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Gaussian integration of Chebyshev polynomials and 
analytic functions 
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Explicit bounds for the quadrature error of the nth Gauss-Legendre quadrature rule applied 
to the mth Chebyshev polynomial are derived. They are precise up to the order O(m4n-6). As 
an application, error constants for classes of functions which are analytic in the interior of 
an ellipse are estimated. The location of the maxima of the corresponding kernel function is 
investigated. 
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1. Introduct ion  

Chebyshev expansions are very useful tools for numerical analysis. Their con- 
vergence is guaranteed under rather general conditions, they often converge fast 
compared with other polynomial expansions, and each summand of the series 
may easily be estimated. Considering functionals on certain function spaces it is 
therefore important to know, how they operate on the Chebyshev polynomials 
Tm of the first kind, or on the Chebyshev polynomials Um of the second kind. 

In this paper, we analyse the errors of the Gauss-Legendre quadrature formula 
QL 

n 

Q~[f] = ~ a.f(x,,). 
u=l 

This formula is the quadrature formula with n nodes x~ and weights a~, which is 
defined uniquely by having the error 

1 
R~[p] = p ( x )  dx  - Q~[p] = 0 

for all polynomials p of degree less than 2n. Its error for Chebyshev polynomials 

�9 J.C. Baltzer AG, Science Publishers 



188 K. Petras / Gaussian integration of Chebyshev polynomials 

has been considered by several authors. Explicit expressions for the first non- 
vanishing errors, i.e. a a a R,, [T2.+4]. as R, [T2n+2 ] and asymptotic R, [T2~], well as an 
result for R,[Tz,+k], where k is arbitrary but fixed, have already been presented 
by Nicholson et al. [16]. We recall some refinements of these early results. The 

a 
first nonvanishing errors R, [T2,+al] are known explicitly for l = 0, 1,.. .  ,5 (cf. 
Stegen [18, p. 107]), where 

24"n, 4 7r(  1 +  O(n_2) ) (1) 
R . a [ T 2 , , ] = d . = ( 2 n ) ! 2 ( 2 n + l ) = ~  " 1 - 4 n  

and 
2n+ 1 ) 

Ra.[T2.+2]=-d. 1 -F (2n-- i ) -0n  + 3) " (2) 

If l ~> 2 is fixed and n is increasing, then, 
G 71" 

R. = (1 + O(n-'))  

(see Stegen [18, p. 50]). Curtis and Rabinowitz [7] pointed out that for fixed k, 

2(--1)k 
R~[Tc4,+2)k• ] ~ - -  i + O(n-' lnn) for j =  1 , . . . , n -  1 and 

= (3) 
71" (--1)k~+O(n-llnn) fo r j  = n. 

Of course, if we have an odd function, then the Gaussian error is zero, i.e., 
G G = R. [ U 2 m -  Furthermore, we have the simple rough bound R,[T2m_,] 1] =0 .  

2 for all m >/2 IR.G[Tm]I < 2 ~ m2 - 1 

(cf. Brass [4, p. 161]). 
We will add explicit error bounds, which are of asymptotic precision O(m4n-6), 

i.e., which allow an appropriate estimation at least for Chebyshev polynomials 
of degree 0(n3/2). S o m e  consequences are the inequality IRG.[Tm]] <~ 3n -2 for 
2n + 4 ~< m ~< 3n + 1 as well as a further asymptotic term in equation (3) including 
explicit bounds. 

The method for obtaining these results is based on inequalities for the nodes and 
weights of the Gaussian formulae derived by Gatteschi [10] as well as F6rster and 
Petras [9]. 

There are several possibilities to use the obtained bounds. We may apply them 
directly to the Chebyshev expansion of the integrand (see Davis and Rabinowitz 
[8, pp. 335 f.]), or we may approximate Peano kernels via a method of Brass and 
F6rster [5] and therefore determine error constants for functions having deriva- 
tives of certain orders. In this paper, we consider the class of those functions, 
which are analytic in the interior of an ellipse with foci - 1  and 1, and continuous 
on its closure. Explicit asymptotically sharp bounds for the related kernel function 
are proved, yielding almost best possible bounds for the quadrature error. 
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2. The er ror  o f  Gauss i an  quadra tu re  for  Chebyshev  po lynomia l s  

We give an estimate, which is simpler than that of the underlying lemma 2 below, 
but nevertheless almost as sharp as the lemma. 

