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Direct Relaxation of Optimal 
Layout Problems for Plates I 

K. A. LURIE 2 

Abstract. This paper suggests an application of a direct procedure 
initiated in Ref. 1 to problems of optimal layout for plates. Optimal 
microstructures are explicitly indicated for a number of special cases, 
particularly for the case where the original and conjugate strain tensors 
are coaxial. 

Key Words. Direct relaxation, optimal microstructures, necessary 
conditions. 

1. Introduction 

In this paper, we consider non-self-adjoint optimization problems for 
thin anisotropic plates subjected to transverse load. The state of  equi- 
librium of  a plate E is described by the equation 

VV .. ~ .. VVw = q ,  (x ,y)~X,  (1) 

where w denotes the normal displacement, ~ the tensor of  stiffness, q the 
transverse load density, and the symbol .. denotes a double convolution. 
The symbol V is traditionally defined as id/ax +jd/dy. The boundary dE of  
a plate will be assumed damped,  this property being expressed by the 
boundary conditions 

wl~z = aw/~nloz = 0. (2) 

The 4th rank tensor ~ = ~(x ,  y) will play the role of  control; it may 
take one of  two admissible values ~ l  or ~2 at each point of  the plate. The 
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materials 1 and 2, with stiffness tensors ~ and ~2, will both be assumed 
isotropie, i.e., 

~i =kialal +#i(a2a2+ajaj), i = 1, 2. (3) 

Here and below, a~, az, a3 represent an orthonormal basis in the space of 
2nd rank symmetric tensors in the plane, i.e., 

al = (1/x/~)(ii  +j j ) ,  a2 = (1/w/2)(ii --jj) ,  a3 = (1/w/2)(/j + ~/). (4) 

Introduce the characteristic function Z1 (x, y) of the domain occupied 
by material l, with stiffness tensor @1, and a similar function X2(x, y) for 
material 2; obviously, Z1 + •2 = 1. It is required to find the distribution 

~(x, y) = ~(, (x, Y)~l + Z2(x, Y)~2 (5) 

of the stiffness tensor throughout E which maximizes some weakly contin- 
uous functional I(w) of solution to the boundary-value problem (1), (2). 
Weak continuity is assumed to be with respect to W~2(Z), this space 
naturally associated with (1), (2). Specifically, as a typical example, we will 
consider the functional 

I(w) = - fz  [w(x, y) - Wo(X, y)12 dx dy, 

where Wo(X, y) ~L2(E). 
This and similar optimization problems are known to be ill-posed and 

therefore requiring relaxation, i.e., the construction of an appropriate 
minimal extension of the initial set U = { ~ ,  ~2} of admissible controls. 
Such an extension is currently proposed on the basis of a precise knowledge 
of the G-closure of U, i.e., the set GU of invariants of the effective stiffness 
tensors ~0 of all composites assembled from the elements of U (Ref. 2). 
However, the G-closures are known only for a few particular examples 
(Ref. 3), and the plate problem is not among them. Yet for these selected 
examples, the construction of GU presents difficulties, and for the plate 
problem these difficulties are still not overcome. 

At the same time, for many applications we do not need to know the 
GU-set in full. Instead, it is often enough to specify some linear combina- 
tion of components of @0; for our problem, this is the combination 
@o "" VVw which only matters in view of Hooke's law. To determine this 
combination, we apply a direct approach, free from any reference to the 
G-closure. 

Similar problems for the 2nd order equation V �9 ~ - Vw = f  have been 
discussed in Refs. 1, 4, 5. 
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2. Reduction to a sup inf Problem 

We first reduce the problem to a convenient sup inf form. Introduce 
the Lagrange multiplier 2 and consider the augmented functional 

= J(w, 2) = I(w) + fz 2(VV .. @.. VVw - q) dx dy, (6) J 

the second member on the right-hand side taking into account Eq. (1). 
Equating to zero the first variation of (6) with respect to w and 

bearing (2) in mind, we arrive at the conjugate equation 

VV .- ~ .' VV2 = 2(w - Wo) (7) 

and the boundary conditions 

= 82/dnla~" = 0. ( 8 )  

After integration by parts with the boundary conditions (8), the functional 
(6) takes on the form 

= I + Iz (VV2 .. ~ .- VVw - 2q) dx dy, (9) J 

convenient for subsequent use. 
The problem 

sup L (10a) 
~,w 

subject to (1), (2), is equivalent to 

sup inf J, (10b) 
~,w 2 

subject to (2), (8). This is because, by (6), 

i n f J  = I + inf f 2(VV .. ~ .. VVw - q) dx dy 
2 

0, if VV .. ~ .. VVw = q, 
= I +  

~ ,  otherwise. 

We observe that Eq. (1) appears as a necessary condition for a minimum 
in 2. Bearing (8) in mind, we may assume that J in (10b) has the form (9). 
We have finally for (10b) 

s u p i n f { I + f z ( V V 2 " ~ " V V w - ) ~ q ) d x d y  } ' e , w  ~ (11) 
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where 

DE U = { ~ ,  ~2}, 

and w and 2 satisfy, respectively, Eqs. (2) and (8). 
In the sequel, we will establish the upper and lower bounds for the 

functional (11). An upper bound will be constructed analytically through 
an appropriate mathematical construction, and the lower bound will be 
generated by a specially chosen composite assembled from the original 
constituents. Both bounds will be shown to coincide, and the desired 
relaxation will thus be achieved. 

3. Upper Bound for sup inf J 
D , w  J, 

This functional possesses the following upper bound: 

sup inf J = sup sup inf J < sup inf sup J 
~ , w  2 w ~ 2 w 2 

+f 1, 
where 

The notation 

= VVw, q = VV2 

~.. ~ l  .. q > ~.. ~ 2 . .  q, 

~.. ~1../~ m_~.. ~2- .q .  

(12) 

(13) 

will be used below. The function G(~, r/) is convex with respect to any of  its 
arguments, but nonconvex with respect to their union. 

