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The aim of this paper is to provide many equivalent 

characterizations of Prefer monoids. Throughout this 

paper we consider only commutative cancellative monoids, 

which are not groups. Then a monoid S has a unique 

maximal ideal M denoted by M(S). S admits a 

quotient group G = {a/b: a,b e S} and a/b = c/d if 

and only if ad = bc. S can be considered as a sub- 

semigroup of G by the natural map a ÷ a/l, a e S. 

With respect to a prime ideal P of S one can define 

a semigroup Sp = {a/b: a,b e S, b ~ P}. Then Sp may 

be identified as a subsemigroup of G. Let S be a 

submonoid of a monoid T. An element t e T is said 

to be an integral element over S if there exists an 

integer n such that t n e S. The overmonoid T is 

called integral over S if all elements of T are 

integral over S. The set of all integral elements of 

T over S forms a submonoid of T, which is called 

the integral closure of S in T. The integral closure 
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of S in its group of quotients is called the integral 

closure of S and is denoted by S ~. S is called 

integrally closed if S = S ~. If t e T, S[t] denotes 

a submonoid of T generated by S and t. A monoid 

T predominates over S if T is an overmonoid of S 

and M(S) = S f]M(T). If A and B are ideals in a 

monoid S, we denote A: B = {x e SIBx~___A}. In 

particular if x,y e S, then 

(x: y) = {s e S: (yS)s ~__xS}. All S-systems considered 

in this paper are unitary left S-systems. An S-system 

M is called torsion free if for all s a S and 

ml,m 2 e M, m I = m 2 whenever sm I = sm 2. An S-system 

M is called strong torsion free if it is torsion free 

and for all Sl,S 2 e S and m ~ M, s I = s 2 whenever 

slm = s2m. We refer the reader to [2] for the 

definitions of projective and free S-systems. When S 

is a commutative cancellative monoid the concepts of 

projective S-system and free S-system coincide. A 

fractional ideal A of S is an S-subsystem of G 

(the group of quotients of S) such that sA~___S for 

some s ~ S. It is obvious that every finitely gener- 

ated S-subsystem of G is a fractional ideal and G is 

not a fractional ideal if G ~ S. A fractional ideal 

A is called principal if A = aS for some a e G. A 

fractional ideal A is said to be invertible if there 

exists a fractional ideal B such that AB = S. We 

denote the inverse of A by A -I. As in [2], 

commutative cancellative hereditary and semi-hereditary 

monoids are called Dedekind and Prdfer monoids 

respectively. According to Stenstr~m [4] an equivalent 
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characterization of weakly flat S-system is: an 

S-system M is weakly flat if and only if sx = ty 

with x,y e M and s,t e S =~ there exists a z e M 

such that x = s'z and y = t'z and and s',t t e S 

ss t = tt t . 

THEOREM i. Let S be a commutative cancellative 

monoid with a quotient group G. Suppose that T is a 

overmonoid of S such that T CG. Then the following 

statements are equivalent: 

i) T is a weakly flat S-s[stem. 

ii) For every prime ideal P in S, either 

PT = T or T C__Sp. 

iii) (y: x)T = T for all x/y e T. 

Proof: (i) =~ (il). By the definition of weakly 

flat S-system, since y(x/y) = l(x), there exist 

z E T, s',t' E S such that 

x/y = sVz, 1 = tlz and yx T = xt I 

Now let P be a prime ideal of S. If t' c P, then 

T = PT, since 1 = zt' If t' ~ P, then clearly 

(y: x)~P. Thus we have PT = T or (y: x) ~P for 

x/y e T. Consider the latter case. Let s e (y: x) 

and s ~ P. Then sx = ay for some a e S, which 

implies x/y e Sp. Thus we have T C___Sp. 

(ii) ~ (iii). Suppose (y: x)T ~ T for some x/y e T. 

