Semigroup Forum Vol. 14 (1977) 247-263

RESEARCH ARTICLE

EMBEDDING SEMIGROUPS IN SEMIBANDS Francis Pastijn Communicated by G. Lallement

1. INTRODUCTION

We shall use the notations and terminology of [3]. A semiband is an idempotent-generated semigroup. If n is any non-zero cardinal number, we shall say that a semiband is of type n if a minimal set of idempotent generators of the semiband has cardinality n [1].

In [8] Howie shows that any semigroup can be embedded in a semiband (see also [1]). We shall give a more easy embedding theorem here. We shall also show that any semigroup can be embedded in a simple semiband and in a bisimple semiband. Furthermore, we show that any completely semisimple semigroup can be embedded in a completely semisimple semiband, and that any completely regular semigroup can be embedded in a completely regular semiband. We shall make some remarks concerning semibands of type 3.

2. THE IDEMPOTENT-GENERATED HULL OF A SEMIGROUP

Let S be any semigroup. Let Y be a set such that $Y \cap S = \Box$ and such that for some $\overline{h} \in Y$ we have $|S| = |Y \setminus \{\overline{h}\}|$. Let $S \to Y \setminus \{\overline{h}\}, x \to \overline{x}$ be a one-to-one mapping of S onto $Y \setminus \{\overline{h}\}$. Let F be the semigroup which is generated by the elements of Y, subject to the defining relations $\overline{h}^2 = \overline{h}$, and $\overline{x}^2 = \overline{x}$ for all $x \in S$. Let K be the subsemigroup of F which is generated by the elements of $Z = \{\overline{h}\overline{x}\overline{h} \parallel x \in S\}$. It must be clear that K is a free semigroup which is freely generated by

the elements of Z. Hence, there exists a homomorphism ϕ of K onto S which extends the mapping $Z \rightarrow S$, $h\bar{x}\bar{h} \rightarrow x$. Putting $\beta = \phi \circ \phi^{-1}$, we have $K_{\beta} \cong S$. Let β generate α on F. We call $F_{L} = \mathcal{K}(S)$ the idempotent-generated hull of semigroup S. $\boldsymbol{x}(S)$ is a semiband which is generated by the elements of Y, subject to the defining relations $\overline{h}^2 = \overline{h}$, $\vec{x}^2 = \vec{x}$ for all $x \in S$, $h\bar{x}h\bar{y}h = h\bar{x}\bar{y}h$ for all $x, y \in S$. <u>LEMMA</u> 2.1. $K\alpha = \{w \in F \parallel (v, w) \in \alpha \text{ for some } v \in K\} = K$ <u>and</u> $\beta = \alpha \cap K \times K$. PROOF. Since α is the congruence on F which is generated by β , we have $\beta \subseteq \alpha \cap K \times K$. Let us suppose $v \in K$, and $(v, w) \in \alpha$. Then there exist $n \ge 1$, elements $p_i \in K$, i = 1, ..., 2n, elements $u_i, v_i \in F^1$, $j = 1, \dots, n$, such that $(p_{2j-1}, p_{2j}) \in \beta$, j = 1, ..., n, $v = u_1 p_1 v_1$, $w = u_n p_{2n} v_n$, $u_{i} p_{2i} v_{i} = u_{i+1} p_{2i+1} v_{i+1}, j = 1, \dots, n-1.$ We have $(p_1, p_2) \in \beta$, and $p_1, p_2, u_1 p_1 v_1 = v \in K$. Let $v = \overline{h} \overline{x}_1 \overline{h} \dots$ $\dots h \overline{x}_{k} \overline{h}$; consequently $p_{1} = h \overline{x}_{m} \overline{h} \dots h \overline{x}_{m+n} \overline{h}$, $1 \le m \le k$, $0 \leq q \leq k-m$. From this we have and $v_1 = 1$ or \overline{h} if q = k-m, $v_2 = h \overline{x}_{m \neq 0 \neq 1} \overline{h} \dots \overline{h} \overline{x}_k \overline{h}$ or $\overline{x}_{m \neq 0 \neq 1} \overline{h} \dots \overline{h} \overline{x}_k \overline{h}$ otherwise. Let $u'_1 = 1$ if m = 1, and $u'_1 = u_1$ h otherwise; let $v'_1 = 1$ if q = k-m, and $v'_1 = hv_1$ otherwise. Since $p_1, p_2 \in K$ we have $hp_1 = p_1h = hp_1h = p_1$ and $hp_2 = p_2h = hp_2h = p_2$, and thus we have $u_1 p_1 v_1 = u_1' p_1 v_1'$ and $u_1 p_2 v_1 = u_1' p_2 v_1'$. Since u_1' , $v_1 \in K^1$ we have $u_1'p_2v_1' = u_2p_3v_2 \in K$; furthermore $(p_1,p_2) \in \beta$ implies $(u'_1 p_1 v'_1, u'_1 p_2 v'_2) \in \beta$, and thus $(u_1 p_1 v_1, u_1 p_2 v_1) \in \beta$. By induction we can show that $u_j p_{2j-1} v_j$, $u_j p_{2j} v_j \in K$, and $(u_j p_{2j-1} v_j, u_j p_{2j} v_j) \in \beta$ for all $j = 1, \dots, n$. Consequently wek and $(v,w)\in\beta$. We conclude that $K\alpha = K$ and $\beta = \alpha \cap K \times K$.

