t be the solution of the equation
S(q)"º

`
, that is, t"S~1(º

`
).

(c) ¼ is then defined by setting

(7.1) ¼ (m)"º
~
#

m
:

~=

N
+
k/1

[t
k
u

k
(f)#h

k
(f ; t)]r

k
(» (f )) df.

The construction is feasible for the following reasons: The parameter k in the
definition of )1 is fixed so that Hypotheses (A

1
)—(A

5
) are satisfied for »3)1 . Also, we

fix the parameters A and d
0
as in Proposition 5.1 and let d(d

0
. Then Corollary 5.2

states that for q3Bd the problem (5.1) has a unique solution satisfying the estimate

(7.2) Dh
k
( · ; q)D6A DqD2

N
+
j/1

u
j
, q3Bd .
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According to Proposition 6.1, for r and d sufficiently small the map S : BdPB
r
(º

~
)

is invertible, S (q)"º
`

is uniquely solvable in Bd , and the inverse t"S~1 (º
`
)

satisfies the estimate

(7.3) Dt D"DS~1(º
`
)D62bDº

`
!º

~
D, º

`
3B

r
(º

~
),

for some fixed b (independent of » and e). As a result, ¼ (!R)"º
~

and ¼(#R)
"S (t)"º

`
. From (7.1) we obtain

(7.4)
d¼

dm
"

N
+
k/1

[t
k
u
k
#h

k
( · ; t)] r

k
(» ( · )),

which, in conjunction with (7.2) and (6.2), yields

(7.5) K
d¼

dm K6
N
+
k/1
CDtk Duk

#A Dt D2
N
+
j/1

u
jD Dr

k
(» ) D

6R Dt D (1#AN Dt D)
N
+
j/1

u
j
.

In turn, (7.1), (7.3), and (7.5) imply that

(7.6) D¼ (m)!º
~
D6K

m
:
ck
K

N
+
k/1

[t
k
u
k
(f )#h

k
(f ; t)] r

k
(» (f )) K df K

62bNR(1#2bAN Dº
`
!º

~
D) Dº

`
!º

~
D.

It follows that if º
`
3B

r
(º

~
) and r is restricted by

(7.7) 2bNRr(1#2bANr)6k,

then the function ¼ defined in steps (a)—(c) satisfies

(7.8) D¼ (m)!º
~

D6k, m3R.

In the sequel we fix r and d to simultaneously satisfy (7.7), (6.21), (6.24), and (5.16).
All the stated constructions and estimations are then feasible, and the map
¹ :)1 P)1 is well defined. In addition, (7.5), (7.3), and Lemma 4.1 dictate that there
is a constant C such that

D¼ (m)!º
~
D6Dº

`
!º

~
D
C

e
m
:

~=

e~(f~j1~)2@2e df for m(j
1~

,

(7.9)

D¼ (m)!º
`

D6Dº
`
!º

~
D
C

e
=
:
m

e~(f~jN`)2@2e df for m'j
N`

.

Our next task is to apply the Schauder fixed-point theorem to the map ¹.
(i) ¹ ()1 ) is precompact in C0 (!R,R). Consider a sequence M» nNL)1 and let
¼ n"¹ (» n). Estimates (7.5), (7.3), (7.8), and (4.7) imply that M¼ nN is uniformly
bounded and uniformly equicontinuous on the reals. It follows from the Ascoli-
Arzelà theorem and a diagonalization argument that there is a subsequence M¼ njN
and a continuous function ¼ such that ¼ njP¼ uniformly on compact subsets of
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R. But then the decay estimates (7.9) imply that the convergence is in fact uniform,
and thus ¹ ()1 ) is precompact in C0(!R,R).
(ii) ¹ : )1 P)1 is continuous. Let M» nNL)1 be a convergent sequence in C0 (!R,R),
with » nP»0, and set ¼ n"¹ (» n), ¼0"¹ (»0). We proceed to show that
¹ (» n)P¹ (» 0). Recall that e is held fixed and that ¼ n and ¼0 are defined in
terms of the intermediate quantities un

k
, hn

k
( · ; q), an

k
( · ; q), Sn, tn and u0

k
,

h0
k
( · ; q), a0

k
( · ; q), S0, t0 in steps (a)—(c) for »"» n and »"»0, respectively.

First, we show that un
k
Pu0

k
in C0(!R,R). We first use (4.7), (4.2) and (4.8) to

show that Mun
k
N is a uniformly bounded and equicontinuous sequence of functions

that satisfies the decay estimates (4.8) as DmDPR. An argument as in (i) implies that
there exist a subsequence Munj

k
N and a function u=

k
such that unj

k
Pu=

k
uniformly

in R. Passing to the limit in (4.3) along the subsequence n
j
, we find that

(7.10)

unj
k
"

1

P
=

~=

expA!
1

e P
f

m
s!j

k
(» nj (s)) dsB df

P

1

P
=

~=

expA!
1

e P
f

m
s!j

k
(»0 (s)) dsB df

"u0
k
,

from which we deduce that u=
k
"u0

k
. The sequence Mun

k
N has limit points, and any

limit point is equal to u0
k
. Hence, the whole sequence Mun

k
N converges to u0

k
.

Second, we show that for q fixed hn
k
( · ; q)Ph0

k
( · ; q) in C0 (!R,R). This follows

by a similar argument, which we only sketch: Using (5.20), (5.1), (4.7), and (4.8), we
show that Mhn

k
N possesses a subsequence Mhnj

k
N and a limit point h=

k
so that hnj

k
Ph=

k
uniformly in R. Passing to the limit in (5.4) along the subsequence n

j
and using the

convergence of » n and un
k
, we obtain

(7.11)

h=
k

(m)"e~g0k @ e
m
:
ck

eg0k @ e
N
+

m,n/1

b
k,mn

(»0(f )) (q
m
u0

m
(f )#h=

m
(f )) (q

n
u0

n
(f)#h=

n
(f)) df.

Since the limiting h=
k

inherits the estimate (5.20), the uniqueness part of Corollary
5.2 implies that any limit point of Mhn

k
N is of the form h=

k
( · ; q)"h0

k
( · ; q). Conse-

quently hn
k
( · ; q)Ph0

k
( · ; q).