Theorem 1 
Let Rff denote the error functional of the Gauss-Legendre rule involving n nodes. 
Furthermore, let m = k(4n + 2) + 2j with [j I < n and an appropriate integer k/> 1. 
Then, 

2 2(--1)k ( m j )  
R~[Tm]=mf-" 1 q - - ~ Z i  I+~-N--f +p,,,,,,, 

where N = n + 1/2 and 

m' Ip.,ml (0.08 + 0.0041nN)~-g. 

If m = (2k - 1) (2n + 1) + 1, we have to add 

:k(_l)k ~r ( m m 2 ) 
1 q-~--5-~ 12--~--N4 

on the right-hand side of (5). 

(5) 

The logarithmic summand in the estimate for Pn, m may be omitted if we add the 
logarithmic term of the formula (10) below on the right-hand side of (5). 

Note that under the assumptions of this theorem, the errors of the Gaussian 
rules are similar to those of the Clenshaw-Curtis rules (cf. Brass [4, p. 145]). 
Furthermore, we see that the theorem is an extension of the result of Curtis and 
Rabinowitz (3). 

More helpful for rapidly convergent Chebyshev expansions is the following 
result. 

Theorem 2 
For 2n + 4 ~< m ~ 3n + 1, we have that 

[Rff[T,,][ ~< 3n -2. (6) 

Now, we are in the position to give bounds for the quadrature errors for 
Chebyshev polynomials U2m of the second kind. We use the relation 

m 

U2m= 2 Z T2t-1 
/ = 0  

(cf. Abramowitz and Stegun [1, eq. 22.12.2]) and directly obtain the following 
corollary from the relations (1), (2) and (6). Various further estimates may be 
derived from theorem 1. 
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Corollary 1 
Let 1 ~<j ~< (n + 1)/2, then, 

G R. [u2.+2j] = 

where ]ujl <~ 6 ( j -  1)n -z. 

(4n4-2)d. 
(2n - 1)(2n4-3) 

+ u  j, 

3. The error o f  Gauss ian  quadrature for analytic funct ions  

We want to apply theorem 2 to error constants for analytic functions. Let there- 
fore G denote the interior of the ellipse with foci at +1 and with the lengths 
(r + r-l)~2 of its semi-axes, where r > 1. Let furthermore .A~ be the class of all func- 
tions, which are analytic in G, continuous on its closure G, and have there the norm 

If(z)lPldzl 1, where 1 <~p ~< oo. 
r 

We define the error constant of a quadrature formula Q, on a class .A by 

o(Q.,.A) = sup{lR.[f][ : f  E A}. 

From the representation 
[ 1 " 1  

where k,(z) = Rff [ z - ~ "  . ] '  

the following estimate for the error which holds for all f E .A p, we obtain 
constants, 

o r { l f c  )'/q _ ~ p 1 1 o(Q,,Ar) <~ ~ [k,(z)lqdz[ =: 6)(Q~,Ar), where - + - =  1. 
, P q 

It is therefore convenient to analyse the behaviour of the kernel function k, on the 
boundary of the ellipse G- The argument of R~ in the definition k, is a function, 
which has a simple Chebyshev expansion. The results of section 2 may therefore 
be applied usefully. 

Theorem 3 
Let 2z = w + w -l, let d. be defined as in (1) and let c,, = (2n 4- 1)/[(2n - 1)(2n + 3)]. 

(a) c. k , , ( z ) - 4 d .  ( ) 
w2.+ 1 1 w2 ~ + 6 . ( z )  , 

where 
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(b) 

9n -2 + 6r 2-" 

4[w 2 -  l[(r z -  1)" 

If  c. ~ r 4 - 1, we have 

) 1( ) 
~(Q~,A~) -Tr r2 .+  I 1 + r - T - ~ + %  < r2-57 ~ 1 + r - i - - ~ + ' ) , .  , 

where 

9n -2 + 6r 2-" 
I v . I  

4(r 2 - 1) 2 

R e m a r k  
Note  that  the sequence of  the values d. is monotonica l ly  increasing and we have 

7r 1 O(n-:) and ~ 1 ~nn < d. < - 

Gautschi  and  Varga [11] investigated the locat ion of  the points  z . :  e 0C .  where 
the modu lus  of  the kernel funct ion k.  attains its m a x i m u m  on the bounda ry  of  the 
ellipse Cr. Their  numerical  calculations indicated that  z . :  is located on, or in some 
cases at least near  the imaginary axis. The bounds  calculated above cannot  yield 
that  z.,~ lies exactly on the imaginary axis. However ,  the following corollary 
gives a slightly weaker  result. 

