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The aim of this paper is to provide many equivalent
characterizations of Priifer monoids. Throughout this
paper we consider only commutative cancellative monoids,
which are not groups. Then a monoid S has a unique
maximal ideal M denoted by M(S). S admits a
quotient group G = {a/b: a,b € S} and a/b = ¢/d if
and only if ad = bc. S can be considered as a sub-
semigroup of G by the natural map a - a/l, a e S.
With respect to a prime ideal P of S one can define
a semigroup S, = {a/b: a,b € S, b ¢ P}. Then 8p may
be identified as a subsemigroup of G. Let § be a
submonoid of a monoid T. An element t € T 1is said

to be an integral element over S if there exists an

integer n such that t® € S. The overmonoid T is
called integral over S if all elements of T are
integral over 8. The set of all integral elements of
T over S forms a submonoid of T, which is called

the integral closure of S in T. The integral closure
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of S in its group of quotients is called the integral
closure of S and is denoted by S%. S is called

integrally closed if S = S%, If t ¢ T, S[t] denotes

a submonoid of T generated by S and t. A monoid
T predominates over § 1f T 1is an overmonocid of 8§
and M(S) = SMAM(T). If A and B are ideals in a
monoid S, we denote A: B = {x ¢ S|Bx ©€A}. In

particular if =x,y € §, then
(x: y) = {s € S: (yS)s &£ xS}. All S-systems considered
in this paper are unitary left S-systems. An S-system

M is called torsion free if for all s € S and

m, ,m, € M, m, = m, whenever smy = Sm,. An S-system

M is called strong torsion free if it is torsion free

1287 € S and me M, s; 7 8, whenever

s m = sm. We refer the reader to [2] for the

definitions of projective and free S-systems. When ©§

and for all s..s

is a commutative cancellative monoid the concepts of
projective S-system and free S-system coincide. A

fractional ideal A of S is an S-subsystem of G

(the group of quotients of §) such that sA &S for
some s € S. It is obvious that every finitely gener-
ated S-subsystem of G is a fractional ideal and G is
not a fractional ideal if G # S. A fractional ideal

A 1is called principal if A = a8 for some a € G. A
fractional ideal A is said to be invertible if there
exists a fractional ideal B such that AB = 5. We
denote the inverse of A by At As in [21,
commutative cancellative hereditary and semi-hereditary

monoids are called Dedekind and Priifer monoids

respectively. According to Stenstrdm [4] an equivalent
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characterization of weakly flat S-system is: an
S-system M is weakly flat if and only if sx = ty
with x,y e M and s,t € 8§ = there exists a 2z & M
and s',t' € S such that x =s'z and y = t'z and

ss' = tt'.

THEOREM 1. Let S Eg_g_commutative cancellative

monoid with a quotient group G. Suppose that T is a

overmonoid of S such that T CG. Then the following

statements are equivalent:

i) T 1is a weakly flat S-system.

ii) For every prime ideal P in S, either

PT=T or TES,.

iii) (y: x)T =T for all x/y e T.

Proof: (i) =» (ii). By the definition of weakly
flat S-system, since y(x/y) = 1(x), there exist
zeT, s',t' € § such that

x/y =s'z, 1= t'z and yx' = xt'.
Now let P be a prime ideal of S. If t' e P, then
T = PT, since 1 = zt'. If +t' ¢ P, then clearly
(y: x),;ZP. Thus we have PT = T or (y: x) géP for
x/y € T. Consider the latter case. Let s e (y: x)
and s i P. Then sx = ay for some a & S, which
implies =x/y € SP. Thus we have T g;SP.
(ii) =» (iii). Suppose (y: x)T # T for some x/y e T.
Apply Zorn's lemma to the collection of ideals A
containing (y: x) in S such that AT # T. Then
there exists a maximal element in this collection,
which can be proved to be a prime ideal. Thus we have
a prime ideal P in S such that (y: x) &P and
PT # T. If (ii) holds in S, then T EESP and so
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x/y € SP' Thus =/y = a/s, where s i P; hence

%s = ay. This implies that s e (y: x) &P, a contra-
diction.

(iii) = (i). Let sx = ty, where x,y € T and

s,t € S. Write x = xl/x2 and y = yl/y2 where
)%, and v, € S. Then we have (x2: xl)T = T and
(y2: yl)T = T. Therefore Pt ® 1 and Py, = 1,
where tl,tg e T, PP, € S, Pi¥Xy T aix, and

PQYl = a2y2 for some al,a e S, Taking =z = 1/p

2 1P2?