The problem 

supinf[-f,(w-wo)2dxdy-f 2qdxdy+f,G(VVw, VV2)dxdy I (14) 

is still ill-posed. It would be well-posed if the integrand G(~, q) were a 
saddle function, i.e., concave in ~ for fixed q and convex in q for fixed ~. 
Then the solution would exist and the operations sup and inf would 
commute. For our problem, this is obviously not the case. However, the 
requirement that the function G(~, ~/) be a saddle is too restrictive now that 

and q are gradients; to ensure the existence of the sup inf for this case, it 



JOTA: VOL. 80, NO. 1, JANUARY 1994 97 

is enough to require that this function be only a quasisaddle (Ref. 1). The 
quasisaddle envelope G**(~, r/) of  G(r r/) will be constructed applying 
the so called polysaddlification transform introduced in Ref. 1. This 
transform plays the same role for sup inf problems as the polyconvexifica- 
tion transform (Refs. 6 -8)  plays for the minimum problems. For 
the problem considered, the polysaddlification transform is given by the 
formula 

G**(r r/) = sup sup inf{a .. r + b -- r /+  co .. (r x r/) + de .. T .. t/ 
e~,d b a 

- inf sup[a-' ~ + b..  t / +  co.. (~ x r/) + d~.. T.. t / -  G(~, t/)]}. 

(15) 

Here, we introduced the notation T for a tensor, 

T = a l a  I - a 2 a 2  - a3a3; (16) 

the terms ~0.. ~ x t / and  d~ .. T .. t /represent the null Lagrangians 

X /'1 ~-- (~2~3  - -  ~3 r /2 ) a l  q- (~3~1  - -  r r13)a2 -~- (~1 ~/2 - -  ~2~/1)a3 

and r .. T"~/  (Refs. 3 and 6-8)  taken into account with the aid of  
Lagrange multipliers o9 and d. The symbols ~ 1 , . - . ,  ~3 denote the compo- 
nents of  ~ and ~/in the basis al, a2, a 3 . 

The transform G**(~, ~/) defined by (15) satisfies the inequality 

G**(~, n) --- C(~, n), (17) 

for any G(~, t/) convex in t /and arbitrary in ~ (Ref. 1). Applying G**(~, t/) 
instead of G(~, t/), we arrive at the upper bound 

supinf[-f (W-Wo)2dxdy-f ;~qdxdy+f G**(~,q)dxdy I (18) 

for (14), and consequently for the original functional (lOb). 

4. Computation of  G**(~,  q) 

We first compute 

h-(~, b) --- sup[b .. ~ / -  n(~,  q)], 

with 

H(r t/) = --09.. (r • t/) -- d~'" T "  r /+  G(~, t/), 
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and obtain 

{c ' "'q, if t /s~ " (N, - N2) "" q > O, 
b . . r / - H ( ~ , r / ) =  c2 q, if r/ 6~ .. (~ l  _ ~2) .. t/ < 0" 

With dev ~ = ~2a2 + ~3aa, the tensors c 1, c 2 are defined as 

c ~ = b  + ( d - k , ) ~ l a , - ( d + # , )  devr  +co x ~, (19a) 

c 2 = b  + ( d - k E ) r  ( d + # 2 )  dev~ + t o  x ~. (19b) 

By an argument similar to that described in Ref. 1, we arrive at the formula 

K ( r 1 6 2  ~ o0, otherwise, i f b  = <S>'" {, (20) 

In (20), the matrix (S> is defined as the convex hull 

(S> = tlS, + t2S2, 

of  matrices 

S; =&.  + to"  E, 

where the matrix 

E=-ExE 

/1 ,  t2 > O, tl + t2 = 1, (21) 

Ai = ~ i  -- dT ,  i = 1, 2, (22) 

(23) 

defines the Levi-Civita tensor of  the 6th rank acting in the linear space of  
2 x 2 symmetric tensors. The unit tensor E in this space can be defined as 

E = alal  + a2a2 -I- a3a3 (24) 

in the basis (4), and by a similar formula in any other orthonormal basis. 
Here, we note the formulas (Ref. 9) 

E = - E  x E = - a s a s  x akak = --asatak Esl~t = asatakE stk, (25) 

where 

r = a~..  (ak x a,)  

are Levi-Civita symbols, 

E123 ~--- ~ TM -~-E 312~- 1, 

E132 ~ E213 ~ E 321 ~ -1 ,  

C tk = 0, otherwise; 

also, 

(26) 

t o - e = - - t o " E x E = - t o  x E = - E x t o = e " t o .  (27) 
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Geometrically, the function h-(~, b) of ~ for fixed b is equal to positive 
infinity everywhere, except for points of the set 

b = <S> "- 4, t,, t2e(21). (28) 

Equation (28) can be inverted to express ~ in terms of  b. To this end, we 
introduce symmetric tensors of  the 4th rank [see (22)], 

A 1 ~-- 9 1  - -  d T ,  A 2 ~-- 9 2 - -  dT, <A> = t, A1 + tzA2, (29) 

and compute the inverse matrix 

<S> - I  = [<A> --i-co'" E l - I  = [<m> --co x E 1-1. 

We obtain by direct calculation 

< S >  -1 ~-~ [1/(det<A> + co .. <A> .. o9)1 

x {(det<A>)<A> -1 + a~o9 + (o9 .. <A>) x E} = 6 + f~ x E, 

(30) 

where 

6 = [1/(det<A> + o9 .. <A> .. ~o)]{(det<A>)<A> -1 + o~co} (31) 

denotes the symmetric part of  <S> -1 and 

f~ = [1/(det<A> + 09 .- (A> .. o9)](~o .. <A>) (32) 

denotes the 2 x 2 tensor associated with its skew-symmetric part. 
The set (28) is a segment of  the curve in l-space traced as t~ varies 

between 0 and 1. This segment connects the points ~(1) and ~(2) correspond- 
ing, respectively, to tl = 1 and tl = 0, 

~(o = Si-I .. b, ~(2) = Syl  .. b. (33) 

We now compute the result of  the operation 

inf {a .. ~ - inf[a .. ~ - ( -[[(~ ,  b))] (34) 

which comes second in the sequence (15). This one is known to put into 
correspondence with any given function -h-(~, b) its concave i-envelope, 
i.e., the least concave function of  ~ greater than or equal to -h-(~, b). In 
particular, if -h-(~, b) is itself concave in ~, then the operation (34) leaves 
this function intact. 