Corollary 2 
Let r be fixed and let Ik.(z,,,r)[ = supze0Cr Ik.(z)l with z . :  6 OCt, then, 

Rez . , ,  = O(n-1/2). 

The behaviour  of  Q(Q~,.Ar ~) has been studied more  intensively. The  simple 
universal bound  

32 
e(Q,,G,.A~) ~< 7rr2---g 

(cf, Stenger [17]) is a ready consequence of a result of Achieser [2, sect. I I I] on the 
approx imat ion  error  for analytic functions.  K a m b o ' s  bound  [13], 

G oo d. r 2 + l  f o r r > 2  
o ( Q.  , .,4, ) ~ r2" rE _ 2 

gives a better estimate if r > (64 + 7r2)1/2(32 - 7r2) -1/z = 1.8269 . . . .  A result of  
Chawla  and Jain [6] says that  for each r and  each e > 0, 

o(Q~, .AT)  <~ 7r(r - r-~)r 2" 
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if we choose n sufficiently large. Here, we denote by l(OCr) the length of the 
boundary of the ellipse r It is not useful to compate this result with the previous 
bounds, since the factor (1 - e/r)-" may become arbitrarily large. 

Theorem 4 
Let d, be defined as in (1) and set c, = (2n + 1)/((2n - 1)(2n + 3)). Denote by 
I(OC~) E (Trr, min{4r, 7r(r + r -t)}) the length of the boundary of C~, then, 

2d,,l(OCr)( 3 5 )  
Q(Q~,A?) <~ 7rr2,,+1 1 +2-~5r2+5 ~ , (7) 

( e(aC.,AT) <. ~ 1 +~n? + 

rc 3 
~< r-~,, (1 + ~ )  (1 + 2--~-~ + 2-~+ 1) " 

4( 3 4) 
0(Q ,AT) < N 1 . (8) 

I thank Helmut Brass for a useful hint, which enabled an upper bound without 
any factor (r 2 - 1) -1 . This factor would have destroyed the uniform quality of the 
bound. 

Remark 
(a) Ifn >/3 and if Stenger's bound is less than (1/27r3)(16 - 37r) 2 = 0.6971 .. .  , then 
the bound (8) improves upon Stenger's. For n >_- 5 and arbitrary parameter r, the 
bound (7) is smaller than Kambo's. 

(b) A lower bound for the error constant is given by 

~ [ 2r z~ [ 2d, 7r(1 - (4n) -~) 
Q(Q,,,Ar )>- R~[r4-gy'~Tz,, j - r2.( 1 +r_4,,) >/ r2,,(1 +r_4. ) �9 

(c) By theorem 3a, the modulus of the kernel function is almost constant on the 
boundary of each ellipse Cr. This implies that theorem 3b gives better results than 
theorem 4 except for those functions whose modulus is closer to a constant function 
on the boundary of the ellipse Cr than ]k.] is. As an example, consider the function 
f ( x )  = (d 2 + X2) -I with a real parameter d r 0. We have 

m a x , f ( z ) , = m ( d , r ) : =  (d  2 1 (  !)2)-1,  
zEOCr -- ~ r -- 

while 

f If(z)] ]dz I = O(ln(m(d,r)), 
E OC.r 

which is asymptotically an essential difference when i- d approaches the ellipse Cr. 
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The same remark is valid for all spaces .A~, where 1 < p < cr Usually, the estimate 
with the error constant ~(Q,~, .A)) should asymptotically be superior. 

A further observation concerns more general regions than ellipses. It is an inter- 
mediate consequence of theorem 3. 

Corollary 3 
Let Cr be a subset of the region ~ and let each ellipse Cp with p > r contain inner 
points of the complement of f~. Denote by .AP(f~) the space of functions being 
analytic on ft and continuous on its closure, endowed with the L : n o r m  taken 
on its boundary curve. Then, 

lim ~/e(QG,,.AP(f~))= ~. 
?1 ---* O 0  

The upper bound r -2 for this limit follows from theorem 3. To prove the lower 
bound, we just have to consider errors for the functions ( z -  �9 )-l with z in the 
complement of 9t and arbitrarily close to the ellipse Cr. 