<u>THEOREM</u> 2.2. Any <u>semigroup</u> S can be embedded in the <u>semiband</u> $\mathcal{K}(S)$ <u>PROOF</u>. By the preceding lemma we know that $K_{\beta} \cong S$ a subsemigroup of the semiband $F_{\alpha} = \mathcal{K}(S)$.

THEOREM 2.3. Any countable semigroup can be embedded in a semiband of type $n \le 3$.

<u>PROOF</u>. Let S be a semigroup generated by the two elements a and b. Let $h\bar{x}h$ be any element of $K_{/\beta}$; if $x = a^{k_1} b^{k_2} \dots$ $\dots b^{k_m}$ in S we have $h\bar{x}h = (h\bar{a}h)^{k_1} (h\bar{b}h)^{k_2} \dots (h\bar{b}h)^{k_m}$ in $\mathbf{t}(S)$. We conclude that $S \cong K_{/\beta}$ can be embedded in the subsemigroup of $\mathbf{t}(S)$ which is generated by the three idempotents h,\bar{a} and \bar{b} . Since any countable semigroup can be embedded in a semigroup generated by two elements (theorem II of [5]; see also §9.1 of [3]), it follows that any countable semigroup can be embedded in a semiband of type $n \leq 3$.

In this paragraph from now on we shall suppose that S is a monoid with identity e. Let $X = SU(Y \setminus \{\bar{h}\})$, and let us consider the following elements of the full transformation semigroup f_X :

$$\begin{split} \widetilde{h} &: X \to X, \quad x \to x \\ & \overline{x} \to x \quad \text{for all } x \in S, \end{split}$$

and for all $s \in S$

 $\tilde{s} : X \to X, \quad x \to \overline{xs}$ $\overline{x} \to \overline{x}$ for all $x \in S$.

The subsemigroup of $\mathbf{J}_{\mathbf{X}}$ generated by the elements $\tilde{\mathbf{h}}$, $\tilde{\mathbf{s}}$ (s \in S), will be denoted by $\widetilde{\mathbf{A}}(S)$. This semigroup $\widetilde{\mathbf{A}}(S)$ has been mentioned in [1].

<u>LEMMA</u> 2.4. <u>In the semigroup</u> $\widehat{A(S)}$ <u>the following equalities</u> <u>must hold</u>: $\widehat{h}^2 = \widehat{h},$ $\widehat{x}^2 = \widehat{x}$ for all $x \in S,$ $\widehat{h} \widehat{x} \widehat{h} \widehat{y} \widehat{h} = \widehat{h} \widehat{x} \widehat{y} \widehat{h}$ for all $x, y \in S.$

<u>There exists a homomorphism</u> ψ of $\mathcal{K}(S)$ onto $\mathcal{K}(S)$ such that $\overline{h\psi} = \widetilde{h}$ and $\overline{x}\psi = \widetilde{x}$ for all $x \in S$. The restriction of ψ to $K_{f_0} \cong S$ is an isomorphism.