In our special circumstances, this is obviously not the case. The 
concave envelope of  -h-(~, b) appears to be the function defined as negative 
infinity everywhere except for points of the convex hull E of the curvilinear 
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segment (28) where this envelope is equal to zero, 

inf a -" ~ - inf[a .. ~ - ( -h-(~, b))] = _ oo, 4 r  = . 

The hull E is a convex body in the 4-space. We will assume that the 
curvilinear segment (28) and a line segment 

[r  _ ~ 2 ~ ] / [ r  ~2) ]  = [42 - ~ 2 ) ] / [ ~ ) -  4~ 2~] 

m_ [43 - -  4(2)]][~(31) - -  r ( 3 6 )  

connecting the endpoints r and ~t2) [see (33)], both belong to the 
boundary dE of E. 

For  our future purposes, we need to know the left-hand side of (35) as 
a function of b for fixed r This function can be defined as equal to negative 
infinity everywhere in the b-space, except for the body & which appears as 
the b-image of-~; specifically, the boundary ~ of & is described by the 
same equation as that of c3~; this time, however, 4 should be kept fixed 
whereas b should be considered variable. Obviously, the set (28), which is 
perceived as a curvilinear segment in the 4-space, appears as a line segment 
in the b-space, and in this capacity belongs to c9~. Also, the set (36), which 
represents a line segment in the i-space, appears as a curvilinear segment 
in the b-space, and this segment also belongs to d~ .  Summarizing these 
results, we arrive at the following: the transform (15) reduces to a single 
operation, 

sup[b -. ~/+ 09 .. (4 x r/) + d~ -- T .. ~/], (37) 
r 

subjected to the constraint b e ~ .  Note that the set & itself depends on ~o 
and d. 

The curvilinear segment (36) in the b-space obviously represents a rib 
on a ~ .  The calculation (37) of the supremum with respect to b will include 
among others the possibility that the supremum is attained at points 
belonging to this segment. In the sequel, we investigate this possibility and 
show that it generates the desired upper bound. Equation (36) can be 
represented in the equivalent form [see (33)] 

4 = (m, S ;"  + m 2 S ~ ' ) "  b = ( S - ' )  .. b. (38) 

Here, m I , rn 2 > 0, rnl + m2 = 1. 
This relationship will be taken into account with the aid of the 

Lagrange multiplier A in the course of the maximization operation (37). 
We will examine the stationary points of the function 

~ b = b . - t / + o g . . ( 4  X r l ) + d ~ " T " r l + A " ( 4 - ( S - ~ ) " b ) ,  (39) 

viewed as the function of b, o ,  d, m~. 
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A rout ine calculation shows that  

( S - ' )  = 0 ,  

which means that  

A = t/-- ( S - ' ) - L  (40) 

With  Eqs. (38) and (40) in mind, the funct ion ~b becomes 

~b = r/.- ( S - ' ) - '  .- ~ + 09-. (4 x q) + d~ -. T .. r/. (41) 

It can be shown (cf. Ref. 9) that  

r = - ( A  .. ( S - ' )  .. b)~ + ~ x t/ 

= m , ( A "  Si -~) • (Si- '  ".b) + m 2 ( A " S 2 ' )  x ( S y '  "b )  + 4  • t/. 

This expression can be rewrit ten in either o f  two forms, 

q~ = m , ( A  .. Si- ' )  x (Si -~ .. b) + m z ( A  '- S~-') • (S~-' .. b) 

+ ((m, S l  I + m 2 S 2 '  ) .. b) • (A .. ( m l S l  1 + m282')) 

= - m ,  m z ( A S - '  " b )  x (A- .  AS- l ) ,  A S - ' = S 2 ' - S l '  , 

(42) 

or 

~ mr/ . .  ( S - ' ) - '  .. [m, Si  -1 x Si - '  + m 2 S ~ '  x $ 2 '  ] "" ( s - - l )  - '  "" ~ + 4  X t/. 

(43) 

The  s tat ionary condi t ion ~bo~ = 0 can now be written as 

A S - '  -. b = ( a S - ' ) - -  ( S - ' ) - '  .. r 

= xA .. A S - '  

= .. ( s - ' )  - l  .. ( a s - ' ) ,  (44) 

where x is a scalar multiplier. An equivalent representat ion is associated 
with Eq. (43), 

q ". ( S - ' ) - '  "" [m, S F '  x S~-l + m 2 S ;  ' • S~ ' ] . .  ( S - ' ) - '  " 4 + 4  •  

(45) 

The  condi t ion ~b a = 0 reduces to 

dpa = - m l m 2 ( A S  - I  ." b ) . .  T .. (A .. A S - ' )  

= - m j m 2 x - l ( A S  - I  .. b) .. T ' .  ( A S - '  .. b) 

= 0, (46) 
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or equivalently, 

(Oa= - -q  " ( S - ' ) - '  " [m,S~- '  " T . .  S ? '  + m 2 S g '  "" T . .  $2 '1  

.. ( S - l )  - '  .. ~ + ~-- T.. q =0 .  (47) 

Note that the stationarity condition (46) applies as the necessary condition 
for a maximum if the corresponding root d is such that the function q~ 
defined by (41) is concave in d for all co. To guarantee this, we must require 
that 

det Si > 0, i = 1 , 2 ,  

i.e., that 

det A; + co .. A i .. co > 0, i = 1, 2. (48) 

These inequalities should be considered as additional constraints influencing 
the d-maximization. 