This corollary shows that ellipses Cr are the most appropriate complex regions 
for the error estimation of the Gauss-Legendre rule for analytic functions. An 
extension of the region of analyticity makes only sense with respect to error 
constants, if the new region contains a larger ellipse. This makes clear that 
regions such as small circles enclosing the basic intervals are not optimal for 
error estimation for the Gauss-Legendre rule (cf. Kowalski et al. [14]). It is an 
obvious conjecture that each quadrature formula has particularly favourable 
regions of analyticity. These might be the regions; where the modulus of the 
kernel function is almost constant. Note that, for example, the Gaussian rules 
are close to optimality on ellipses Cr with arbitrary parameter r > 1 (see theorem 
4 and Bakhvalov [3]). 

4. Proof  of  the results on Chebyshev polynomials 

First, recall some known estimates for the nodes and weights of the Gauss- 
Legendre rule. 

Defining qb, = (u-  1/4)(Tr/N), ~b, = q~, + (cot~b,)/(SN a) and x,  = - c o s 0 , ,  we 
have that 

a~ = ~sin~b. 1 - ~ -  7 

where 

COS2 q~u 1 

16N 4 sin 4 ~b, ~< e, ~< 2N 4 sin4 ~b~' 

and for u ~< [(n + 1)/2] that 
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0 ~ = r  where0~<6.~< 

(see Gatteschi [10] and F6rster and Petras [9]). 

11 cos r 
128N4 sin3 Cv 

In the following, we set y.  = - cos r  and first prove two lemmata. 

Lemma 1 
For even m >t 2n, we have 

71" n 

Qa.[Tm] = ~ ~ sin r cos mr - - -  

where 

B 71-m 
E cos r sin mr 
v = l  

zrm 2 s  2r162 .(I) 

128N5 v=l ~ "~ en, m, 

2 ~0), 2 m m 3 m 4 
- - - ~  
1871N 3 180313N 4" 

Proof 
We prove the lemma for n/> 2. For n = 1, it may be verified easily. Since m is even, 
we have 

s  Nsin  r 
v = l  

= a. cos mO. - -~ sm r cos mr 
v = l  \ 

= E a ~ - ~ s i n r  cosm0~ ,+~  s i n r 1 6 2  
v = l k  

B 

+ N~__I sin r m e .  - cos mr 

= I + H + III. 

We consider the three sums I, H and III on the right-hand side separately. 

First sum: From 

7r { 1 coS2r ) 7r zr 
- ~ s i n r  + < a ~ -  sinr < 

16N 4 sin 4 r N 2N 5 sin 3 r 



K. Petras / Gaussian integration of Chebyshev polynomials 195 

we obtain 

We have 

7r 7 r .  1 1 
[ a~ - ~ sin ~b~[ ~< ~ sm ~b~ { ~ - ~  + 2N4 sin4 ~b~, } �9 

n 
sin ~b~ = �89 7r 

4N v=l 
and, by the convexity of csc 3, 

~ - ~  I 27r 
N ~ sin 3 q~ ~< N sin 3 q~l f 

rr- 57r/C4N) dx 

JS~r/(4N) sin 3 x 

27r 3 37r 57r 2 57r 57r 
= ~csc T~+ - - .  cos ~ csc ~ + In cot 8N 

Hence, we obtain the following upper bound, 

~r ~ " { l y ~  sin q~, + 1 } III ~ ~ 2 N  4 sin 4 ~ 

1 f 7r 7r 7r 337r 1 51r 257r 1 . 57r) 
+ ~-~csc ~--~csc + ~-N-~ In cot ~--~.  < ~ 1-~ csc ~-~ Tff + ~-~ cos ~-ff 

Second sum: The inequalities 

I cosm0.-  cos m~b~[ ~< ml6~l <~ 

and the convexity of  [cos 1" csc2 yield 

Xlm {_~ cos~bl 
Inl ~< 128N 4 sin 2 ~bl 

1 lml cos ~b~l 
128N 4 sin 3 qS~ 

.-1 ~1~ _ _ + ~ l c o s  
= sin 2 ~b~ j 

llm {~.~cos(~l ~_2f "/2 coSxdx" ~ 
~< 128N4 sin2 q~l JS./(4u) s--~n2x J 

1,11m    csc ' - [~-~cos ~-~ csc ~--~+ . - ~ [. 64N 

Third sum: 
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where 

cos m~b~ - cos m~b~ = 
m 2 

_ 8N2 COt q% sin m~b ~ 12-8-N 4 c ~  2b.cosm4~ ~ 

+ { 8 - ~  cot ~b~ - sin (~N2 cot ~b~) } sin m~b~ 

+ {cos (8--~cot ~b. ) - 1 + ~ (8--~cot ~b~)2 } cos m~b. 