PROOF. The first part of the lemma is straightforward. Let us suppose that for some $h\bar{x}h$, $h\bar{y}h \in K_{f_R}$ we have $(h\bar{x}h)\psi =$ $(\overline{h}\overline{y}\overline{h})\psi$. Then $\widetilde{h}\widetilde{x}\widetilde{h} = \widetilde{h}\widetilde{y}\widetilde{h}$, and thus $x = \widetilde{e}\widetilde{h}\widetilde{x}\widetilde{h} = \widetilde{e}\widetilde{h}\widetilde{y}\widetilde{h} = y$; consequently $h\bar{x}h = h\bar{y}h$. We conclude that ψ maps $K_{\beta} \cong S$ isomorphically onto the subsemigroup of $\mathcal{J}(S)$ consisting of the elements $h \widetilde{x} h$ ($x \in S$). THEOREM 2.5. Any monoid S can be embedded in the semiband $\mathfrak{k}(S)$. LEMMA 2.6. In the semigroup $\widehat{\mathcal{H}}(S)$ the following equalities must hold : $\tilde{h}\tilde{e} = \tilde{e}$, $\widetilde{e}\widetilde{h} = \widetilde{h}$, $\widetilde{st} = \widetilde{s}$ for all $s, t \in S$, $\tilde{h}\tilde{s}\tilde{h}\tilde{t} = \tilde{h}\tilde{s}\tilde{t}$ for all $s,t \in S$. The elements of $\widetilde{\boldsymbol{k}}(S)$ are : $\tilde{h}, \tilde{e}, \tilde{s}, \tilde{h}\tilde{s}, \tilde{s}\tilde{h}, \tilde{h}\tilde{s}\tilde{h}, \tilde{s}\tilde{h}\tilde{t}, \tilde{s}\tilde{h}\tilde{t}\tilde{h}, \underline{with} s, t \in S \setminus \{e\}$. These elements are all different except for the following cases : $\widetilde{sht} = \widetilde{ht} \iff \widetilde{shth} = \widetilde{hth} \iff t = st$ $\widetilde{sht} = \widetilde{vht} \iff \widetilde{shth} = \widetilde{vhth} \iff st = vt$ with $\mathbf{v}, \mathbf{s}, \mathbf{t} \in \mathbf{S} \setminus \{\mathbf{e}\}$. <u>LEMMA</u> 2.7. (i) If L is an \mathcal{L} -class of $(K_{\beta})\psi \cong S$, then $\bigcup_{s \in S} \widetilde{SL} \text{ is the } ^{\mathcal{L}} - \underline{class} \text{ of } \widetilde{\mathcal{K}(S)} \text{ containing } L.$ (ii) If R is an \Re -class of $(K_{/_{\Re}}) \psi \cong S$, then $\mathbb{R} \cup \mathbb{R} \widetilde{\mathbf{e}}$ is the \mathbb{R} -class of $\widetilde{\mathcal{A}}(S)$ containing \mathbb{R} . (iii) If D is a \mathfrak{D} -class of $(K_{\beta})\psi \cong S$, then $(\bigcup_{\in S} \widetilde{SD}) \cup (\bigcup_{\in S} \widetilde{SDe})$ is the **2**-class of $\widetilde{\mathcal{L}(S)}$ containing D. PROOF. (i) Let $\widetilde{h}\widetilde{x}\widetilde{h}$ be any element of L. The <code>L-class</code> of $\widetilde{f(S)}$ containing this element will be denoted by $L_{\widetilde{tork}}$. We must show that $L_{\tilde{h} \times \tilde{h}} = \bigcup_{s \in S} \tilde{s}L$. Consider $\tilde{h} \tilde{y} \tilde{h} \in L$ and any $s \in S$; then $\tilde{e}(\tilde{s} \tilde{h} \tilde{y} \tilde{h}) = \tilde{e} \tilde{h} \tilde{y} \tilde{h} = \tilde{h} \tilde{y} \tilde{h}$, and consequently $\tilde{s} \tilde{h} \tilde{y} \tilde{h}$ and $\widetilde{h}\widetilde{y}\widetilde{h}$ will be *L*-related in $\widetilde{\boldsymbol{\mathcal{X}}(S)}$; since $\widetilde{h}\widetilde{x}\widetilde{h}$ and $\widetilde{h}\widetilde{y}\widetilde{h}$ are \mathcal{L} -related in $(K_{f_{\beta}})\psi$, they must also be \mathcal{L} -related in $\widetilde{\mathfrak{X}(S)}$, and we can conclude that \widetilde{shyh} is \mathfrak{L} -related with $\widetilde{h}\widetilde{x}\widetilde{h}$ in $\widetilde{\mathcal{K}(S)}$. We have shown that $\bigcup_{s \in S} \widetilde{S}L \subseteq L_{\widetilde{h}\widetilde{x}\widetilde{h}}$ (observe that $\widetilde{e}L = L$, and thus $L \subseteq \bigcup_{n \in S} \widetilde{s}L$).