Apply Zorn's lemma to the collection of ideals A 

containing (y: x) in S such that AT @ T. Then 

there exists a maximal element in this collection, 

which can be proved to be a prime ideal. Thus we have 

a prime ideal P in S such that (y: x)~P and 

PT # T. If (ii) holds in S, then T C_Sp and so 
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x/y ~ Sp. Thus x/y = a/s, where s ~ P; hence 

xs = ay. This implies that s e (y: x) ~__P, a contra- 

diction. 

(iii) =~ (i). Let sx = ty, where x,y e T and 

s,t e S. Write x = Xl/X 2 and y = yl/Y2 where 

Xl,X2,Y 1 and Y2 E S. Then we have (x2: Xl)T = T and 

(Y2: Yl )T = T. Therefore Pltl = I and P2t2 = 1, 

where tl,t 2 e T, plP2 e S, PlXl = alx 2 and 

p2y I = a2Y 2 for some al,a 2 e S. Taking z = i/plP2, 

s' = alp 2 and t' = a2Pl, it can be verified easily 

that ss' = tt' Thus T is weakly flat. 

COROLLARY. If S, G and T satisfy the hypothesis 

of Theorem i and T is an[ weakly flat (considered as 

S-system) oversemigroup properly containing S, then 

T is not integral over S. 

Proof: Let T be integral over S and A an 

ideal of S. If AT = T, then at = i for some 

a E A and t e T. Since t is an integral element 

tn n tnan over S, = s ~ S. Hence sa = = I, i.e., 

i e A. Thus AT # T for all proper ideals A of S. 

Then by (ii) of Theorem i we have T ~SM(s) = S. 

A direct verification along with the Corollary 1 

of Theorem 1 of [2], yields the following two lemmas: 

LEMMA 2. Let S be a PrHfer monoid. Then a S-system 

A is w e ~  flat if and only if A is torsion free. 

LEMMA 3. Let S be a submonoid of a monoid T and 

let T be integral ' over S. Then T is ~ group if 

and onl~ if S is~ ~ sr Oup. 
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LEMMA 4. Let S be a submonoid of a monoid T with 

T integral over S. If P'. is a prime id__eal of T 

and P = S~P', then P is the maximal ideal of S 

if and on! y if P' is the maximal ideal of T. 

Proof: Evidently P is a prime ideal of S. So 

V = T~P' and U = S~P are monoids. If v e V, then 

n . p, 
v e S for some n As is a prime ideal, 

n ~p, n 
v . Hence v c S\P = U, i.e., V is integral 

over U. By Lemma 3 V is a group if and only if U 

is a group. 

LEMMA 5. Let S be a submonoid of a monoid T. Then 

th__~efollowin$ statements are equivalent: 

i) M(S)C_M(T). 

ii) T predominates over S. 

iii) T.M(S) # T. 

The proof of Lemma 5 is analogous to the proof of 

Proposition 1 of [i; 375]. 

LEMMA 6. A fractional ideal A of a cancellative 

monoid S is invertible if and only if it is a 

principal fractional ideal. 

Proof: If AB = S for some fractional ideal B, 

then 1 = ab, a e A, b g B. Let x e A. Then 

xb = s e S and x = xba = sa. The other part is 

evident. 

THEOREM 7. Let S be a submonoid of a group G. The____nn 

the following conditions ar 9 equivalent: 

i) S is a maximal element in the set of all sub- 

monoids of G ordered by predominance relation. 
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2) There exists a divisible group H and a semi- 

group homomorphism f of the monoid S i__n_n H U0, 

which is maximal in the set of all semigroup homomor- 

phisms o__ff submonoids of G i__n_n H ~) 0 ordered ~the 

extension relation. 
-I 

3) If z e G\S, then z e S. 

If, furthermore, G is ~ group of quotients of S, 

then the statements (i) - (3) are equivalent to each 

one of the following statements: 

4) The set of all principal ideals of S is 

linearly ordered. 

5) The set of all ideals of S is linearly 

ordered. 