- - . [P .
5 a,P, and t 3Py it can be verified easily

that ss' = tt'. Thus T is weakly flat.

COROLLARY. If S, G and T satisfy the hypothesis

of Theorem 1 and T is any weakly flat (considered as

a S-system) oversemigroup properly containing S, then

T is not integral over S.

Proof: Let T be integral over S and A an
ideal of S§. If AT =T, then at =1 for some
aehA and t € T. Since t 1is an integral element
over S, t% = 5 ¢ S. Hence sa® = t"a"
1l e A. Thus AT # T for all proper ideals A of S.
Then by (ii) of Theorem 1 we have T SLSM(S) = S.

A direct verification along with the Corollary 1

'3

=1, 1i.e.,

of Theorem 1 of [2], yields the following two lemmas:

LEMMA 2. Let S be a Priifer monoid. Then a S-system

A is weakly flat if and only if A is torsion free.

LEMMA 3. Let S be a submonoid of a monoid T and

e ———————,  —

let T be integral over S. Then T is a group if

and only if s is a group.
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LEMMA 4. Let S De a submonoid of a monoid T with

o it et . et W

T integral over S. If P'. is a prime ideal of T

and P = SMAP', then P is the maximal ideal of S

if and only if P! is the maximal ideal of T.

Proof: Evidently P is a prime ideal of S. ©So
V=TN\NP' and U = SN\P are monoids. If v €V, then
v? € S for some n. As P' is a prime ideal,

v ¢ P'. Hence v© & S\P = U, i.e., ¥V is integral
over U. By Lemma 3 V 1is a group if and only if U

is a group.

LEMMA 5. Let S be a submonoid of a monoid T. Then
the following statements are equivalent:

i) M(s) € M(T).

ii) T predominates over S.

iii) TeM(S) # T.

The proof of Lemma 5 is analogous to the proof of

Proposition 1 of [1; 375].

LEMMA 6. é_fractional ideal A of a cancellative

monoid S is invertible if and only if it is a

principal fractional ideal.

Proof: If AB = S for some fractional ideal B,
then 1 =ab, ae¢ A, beB. Let x e A, Then
®xb = s € § and x = xba = sa. The other part is

evident.

THEOREM 7. Let S be a submonoid of a group G. Then

——— — ———————— T ——

the following conditions are equivalent:

1) 8 ég_g_maximal element in the set of all sub-

monoids of G ordered by predominance relation.
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2) There exists a divisible group H and a semi-

group homomorphism £ of the mopnoid S in HUO,

which is maximal in the set of all semigroup homomor-

phisms of submonoids of G in HU O ordered by the

extension relation.

3) If =z e GN\S, then z_l e S.

If, furthermore, G is a group of guotients of &,

then the statements (1) - (3) are equivalent to each

one of the following statements:

4) The set of all principal ideals of S is

linearly ordered.

5) The set of all ideals of S is linearly

ordered.

6) A(BMNC) = ABMAC for all ideals A, B, C,
of S.

7) (AUB)(ANB) = AB for all ideals A, B of

S.

8) Ideals of S generated by two elements are
invertible.

9) Every finitely generated ideal of S is
invertible.

10) All finitely generated fractional ideals of

5 form a group.

11) For all z € G, the fractional ideal S U Sz

is invertible.
12) If C is a finitely generated ideal and A
is an ideal of S such that A &C, then A = BC

for some ideal B.

13) All finitely generated fractional ideals of S

form a cancellative monoid.
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14) S 1is integrally closed and for any a,b e S,

there exists an integer n > 1 such that
(asU bs)" = a"s U b"s
15) S 1is integrally closed and for any a,b € S,

there exists an integer n > 1 such that

a1y e a"s U bUs.

le) (AUB): C = (A: C) U (B: C) for all ideals
A, B, C of S, with C finitely generated.

17) C: (ANB) = (¢: A)U (C: B) for all ideals

A, B, C of S with A and B finitely generated.
18) Every monoid T such that ST &G is

integrally closed.
19) Every monoid T such that S €T &G is

weakly flat in the sense of Stenstrdm.

20) All finitely generated strong torsion free

S-systems are free.