All elements of $L_{\tilde{h}\tilde{\chi}\tilde{h}}$ must be *L*-related with $\tilde{h}\tilde{\chi}\tilde{h}$ in \mathbf{J}_{χ} , i.e. they must have the same range as $\tilde{h}\tilde{\chi}\tilde{h}$ (see lemma 2.5 of [3]). Therefore the elements \tilde{t} , $\tilde{h}\tilde{t}$, $\tilde{t}\tilde{h}\tilde{\nu}$, with $t, \nu \in S$, cannot belong to $L_{\tilde{h}\tilde{\chi}\tilde{h}}$. Let us investigate the range of elements $\tilde{h}\tilde{\chi}\tilde{h}$, $\tilde{t}\tilde{h}$, $\tilde{h}\tilde{t}\tilde{h}$, $\tilde{t}\tilde{h}\tilde{\nu}\tilde{h}$, with $t,\nu \in S$:

X $\tilde{h}\tilde{x}\tilde{h} = Sx$, X $\tilde{t}\tilde{h} = S$, X $\tilde{h}\tilde{t}\tilde{h} = St$, X $\tilde{t}\tilde{h}\tilde{v}\tilde{h} = Sv$.

If $h\tilde{x}h$ and $\tilde{t}h$ are *L*-related in $\mathfrak{A}(S)$ for some $t\in S$, then Sx = S = Se, and in this case we will have that x and e are *L*-related in S; this implies that $\tilde{h} = h\tilde{e}\tilde{h}$ belongs to L, and consequently $\tilde{t}h \in \bigcup_{s \in S} \tilde{s}L$. If $h\tilde{x}h$ and $\tilde{h}\tilde{t}h$ are *L*-related in $\mathfrak{A}(S)$ for some $t\in S$, then Sx = St, and in this case x and t are *L*-related in S; this implies that $\tilde{h}\tilde{t}\tilde{h}$ belongs to L, and consequently $\tilde{h}\tilde{t}h \in \bigcup_{s \in S} \tilde{s}L$. If $\tilde{h}\tilde{x}h$ and $\tilde{t}\tilde{h}\tilde{v}h$ are *L*-related in $\mathfrak{A}(S)$ for some $t, v\in S$, then Sx = Sv, and in this case we will have that x and v are *L*-related in S; this implies that $\tilde{h}\tilde{v}h$ belongs to L, and consequently $\tilde{t}\tilde{h}\tilde{v}h \in \bigcup_{s \in S} \tilde{s}L$. Hence we can conclude that $L_{\tilde{h}\tilde{x}\tilde{h}} = \bigcup_{s \in S} \tilde{s}L$.

(ii) Let $\tilde{h}\tilde{x}\tilde{h}$ be any element of R. The *R*-class of $\widetilde{\mathcal{L}}(S)$ containing this element will be denoted by $R_{\tilde{h}\tilde{x}\tilde{h}}$. We must show that $R_{\tilde{h}\tilde{x}\tilde{h}} = R \cup R\tilde{e}$. Consider any element $\tilde{h}\tilde{z}\tilde{h} \in R$; then $(\tilde{h}\tilde{z}\tilde{h})\tilde{e} = \tilde{h}\tilde{z}\tilde{e} = \tilde{h}\tilde{z}$, and consequently $\tilde{h}\tilde{z}$ and $\tilde{h}\tilde{z}\tilde{h}$ will be *R*-related in $\widetilde{\mathcal{L}}(S)$; since $\tilde{h}\tilde{x}\tilde{h}$ and $\tilde{h}\tilde{z}\tilde{h}$ are *R*-related in $(K_{\beta})\psi$, they must also be *R*-related in $\widetilde{\mathcal{L}}(S)$, and we can conclude that $\tilde{h}\tilde{z} = (\tilde{h}\tilde{z}\tilde{h})\tilde{e}$ is *R*-related with $\tilde{h}\tilde{x}\tilde{h}$ in $\widetilde{\mathcal{L}}(S)$. We have shown that $R \cup R\tilde{e} \subseteq R_{\tilde{h}\tilde{x}\tilde{h}}$.

If $\tilde{h}\tilde{x}\tilde{h}$ and $\tilde{h}\tilde{v}\tilde{h}$ are \mathfrak{R} -related in $\widetilde{\mathfrak{K}}(S)$ for some $v\in S$, we must have $\tilde{h}\tilde{x}\tilde{h}\in\tilde{h}\tilde{v}\tilde{h}\widetilde{\mathfrak{K}}(S)$. Since for all $s,t\in S$