6) A(B/~C) = AB~AC for all ideals A, B, C, 

of S. 

7) (A UB)(A ~B) = AB for all ideals A, B of 

S. 

8) Ideals of S generate d by two elements are 

invertible. 

9) Every finitely generated ideal of S is 

Invertible. 

i0) All finitely generated fractional ideals of 

S form ~ group. 

Ii) For all z ~ G, the fractional ideal S U Sz 

is invertible. 

12) If C is ~ finitely generated ideal and A 

is an ideal of S such that A ~C, then A = BC 

for some ideal B. 

13) All finitely generated fractional ideals of S 

form a cancellative monoid. 
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14) S is integrally closed and for any a,b e S, 

there exists an integer n > i such that 

(aS U bS) n = ans U bnS 

15) S is integrally closed and for any a,b e S, 

there exists an integer n > i such that 

an-lb e ansubns. 

16) (AUB): C = (A: C) •(B: C) for all ideals 

A, B, C of S, with C finitely generated. 

17) C: (A ~ B) = (C: A) U (C: B) for all ideals 

A, B, C of S with A ~nd B finitely generated. 

18) Every monoid T such that S ~__T~G is 

integrally closed. 

19) Every monoid T such that S ~_T ~G is 

weakly flat in the sense of StenstrSm. 

20) All finitely generated strong torsion free 

S-systems are free. 

21) All finitely generated fractional ideals of S 

are free. 

22) S is a PrUfer monoid. 

Proof: (i) =~ (2). Let H be an arbitrary 

divisible group containing the group S \ M(S). Let 

f: S + H U0 be a mapping such that f(s) = s if 

s e S\ M(S), and f(s) = 0 if s c M(S). Then f is 

a semigroup homomorphism. Let T be a submonoid of 

G,T~S and f': T ÷ H ~ 0, be a semigroup homomor- 

phism such that f' is an extension of f. Then 

P = {t e TIf'(t) = 0} is a prime ideal of T and 

P/~ S = M(S). Since P = M(Tp), Tp predominates over 

S. By assumption Tp = S. Hence T = S since 

Tp ~T. 
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(2) =~ (3). Let z e G. If z is not an integral 

element over S, then z ~ S[z-l]. Hence 
-i z c M(S[z-l]) and so S[z-I]kM(S[z-I]) = SkM(S). 

Then we can easily extend the mapping f given in (2) 

onto S[z-l]. Then, by (2), S[z -I] = S, i.e., 

-i 
z e S. Let now z be an integral element over S. 

r 
If z e M(S) for some natural number r, then 

consider f': S[z] + H U 0, where f'(s) = f(s) and 

f'(sz k) = 0 for s ~ S. If f(M(S)) ~H, then we can 

extend f onto the quotient group of S. Hence 

f-l(0) # fT. Then f-l(0) = P is a prime ideal of S. 

If P # M(S), then we can extend f onto Sp. Thus 

f(M(S)) = 0. By virture of this f' is a semigroup 

homomorphism extending f onto S[z] by an application 

of Lemma 4. Let n be the minimal number such that 

n z n z e S and ¢ M(S). Then f(z n) = h ~ H. Since H 

n h. is divisible, there exists h I e H such that h I = 

f,(sz k ) Then f': S[z] ÷ HL) 0, such that = f(s)h~ 

for all k, is a homomorphism and f' extends f. 

Hence by (2), S[z] = S, i.e., z e S. 

As in Theorem 1 of [i; 3?6], one can show that 

(3) =~ (4) =~ (5) =~ (i). 

(5) => (6). Trivial. 

(6) =~ (7). If (6) holds, we have for all ideals A 

and B of S 

(A U B)(A FIB) = (AU B)A~ (A U B)B ~AB 

and the reverse inclusion always holds. 

(7) =~ (8). Let A = alS~Ja2S be an ideal of S. 