The third step is to show that tnPt0 in RN. Let Sn and S0 be the maps
associated with » n and »0 respectively and define tn and t0 to satisfy Sn (tn)
"S0(t0)"º

`
. Since MtnN is bounded, there is a subsequence MtnjN and a vector t=

such that tnjPt=. We use (5.20), (5.21) to pass to the limit in Snj (tnj)"º
`

and to
obtain S0(t=)"º

`
. Because of the unique invertibility of the map S0, we have

t0"t= and thus the sequence MtnN converges to t0.
The precompactness of ¹ implies that the sequence M¼ nN has a subsequence

M¼ njN and a limit function ¼= such that ¼ njP¼= in C0(!R,R). Using the
established convergences and (5.21), we pass to the limit in (7.1) along n

j
and obtain

(7.12) ¼= (m)"º
~
#

m
:

~=

N
+
k/1

[t0
k
u0

k
(f)#h0

k
(f ; t0)] r

k
(»0 (f)) df"¹ (»0) (m).

Therefore any limit point of M¼nN is equal to ¹ (»0) and thus ¹ (» n)P¹ (»0) in
C0(!R,R). Hence, ¹ is continuous.
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The Schauder fixed-point theorem implies that there exists a fixed point ºe of
the map ¹ in )1 . By construction ºe satisfies

(7.13) ºe (m)"º
~
#

m
:

~=

N
+
k/1

a
ke (f ; qe)rk(ºe(f )) df,

where

(7.14) a
ke (m ; qe)"q

k, euke (m)#h
ke(m ; qe)

satisfies (3.15). The functions u
ke , h

ke , and a
ke depend implicitly on e, and the

quantities qe satisfy

(7.15) Se(qe)"º
~
#

N
+
k/1

=
:

~=

a
ke (f ; qe)rk(ºe (f)) df"º

`
.

As a result, ºe ($R)"º
$

and

º@e(m)"
N
+
k/1

a
ke(m ; qe)rk(ºe(m)),

(7.16)
a
ke(m ; qe )"l

k
(ºe (m)) ·º@e (m).

Using (7.16) and (3.5)—(3.8), we can rewrite (3.15) in the form

(7.17) l
k
(ºe) · [!m#+F(ºe)]º@e"l

k
(ºe) ·ºAe

which implies that ºe is a solution of (Pe).
Consider a family MºeNe;0

of such solutions to (Pe). By construction, ºe are of
uniformly bounded (and small) oscillation (C

0
) and satisfy the representation

formula (3.33). Relations (7.2) and (7.3) imply that there exist constants C, indepen-
dent of e, such that Dqe D6C Dº

`
!º

~
D and

(7.18) Da
ke(m ; qe) D6Dq

k, e Duke#C Dqe D2
N
+
j/1

u
je

6C Dº
`
!º

~
DAuke#Dº

`
!º

~
D

N
+
j/1

u
jeB .

As a result,

(7.19) Dº @e (m) D6K
N
+
j/1

u
je

where K is a constant of order O(Dº
`
!º

~
D) that is independent of e. Since Mu

jeN
are uniformly bounded in ¸1 (R), it follows that Mº @eN are uniformly bounded in
¸1(R) and that MºeN is of uniformly bounded variation. The total variation of the
family is controlled by Dº

`
!º

~
D and is thus small. The proof of Theorem 3.1 is

complete.
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8. The Solution of the Riemann Problem

Our next objective is to construct solutions of the Riemann problem (P) by
taking eP0 limits of solutions of (Pe) and to identify the structure of the emerging
solutions. The analysis is patterned on the framework developed in the previous
sections. Nevertheless, it is instructive to single out the set of hypotheses used in
performing the limit as eP0 and to provide an independent presentation. Let
MºeNe;0

be a family of solutions to (Pe) that connect º
~

to º
`

and enjoy the
properties:

(A
4
)

ºe satisfy the uniform bounds (C
0
), (S) for e'0,

j
k
(ºe) satisfy the uniform bounds (3.9), (3.10) for e'0,

º@e satisfy (7.19) where u
ke is given by (3.25).

Solutions satisfying (A
4
) were constructed in Theorem 3.1, and the resulting families

are of small oscillation and variation. The results of this section remain valid for
families of large oscillation and variation, provided that the global separation of
the eigenvalues and, most important, estimate (7.19) hold. Helly’s selection prin-
ciple implies that there exists a subsequence of the original family, denoted again by
MºeN, with eP0, and a function º of bounded variation such that

(8.1) ºe(m )Pº (m) pointwise on (!R,R).

Since º is of bounded variation, its domain can be decomposed into two disjoint
subsets C andS : C consists of the points of continuity of º andS of the points of
jump discontinuity.S is at most countable, and the right and left limits of º exist
at any m3S and are denoted º (m$).

We proceed to show that º satisfies (P). In the sequel C denotes a generic
constant that can be estimated in terms of the bounds in (A

4
) and the Riemann data

and that is independent of e.

Theorem 8.1. ¸et (1.1) be strictly hyperbolic and let MºeNe;0
be a family of solutions

of (Pe) corresponding to data º
$

and satisfying (A
4
). ¹here exists a subsequence

MºenN with e
n
P0 and a function of bounded variation º such that ºenPº pointwise

on the reals. º satisfies

(8.2) !mº @#F (º)@"0

in the sense of measures, the Rankine-Hugoniot conditions

(8.3) !m[º(m#)!º (m!)]#[F (º(m#))!F (º(m!))]"0

hold at any point m3S, and there exist constant vectors º
0
, . . . , º

N
3RN with

º
0
"º

~
,º

N
"º

`
such that

(8.4) º(m )"G
º

0
"º

~
, !R(m(j

1~
,

º
k
, j

k`
(m(j

(k`1)~
, k"1, . . . , (N!1),

º
N
"º

`
, j

N`
(m(#R.
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Proof. Let MºeN be a convergent subsequence as in (8.1), satisfying the uniform
bounds (C

0
), (S), and let t3[C=

c
(R)]N be a test function with compact support.

Then (Pe) gives

(8.5) :
R

ºe · (mt)@!F (ºe) ·t@ dm"e :
R

ºe ·tA dm.