21) All finitely generated fractional ideals of S

are free.
22) S is a Priifer monoid.

Proof: (1) = (2). Let H be an arbitrary

divisible group containing the group SN\NM(S). Let

f: S+ HUO0 be a mapping such that £(s) = s if

s € S\M(S), and f(s) =0 if s e M(S). Then f 1is
a semigroup homomorphism. Let T be a submonoid of
G,T2S and f': T > HUO0, be a semigroup homomor-
phism such that f£' is an extension of f. Then
P={te T|E'(t) = 0} is a prime ideal of T and

PN S = M(S). Since P = M(T,), T,
S. By assumption TP = S, Hence T = S since
TP =2T.

predominates over
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(2) = (8). Let z e G. If z is not an integral
element over S, then =z é S[z—l]. Hence

2t e u(s[z™1]) and so S[z TI\M(s[z 1) = s\ m(s).
Then we can easily extend the mapping f given in (2)
onto S[z—l]. Then, by (2), S[z“l

z"l € S. Let now 2z be an integral element over S.

If zr e M(S) for some natural number r, then
consider f': S[z] > HU 0, where f'(s) = f(s5) and

f'(szk) =0 for s e€8. If f(M(S)) CH, then we can

1=5, i.e.,

extend f onto the quotient group of &. Hence
fml(o) # J. Then f-l(O) = P is a prime ideal of S.
If P # M(S), then we can extend f onto SP. Thus
F(M(S)) = 0. By virture of this f' is a semigroup
homomorphism extending f onto S[z] by an application
of Lemma 4. Let n be the minimal number such that
z% €S and z" ¢ M(S). Then £(z") = h ¢ H. Since H
is divisible, there exists hl e H such that hi = h.
Then f£': s[z]l + HU 0, such that f‘(szk) = f(s)hi
for all k, is a homomorphism and f' extends f£.
Hence by (2), sSfz]l =8, i.e., z e S.

As in Theorem 1 of [1; 376], one can show that
(3) = (4) = (5) = ().
(5) = (6). Trivial.
(6) = (7). If (6) holds, we have for all ideals A
and B of S

(AUBYANB) = (AUBAN (AUB)B 248

and the reverse inclusion always holds.
(7) = (8). Let A =aS8UaysS be an ideal of S.
Then by (7), (alSKJ aQS)(alS{T aQS) = alaZS’ which is

invertible.
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(8) = (9). Let A=alSUa28U...UanS be a
finitely generated ideal of S. By (8), as LIaQS is
invertible. Hence by lemma & alS(J a28 = bS for some
beS. So A =0bS Lla38 v...yuv anS. Then by induction
A is invertible.

(8) =>» (10). It is easy to see that (8) = (4). Let

n
now A= {J Szi, z, € G be a fractional ideal.
i=l

Since (4) <> (3), Sz =S if =z ¢ S. Hence we can
assume that 2z,,Z,5...52 €8 O 2,52,5.0052, ¢ S.

In the first case A 1is invertible by (9). If

~1 -1

-1
ZysZysere a2y ¢ S, then =z »Z secesZ € S. By (4)

1 2
-1 -1

we have for some m S%n g;Szk N

Then SszSzm and A = Szm i.e. A 1is invertible.

(10) =& (11). Trivial.

(11) = (3). Let 2z e G\NS and SUzS be invertible.

Then S U 2S5 =uS, ueG. Hence 1 = us and

k = 1,2540.450.

u= iz, A, s €& S. So Azs = us = 1, which implies
-1
b4 e S.

Thus we have established the equivalence of (1)
through (11).
(4) =» (12). Let A and C be ideals of S with C
finitely generated and such that A &C. Since

principal ideals are linearly ordered and C is

i1

finitely generated, C 1is principal and so AlC 8
A,

it

for some fractional ideal Al of S. Hence BC

where B = AAl is an ideal of 8.
(12) = (9). Let A be a finitely generated ideal of
S. Then aS&€A for a ¢ A. By hypothesis, aS = AB

for some ideal B of S. Since (aS)(a‘lS) = §, we
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have § = AB(a_lS), and thus A is invertible.

(10) = (13). Trivial.

(13) = (3). Since (S Usz USz2)(S U Sz)

= (S USz2)(s Usz), it follows =z €& Sz2 U S. Hence
2 for some s e S, i.e., z_l € S.
(14) = (15). Trivial.