Then by (7), (alSUa2S)(alSNa2 S) = ala2S , which is 

invertible. 
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(8) =~ (9). Let A = alS U a2S U... t./anS be a 

finitely generated ideal of S. By (8), alSU/a2S is 

invertible. Hence by lemma 6 alSUa2S = bS for some 

b e S. So A = bSUa3S ~/...U anS. Then by induction 

A is invertible. 

(9) =~ (i0). It is easy to see that (9) =~ (4). Let 

n 
now A = U sz i, z. e G be a fractional ideal. 

I 
i=l 

Since (4) 4~ (3), Sz~S if z } S. Hence we can 

assume that Zl,Z 2 .,z E S or z 2 % S. "" n Zl' "'''Zn 

In the first case A is invertible by (9). If 

Zl,Z2,. ,z n ~ S, then Zl-i -i -i . . s S. By (4) • ,z 2 , ..,z n 

-i -i 
C Sz k k = 1,2, ,n. we have for some m Sz m ~ , ... 

Then SZk~SZ m and A = Sz m i.e. A is invertible. 

(i0) =~ (ii). Trivial. 

(ii) =~ (3). Let z e G\ S and S ~)zS be invertible. 

Then S U zS = uS, u e G. Hence 1 = us and 

u = iz, l, s e S. So Izs = us = I, which implies 

-i 
z ~S. 

Thus we have established the equivalence of (i) 

through (ii). 

(4) ~ (12). Let A and C be ideals of S with C 

finitely generated and such that A ~C. Since 

principal ideals are linearly ordered and C is 

finitely generated, C is principal and so AIC = S 

for some fractional ideal A I of S. Hence BC = A, 

where B = AA I is an ideal of S. 

(12) =~ (9). Let A be a finitely generated ideal of 

S. Then aSiA for a e A. By hypothesis, aS = AB 

for some ideal B of S. Since (aS)(a-Is) = S, we 
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have S = AB(a-Is), and thus A is invertible. 

(i0) =~ (13). Trivial. 

(13) =~ (3). Since (S USz USz2)(S LTSz) 

= (S U Sz2)(S USz), it follows z E Sz 2 U S. Hence 
-i 

z c S or z = sz 2 for some s e S, i.e., z e S. 

(14) ~ (15). Trivial. 

(15) ~ (16). Let a,b e S. Then an-lb eans UbnS, 

for some n > i. If an-lb eans, then b e aS and 

thus we get bS_~CaS. If an-lb e bnS, then 

(a/b) n-I ~ S. Since S is integrally closed, this case 

shows that a/b ~ S and hence we get aS~bS. Thus 

principal ideals are linearly ordered and so the ideals 

of S are linearly ordered by the implication 

(4) :~ (S). Then (15) is evident. 

(16) ~ (17). Let a,b e S. Since 

S = (aS UbS): (aS ~ bS) by (16), we have 

s = [aS: (aSUbS)]U [bS: (aSUbS)] 

= (aS: bS) U (bS: aS). 

It follows then bS~aS or aS~_bS. Since (4) =~ (S), 

the set of all ideals of S is linearly ordered and 

hence (17) is evident. 

(17) =~ (18). By a similar argument as above, we can 

show that the ideals are linearly ordered and hence 

(18) can be seen evident by combining Theorems i and 5 

of [2]. 

(18) =~ (19). Again by combining Theorems i and S of 

[2], the principal ideals and hence all the ideals of 

S are linearly ordered. Then from Theorem i of [2] 

and Lemma 2, (19) follows. 

(19) ~ (3). Let z : x/y ~ S and T : S[z]. Since 

303 



DOROFEEVA, MANNEPALLI and SATYANARAYANA 

T is weakly flat, by Theorem i, we have (y: x)T = T. 
n 

But (y: x) ~ S. So I = sz , s e (y: x). Hence 
-n -i 

z = s s S, i.e., z is an integral element over 

S. Then S[z -I] is weakly flat and is integral over 

S. This implies that, by Corollary of Theorem i, 

S[z -I] = S, i.e., z -I c S. 