Computing the expression (41) for ~b at the stationary values of co and 
d, we have to maximize it with regard to ml. Before we do so, we investigate 
this expression in terms of  its attainability with the aid of special microstruc- 
tures. This is the right time for such investigation, since the aforementioned 
construction depends explicitly on m~, this dependence being very special for 
a number of popular microstructures. 

After maximization in ml, the expression (41) should produce a final 
construction (37) for G**(~, q). This program is elaborate in its entirety, and 
we consider here a special case when the tensors 4, t/ are coaxial. 
The case when these terms are proportional has been considered earlier 
by Gibiansky and Cherkaev in Ref. 10. This latter case is self-adjoint 
and can therefore be handled with the aid of  the G-closure technique. 
Contrary to that, in the more general situation when 4, q are merely coaxial, 
this technique does not apply, and we have to address the direct relaxation. 

5. Case Where Tensors ~, q Are Arbitrary: General Analysis 

Introduce, without any loss of  generality, the unit vectors i , j  and the 
associated basis a~, a2, a3 [see Eqs. (4)] so as to make the tensor a 3 
proportional to dev m, 

CO = CO 1 a I + f o 3 a  3 . 

Then, applying the general representation for r q, 

= ~lal + ~2a2 + r  

rl = qlal  + r/2a2 -f- r/3a3, 

(49) 

(50a) 

(5Oh) 
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we compute the tensors AS - l . .  ( S - ~ )  - ~ . .  r and t / . .  ( S  - l )  . .  AS -1 par- 
ticipating in the necessary conditions. After calculations, the following 
relations appear: 

A S - I  ' ' ( S - l )  - 1 ' "  ~ =gtal +g2a2  +gaa3 ,  (51a) 

0r/" �9 ( S - I )  - l  " �9 AS - l  = 7~al + 72a2 + 73a3. (51b) 

Here, the symbols gl . . . .  , g3 are defined as 

gl = A~I + B~2 + E~3, 

g2 = Cr + D~2 + F~3, 

g3 = G~I - F~2 q- L~3, 

71 = Arh - -  B q 2  + E~/3, 

72 = -- Crh + Dq2 - Fq3, 

73 = C---o/1 + Fr/2 + Lt/3, 

and the coefficients A . . . . .  L and 0 are given by the formulas 

with 

(52a) 

(52b) 

(52c) 

m = _ ( / ~ 2  _~ (D2)Ak, n = (D3MAI2 , (53a) 

C = - -  (D 3 M / ~ ,  D = -/~)I~tA#, (53b) 

E = -- o 1093 A/~, F = 0 1  g h ~ ,  (53C) 

G • - - ( D l O ) 3 ~ k  , L = -- ( / ~ t  + co32)A/~, (53d) 

K j=k i -d ,  Mi=#,+d, i = 1,2, (54a) 

g=m~K2+m2K~=s ff'I=mlM2+m2M 1 = f i + d ,  (54b) 

Ak = K2 - Kl = k2 - kl ,  A# = ME -- M1 =/~2 --/~l. (54e) 

We now consider different situations that arise depending on whether 
or not the variations rid, 6o~ are free or linked through the constraints 
expressed by the requirements that det S~ = 0 or]and det $2 = 0 [see (48)]. 

6. Case of Free Variations 6d, 6~: Upper Bound 

We apply the necessary conditions (44) and (46). The first of  them 
reduces to 

gl ]71 = g2/72 = g3/73, (55) 

whereas the second, by virtue of  (44), is rewritten as 

g~ = g2 + g23. (56) 
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Equations (55) and (56) are equivalent to the system of four equations 
[see (52)] 

C~I -[- ~ 2  "]- F~3 = (A~I  + B~2 + E~3)  c o s  Z, (57a) 

G~j - F~ 2 + L ~  3 = (A~1 + B~2 + E~3) sin X, (57b) 

- -  Cr/I -'}- ~ r /2  - -  Fr/3 - (A?/l - -  Br/2 + Erl3 ) c o s  Z, (57c) 

Gr/l + Ft/2 + Lqa = (A/~ 1 - -  B/~ 2 "~ E?]3 ) sin Z, (57d) 

containing an auxiliary parameter X. The system (57) should determine the 
parameters o9,, toa, d, • along with the orientation of  the basis a, . . . .  , a3 
with respect to the main axes of  r r/. We thus arrive at four equations for 
five unknowns, which reserves some additional freedom. We shall see below 
that this freedom is substantial. 

Applying Eqs. (53), we obtain the following solution to Eqs. (57): 

~2 = ~2/r = (Ak/A~.L)(J~ c o s  ~ + (D 1 sin Z - co3)/(g + to3 cos Z), (58a) 

(a = ~3/~1 = (Ak/Ap)()I~t sin Z - to1 cos X)/(/( + 093 cos •), (58b) 

a2 = rl2/ql = (Ak/A#)(h~t cos Z - to1 sin Z + to3)/(K - to3 cos •), (58c) 

a3 = n3/nl  = ( A k / A ~ ) ( ~ r  sin ;~ + to, cos Z)/(K - 093 cos Z)- (58d) 

Introduce now a system of  mutually perpendicular unit vectors i, j making 
the angle X/2 with the system i, j participating in the basis (4) linked with 
to through (49). This system of  vectors is shown in Fig. 1. On the same 
figure, the unit vectors el, Ii of  the main axes of  tensors r q are exposed, 
these vectors making angles ~o, ~b with i. If  21, 22 denote the principal values 

"a e, 
11 

Fig. 1. Mutual orientation of orthonormal vector bases. 
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o f  ~ a n d  i f  vl ,  v2 d e n o t e  the  s a m e  va lues  o f  ~/, t hen  the  f o l l o w i n g  f o r m u l a s  

a p p l y :  