Passing to the limit as eP0, we deduce that

(8.6) :
R

º · (mt)@!F (º) ·t@ dm"0,

that is, º satisfies (8.2) in the sense of distributions. Since º is of bounded variation,
it also satisfies (8.2) in the sense of measures.

Let L"[j
1~

, j
1`

]X · · · X[j
N~

, j
N`

] stand for the range of variation of the
wave speeds j

k
(ºe). Then (4.8) and (7.19) imply

u
ke6

C

e
expA!

1

2e
d (m, j

k
)2B, m3 (!R,R)![j

k~
, j

k`
],

(8.7)

Dº@eD6K
N
+
j/1

u
je6

C

e
expA!

1

2e
d(m,L)2B, m3(!R,R)!L,

where d (m, j
k
) and d (m,L) are the distances between the point m and the sets

[j
k~

,j
k`

] andL respectively. Therefore the limiting function º stays constant on
each connected component of (!R,R)!L, and (8.4) follows. In addition,
ºe ($R)"º

$
implies that º

0
"º

~
and º

N
"º

`
.

The Rankine-Hugoniot conditions (8.3) are a consequence of the fact that º of
bounded variation satisfies (8.2). We outline a different proof, in the spirit of
self-similar zero-viscosity limits. Integrating the equation (Pe) on an interval (a, b),
we obtain the weak form

(8.8)

[!bºe (b)#F (ºe(b))]![!aºe (a)#F (ºe(a))]#
b
:
a

ºe (f ) df"eº@e(b)!eº@e (a).

For m3S and d'0, we evaluate (8.8) between the points h and q, with q(j
1~

,
and integrate the resulting equation in h over [m, m#d] to arrive at the identity

(8.9)
m`d
:
m
!hºe (h)#F(ºe(h)) dh#

m`d
:
m

h
:
q
ºe(f ) df dh

"e
m`d
:
m

º@e(h)dh!edº@e(q)#d[!qºe(q)#F(ºe(q))].

From (7.19) and (3.25) we have

(8.10)
=
:

~=

Dº@e D df6KN.
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Using this in conjunction with (A
4
), (8.1) and (8.7), we first take eP0 in (8.9) and

then divide the resulting equation by d and take dP0#to obtain

(8.11) !mº (m#)#F(º (m#))#
m
:
q
º (f) df"!qº(q)#F (º(q)).

In a similar manner, given any h and q(j
1~

, we establish

(8.12) !hº(h!)#F(º (h!))#
h
:
q
º(f) df"!qº (q)#F (º(q)).

Then (8.3) follows from (8.11) and (8.12) for m"h. K

With º(m) as above, define

(8.13) » (x, t)"º (x/t), (x, t)3(!R,R)](0,R).

Clearly lim
t?0

» (x, t)"º
~

for x(0, º
`

for x'0. Furthermore, a solution » of
the form (8.13) is a weak solution of (1.1) on (!R,R)](0,R) if and only if º is
a weak solution of (8.2) on (!R,R). The equivalence follows from an argument
due to DAFERMOS [D

3
]. Let s (x, t) be a C= RN-valued function with compact

support in (!R,R)](0,R) and define

(8.14) t(m )"
=
:
0

s (mt, t) dt.

The resulting function t3[C=
c

(!R,R)]N. Conversely, any test function t may be
represented in the form (8.14) by choosing s"t(x/t)a(t), with a(t)3C=

c
(0,R)

a fixed function such that :=
0

a(t) dt"1. For solutions of the type (8.13), the weak
form of (1.1) may be written as

(8.15)
=
:
0

=
:

~=

» (x, t) · s
t
(x, t)#F (» (x, t)) · s

x
(x, t) dx dt

"

=
:

~=

º (m) ·A
=
:
0

s
t
(mt, t) t dtB#F (º(m )) ·A

=
:
0

s
x
(mt , t) t dtB dm

"

=
:

~=

º (m) · (!mt (m))@#F(º (m)) ·t@(m ) dm,

and the equivalence follows from the chain of identities. Theorem 8.1 in conjunc-
tion with Theorem 3.1 leads to an existence theorem for the Riemann problem.

Theorem 8.2. Assume that (1.1) is strictly hyperbolic. Given any data º
~

, º
`

with
Dº

`
!º

~
D sufficiently small, there exists a function of bounded variation º(m) defined

on (!R,R) such that º (x/t) is a weak solution of the Riemann problem for (1.1).

Next we investigate the structure of the emerging solution º. It is instructive to
use the correspondence between functions of bounded variation and finite signed
Borel measures on R (see [F, Sec. 3.5, Sec. 7.3]). Let k be the (vector-valued)
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measure generated by the right-continuous function of (normalized) bounded
variation (º(m#)!º

~
). Consider now the functions

(8.16) U
ke(m )"

m
:

~=

u
ke(f ) df.

In view of (3.25), the family MU
keN consists of increasing uniformly bounded

functions. Therefore U
ke converge along a subsequence to an increasing function

U
k
pointwise on the reals. The measures generated by U

k
(m#) are denoted by /

k
;

they are positive measures with total mass 1.
Introduce the measures associated with the functions º@e and u

ke defined by

Ske ,tT":
R

º@e (m) · t(m) dm,

(8.17)
S/

ke , sT":
R

u
ke(m) s (m) dm,

where t3[C
c
(R)]N, s3C

c
(R) are continuous functions with compact support.

Then (3.25), (7.19), (8.10), and Helly’s convergence theorem imply that

:
R

º@e ·t dmP:
R

t · dº"Sk,tT for t3[C
c
(R)]N,

(8.18)
:
R

u
kes dmP:

R

s dU
k
"S/

k
, sT for s3C

c
(R).

In the language of functional analysis, ke N k and /
ke N /

k
weak-w in measures.