(3) =~ (14). Let x ¢ G\ S and x n e S for some 
-i 

natural number n. Then by (3), x ~ S and so 

n(x-l)n-i x = x e S. Thus S is integrally closed. 

The last part of (14) is evident since (3) ~ (4). 

(20) =~ (21) ~ (22). Trivial. 

(22) ~ (4). Follows from Corollary 1 of Theorem 2 of 

[2]. 

(4) :~ (20). Let M be a finitely generated strong 
n 

torsion free S-system. Then M = U Sm. and 
l 

i=l 
m. ~ Sm. if i # j. We claim that Sm. N Sm. = ~ if 
l ] z ] 

i # j. If not, let slm i = s2m j. By (4), we can write 

for definiteness s 2 = Is I, I e S. Then, since M is 

: km., which is impossible. strong torsion free m i ] 

Since M is strong torsion free slm i = s2m i if and 

only if s I = s 2. Hence Sm.l is isomorphic to S, 

i.e., M is a free S-system. 

PROPOSITION ~. Let G be ~ grouD and f be a homo- 

morphism of a submonoid S of G in H U0, where H 

is a divisible group and f maps 1 into 1 and 

f(S) # 0. Then there exists a monoid T CG, which is 

~ ~ o r  a PrUfer monoid and a homomorphism 

F: T ÷ H U0 such that T~S, F extends f and 

F-I(o) =/:I or F-I(o) : M(T). 
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Proof: Let /{ be the set of all homomorphisms of 

submonoids of G in H ~70, ordered by the extension 

relation. By analogy with Theorem 2 [i; 378] we can 

show that there exists a maximal element F of /~, 

which extends f. Let T be the domain of the map F. 

If F-I(o) = ~, then F can be extended to a homo- 

morphism of the group of quotients of T into H U 0. 

Hence in this case T is a group. If F-I(0) # ~ , 

then F-I(0) = P is a prime ideal. Hence by Theorem 7, 

T is a Prefer monoid. Then F may be extended to a 

homomorphism of Tp into H t]0. Hence Tp = T and 

P = M(T). 

COROLLARY ~. Every submonoid S of a group G is 

predominated by at least one Prefer submonoi d of G. 

Proof: Let H be a divisible group containing 

the group S\ M(S) and let f be the natural homo- 

morphism from S into H U0. Then by Proposition 8, 

there exists a Prefer monoid which predominates over S. 

THEOREM I0. Let S be a submonoid of a ro~ G. 

The____~nthe Sntegral closure S' of S in G is the 

intersection of all PrUfer submonoids of G which 

predominate over S. 

Proof: Let x s S' and T be a PrUfer submonoid 

of G which predominates over S. Since x is 

integral over T, by Lemma 4, we have 

M(T[x])~ T = M(T), i.e., T[x] predominates over T. 

Then by Theorem 7, x e T. Conversely, let z e G and 

z is not an integral element over S. Then 
-! 

z e M(S[z-I]). Let T be a PrUfer submonoid of G 

which predominates over S[z-l]. Since z -I e M(T), 
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z ~ T. But M(S) ~___M(S[z-I]). Hence T predominates 

over S. 

COROLLARY Ii. A cancellative monoid is integrally 
w 

closed if and only if it is an intersection of PrHfer 

submonoids of its group of quotients. 

THEOREM 12. Let S be a commutative cancellative 

monoid and G be its group of quotients. Then the 

following conditions are equivalent: 

i) S is a Dedekind monoid. 

2) S = F × N or S = F, where F is a group 

and N is the additive monoid of non-negative integers. 

3) All ideals of S are principal. 

4) S is ~ group or a Noetherian integrally 

closed monoid with uniqu e prime idea!different from S. 

5) Every ideal in S is a product of prime 

ideals. 

6) Every fractional ideal of S is free. 