(15) = (16). Let a,b € S. Then a” 'b e a"s Ub"S,
for some n > 1. If an_lb € anS, then b € aS and

thus we get bS &£aS. If a% 1 e b"s, then

Z €5 Oor 2z = sz

(a/b)n—l £ S. Since S is integrally closed, this case
shows that a/b € § and hence we get aS & bS. Thus
principal ideals are linearly ordered and so the ideals
of S are linearly ordered by the implication
(4) = (5). Then (15) is evident.
(16) = (17). Let a,b ¢ S. Since
S = (aSU bS): (asS U bS) by (16), we have

S = [aS: (aS VU bsS)J U [bS: (asS U bs)]

= (aS: bS) U (bs: aS).

It follows then bS €aS or aS<bS. Since (4) = (5),
the set of all ideals of § 1s linearly ordered and
hence (17) is evident.
(17) = (18). By a similar argument as above, we can
show that the ideals are linearly ordered and hence
(18) can be seen evident by combining Theorems 1 and 5
of [2].
(18) = (18). Again by combining Theorems 1 and 5 of
{21, the principal ideals and hence all the ideals of
S are linearly ordered. Then from Theorem 1 of [2]
and Lemma 2, (19) follows.
(18) => (3). Let z ==x/y ¢S and T = sS[z]. Since
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T is weakly flat, by Theorem 1, we have (y: x)T = T.
But (y: x) # S. So 1 = sz, s & (y: x). Hence

z % =se S, i.e., z is an integral element over
S. Then S[z—l] is weakly flat and is integral over
S. This implies that, by Corollary of Theorem 1,
8[z_l] =85, i.e., z~l e S.

(3) = (14). Let x e G\S and x €S for some

natural number n. Then by (3), x ~ € S and so
X = xn(x—l)n~l € S. Thus S 1is integrally closed.
The last part of (14) is evident since (3) = (4).
(20) = (21) = (22). Trivial.

(22) = (4). Follows from Corollary 1 of Theorem 2 of
[2].

(4) = (20). Let M be a finitelyngenerated strong

torsion free S-system. Then M = (J Smi and
i=1

m, ¢ s, if i # 3. We claim that Sm. N Sms = a is
i # 3. If not, let s m; = SQmj' By (4), we can write
for definiteness s, = Xsl, AE
strong torsion free m, = Amj, which is impossible,

S. Then, since M 1is

1

Since M 1is strong torsion free s m, = s, m. if and

only if s, = s Hence Smi is isomorphic to S,

1 2"
i.e., M is a free S-system.

PROPOSITION 8. Let G be a group and f be a homo-

morphism of a submonoid S of G in HWU 0, where H

is a divisible group and f maps 1 into 1 and

f(S) # 0. Then there exists a monoid T € G, which is

a group or a Priifer monoid and a homomorphism
F: T>HWUO0O such that T2S, F extends f and
F0) =0 or Fl0) = M(T).
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Proof: Let A be the set of all homomorphisms of
submonoids of G in H /0, ordered by the extension
relation. By analogy with Theorem 2 [1; 3781 we can
show that there exists a maximal element F of A,
which extends f. Let T be the domain of the map F.
If F_l(O) = ], then T can be extended to a homo-
morphism of the group of quotients of T into HU 0.
Hence in this case T is a group. If Fnl(O) £ d .,
then F—l(O) = P is a prime ideal. Hence by Theorem 7,
T is a Prifer monoid. Then T may be extended to a
homomorphism of TP inte H U 0. Hence TP =T and
P = M(T).

COROLLARY 9. Every submonoid S of a group G is

predominated by at least one Priifer submonoid of G.

Prcof: Let H be a divisible group containing
the group S\ M{(S)} and let f Dbe the natural homo-
morphism from S into H U0. Then by Proposition 8,

there exists a Priifer monold which predominates over S.

THEOREM 10. Let S be a submonoid of a group G.

i So—————ner . St .

Then the integral closure S' of S in G is the

intersection of all Priifer submonoids of G which

predominate over S.

Proof: Let x e S8' and T be a Priifer submonoid
of G which predominates over §. Since x is
integral over T, by Lemma 4, we have
M(TLxI)N T = M(T), i.e., T[x] predominates over T.
Then by Theorem 7, x & T. Conversely, let z e G and
z is not an integral element over S. Then
z—l € M(S[z’l]). Let T be a Priifer submonoid of &
which predominates over s[z”11. Ssince 21 e M(T),
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Z¢T. But M(S)QM(S[ZQJ’]). Hence T predominates

over S.