Using (8.18) we can express Sk,tT"!:R º · t@ dm for test functions
t3[C1

c
(R)]N. Note that m4 supp k if and only if there is an open interval IU m such

that Sk,tT"!:Rº · t@ dm"0 for t3[C1
c
(I )]N. This is in turn equivalent to the

function º being a.e. equal to a constant vector on I. Consequently supp k
coincides with the region in the m-domain where º is not a constant state. From
(8.7) it follows that k is absolutely continuous with respect to + N

k/1
/
k

and that

supp/
k
L[j

k~
, j

k`
],

(8.19)

supp kL
N
Z
k/1

supp/
k
LL"

N
Z
k/1

[j
k~

, j
k`

].

The following proposition states an important property of /
k
, which incorpor-

ates admissibility restrictions induced by the self-similar viscosity. In preparation,
recall that

(8.20) u
ke"

e~gke @e
=
:

~=

e~gke @e df

where

(8.21) g
ke(m )"

m
:
oke

s!j
k
(ºe (s)) ds,
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and assume (by restricting to a further subsequence) that o
kePo

k
as eP0. Using

(8.1), (C
0
), and the Ascoli-Arzelà theorem, we deduce that

(8.22) g
ke (m )"

m
:
oke

s!j
k
(ºe (s)) dsP

m
:
ok

s!j
k
(º(s)) ds": g

k
(m)

uniformly on compact subsets of (!R,R). We show that points in the support of
/
k
are global minima for the function g

k
.

Proposition 8.3. If m3supp/
k
, then g

k
(f)7g

k
(m ) for f3(!R,R).

Proof. The proof has two steps. First, fix any m3R and a'0 and consider the set

(8.23) A"Mf3R : g
k
(f)!g

k
(m)(!a(0N.

Since g
k
is continuous, eitherA is empty or it has positive Lebesgue measure m(A).

We prove that if m(A)'0, then there exists an open interval IUm such that
S/

k
, sT"0 for any s3C

c
(I). As a result, if m(A)'0, then m4 supp/

k
.

To establish the assertion, observe first that

(8.24) g
k
(f )!g

k
(m)71

2
(f2!m2)!maxMDj

k~
D, Dj

k`
DNDf!mD

implies that g
k
(f)PRas DfDPRand thatA is contained in some compact interval

[a,b]. Fix d'0 such that Dg
k
(m)!g

k
(h) D(1

6
a for h3(m!d, m#d). By virtue of

(8.22), there is an e
0
'0 such that if e(e

0
, then

(8.25) Dg
ke(h)!g

k
(h) D61

6
a for h3AX(m!d, m#d).

From (8.23) and (8.25) we deduce that if h3(m!d, m#d), e(e
0
, and f3A, then

(8.26) g
ke(f)!g

ke(h)6g
k
(f)!g

k
(m )#Dg

k
(m)!g

k
(h) D

#Dg
ke(h)!g

k
(h) D#Dg

ke (f)!g
k
(f ) D(!1

2
a.

In turn (8.20) and (8.21) yield

(8.27) 0(u
ke(h)6

1

:A exp (!1e (g
ke(f )!g

ke (h))) df
6

e~a @2e
m(A )

for h3I :"(m!d, m#d). Let s3C
c
(I ). Then (8.18) and (8.27) imply that

(8.28) S/
ke , sT" :

(m~d,m`d)
u
ke(h )s (h) dhP0 as eP0.

Hence, S/
k
, sT"0 for s3C

c
(I).

Suppose next that m3supp/
k
. ThenA is empty for any a'0 and g

k
(f )7g

k
(m)

for any f3(!R,R). K

The minimization properties for the g
k
yield information on the structure of º.

In particular, a weak form of the Lax shock conditions is induced at points of
discontinuity.
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Proposition 8.4. ¸et m, m@3supp kW[j
k~

, j
k`

] with m(m@.
(a) If m3C, then

(8.29) m"j
k
(º (m)).

(b) If m3S, then º satisfies at m the jump conditions (8.3) and the inequalities

(8.30) j
k
(º(m#))6m6j

k
(º(m!)).

(c) If m, m@3suppkW[j
k~

, j
k`

], then j
k
(º(m#))"m, j

k
(º (m@!))"m@. Moreover, for

any point h3(m, m@ ),

h"j
k
(º (h)) if h3C,

(8.31)
j
k
(º (h#))"h"j

k
(º (h!)) if h3S.

Proof. The function g
k

in (8.22) is continuous and has the property that
g
k
(m)PRas DmDPR. Since º is of bounded variation, the limits

(8.32) lim
f?m$

g
k
(f )!g

k
(m)

f!m
" lim

f?m$
1

f!m
f
:
m
s!j

k
(º(s)) ds"m!j

k
(º(m$))

exist and imply that the derivative dg
k
/dm exists and is continuous for m3C, while

only the right and left derivatives exist for m3S. Fix a point m3suppkW[j
k~

, j
k`

].
It follows from (8.19) and Proposition 8.3 that m3supp/

k
and that g

k
(f)7g

k
(m ) for

f3R. In turn, (8.32) yields

(8.33) m!j
k
(º (m#))70, m!j

k
(º (m!))60,

which leads to (8.29) for m3C and to (8.30) for m3S.
It remains to show (c). Let m, m@3suppkWsupp/

k
with m(m@. Then m, m@ are

both global minima for g
k
with g

k
(m )"g

k
(m@ ). We assert that

(8.34) g
k
(h )"g

k
(m ) for any h3(m, m@).

If (8.34) is violated at some point, then there exist a, b with m6a(b6m@ such that

(8.35) g
k
(a)"g

k
(b)"g

k
(m ), g

k
(h )'g

k
(m ) for a(h(b.

At the points a, b we have

j
k
(º(a#))6a6j

k
(º(a!)),

(8.36)
j
k
(º(b#))6b6j

k
(º(b!)),

On the other hand, at any h3(a, b) the set A"Mf3R : g
k
(f )!g

k
(h )(!aN is

nonempty for some a'0. Proposition 8.3 and (8.19) then imply that h 4 supp/
k
,

and the function º(m) remains constant on the interval (a, b). Hence
j
k
(º(a#))"j

k
(º(b!)), and the inequalities (8.36) yield b6a. This contradicts

a(b and (8.35) follows. K

In summary, the region where º is nonconstant consists of (at most) N disjoint
closed intervals Ijk

"[a
k
, b

k
], k"1, . . . , N. Each Ijk

is associated with one charac-
teristic family j

k
(º) and could be empty or consist of just a single point. The
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function º takes constant values on the complement of ZN
k/1

Ijk and has the
properties listed in Proposition 8.4 at points of Ijk

. The emerging solution consists
of N wave fans separated by constant states. Next we use the weak form of (8.2):

(8.37)

!mº (m#)#hº(h!)#F (º (m#))!F (º(h!))#
m
:
h
º (s) ds"0, m, h3R,

in conjunction with relations (8.29)—(8.31) to obtain a fuller description of the
behavior of º on the wave fans.