= ~. lelel  + 2~e2e2, q = v l l l l  ~ + v2121~; (59)  

fo r  the  c o m p o n e n t s  ~ , . . . ,  r/3 o f  ~, q in  the  (a~, a2, a3 ) -bas i s ,  we o b t a i n  the  

exp re s s ions  

~1 = 2-1/2(21 + 22), 

r = 2-1/2(21 - 22) cos  2r 

~3 = 2-1/2()~2 - 21) s in  2q~, 

rh = 2-1/2(v~ + v2), (60a)  

~/2 = 2-~/Z(vl - v2) cos  2@, (60b)  

r/3 = 2-1/2(v2 - v1) sin 2~k. (60c)  

W e  wil l  n o w  c o m p u t e  the  c o m p o n e n t s  ~-1 . . . . .  ~3 o f  ~, v wi th  r e spec t  to  the  

bas i s  

{tl = 2-1/2(ii +JJ), ct2 = 2-1/2( ii - JJ ) ,  a3 = 2-1/2(~J + J i ) ,  (61)  

de f ined  b y  the  vec to r s  i , j  in  the  s a m e  m a n n e r  as  the  bas i s  a l ,  a2, a3 is 
de f ined  b y  i , j  [see (4)]. T h e  f o l l o w i n g  f o r m u l a s  ho ld :  

a l  �9 "~il = 1, a l  �9 " a2 = a l  �9 �9 ~i3 = 0, (62a)  

a2" �9 62 = cos  X, a2" �9 63 = - s i n  Z, (62b)  

a 3 �9 " 6 2 = sin X, a3"  " a3 = COS ~(, (62C) 

~-I = ~ ' '  61 = ~1, (63a)  

2 ~ 

- 3 ~  

~ '  " ~i2 = ~2 cos  X + r s in ~( 

(Ak/h#)~- i  ( /Q - o93 cos  Z)/( /~ + (03 cos  •), (63b)  

~" �9 63 = - ~ 2  sin X + ~3 cos  X 

(Ak/h#)~-~ ((03 sin X - (01)](g + (03 cos  ~), (63c)  

r/ .  �9 61 = ql ,  (64a)  

/ ~ ' "  62 = ( A k / A ~ ) O 1  ( M  --~ (03 c o s  Z)/(K - 603 c o s  Z), ( 6 4 b )  

f/3 = r / . .  a3 = - ( A k / A # ) f h  ((03 sin Z - COl)/(K - (03 cos  Z), (64c)  

o r  in  t e r m s  o f  the  c o m p o n e n t s  o3~, o32, (~3 o f  (0, 

O31 = (0 '  " a l  = (01, (65a)  

c~2 = (0" �9 62 = ((01al + (03a3) ' �9 62 = (03 sin Z, (65b)  

~3  = (0" "a3 = ((01al + co3a3) " " tl3 = (03 cos  Z, (65c)  
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~-= ~-,, #1 = #,,  

#~ = (Ak/A~, )# ,  (~ r  + 033)/(R - 030, 

r = (Ak /A~ , ) ( i  (03~ - 03,) / ( /~ + 033), 

#3 = - ( A ~ / A v ) # ,  (03~ - -  0 3 1 ) / ( ~  - o~3).  

(66a) 

(66b) 

(66c) 

(66d) 

(66e) 

Eliminating the parameters ~oa, (2) 2 - -  O . ) l ,  d from these equations, we arrive 
at the relationship 

(3(/~kkJTll + A~#2) 71- # 3 ( ~ ' 1  + A]./(2 ) = O. (67) 

This important formula determines the basis al,  a2, a3; it defines the unit 
vectors F, f i n  terms of the tensors 4, r/, these tensors considered as primary 
entities. The deviatoric components ~2, ~-3, r/2, % of 4, r / in  this new basis 
depend on three fundamental parameters (&3, o32- &l, d). Observe that 
these parameters can only be defined by virtue of Eqs. (66) in terms of 4, ~/; 
as for col, o93, Z, these parameters cannot be defined completely; we only 
know their combinations 

033 = ~o3 cos Z, 032 - 03, = oJ3 sin Z - 09,. 

Now, i t is  possible to compute the expression for ~b defined by (41). We will 
compute a related expression, 

w = ~ - , I  ( ~ )  ~ = 7 ( ( s - ' )  - 1  - ( ~ ) )  �9 �9 

+ c o . .  (4 x r/) + d ~ . .  T . .  7. (68) 

In the basis (4), the matrix ( S - 1 )  -1 is given by the following components: 

<S- ' ) iq '  = (q') - '[K, K2(h~r2 + co~) + ~o32~r<K)], 

< S - ' ) ~ '  = (q ' ) - ' [ /~M1 M2 + (K'co l 2 + ~r~o~)<M)], 

< S  - ' >3-31 = (q') - l [ / ~ r M l  M 2 + g (M)og~  + M1M2o~]], 

(S-I)121 = (q-) -,o93 [.~(KM) + gCOl 2 + 21~ro9 ]1 = - (S-I)s ' 

(S  -')s = (q-) -'09, [K(M 2) + go912 + 21~r09 ~ ] = - (S- ' )32 ' ,  

( S - I ) ; l  ' = -m,m2(q") - 'og lo93AkAp = (S -1 )73  ' ,  

with 

( K M )  = m l K2 M2 + m2 K, M , ,  (M 2) = m, M~ + m2 Ml 2 �9 

(69a) 

(69b) 

(69c) 

(69d) 

(69e) 

(69f) 
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These formulas allow us to compute w. We get 

W = - - m l r n z ( q  ~) - 1[(/~2 --F (D2)(Ak)2~ 1 nl --F-/'~/~(A].,/) 2~2 n2 

+ (g~r  + o2)(a~)2Gn 3 + ~tco3A/cA~(r - Gnl) 

+/~Cal (Ap)2(~2n3 - ~3n2) + 091 c03AkAkt(r + ~3nl)]. (70) 

With the aid of  Eqs. (62)-(65),  this expression is reduced to 

w = - m v n 2 ( q - ' ) - ~ { ( ) ~ 2  + o52)(Ak)Z~-lq 1 + (/~)~r + 0 3 2 ) ( A ~ ) 2 ~ 2 f  h 

-[- (/(2~t -[- O52)(A/A)2~'3f]3 -[- O52O53(A/A)2((2q3 -k- ~3f]2) 

+ ~/a~ au[o53((, q2 + (2fi,) + o52((~ q, - (, q3)] + gos, (a~) 2(G~3 - G 02) 

+ o5,Ma~[osdG q2 + Gq,) + os~(Gq~ + G#01}. 