m 2 
m cot ~b~ sin mq% - -  cot 2 ~b~ cos mq% + G, 

8N 2 128N 4 

1 m 13 1 m 4 
g-~cot e~ + ~  

Applying the same method as for the first sum, i.e., for the sum over the csc3-terms, 
we obtain 

I 7r Gsin~b~ 1 { m 3 I Trcos3~__!l 1 ( 57r . 57r ) ] }  
~5~_~ ~< ~-~ 15~-N3 [N2sin2(bl ~-~ csc~--~+sm~--~-2 

v=l  

1 f m 4 [ 7rcos4q~l 

+N-2 ~ 491-~N 4 IN3 sin 3 q51 

whence lemma 1. 

L e m m a  2 

Using the notation of theorem I, we have 
71" mTr 

7r m 2 sin ~-~ cos 4N 
Qa~[Tm]-2-N( l+12-~-N 4) 7 - - - ~ 7 r  cos ~ -g -cos  ~-~ 

~- 5-9- 5 cos 4N csc2 4N ' 

7r mTr 

7rm c~ (-1)km21n(tan2lj[  + 1 ) .(z, 
7r mTr + 64N 4 8N 7r +en, m, 16N 3 cos2 __~ _ cos z 

4N 
where .(2)~ ~(l) l en, ml <<- en,.,I +m2/(18N4) �9 I fm = ( 2 k -  1)(2n+ 1) + 1, we have to add 

m m 2 

on the right-hand side of (8). 

[] 

Proof 
The lemma is readily verified for n = 1. For n >/2, we have to estimate the three 
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sums occurring in lemma 1. The first two sums are calculated readily by using the 
equations 

n 1 n 

y ~ s i n r 1 6 2  = ~- '~(sin(m + 1)r - s i n ( m -  1)r (9) 
v=l  u=l  

and 

,1 1 n 

Z cos r sinmr = ~ ( s i n ( m  + 1)r + sin(m - 1)r 
u=l  u=l  

0 if 7- is even, 
1 TTY 

sin 7-r = ~ csc ~ if T is odd and 7- ~ 0 (mod 2n + 1) and 

~=' (-1)kn i f T - = ( 2 k - 1 ) ( 2 n + l )  

(cf. Hansen [12, eq. (14.1.1)]). From the third sum, a sum of the form (9) may be 
extracted. Let the primes at the sums below denote that the last summand has to 
be halved if n is odd. Then, the remaining sum may be estimated as follows, 

Z cos me.  _ 1 m]2 
.=l sinr ~=1 sinr 2 s i n ( 2 # -  1)r 

#=1 

[(n+ t)/2J 1 -,/2 
= 2  Z '  Z c s c ( 2 # - 1 )  7r 

v= t sin Cv 4N #=1 

+ Z 
2#-  1 =(2k-  1)(2n+l) 

1 <~#<~ ' /2  

n ~ m/2 

-- Z ( - 1 ) U c s c ( 2 #  - 1) 7r rr 4N Z c sc (2# -  1)4N 
p = l  #=n+2  

+ N(1 - (--1)[(m+2n)/4NJ), 

where n* is the least odd number greater or equal to n. We obtain 

,c 7r 11,+ , ~ vTr 1 - (-1)" 
~ ( - l l U c s c ( 2 #  - 1)~--~= ( -  s e c t - +  2 -- n 
#=1 u=l  

(for the last equation, see Hansen [12, eq. (26.1.2)]). The periodicity and symmetry 
of the cosecant yield 

2 +  Z c sc (2# -  1)4N + Z c sc (2# -  )~-~ . 
/z=n+2 ~=n+2  
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Since the cosecant and its second derivative are convex, we may apply theorem 100 
in Brass [4] to this sum and obtain 