Proposition 8.5. Suppose that Ijk
"[a

k
, b

k
] is a full interval, a

k
(b

k
.

(i) For each m3[a
k
, b

k
) such that +j

k
(º(m#)) · r

k
(º(m#))90,

(8.38) lim
h?0,h;0

1

h
(º(m#h!)!º (m#))"

1

+j
k
(º(m#)) · r

k
(º(m#))

r
k
(º(m#)).

(ii) For each m3(a
k
, b

k
] such that +j

k
(º(m!)) · r

k
(º(m!))90,

(8.39) lim
h?0,h:0

1

h
(º(m#h#)!º (m!))"

1

+j
k
(º(m!)) · r

k
(º(m!))

r
k
(º(m!)).

Proof. We show (i). Fix m3[a
k
, b

k
) and let h'0 such that m#h3Ijk

. The weak
form (8.37) taken between the points m#and m#h! gives

(8.40)

[!mI#+F (º(m#))] (º(m#h!)!º (m#))

"![F (º(m#h!))!F (º(m#))!+F(º(m#)) (º (m#h!)!º(m#))]

!

m`h
:
m

[º (s)!º(m#)] ds#h (º (m#h!)!º(m#)).

The increment (º(m#h!)!º(m#)) is expanded in the basis of right eigenvec-
tors:

(8.41) u(h) :"º(m#h!)!º(m#)"+
i

u
i
(h)r

i
(º (m#)).

Note that for a function º of bounded variation, u(h)P0 as hP0#, and that

(8.42) u
i
(h)"l

i
(º(m#)) · u(h)

by (3.8). Taking the inner product of (8.40) with l
i
(º(m#)) and using (3.6), (8.42) and

the Taylor expansion, we obtain

(8.43) [!m#j
i
(º(m#))]u

i
(h)"O(Du(h) D2)#OA

h
:
0

Du(s) D dsB#O(h Du(h) D).

On account of Proposition 8.4 and the strict hyperbolicity of (1.1), the coefficient
[!m#j

i
(º(m#))] is nonzero for i9k but vanishes for i"k.
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Next, using (8.29)—(8.31) and the Taylor expansion of j
k
, we see that

(8.44) j
k
(º(m#h!))!j

k
(º(m#))

"h"+j
k
(º(m#)) · (º (m#h!)!º (m#))#O(Du(h) D2).

If we set j
k
"+j

k
(º(m#)) · r

k
(º (m#)), j

k
90 by hypothesis, and use (8.44), (8.41),

and relations (8.43) for i9k, we arrive at the estimate

(8.45) j
k
u

k
(h)!h"OA +

i9k

Du
i
(h) DB#O(Du(h) D2)

"O(Du(h) D2)#OA
h
:
0

Du (s) D dsB#O (h Du(h) D).

Adding (8.43) for i9k to (8.45) gives

(8.46) u(h) :"D j
k
u

k
(h)!h D# +

i9k

Du
i
(h) D

"O ((Du(h) D#h)Du (h) D)#OA
h
:
0

Du(s) D dsB
"O ((Du(h) D#h)u(h))#OA

h
:
0

u (s) dsB#O (h2) .

Since u(h)P0 as hP0#, we can choose d so small that

(8.47) u (h)6Ch2#C
h
:
0

u (s) ds

for 0(h6d. This integral inequality, in turn, yields

(8.48) 06u (h)6C@h2 for 0(h6d,

and thus

(8.49) lim
h?0`

u
i
(h)

h
"0 for i9k, lim

h?0`

u
k
(h)

h
"

1

j
k

.

This shows (8.38). The proof of part (ii) is virtually identical. K

Proposition 8.5 implies that º has right and left derivatives at any point m that
is not an accumulation point of S. If such a point m belongs to C, then º is
Lipschitz continuous there, and if, in addition, it is an interior point of Ijk

, then f is
differentiable there. It also completes the picture regarding the structure of the
wave fans. We distinguish the following cases:
(i) If Ijk

consists of a single point, then the solution is a shock wave satisfying the
weak form of the Lax shock conditions (8.30).
(ii) If Ijk

is a full interval of points in C, then the solution is a k-rarefaction wave
(provided that +j

k
· r

k
90 on Ijk

which anyway is necessary for rarefactions).
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(iii) In general Ijk
consists of an alternating sequence of shock waves and

k-rarefaction waves such that each shock adjacent to a rarefaction from one side is
a contact discontinuity on that side.

9. Self-similar Zero-Viscosity Limits and Shock Profiles

In this section we discuss the relation between self-similar zero-viscosity limits
and shock profiles for strictly hyperbolic systems. It was conjectured by DAFERMOS

[D
2
] and TUPCIEV [Tu

2
], and proved for systems of two equations [D

2
], that

self-similar zero-viscosity limits have the internal structure of traveling-wave solu-
tions. We pursue here the question in the context of general systems.

Let m be a point of discontinuity of º and note that º(m$) satisfy the
Rankine-Hugoniot conditions (8.3). Consider a sequence of points MmeN with the
property that mePm as eP0. Define the function

(9.1) »e (f)"ºe(me#ef ), !R(f(R.

This introduces a stretching of the independent variable centered around the point
me , a shift of the shock speed m. The uniform estimates (C

"
), (S) imply that »e is

uniformly bounded and that

(9.2) ¹»f»e ( · )"¹»fºe(me#e · )"¹»mºe ( · )6C.

Using Helly’s theorem and a diagonalization argument, we establish the existence
of a subsequence and a function » such that

(9.3) ºe (me#ef)P» (f) pointwise for !R(f(R.