 $\chi \tilde{h} \tilde{x} \tilde{h} = Sx$, $\chi(\tilde{h} \tilde{v} \tilde{h}) \tilde{s} \subseteq Y$, $\chi(\tilde{h} \tilde{v} \tilde{h}) (\tilde{h} \tilde{s}) \subseteq Y$, $\chi(\tilde{h} \tilde{v} \tilde{h}) (\tilde{s} \tilde{h} \tilde{t}) \subseteq Y$, $\tilde{h} \tilde{x} \tilde{h}$ cannot be equal to $(\tilde{h} \tilde{v} \tilde{h}) \tilde{s}$ or $(\tilde{h} \tilde{v} \tilde{h}) (\tilde{h} \tilde{s})$ or $(\tilde{h} \tilde{v} \tilde{h}) (\tilde{s} \tilde{h} \tilde{t})$ for some $s, t \in S$. If $\tilde{h} \tilde{x} \tilde{h} = (\tilde{h} \tilde{v} \tilde{h}) (\tilde{h} \tilde{s} \tilde{h})$ for some $s \in S$, then $\tilde{h} \tilde{x} \tilde{h} = \tilde{h} \tilde{v} \tilde{s} \tilde{h}$; if $\tilde{h} \tilde{x} \tilde{h} = (\tilde{h} \tilde{v} \tilde{h}) (\tilde{s} \tilde{h})$ for some $s, t \in S$, then $\tilde{h} \tilde{x} \tilde{h} = \tilde{h} \tilde{v} \tilde{s} \tilde{h}$; if $\tilde{h} \tilde{x} \tilde{h} = (\tilde{h} \tilde{v} \tilde{h}) (\tilde{s} \tilde{h} \tilde{t})$ for some $s, t \in S$, then $\tilde{h} \tilde{x} \tilde{h} = \tilde{h} \tilde{v} \tilde{s} \tilde{t}$; in all cases we can conclude that $x \in vS$ by

lemma 2.6. Analogously we will have $v \in xS$. This implies that x and v are \Re -related in S, and consequently $\tilde{h}\tilde{v}\tilde{h} \in \Re$.

If $\tilde{h}\tilde{x}\tilde{h}$ and $\tilde{h}\tilde{v}$ are *R*-related in $\boldsymbol{t}(S)$ for some $v \in S$, then $(\tilde{h}\tilde{v}\tilde{h})\tilde{e} = \tilde{h}\tilde{v}\tilde{e} = \tilde{h}\tilde{v}$ shows that $\tilde{h}\tilde{v}\tilde{h}$ will be *R*-related with $\tilde{h}\tilde{x}\tilde{h}$ in $\boldsymbol{t}(S)$. By the foregoing this implies $\tilde{h}\tilde{v}\tilde{h} \in R$, and thus $\tilde{h}\tilde{v} \in R\tilde{e}$.

If $\tilde{h}\tilde{x}\tilde{h}$ and \tilde{s} are \Re -related in $\boldsymbol{d}(\tilde{S})$ for some $s\in S$ we would have $\tilde{h}\tilde{s} = \tilde{s}$ since $\tilde{h}(\tilde{h}\tilde{x}\tilde{h}) = \tilde{h}\tilde{x}\tilde{h}$; we have $\tilde{h}\tilde{s} = \tilde{s}$ if and only if $\tilde{s} = \tilde{e}$; but \tilde{e} is \Re -related with $\tilde{h} = \tilde{h}\tilde{e}\tilde{h}$ in $\boldsymbol{d}(\tilde{S})$. In this case $\tilde{h}\tilde{x}\tilde{h}$ and $\tilde{h}\tilde{e}\tilde{h}$ are \Re -related in $\boldsymbol{d}(\tilde{S})$, and by the foregoing this implies that $\tilde{h} = \tilde{h}\tilde{e}\tilde{h}\in \mathbb{R}$, and thus $\tilde{s} = \tilde{e}\in R\tilde{e}$.

If $\tilde{h}\tilde{x}\tilde{h}$ and $\tilde{s}\tilde{h}$ are *R*-related in $\tilde{\boldsymbol{\mathcal{K}}}(S)$ for some $s\in S$, then $(\tilde{s}\tilde{h})\tilde{e} = \tilde{s}\tilde{e} = \tilde{s}$ shows that \tilde{s} will be *R*-related with $\tilde{h}\tilde{x}\tilde{h}$ in S. By the foregoing this implies $\tilde{s} = \tilde{e}\in R\tilde{e}$, and thus $\tilde{h} = \tilde{s}\tilde{h}\in R$.

If $\tilde{h}\tilde{x}\tilde{h}$ and $\tilde{s}\tilde{h}\tilde{t}$ are *R*-related in $\mathbf{t}(\tilde{s})$ for some $s,t \in S$, then they must also be *R*-related in \mathbf{t}_{x} , i.e. $(\tilde{h}\tilde{x}\tilde{h}) \circ$ $(\tilde{h}\tilde{x}\tilde{h})^{-1} = (\tilde{s}\tilde{h}\tilde{t}) \circ (\tilde{s}\tilde{h}\tilde{t})^{-1}$ (see lemma 2.6. of [3]). Clearly $\tilde{e}\tilde{h}\tilde{x}\tilde{h} = \tilde{e}\tilde{h}\tilde{x}\tilde{h}$, and thus $\tilde{s}\tilde{t} = \tilde{e}\tilde{s}\tilde{h}\tilde{t} = \tilde{t}$; consequently st = t, and $\tilde{s}\tilde{h}\tilde{t} = \tilde{h}\tilde{t}$ by lemma 2.6. By the foregoing we then have $\tilde{s}\tilde{h}\tilde{t} = \tilde{h}\tilde{t} \in R\tilde{e}$.