If  we now apply Eqs. (66), then the expression for w will reduce to 

w = --m, m2(Ak)2G f/, (~" + fi)/(g2 _ o52). (71) 

7. Case of Free Variations: Microstrueture 

We will show in this section that the value ( 7 1 ) o f  w will be achieved 
if we compute it for a suitable microstructure with an effective tensor 9o of  
stiffness. This microstructure will be the rank 1 lamination with layers 
made of  materials 91 and 92 and oriented along the unit vector f 
introduced above. This orientation of  layers makes the quantity 

n "  9 0 "  " 4 = n  ' " ( 9 )  " . 4 - m l m 2 1 4  . " ( 9 2 -  9 1 ) .  . nn] 

x [ n  �9 ( 9 2  - 9 1 ) .  �9 n n ] / n n .  �9 ( m l g a  + m 2 9 1 ) "  �9 nn  (72) 

stationary with respect to n, this stationary value being attained at n = i. 
The stationarity condition is given by Eq. (67). With this result, it is easy 
to compute the expression (72). 

Because n = / -and  the components of  tensors 4, n are given by (66), it 
is easy to see that 

[ 4 "  ( 9 2 -  9 1 )  " nn][n " ( 9 2 -  9 1 )  " " nn] 

= ( 1/2)G ~ + G A~)(01Ak + q2 An) 

= ( l / 2 ) ~ , q , ( A k ) 2 [ 1  + (_~r _ 033)/(K + 033)111 + (/Q + 033)1(g - 033)1 

= (1/2)~-1 q, ( ~ ) 2 ( #  + ~, )~ / (g2  _ o52). 



108 JOTA: VOL. 80, NO. 1, J A N U A R Y  1994 

This together with the relationship 

n n "  (ml 92 + m2~l ) ' "  nn = ( 1/2)(k" +/~) 

shows that the second term in (72) coincides with (71). 
The above argument illustrates the fundamental significance of the 

(41,42, 43) basis: this one is defined by the stationary orientation of the 
layers in the optimal rank 1 laminate. 

Remark 7.1. Equation (67) offers several stationary solutions for the 
basis (4~, a2, 43) and several corresponding values q~ls for tp; every such 
solution will determine its own orientation f of  layers in the rank 1 
laminate. The choice of a solution will be dictated by the parameters 
characterizing the pair ~, el. 

Remark 7.2. The Lagrange multipliers o9, d may be computed as 
functions of  the components ~-1, ~-2, ell, el2 and then eliminated from (71); 
the result will be the expression appearing on the right-hand side of (72) 
with n = F. 

The regime of free variations 6d, 609 will be valid within the range of 
tensors r el defined by Ineqs. (48) together with Remark 7.2. Without this 
range, laminates of  a higher rank will be applied to saturate the corre- 
sponding bounds. 

8. Case Where the Variations 6d, 6oJ Are Linked through One 
Constraint 

We will assume in this section that the tensors ~, n are coaxial and 

09 = (.03a3, ~ = ~ l a l  + ~2a2, e I =ellal + el2a2 . (73) 

The tensors AS -1 ". ( S - 1 )  -I " ~ and el-" ( S - I )  -1 " AS -1 are now com- 
puted as [el. (51)-(53)] 

- - ( / ~ / ~  = 093)2AS -1 . .  ( S - 1 > - 1  . .  r = (A~tAk~l - 093A/.tr 

+ (/~A# r + o93 Ak~l )a2, (74a) 

- (/~_~ = 093)2el �9 �9 ( S - l )  -i �9 �9 AS -1 = (~IAkell + wsA/zel2)al 

+ (/~A/zel2 - 0~3 Akell )a2. (74b) 

Consider for example the case 

det A z+09- �9 A2. �9 09 = 0, 
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or in view of  (73), 

K 2 M 2  + o9] = 0. (75) 

This is a manifold  in the space (o93, d),  and the variations 5o9 = a35o93, 5 d  

are therefore linked by the relationship 

2 d 6 d  - (k2 - I t 2 ) f d  - 2o936o93 = 0 

as we move  along this manifold.  The latter relation can be rewritten as 

5 d  = 2 o 9 3 6 o 9 3 / ( M  2 - K2), (76) 

and instead of  two necessary condit ions r  = q~a = 0 [see (44) and (46)], we 
arrive at only one condit ion,  

(AS -1 "" ( S - 1 )  -1 "" 4) • (q " " ( S - l )  -1 "" A S - a )  "" a3 

+ [ 2 o 9 3 / ( M 2 - K z ) ] ( A S  - 1 "  ( S - I )  - 1 " "  4 ) "  T 

�9 " ( 7 "  " ( S - 1 )  -1  " ' A S - l )  = 0 .  ( 7 7 )  

This condi t ion should hold along with (75). 
Equa t ion  (77) can be t ransformed with the aid o f  Eqs. (74) defining 

the matrices AS - l  -- ( S - 1 )  -~ ". ~ and r / . .  ( S - ~ )  - '  . .  AS -~. We arrive at 
the relationship 

[_OR - o92 + 2o92(/1~ _ R ) / ( M z  - K2)l(a - ~) 

+ 2o9, {[(A~ rz - K z M = ) / i M  z - K 2 )  - AlliAk/A#) 

- [ ( K / -  K 2 M 2 ) / ( M z  - K z )  + g](A#/Ak)a~} = 0. (78) 

The  expressions in the square brackets  can be t ransformed as we use (75) 
to eliminate co ] . After some algebra, we arrive at the relationships 