1 
0~< ~+~+l -Ul~  csc(2#-l)~--~-Tr lncot (2 l j  I + l ) ~ - - ~ + ~ c s c ( 2 l j  I + l ) ~ - ~  

# = n + 2  

7r . 7F 2 �9 7~ 

-< 2--~cos(21j I -  1) T~csc (201- 1) 4N" 

Lemma 2 follows. []  

A slight simplification of  lemma 2 is the relation 
mTF m mTl 

(-1)kin 2, [ 21) 1+1 ) 7r 2 cos~-~ + ~ sm~-~ t- ~ - ~  in ~tan 8N 7r + 0'.,m, 
Ir m___~ Q~[rm] 8N 2 c~  c~ 

(10) 

where 

2 m m 2 m 3 m 4 

N21o.,ml ~< ~+~-~+ 1 - b ~  1871N----- 5 4 180313N4. 

If  n = 1, we readily verify this result. If  n > 1, we just have to calculate the 
error when omitting the term mZ/(128N 4) in the first summand on the right- 
hand side of (8) and when replacing sinTr/(4N) by 7r/(4N) in the first and 
cos 7r/(4N) by 1 in the second summand on the right-hand side of  (8). The calcula- 
tions are elementary. 

Proof of theorem 1 
For the main term on the r ight-hand side of  (10), we may write 

mTr m . mTr jTr m jTr 
7r 2 c o s ~ - - ~ + ~ - ~  = (_ l )k  ~ 2N sm ~-~ 7r2 cos ~-~ + s i n - -  

8N 2 2 71" 8 N  2 " 71- 
c o s  ~--~ - cos2 4 ;  cos2 ~NN _ cos2 4N 

Setting o~ = 7r/(4N) and x =jTr/(2N), we have x = 0 or 2a  ~< x < 7r/2 - a ,  and we 
may prove with some analytical effort that 

2 cos x 1 
- - 3  ~ COS 2 0 ~ - c O S  2x  X 2 -  tR 2 ~ 0, 

as well as 

s inx x 
0 ~< 

COS 2 o r - c O s  2X X 2 -  Ot 2 ~< ~ 
X. 

We obtain 
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m 

c o s x + ~ - ~ s i n x  1 + m/(27rN)x 3m 

COS 2 0 ~  - -  COS 2 X - -  X - ' ~  Z a--T ~< 16---N 

and therefore inequality (5) with 

2 3m m 2 
NZlp,,,ml ~ ~ + ~ - - ~ + ~ ( 1 5 + 2 1 n N ) + - -  

The theorem now follows from 2N < m. 

m 3 m 4 

1871N 3 + 180313N 4" 

[] 

Proof o f  theorem 2 
Nothing has to be proved for n ~< 2. Let therefore be n >~ 3 fixed. Then, consider 
m~N E [2, 3] as a variable in the expression on the right-hand side of (8) times 
N . This expression is a combination of monotonic terms. We divide the interval 
[2, 3] into 100 subintervals of equal length and estimate each monotonic term in 
(8) in each of these subintervals from above and from below. The theorem 
follows. [] 

5. P r o o f  of  the results on  analyt ic  funct ions  

Proof o f  theorem 3 
Following Lether [15], we set 2z = w + w -l, so that 

~=o 4 c s u x _  2 4 w 2 - 1 
w w ( z - c o s x )  

(see Hansen [12, eq. (17.17.2)]) and therefore 

4 
1 G k.(z) = w2u-l(w2 - 1) R.[T2~ 

b ' = n  

4 ( __ ( 2 n + l ) d .  w2 ~ 1 c ) 
-- wff+, d. (2n - 1)(2n + 3)(w 2 - 1) 4- w2----- ~ = ~ - ;R .  [T2.+2~] . 

On the boundary of the ellipse Cr, the variable w had modulus r, so that theorem 2 
and the estimate (4) yield 

r 2 3~-~ 1 r2 ( 2 +  2 3 )  Z~  1 
l ~< 

Iw 2 -  + Iw ll" v =  L(n+ 3)/2J - 

which gives part (a) of the theorem. Now consider the function/~, defined by 
fc.(z) = 1 - c~(w 2 - 1) -1 . Using w = re i~ with ~o E [0,270, we have 
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2r 2 cos 2qo - 2 - c. 
I]~n (z) l = 1 -- C,, r4 _ 2r 2 Cos 2qo q- 1" 