If $\tilde{h}\tilde{x}\tilde{h}$ and $\tilde{s}\tilde{h}\tilde{t}\tilde{h}$ are *R*-related in $\tilde{\boldsymbol{k}}(S)$ for some s,t \in S, then $(\tilde{s}\tilde{h}\tilde{t}\tilde{h})\tilde{e} = \tilde{s}\tilde{h}\tilde{t}\tilde{e} = \tilde{s}\tilde{h}\tilde{t}$ shows that $\tilde{s}\tilde{h}\tilde{t}$ will be *R*-related with $\tilde{h}\tilde{x}\tilde{h}$ in $\boldsymbol{\hat{\boldsymbol{k}}}(S)$. By the foregoing this implies $\tilde{s}\tilde{h}\tilde{t} = \tilde{h}\tilde{t} \in R\tilde{e}$, and thus $\tilde{s}\tilde{h}\tilde{t}\tilde{h} = \tilde{h}\tilde{t}\tilde{h} \in R$.

Hence we can conclude that $R_{\tilde{h}\tilde{x}\tilde{h}} = R \cup R\tilde{e}$. (iii) is an immediate consequence of (i) and (ii).

<u>REMARK</u> 2.8. The situation described in lemma 2.7 is made clear by the following picture of the **D**-class of an element \widetilde{hxh} of $\widetilde{dc(S)}$; we suppose $\widetilde{hyh} \in L$ and $\widetilde{hzh} \in R$.

252

Remark that, if $\tilde{x} = \tilde{e}$, we have $\tilde{h}\tilde{x}\tilde{h} = \tilde{h}$, $\tilde{h}\tilde{x} = \tilde{e}$, $\tilde{s}\tilde{h}\tilde{x} = \tilde{s}$. <u>LEMMA</u> 2.9. <u>Every</u> D-<u>class of</u> $\tilde{\mathcal{K}}(S)$ <u>meets</u> $(K_{/\beta})\psi \cong S$ <u>in</u> <u>exactly one</u> $\overline{\partial}$ -<u>class of</u> $(K_{/\beta})\psi$, <u>and</u> $\tilde{\mathcal{L}}(S) = \bigcup_{x \in S} D_{\tilde{h}\tilde{x}\tilde{h}}$. <u>PROOF.</u> $\tilde{h}, \tilde{e}, \tilde{s}, \tilde{s}\tilde{h}$ all belong to the $\overline{\partial}$ -class of $\tilde{\mathcal{L}}(S)$ which contains $\tilde{h} = \tilde{h}\tilde{e}\tilde{h} \in (K_{/\beta})\psi$ for all $s \in S \setminus \{e\}$, by lemma 2.7 and remark 2.8. $\tilde{h}\tilde{t}, \tilde{s}\tilde{h}\tilde{t}, \tilde{s}\tilde{h}\tilde{t}\tilde{h}$ all belong to the $\overline{\partial}$ -class of $\tilde{\mathcal{L}}(S)$ which contains $\tilde{h}\tilde{t}\tilde{h} \in (K_{/\beta})\psi$ for all $s, t \in S \setminus \{e\}$. We conclude that every $\overline{\partial}$ -class of $\tilde{\mathcal{L}}(S)$ has a non-void intersection with $(K_{/\beta})\psi \cong S$, and consequently $\tilde{\mathcal{L}}(S) =$ $x \in S$ $D_{\tilde{h}\tilde{x}\tilde{h}}$

Let \widetilde{hsh} and \widetilde{hth} be any elements of $(K_{/\beta})\psi$ that are \Im -related in $\widetilde{\mathfrak{K}}(S)$. Then $R_{\widetilde{hth}} \cap L_{\widetilde{hth}}$ is non-void, and by lemma 2.7 there exists an element $v \in S$, and an element $w \in S$ which is *L*-related with t in S, such that $\widetilde{v}\widetilde{h}\widetilde{w}\widetilde{h} \in R_{\widetilde{hth}} \cap L_{\widetilde{hth}}$. Since \widetilde{h} (\widetilde{hsh}) = \widetilde{hsh} , we have $\widetilde{h}\widetilde{v}\widetilde{w}\widetilde{h} = \widetilde{h}(\widetilde{v}\widetilde{h}\widetilde{w}\widetilde{h}) = \widetilde{v}\widetilde{h}\widetilde{w}\widetilde{h}$. By lemma 2.6, we must have $\widetilde{v}\widetilde{h}\widetilde{w}\widetilde{h} = \widetilde{h}\widetilde{w}\widetilde{h}$, and we can conclude that $\widetilde{h}\widetilde{w}\widetilde{h} \in R_{\widetilde{hth}} \cap L_{\widetilde{hth}}$. From the proof of lemma