COROLLARY 11. A cancellative monoid is integrally

closed if and only if it is an intersection of Priifer

submonoids of its group of guotients.

THEOREM 12. Let S be a commutative cancellative

monoid and G be its group of guotients. Then the

following conditions are eguivalent:

1) S 1is a Dedekind monoid.

2) §=FxN or S=F, where I 1is a group

and N 1is the additive monoid of non-negative integers.

3) All ideals of S are principal.

4) S is a group or a Noetherian integrally

closed monoid with unique prime ideal different from S.

5) Every ideal in 8§ 1is a product of prime

ideals.
6) Every fractional ideal of S 1is free.

7) If A<B, A, B ideals of S, then there

is an ideal C of S such that A = BC.

8) Every strong torsion free finitely generated

S-system is free and a strong torsion free S-system

which does not have a finite system of generators, is a

union of disjoint S-systems, each of which is isomorphic

to S or G.

g) All fractional ideals of S form a group.

10) All fractional ideals of S form a cancella-

tive monoid.
Proof: The equivalence of (1), (2), (3), (4) and
(5) was proved in Theorem 4 of [2].
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(2) = (6) = (1). Trivial.

(3) € (7). Evident from the proof of Theorem 7.

{2) = (8). Since (1) < (2), every finitely generated
strong torsion free S-system is free. Suppose that M
is a strong torsion free S-system which does not have
finite system of generators and L = {ma} be the

system of generators of M. If Smafﬁ SmB # §, then
Smag_Sm or Sm Q;Sma since M is strong torsion

B B

free. Let Sm N Sm, # @ Ffor all m ,m, € L. Then we
o B o’ B

can so number L that Sml C:Sm2 C... C:Sma ...

F2 . T3
By (2), we can consider that ml = a m2 = a m3 = e
where a is a generator of the monoid N and
r2 < rB < ... Hence L 1is a countable set. Since M

is strong torsion free Sma is isomorphic to S for

all m e L. Hence M is isomorphic to

®
L/ Sa_ri = G(r, = 0). Letnow Sm fiSm, = § for

i=1 ! o B

some m .mg € L. By Zorn's lemma there is a maximal
subsystem of L, L' = {m;} such that Sm; f\Smé =g
for all m; # mé of L'. For every m; g L' consider

the set KY = {ma e L: Sm ;ZSm;}. As it was proved
above UKY is a system of generators of M, sybsys-
tems SKY are disjoint and each SKY is isomorphic to
S or G,

(8) =» (1). Each ideal of S is a strong torsion free
S-system, Let I be an ideal of § and ¢: G > I be

an isomorphism. If ¢(1) = s, then
s = 6(1) = 6(ss™) = se(s™)

which is impossible. Hence by (8), each ideal of S is
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isomorphic to S, which proves that S 1is a Dedekind
monoid.

(2) = (9) = (10). Trivial.

(10) = (3). By Theorem 7, S is a Priifer monoid. If
there exist non—invertibleoo a,b € § such that &£1:>Sb

for every n, then I = (J sa ™ is a fractional
m=1

ideal. Then Sa I = Sa=2I, which leads to a contra-
diction by virtue of (10). Consider now S = S/8,
where s 652 <> S = Asz, X €S, X is invertible in

1
S. Let s be an image of s e S in S. S is

naturally linearly ordered cancellative archimedean
monoid and hence S is a submonoid of the additive
monoid of the real numbers by Theorem 2 of [3; 165].
Suppose S does not satisfy the ascending chain
condition for principal ideals. Then the maximal ideal
of S 1is a union of an infinite ascending chain of
principal ideals. Hence in S there exist

a,b,al,aQ,...,E&,...,Bi,55,...,

Salc: Sa2 < ... C:Saa C ooy Sad v Saa = a, and
s_b'lC§32<:... c:'s'EBc;..., Sb\ U"s“’EB = b. Then

(sa)y(v EEE) = (VU Saa)(LJ SbB)'

B‘,... such that

Hence it follows Sa(U Sbg) = (U Saa)(tj Sbs). By
condition (10), we have then Sa = L}Saa, which leads
to a contradiction. Thus S and hence S satisfies

ascending chain condition for principal ideals.
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