F o r  sufficiently large n, namely  for  c,, ~< r 4 - 1, the m a x i m u m  o f  [/~, [ is a t ta ined  for  
qo = 7r/2 and  qo = 37r/2, i.e., for  w = -t- ir and  z = -4-(i/2)(r - r-l). (If  cn > r 4 - -  1, 
the m a x i m u m  is a t ta ined  for  ~p = 0 and  ~o = 7r.) Pa r t  (b) o f  the theorem n o w  
fol lows f rom par t  (a). [ ]  

Proof  o f  corollary 2 
W e  set 2 z = w + w  -~ 
t C [0, 27r). T h e o r e m  3a and some calcula t ions  show that  

r 2~+1 1 O(n_2) 1 c(t) 
= 1 2n(w 2 -  1) + = 1 -t-~n n 

where  

and z = z(t) = �89 + r - ' )  cos t + ( i / 2 ) ( r -  r - l )  sin t, 

1 - r 2 cos  2t 

c(t) = r4 + 1 - 2r 2 cos 2t" 

+ O(n-Z), 

T o  ob ta in  a m a x i m u m  o f  [k,[, the value c(t) m a y  differ f r om the m a x i m u m  
c(~-/2) = c(37r/2) at  m o s t  by  the a m o u n t  O(n-I),  which yields the corol lary .  [ ]  

Proof  o f  theorem 4 
Define m = L(3n + 1)/2_] and  

2 m G 
L . [ f ]  = -~ -~  R,,[T2.] . : .  J-l  x/1 ~--~ dx. 

Since the funct ional  R .  c - L .  vanishes  for  all po lynomia l s  o f  degree 2m, we ob ta in  

IR.G[f]l ~< IlR. G -  L . l l ' E z m [ f ]  + [L.[T]I ,  

where  Es[f] deno tes  the er ror  o f  the best  a p p r o x i m a t i o n  o f f  f r om the space o f  
po lynomia l s  o f  degree at m o s t  s. Achieser  [2, sect. 111] p r o v e d  the b o u n d  
Es[f] <~ 8r-S-1/Tr. The  n o r m  

: '  2 m Tz.(X) dx 
[JR,, 6 - L,[ I = 2 + a-~ 1 - 5  Z R"~[T2"] lx/i--Z~_ x2 

v ~ n  

m a y  be ca lcula ted  explicitly for  n = 1 and  n = 2. F o r  n >/11,  we es t imate  
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f ~  2d. Tz,,+2(x)) IIR. ~ - L.II ~< 2 + 1 7 r ~ ( T z , , ( x )  - dx 

+ d x +  
7r ~1 --- --~ -~ vii - x 2 

v = n + 2  J - -  

S "  -~ 2)x) 2 + sin x (cos 2nx + cos(2n + dx + 4dnc. 3n - 3 
- 7r + n - - - - - - 7 - -  

f " 3 n  - 3 
~< 2 +  l1 - 2s in(2n+ 1)x l s inxdx+  4d"c" + n----T-- 

71 

and, setting again N = n + 1 / 2 ,  

7 ~ 2n+l . , n - l )  rr ( x / - 3 c ~  I 1 2s in(2n+ 1)xls inxdx 2+2n(n  + - = san ~ csc ~-fi - 2N 

6x/~ - rr~ 
~<2+ 1 12x/3 - 47r + ~(n TI-~ ] 37r 

If 3 ~<n ~< 10, we use the explicit expressions of Stegen [18, p. 107] for 
Rff[T2.],...,RO~[T2m] instead of the upper bound 3n -2 as above. We obtain 
IIRff -L . I I  ~< 5.5 for all n and therefore, from Achieser's bound for the approxi- 
mation error, 

44 
IIRff - t . [ f ] l [ "  E2~[f ] <~ ~r3.+-------- 7.  

Now consider the kernel function of the functional L., 
m o X-" 4R~ [T2~] 

k(z):= L~ = z--'w2~-I(w2 1) 
v ~ n  x - -  

where 

1 
- w ~  ~ 1 w: - I  ~ " + ~  w:~ ) - w  ~ l ( l + e ( ~ ) ) '  

1 ( 3__n-- 3'~ 7r+6 
16(z)l ~< iwZ - 11 c,, + 2dnn 2 j ~< 27rn---~- 11 " 

The theorem now follows from 

, Iwr-- 11 r" 
[] 
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