Proposition 9.1. ¸et m3S and suppose that MmeN is a sequence of points with mePm.
¹hen the function » (f ) defined in (9.3) is continuously differentiable and satisfies on
(!R,R) the traveling-wave equations

(9.4) !m[»!º (m!)]#[F(»)!F (º(m!))]"
d»

df

with initial conditions

(9.5) » (0)"lim
e?0

ºe (me).

¹he limits limf?$=
» (f)":»

$
exist and are finite, and »

`
, »

~
satisfy the equations

(9.6) !m[»!º(m!)]#[F(» )!F(º (m!))]"0.

Proof. We evaluate (8.8) between the points me#ef and h and then integrate the
resulting equation in h between m and m#d for some d90, to arrive at

(9.7)

[!(me#ef)ºe (me#ef)#F (ºe (me#ef ))]!
1

d
m`d
:
m

[!hºe (h)#F(ºe (h))] dh

#

1

d
m`d
:
m

me`ef
:
h

ºe (q)dq dh"
d

df
(ºe(me#ef ))!e

1

d
m`d
:
m

º@e (h) dh.
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After an integration in f we get

(9.8)

f
:
0

[!(me#es)ºe(me#es)#F(ºe (me#es))] ds!f
1

d
m`d
:
m

[!hºe (h )#F (ºe (h ))] dh

#

1

d
f
:
0

m`d
:
m

me`es
:
h

ºe (q) dq dh ds"ºe (me#ef )!ºe (me)!
ef
d

m`d
:
m

º@e(h ) dh.

Letting eP0 and using (9.3), (C
"
), (8.1), and (8.10) we deduce that

(9.9)
f
:
0

[!m» (s)#F (» (s))] ds!f
1

d
m`d
:
m

[!hº(h )#F (º(h))] dh

#f
1

d
m`d
:
m

m
:
h
º(q) dq dh"» (f )!» (0).

From (9.9), by letting consecutively dP0#and dP0!, we obtain

(9.10)
f
:
0

[!m(» (s)!º(m$))#F (» (s))!F (º(m$))] ds"» (f )!» (0).

It follows from (9.10) that » (f) is a continuously differentiable function that
satisfies the traveling-wave equations (9.4) and the initial conditions (9.5). Since » is
of bounded variation on R, the limits limf?$=

» (f )":»
$

exist and are finite. Also,
for any integer n,

(9.11)
n`1
:
n

[!m (» (s)!º (m!))#F (» (s))!F (º(m!))] ds"» (n#1)!» (n).

Taking the i-th component of (9.11) and using the mean-value theorem, we deduce
that there are t i

n
with n6t i

n
6n#1 such that

(9.12)

!m(» i(ti
n
)!ºi(m!))#F i(»(ti

n
))!Fi(º(m!))"» i(n#1)!» i(n), i"1, . . . , N.

Letting nPRshows that »
`

is an equilibrium for (9.4). Similarly, »
~

satisfies
(9.6). K

The function » as well as the limiting values »
$

depend on the choice of the
sequence MmeN. For several choices of MmeN it may happen that the traveling wave
disintegrates to a constant solution. Two questions arise: (i) Is it always possible to
choose MmeN so that the resulting » does not disintegrate to a constant solution of
(9.4). (ii) What is the relation of º(m!), º (m#), and nontrivial heteroclinic orbits.

Proposition 9.2. ¸et m3S be fixed and suppose that the set of solutions to (9.6) is not
connected. ¹here exists a sequence of shock shifts MmeN such that the resulting » in
(9.3) is a nontrivial heteroclinic (or homoclinic) orbit.
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Proof. Suppose that the solution set of (9.6) with m fixed is contained in two open
sets O

~
Uº (m!) and O

`
Uº(m#) with O

~
WO

`
"0. Because of (C

"
) we may restrict

attention to a ball B
M

containing ºe . For a large integer n, we have º (m!1
n
)3O

~
and º(m#1

n
)3O

`
. Choose e

n
such that ºen(m!1

n
)3O

~
, ºen(m#1

n
)3O

`
. There

exists MmenN satisfying m!1
n
6men6m#1

n
and ºen (men)3B

M
!(O

~
XO

`
). Along

a subsequence, menPm and ºen (men)P» (0) with » (0) 4 O
~
XO

`
. The resulting » is

a nonconstant solution of (9.4) connecting two equilibria »
~

and »
`

. K

The hypothesis in Proposition 9.2 is violated only for shocks associated with
a linearly degenerate characteristic field: +j

k
(º) · r

k
(º)"0 for all º (cf. Section

10). Addressing (ii) is quite complicated at the full level of generality. We give one
result indicating what can happen if there is a finite number of equilibria in B

M
, the

range of variation of ºe .

Proposition 9.3. ¸et m3S and suppose that (9.6) has a finite number of solutions in
B
M

. ¹here exists a subsequence e
n
P0 and choices Mm

1enN, Mm
2enN of the shock shifts

such that m
1en6m

2en , m
1enPm, m

2enPm,

(9.13)

ºen (m1en#e
n
f)P»

1
(f), ºen (m2en#e

n
f )P»

2
(f) pointwise for !R(f(R,

and the resulting »
1
, »

2
are solutions of (9.4) that satisfy »

1
(!R)"º (m!),

»
2
(#R)"º(m#).