/~rg - 092 + 2o92(_~r - [ ~ ) / ( M  2 - K2) = [ m 2 / ( M  2 - K2)](l~d + y), (79a)  

[ ( ~  r2 -- K 2 M 2 )  I(  M :  - K2)  - -  21~r](Ak/A#) 

- [(R 2 - K 2 M 2 ) / ( M 2  - K 2 )  + R ] ( A , / h k ) , r r  = - m 2 c / ( M 2  - g2). (79b) 

Here,  the symbols fl, y, c are defined as 

fl  = - ( u  + v), y = k : v  - # : u ,  c = u - va~,  (80) 

where 

U = ( k  2 + fi)Ak, v = (~ + #2)5#.  (81) 

Equat ion  (78) now shows that  

o93 = ( 1 / 2 c ) ( f l d  + y)(a - ~). (82) 



110 JOTA: VOL. 80, NO. 1, J A N U A R Y  1994 

We now use this relat ion to eliminate co~ f rom (75). The result will be a 
quadrat ic  equat ion for  d, 

d2[flE(a - 0 2 - 4c 2] + 2[flT(a - 0 2 + 2c2(k2 - #2)]d 

+ 72(a - 0 2 + 4c2k2#2 = 0. (83) 

The discriminant o f  this equat ion is equal to 

4c2{(a - 02(7 + flk2)(~' - f l#2)  + c2(k2 + #2)2}. 

F r o m  Eqs. (80) and (81), it follows that  

(r +/~2)(7  -/~#2) = - uv(~2 + m)  2, 

and the discriminant turns out  to be 

4c2(k2 + #2)2[  - - ( 0  -2 - -  2a~ + (2 )gv  Jr- U 2 - -  2 u v a (  +/92tr2(2] 

= 4vZcZ(k2 + #2)2(0- 2 --  u / v ) ( (  2 --  u / v ) .  

Equat ion  (83) now shows that  

d = - { 1/[fl 2(a - 0 2 _ 4c 2] }[fl7(0- - 0 2 + 2c 2(k 2 - #2) 

-T- 2vc (k2  + #2)x / (a  2 - u / v ) ( (  2 - u/v)] .  (84) 

The  corresponding values o f  w3 will be 

cos = {(a - 0/[ f l2(0-  - 0 2 - 4c2] }{-f ie(k2 - #2)  - 2~,c 

+/7v( /~2  + r e ) x / ( 0 -  2 - u lv ) (~  2 - u / v ) } ,  

or in view of  (80), 

o~3 = - { ( k 2  + #2) ( ,7  - 0 / [ / 7 2 ( , 7  - 0 2 - 4 r  - u )  

+ v(u + ~)v l ( ,7  2 - u lv ) (~  2 - u l v ) } .  ( 8 S )  

Now,  it is easy to compute  the bilinear form (41). After  some algebra, we 
obtain 

~b / ~1 rll = [(K2 M 2  - KI  M~ ) / ( K  2 A #  q - / ~ t A k ) ] [ K  2 q- M 2 tr(  - 0)3 (0" - 0 ]  

+ 0) 3 (0" - -  0 -~- d (  1 - -  0 - 0 -  

Making use o f  (50) and (68), we reduce this to the form 

r = k2 + #2a( + {m, AkA#/[~J~# + # 6 k  + d( Ak - A#)]} 

• [ - k 2  + d + 0)3(a - 0 - (d + #2)a(]. (86) 
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With the aid of (84) and (85), one can show that 

- k  2 -1- d + 0 9 3 ( 0 "  - -  ~ )  - -  (d + #2)a( 

= {(k2 + #2)/[(u + v)2(a - 0 2 - 4c2] }s e, 

k2A# +/~Ak + d(Ak - A#) 

= {1/[(u + v)2(a - 0 2 - 4c2] },.//, 

where 

~e = 2(1 + aO[c 2 - u v ( a  - 0 2] + v[2c(1 - ~ 0  - (u + v ) (a  - 0 2] 

• - - u / v ) ,  

J r  = 2uv (u  + v ) (a  - 0 2 - 2c[2cu  - (u - v)(c  + v x / ( a  2 - u / v ) ( (  2 - uiv))].  

Now, it is easy to check by direct inspection that 

~ [ J r  = - (  l / 2 u ) [ u / v  + tr~ -t- x/(a 2 - u /v ) (~  2 - u/v)] ,  

and from (86) we obtain 

= k 2 q- ~2a~ - [ml AkA/~(kz + ~2)/2]  

• [1 /v  + ( a ( / u )  +_ ( l / u ) x / ( a  2 - u l v ) (~  2 - u/v)] .  (87) 

9. Case of Constrained Variations: Microstructure 

The values (87) of tk2• are attained by the rank 2 lamination, with the 
material ~1 being the core and the layers being parallel to the main axes of 

and r/. To show this, consider the formula (Ref. 11) 

~ 0  = ~ 2  -~- ml[(~l  -- ~2) -i + [2m2/(k2 + #2)](~lnnnrl + o~2tttt)]-1 

= 9 2  + m l A  - l ,  (88) 

for the effective tensor ~0 of such a composite assembled from materials 91 
and ~2 taken with volume fractions ml and m2, respectively. The parame- 
ters oq, ~2 -> 0, ~1 + ~2 = 1, are linked with the geometric parameters f ,  p of 
the microstructure (see Fig. 2) by the formulas 

0~ 1 = f ( 1  - -  p)/m2, ~2 = p / m 2 .  

The matrix A in (88) can be represented in the form 

A = r q l a l a  ~ + 7z12(ala 2 -1- aEal) + ft22a2a 2 q- %3aaa3, 
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where 

D~ 

~--- f - - - .  

Fig. 2. 

4 
D1 1.~P D 2 

Dz 

D 1 

D 2 

D 1 

",--1 - f - , "  

Rank 2 laminates. 