2.7 we know that this implies that w and s are \Re -related in S. We conclude that s and t are \mathfrak{D} -related in S, and consequently, $\widetilde{h}\widetilde{s}\widetilde{h}$ and $\widetilde{h}\widetilde{t}\widetilde{h}$ will be \mathfrak{D} -related in $(K_{/\beta})\psi \cong S$.

THEOREM 2.10. Any monoid S can be embedded in the semiband $\mathfrak{X}(S)$ [resp. $\mathfrak{X}(S)$] in such a way that the restrictions to S of Green's equivalence relations on $\mathfrak{X}(S)$ [resp. $\mathfrak{X}(S)$] are exactly the corresponding Green's equivalence relations on S.

PROOF. The restriction to $(K_{/\beta})\psi \cong S$ of the *L*-[resp. *R*-, **t**, **D**-] relation on $\widehat{\mathbf{A}}(S)$ is exactly the *L*-[resp. *R*-, **u**-, **D**-l relation on $(K_{/\beta})\psi \cong S$: this follows immediately from the proof of lemma 2.7 and from lemma 2.9. Let $\widetilde{\mathsf{h}}\widetilde{\mathsf{s}}\widetilde{\mathsf{h}}$ and $\widetilde{\mathsf{h}}\widetilde{\mathsf{th}}$ be any elements of $(K_{/\beta})\psi$ which are **J**-related in $\widehat{\mathbf{A}}(S)$. We have $\widetilde{\mathsf{h}}\widetilde{\mathsf{s}}\widetilde{\mathsf{h}} \in \widehat{\mathbf{A}}(S)(\widetilde{\mathsf{h}}\widetilde{\mathsf{th}})\widehat{\mathbf{A}}(S)$; in fact $\widetilde{\mathsf{h}}\widetilde{\mathsf{sh}} \in (\widetilde{\mathsf{h}}\widehat{\mathbf{A}}(S)\widetilde{\mathsf{h}})(\widetilde{\mathsf{h}}\widetilde{\mathsf{th}})$ $(\widetilde{\mathsf{h}}\widehat{\mathbf{A}}(S)\widetilde{\mathsf{h}})$. Since $\widetilde{\mathsf{h}}\widehat{\mathbf{A}}(S)\widetilde{\mathsf{h}} = (K_{/\beta})\psi$, the foregoing implies that there exist elements $\widetilde{\mathsf{h}}\widetilde{\mathsf{vh}}$, $\widetilde{\mathsf{h}}\widetilde{\mathsf{wh}} \in (K_{/\beta})\psi$, such that $\widetilde{\mathsf{h}}\widetilde{\mathsf{sh}} = (\widetilde{\mathsf{h}}\widetilde{\mathsf{vh}})(\widetilde{\mathsf{h}}\widetilde{\mathsf{th}})(\widetilde{\mathsf{h}}\widetilde{\mathsf{wh}}) = \widetilde{\mathsf{h}}\widetilde{\mathsf{v}}\widetilde{\mathsf{wh}}$. From lemma 2.6 we conclude that $s = vtw \in StS$. Analogously we can show $t \in SsS$. We conclude that s and t are \mathbf{J} -related in S, and consequently $\widetilde{\mathsf{h}}\widetilde{\mathsf{sh}}$ and $\widetilde{\mathsf{h}}\widetilde{\mathsf{th}}$ will be \mathbf{J} -related in $(K_{/\beta})\psi$. Thus the restriction to $(K_{/\beta})\psi \cong S$ of the \mathbf{J} -relation on $\widehat{\mathbf{a}}(S)$ is exactly the \mathbf{J} -relation on $(K_{/\beta})\psi$.

Since ψ is a homomorphism of d(S) onto d(S), the corresponding statement for d(S) will hold as well.