Proof. Let B
M

be the ball where the solutions ºe range, and suppose that (9.6) has
a finite number of solutions º(m!), º(m#), and º

1
, . . . , º

J
. Fix two open balls

B
~
, B

`
and an open set O with the properties that B

~
, B

`
, and O lie inside B

M
,

B
~

is centered at º (m!), B
`

is centered at º(m#), O contains º
1
, . . . , º

J
, and the

distances between any two of the sets B
~

, B
`

and O are strictly positive. Since º is
of bounded variation, we can fix d'0 such that º(h)3B

~
for h3[m!d, m) and

º(h)3B
`

for h3(m, m#d].
Consider a convergent sequence ºenPº pointwise on R. In the sequel we will

be extracting appropriate subsequences that are denoted again by ºen . Choose
n
0

such that ºen (m!d )3B
~

, ºen(m#d)3B
`

for n7n
0
. For each n7n

0
, choose

points a i
n
, A i

n
, b i

n
, B i

n
, i"1, . . . , K(n), in the interval Id"[m!d, m#d] in the

following way: a1
n
"m!d, b1

n
is the first point where ºen enters the ball B

`
, A1

n
is

the last point in (a1
n
, b1

n
) at which ºen exits B

~
, a2

n
is the first point after b1

n
at which

ºen enters the ball B
~

(if applicable), B1
n

is the last point after b1
n

at which ºen exits
B
`
, and so on until finally BK (n)

n
"m#d. These are defined by

b i
n
"inf Mh'a i

n
:ºen (h)3B

`
N, A i

n
"supMh3(a i

n
, b i

n
) : ºen (h)3B

~
N,

(9.14)
a i`1
n

"inf Mh'b i
n
:ºen (h)3B

~
N, B i

n
"supMh3(b i

n
, a i`1

n
) : ºen (h)3B

`
N.

if a i`1
n

is not well defined in the i-th step, then i"K (n) and B i
n
"m#d. Since ºen is

of uniformly bounded variation, it can go back and forth between B
~

to B
`

at most
a finite number of times: thus K (n) is bounded. By restricting our attention to
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subsequences, we may assume that K(n) is some positive integer K for large n and
that , and a i

n
Pai, A i

n
PAi, b i

n
Pbi and B i

n
PB i, i"1, . . . , K, as nPR.

By construction, a i
n
(A i

n
(b i

n
(B i

n
(a i`1

n
, and ºen satisfies ºen (h)3B

M
!B

`
on (a i

n
,A i

n
), ºen (h )3B

M
!(B

~
XB

`
) on (A i

n
, b i

n
) and ºen(h )3B

M
!B

~
on (b i

n
, B i

n
).

As a result, the limits ai, Ai, bi, B i have the following properties: (i)
ai6Ai"bi6B i"ai`1, (ii) if B i(m, then Ai"bi"B i"ai`1, and (iii) if ai'm,
then B i~1"ai"Ai"bi. To see (ii), suppose that B i(m ; if Ai(ai`1, then there is
a h(m such that ºen (h)4B

~
for large n. Passing to the limit, we see that º(h ) 4 B

~
,

a contradiction. The rest of the properties are proved by similar arguments.
In what follows we fix j to be the first index such that B j"m and k to be the last

index such that ak"m. Then we have the ordering

(9.15) a j(Aj"bj"B j"· · ·"m"· · ·"ak"Ak"bk(Bk

for any index between j and k.
Consider first the case that (9.6) has precisely two solutions º(m!) and º (m#).

Set

m
1en"Aj

n
, »

1en(f )"ºen (Aj
n
#e

n
f),

(9.16)
m
2en"bk

n
, »

2en(f )"ºen (bk
n
#e

n
f),

Then »
1en (0) lies on LB

~
and »

2en(0) lies on LB
`
. Along a subsequence, »

1en and
»
2en converge pointwise to a solution of (9.4), and the limits »

i
($R)"»

i$
exist

and are finite. Since no solutions of (9.6) lie on the boundaries of B
~

and B
`

, the
resulting traveling waves are nontrivial. From the definition of »

1en and »
2en , it

follows that

(9.17) »
1en (f) 4 B

`
for

aj
n
!Aj

n
e
n

6f(0, »
2en(f ) 4 B

~
for 0(f6

bk
n
!Bk

n
e
n

.

Since lim a j
n
"aj(m"lim Aj

n
and lim bk

n
"m(Bk"lim Bk

n
,

(9.18) »
1
(f) 4 BM

`
for !R(f(0, »

2
(f) 4 BM

~
for 0(f(R.

Since º (m!) is the only equilibrium in B
M
!BM

`
and º(m#) is the only equilib-

rium in B
M
!BM

~
, it follows that »

1
(!R)"º(m!) and »

2
(#R)"º(m#).

Suppose next that (9.4) has more than two equilibria. If ºen never enters O, then
the previous proof shows the desired result. If ºen enters O, we restrict our attention
to the interval [a j

n
, b j

n
] and note that ºen(h)3B

M
!BM

`
on [aj

n
, b j

n
) and that

ºen (bj
n
)3LB

`
. As in the previous step, we choose points c i

n
6C i

n
6d i

n
6D i

n
,

i"1, . . . , K(n), with the properties that c1
n
"a j

n
, d1

n
is the first point after c1

n
that

ºen enters O, C1
n

is the last point before d1
n

that ºen exits B
~

. If ºen reenters B
~

, then
we define c2

n
to be the first point after d1

n
that ºen enters the ball B

~
, define D1

n
to be

the last point before c2
n

that ºen exits O, and reiterate the above procedure. If
ºen does not reenter B

~
, then we set D1

n
to be the last point of exit from O before

touching LB
`

and stop at this step. Since the sequence MºenN is of uniformly
bounded variation, the process concludes in a finite number of steps. By restricting
our attention to subsequences we may assume that K(n)"K(R, c i

n
Pci,
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C i
n
PC i, d i

n
Pd i, D i

n
PD i. Again if d i(m for some i, then C i"d i"D i"c i`1. Let

l be the first index such that D l"m. Then D l~1"cl(C l"d l"D l"m. If we set

(9.19) m
1en"C l

n
, »

1en(f )"ºen (C l
n
#e

n
f),

then »
1en satisfies

(9.20) »
1en (f) 4 OXB

`
for

c l
n
!C l

n
e
n

(f(0

and the resulting traveling wave »
1

has the property that »
1
(!R)"º (m!).

A similar construction shows the second part of the proposition. K

Proposition 9.3 shows that if m is a point of discontinuity of a solution º arising
via self-similar zero-viscosity limits, then there exists one heteroclinic orbit of (9.4)
that emanates from º(m!) and one that terminates at º (m#). It is expected that in
general this is the same heteroclinic orbit. However, if more than two states in
B
M

satisfy the Rankine-Hugoniot conditions (9.6) at a given m3S, or if multiple
heteroclinic connections between two equilibria are possible, then the precise
relation between self-similar limits and shock profiles requires a detailed analysis of
the heteroclinic orbits. (The proof is suggestive as to what possibilities must be
excluded.) In specific examples it usually happens that there is a single shock profile
connecting º(m!) to º(m#). It is however possible that there are intermediate
states »

j
, j"1, . . . , J, satisfying (9.6) and a chain of shock profiles with the same

shock speed m that connect successively º(m!) to »
1
, each of the points »

j
to the

next, and »
J
to º (m#). The latter situation occurs for the equations of elasticity in

the presence of multiple inflection points in the stress-strain relation, for specific
positions of the Riemann data relative to the stress-strain curve [Tz

2
].