= - v / [ ( k :  + m ) ~ A ~ ] ,  

Z~12 = m2(2~ 1 -- 1)/(k 2 +/t2) ,  

~2~ = - ( k 2  + ~)/[(k= + m ) A ~ ]  

= - u / [ ( / c 2  + m ) a l c a ~ ] ,  

~33 = - -  I/A/~, 

(89a) 

(89b) 

(89c) 

(89d) 

and the basis al ,  a2, a3 is chosen as suggested in (4) and (56), (57) with the 
unit  vectors i,j oriented along the main  axes o f  ~ and r/. 

The inverse matr ix A-1  is computed  as 

A -1  = (~22/z)a 1 al _ (rq2/z)(ala2 + a2al) 

+ (rql/7.)a2a2 + (1/zr33)a3a3, 

where ;( is defined by the formula  

Z = ~11 ~22 - -  71:22" 

The bilinear fo rm ~ .. 90  .. r/ depends obviously on ~1; the extremal values 
o f  this parameter  can be found  f rom the relationship 

( ~  -. A - '  .. ~ ) ~ ,  = ~ .. (A - ' ) ~ ,  .. ~ = 0, 

or equivalently f rom 

. . A - I  .. A~, .. A-1  .. q = 0 .  
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This one is easily reduced to 

(7~ 122 -~- 7~11 7~22)(~1712 "+" ~27]1) - -  2/~12(~22~1/~1 -F 7~11 ~2q2 ) =" O, 

and referring to (89) we obtain the extremal values of 7~12 , 

~12 = [ ~ . / ( ~  + O l [ ( u / v )  + ~ -T- x / ( ~  2 - u /v ) (~  2 - u/v) ] ,  

with ~ = ~2/~ and o" = r/2fl/1 . With these values for rq2, it is easy to arrive 
at the following expression for the bilinear form: 

"" 9 0  "" ~l l~rh = k2 + #2a~ - [mlAlcA~(k2  + #2)/2] 

• [ ( l /v)  + ,r~lu + ( l / u ) x / ( ~  2 - ulv) (~  ~ - u/O].  

This expression is the same as (87), and the attainability of the latter bound 
is thereby proved. A result similar to (87) can be established if the 
condition 

K I M  1 + o92 = 0 (90) 

holds instead of (75). We then arrive at the formula 

= k 1 --F #1o'~ -~- [ m 2 A k A # ( k ,  + #i)/2] 

• [ ( I / 0  + ~ / a  _+ ( I / a ) ~ / ( a  ~ - a / e ) ( ~  - ~ / 0 ] ,  (91) 

with a, ~ are defined as [cf. (81)] 

tt - ( k l  +/~)Ak, f = ( ~  -~- ]./1)hi./. 

The values (91) are attained for the 2nd rank lamination, with material 92 
being the core and layers parallel to the main axes of ~ and t/. 

To complete the classification of  various ranges, mention should be 
made of the case where Eqs. (75) and (90) hold simultaneously. This 
question still remains open as well as that of the generality of the assumption 
co = o93a3 in (49). Once these issues receive a solution and the corresponding 
additional formulas for q~ are obtained, then the final operation of maximiz- 
ing q~ with respect to m~ will be applied to construct the desired material 
pattern. 

I0. Appendix: Computation of ( S - I )  -I 

This procedure is similar to that applied to compute 

( S ) - '  = [ ( A ) - ~  x e ] - ' ;  
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cf. Eq. (30). We start  with the expression 

(S  -1) = m l S i  -1 +m2S~ I 

= m161 + m262 + (m1~1 + m2~2) • E, 

where 61(62) and ~1(fl2)  are defined, respectively, by Eqs. (31) and (32) in 
which we apply AI(A2) instead o f  (A) .  

Using the nota t ion  

(t$) = ml~ 1 + m2~2, 

e ( f ~ )  = mlf~l + m2f~2, 

we m ay  now invert the matr ix  

( S - l )  = ( ~ )  -t- (~r~) X E. 

Referring to Eq. (30), we get 

( S - 1 )  -1 = [ 1 / ( d e t ( 6 )  + ( f~ ) . .  ( 6 ) . .  (f~))] 

• { d e t ( 6 ) ( 6 )  - l  + ( n ) ( n ) -  ( ( n )  .. ( 6 ) )  •  

where 

= [ma/(det A 1 + 02 .. A 1 .. 02)](det A1 �9 Ai -1 + 0202) 

+ [m2/(det A: + 02" A2 "" 02)](det A2" A~ -1 + 0202) 

= ( [de t  A/(det  A + 02 " A .. 02)]A -1)  

+ (1] (de t  A + 02 .. A .. c0))0202 

= ~ + g0202, 

( f~)  = ml f l  I + m2~2 

= [ml/(det  A1 + 02 '" A1"  02)]02 "" A1 

+ [mE/(det A2 + 02 "" Az"  02)]02 "' A2 

=co  .. (A/ (de t  A + 02 .. A .. a 0 ) .  

The  matr ix  ( 6 ) =  @ + gco02 allows inversion, 

( ~ ) - 1  = ( 0  + go)~o)-I 

= O - 1  _ [ g [ ( 1  +go9 ". O -z .. 02)1(@-1 .. 02)(@-1 .. 02). 

We also compute  d e t ( 6 ) ,  

de t (6  ) = det(@ + g0202) 

= (det  @)[1 +g(co .. @-1 .. 02)]. 
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The final expression for (5 -1 )  -1 becomes 

( S - l ) - '  = (1/A){det r +g(co .. 0 -1 .. ~o)1r 

- - g  det 0 ( r  -1 .. r162 -1 .. 09) + ( ~ ) ( f ~ )  

-- [ ( n )  .. ( r  + g .. )] x E} ,  

where 

A = det r + g(to .. 0 -1 .. o~)1 + ( f l ) . .  ( r  + gcocn).- ( ~ ) ;  

the matrices r  ( f l )  and the scalar parameter  g are defined by the formulas 

r = ([det  A/(det A + co -. A .. r 

(f~) = ~o .. (A/(det  A + co-. a .. ~o)), 

g = (1/(det  A + ~o .. A .. co)). 
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