7) If A ~___B, A, B ideals of S, then there 

is an ideal C of S such that A = BC. 

8) Every strong torsion free finitely generated , 

S-system is free and a strong torsion free S-system 

which does not have a finite system of generator s, is a 

union of disjoint S-systems, each of which is isomorphic 

to S or G. 

9) All fractional ideals of S form a group. 

i0) All fractional ideals of S form a cancell@ F 

tire monoid. 

Proof: The equivalence of (i), (2), (3), (4) and 

(5) was proved in Theorem 4 of [2]. 
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(2) "~ (6) =~ (i). Trivial. 

(3) ~ (7). Evident from the proof of Theorem 7. 

(2) ~ (8). Since (i) ~m~ (2), every finitely generated 

strong torsion free S-system is free. Suppose that M 

is a strong torsion free S-system which does not have 

finite system of generators and L = {m } be the 

system of generators of M. If Sm~f] Sm 8 # ~, then 

Sm __CSm 6 or Sm~Sm~ since M is strong torsion 

free. Let SmsN Sm~ # ~ for all me,m 8 e L. Then we 

can so number L that Sm I CSm 2 C... CSm ~... 

r 2 . r 3 
By (2), we can consider that m I = a m 2 = a m 3 = ..., 

where a is a generator of the monoid N and 

r 2 < r 3 < ... Hence L is a countable set. Since M 

is strong torsion free Sm is isomorphic to S for 

all m e L. Hence M is isomorphic to 

= G(r I = 0). Let now Sm {TSm B = ~ for sa-ri 

i:l 
some ms,m E e L. By Zorn's lemma there is a maximal 

subsystem of L L' = {m'} such that Sin' ~Sm~ = 
' y Y 

for all m' ~ ' of L' For every m' s L' consider y m6 . y 

the set K : {m s L: Sm ~.~Sm'}. As it was proved 
y ~ ~ y 

above L]K is a system of generators of M, sybsys- 
7 

terns SK are disjoint and each SK is isomorphic to 
Y Y 

S or G. 

(8) ~ (i). Each ideal of S is a strong torsion free 

S-system. Let I be an ideal of S and ¢: G + I be 

an isomorphism. If ~(i) = s, then 

s = ~(1) : ~(ss -1) : s~(s -1) 

which is impossible. Hence by (8), each ideal of S is 
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isomorphic to S, which proves that S is a Dedekind 

monoid. 

(2) ~ (9)~ (i0). Trivial. 

(i0) =~ (3). By Theorem 7, S is a PrNfer monoid. If 

there exist non-invertible a,b e S such that san~sb 

for every n, then I = U sa-m is a fractional 
m=l 

ideal. Then sa-l! = Sa-21, which leads to a contra- 

diction by virtue of (I0). Consider now S = S/e, 

where SlSS 2 ~=~ s i = Is2, I e S, l is invertible in 

S. Let s be an image of s e S in S. S is 

naturally linearly ordered canceilative archimedean 

monoid and hence S is a submonoid of the additive 

monoid of the real numbers by Theorem 2 of [3; 165]. 

Suppose S does not satisfy the ascending chain 

condition for principal ideals. Then the maximal ideal 

of ~ is a union of an infinite ascending chain of 

principal ideals. Hence in S there exist 

a,b,al,a2,...,as,...,bl,b2,...,b$,.., such that 

Sa--" Z C Sa--- 2 ~ . . .  ~ S--~a C . . . ,  S--a\ U S-aa : ~ '  and 

sb-- z c  ~ 2  c . . .  c ~  B c . . . ,  s-~\ u ~ = ~. then 

( s a ) ( u  s-~) = ( u  sa-- ) ( U  sb---~). 

Hence i t  f o l l o w s  Sa (U  Sb B) = ( U  S a a ) ( U  Sb6). By 

condition (i0), we have then Sa = ~Sa a, which leads 

to a contradiction. Thus S and hence S satisfies 

ascending chain condition for principal ideals. 
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