10. Comparisons with the Classical Solution of the Riemann Problem

In this section we compare the classical solution of the Riemann problem with
the solution obtained via self-similar zero-viscosity limits. For systems of strictly
hyperbolic conservation laws the classical solution of the Riemann problem is
based on a detailed study of elementary solutions of rarefaction waves and shock
waves, and was established, for Dº

`
!º

~
D small, by LAX [La

1
] in the genuinely

nonlinear case and by LIU [Li
1
, Li

2
] in the general case.

Fix º
0
. LetR

k
"R

k
(º

0
) be the integral curves of the vector field r

k
emanating

from º
0
. Rarefaction wave solutions take values on the curves R

k
. Shock waves

emerge by solving the Rankine Hugoniot conditions

(10.1) s(º!º
0
)"F(º )!F (º

0
).

For º near º
0
, the set of solutions of (10.1) consists of N smooth curves

S
k
"S

k
(º

0
) tangent to R

k
(º

0
) at º

0
, k"1, . . . , N. Each S

k
is associated with

the k-th characteristic field, and is defined by parametric equations º"º
k
(q) and
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s"s
k
(q) for DqD small, and the parametrization may be arranged so that

º
k
(0)"º

0
, ºQ

k
(0)"r

k
(º

0
),

(10.2) s
k
(0)"j

k
(º

0
), sR

k
(0)"1

2
+j

k
(º

0
) · r

k
(º

0
),

j
k~1

(º
k
(q))(s

k
(q)(j

k`1
(º

k
(q)).

A state º
k
(q)3S

k
(º

0
) gives rise to a shock-wave solution with speed s

k
(q), left state

º
0
, and right state º

k
(q). LIU [Li

2
] performed a detailed study of the shock curves

and proposed the following shock admissibility criterion. A shock (º
0
, º

k
(q), s

k
(q))

is admissible if it satisfies

(E) s
k
(q)6s

k
(t) for t between 0 and q.

Using (E) and imposing some mild geometric conditions, LIU obtained a unique
solution of the Riemann problem.

Consider the solution º constructed via self-similar zero-viscosity limits in the
previous sections. º(m ) takes values in a small ball Bk(º~

), the wave speeds
j
k
(º(m)) are separated, and º(m ) has the properties indicated at the end of Section

8. Each wave fan is studied separately; we distinguish three cases:

(i) j
k
is genuinely nonlinear: +j

k
(º ) · r

k
(º )90 for all º.

For a genuinely nonlinear characteristic field, the shock speed s
k
(q) is increasing in

one direction of the shock curve S
k
(º

0
) and decreasing in the opposite direction.

Contact discontinuities are excluded for weak shocks. The behavior of º on
Ijk

simplifies considerably: Either Ijk
is empty, or Ijk consists of a single point of

jump discontinuity m with º satisfying at m the Lax shock conditions

(10.3) j
k
(º(m#))(m(j

k
(º(m!)),

or Ijk
is a full interval of points of continuity and the solution is a k-rarefaction

wave on Ijk . Therefore, for genuinely nonlinear and strictly hyperbolic systems, the
emerging structure of º is identical to that determined by LAX [La

1
].

(ii) j
k

is linearly degenerate: +j
k
(º ) · r

k
(º )"0 for all º.

For a linearly degenerate characteristic field, the k-th shock curve emanating from
º

0
is given by º"º

k
(q), s"s

k
(q) where

(10.4) s
k
(q)"j

k
(º

0
),

dº
k

dq
(q)"r

k
(º

k
(q)), º

k
(0)"º

0
.

A version of the converse is also true: If (10.1) has a curve of solutions º(q)
corresponding to s (q)"s

0
fixed, then ºQ (q)"r

k
(º(q)), s

0
"j

k
(º (q)) for some k, and

the k-th field is linearly degenerate. Since j
k

remains constant on the curves R
k
,

rarefaction wave solutions are not possible for linearly degenerate characteristic
fields. A close look at the proofs of Proposition 8.4 and 8.5 shows that it is not
possible that Ijk is a full interval. Therefore, either Ijk

is empty, or it consists of
a single point of jump discontinuity and º is a contact discontinuity.

(iii) ¹he curves R
k

intersect the set Mº :+j
k
(º ) · r

k
(º )"0N at discrete points.

The solution º cannot be further simplified in this case. The relation with the Liu
shock-admissibility criterion (E) is established indirectly, using Proposition 9.3 on
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the relation between self-similar limits and shock profiles, in conjunction with
results of LIU [Li

4
] and MAJDA & PEGO [MP] on the relation between shock

profiles and (a strict inequality version of ) condition (E). MAJDA & PEGO [MP,
Theorem 3.1] prove that, given two states º(m!) and º(m#) in a small ball Bk (º~

)
satisfying the Rankine-Hugoniot conditions for some speed m, a shock profile
connecting º(m!) to º(m#) and lying in Bk (º~

) exists if and only if condition (E)
is satisfied as a strict inequality. Moreover, there exists at most one trajectory » (f)
of (9.4) connecting º (m!) and º(m#) which remains in Bk (º~

) for all f.
Fix m3SWIjk and consider the set of all solutions to the Rankine-Hugoniot

conditions that are compatible with (8.30). If º(m!) and º(m#) are the only states
with this property, then there is a shock profile connecting them and the shock
speed m satisfies the strict condition (E). If there are more than two such solutions of
(9.6), then there is a shock profile in Bk (º~

) connecting º (m!) to some state »
j
and

another shock profile connecting a state »
i
to º (m#). It is expected that in this case

there is a chain of shock profiles that connect º(m!) through intermediate states
with (eventually) º(m#).
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