THEOREM 3.1. Let S be any monoid; then :

3. MAIN RESULTS

(i) S is bisimple if and only if *x*(S) is bisimple.
(ii) S is simple if and only if *x*(S) is simple.
PROOF : immediate from lemma 2.9 and theorem 2.10.
<u>COROLLARY</u> 3.2. (i) <u>Any semigroup can be embedded in a simple semiband.</u>
(ii) <u>Any semigroup can be embedded in a bisimple semiband</u>.
<u>PROOF</u>. (i) From theorem 8.3. of [2] (see also §8.5 of [3]),

254

we know that any semigroup S can be embedded in a simple monoid $\mathbf{C}(S)$. Hence, S can be embedded in the simple semiband $\mathbf{d}(\mathbf{C}(S))$.

(ii) From a result of [9] (see also §8.6 of [3], we know that any semigroup S can be embedded in a bisimple monoid T. Hence, S can be embedded in the bisimple semiband $\widetilde{\mathcal{X}(T)}$.

<u>REMARK</u> 3.3. Corollary 3.2. (ii) contradicts a conjecture of [4].

THEOREM 3.4. Let S be any monoid; then :

(i) S is regular if and only if $\mathcal{k}(S)$ is regular.

(ii) S is completely semisimple if and only if $\mathcal{K}(S)$ is completely semisimple.

<u>PROOF</u>. (i) If S is regular, then every **D**-class of S contains an idempotent; hence every **D**-class of $(K_{\beta}) \psi \cong S$ contains an idempotent. By lemma 2.9, we can conclude that every **D**-class of $\widehat{\boldsymbol{t}}(S)$ contains an idempotent, and consequently, $\widehat{\boldsymbol{t}}(S)$ will be regular.

If $\mathbf{\mathfrak{K}}(S)$ is regular, then $\widetilde{h}\widetilde{x}\widetilde{h} \in (\widetilde{h}\widetilde{x}\widetilde{h}) \mathbf{\mathfrak{K}}(S) (\widetilde{h}\widetilde{x}\widetilde{h})$ for all $x \in S$. Since $(\widetilde{h}\widetilde{x}\widetilde{h}) \mathbf{\mathfrak{K}}(S) (\widetilde{h}\widetilde{x}\widetilde{h}) = (\widetilde{h}\widetilde{x}\widetilde{h}) ((\widetilde{K}_{\beta})\psi) (\widetilde{h}\widetilde{x}\widetilde{h})$ this shows that $\widetilde{h}\widetilde{x}\widetilde{h}$ is a regular element of $(K_{\beta})\psi$ for all $x \in S$. We conclude that $(K_{\beta})\psi \cong S$ is regular.

(ii) Let S be a completely semisimple monoid. Let $\tilde{h}\tilde{X}\tilde{h}$ be any idempotent of $(K_{/\beta})\psi$. If $D_{\tilde{h}\tilde{X}\tilde{h}}$, the \mathfrak{d} -class of $\tilde{h}\tilde{X}\tilde{h}$ in $\mathfrak{d}(S)$, would contain a pair of distinct comparable idempotents, then $D_{\tilde{h}\tilde{X}\tilde{h}}$ contains a bicyclic subsemigroup having $\tilde{h}\tilde{X}\tilde{h}$ as identity element; this would imply that $D_{\tilde{h}\tilde{X}\tilde{h}} \cap (\tilde{h}\tilde{X}\tilde{h}) \mathfrak{d}(S) (\tilde{h}\tilde{X}\tilde{h}) \subseteq D_{\tilde{h}\tilde{X}\tilde{h}} \cap (K_{/\beta})\psi$ contains an idempotent which is different from $\tilde{h}\tilde{X}\tilde{h}$; by lemma 2.9 this would mean that the \mathfrak{d} -class of $\tilde{h}\tilde{X}\tilde{h}$ in $(K_{/\beta})\psi \cong S$ would contain a pair of distinct comparable idempotents, and this is impossible since S is completely semisimple. We conclude that for any $x \in S$, $D_{\tilde{h}\tilde{X}\tilde{h}}$ contains no pair of distinct comparable idempotents of distinct comparable idempotents are \mathfrak{d} -related in $\mathfrak{d}(S)$, $\mathfrak{d}(S)$ must be completely semisimple by result 6 of [6].

Let $\widehat{\boldsymbol{k}}(S)$ be completely semisimple. No pair of distinct idempotents of $\widehat{\boldsymbol{k}}(S)$ are $\boldsymbol{2}$ -related in $\widehat{\boldsymbol{k}}(S)$, and consequently, no pair of distinct idempotents of $(K_{/\beta})\psi \cong S$ are $\boldsymbol{2}$ -related in $(K_{/\beta})\psi \cong S$. Again by result 6 of [6] this implies that S must be completely semisimple.

THEOREM 3.5. Any completely regular semigroup can be embedded in a completely regular semiband.

<u>PROOF</u>. If semigroup S is completely regular, then S is a semilattice Y of completely simple semigroups D_{α} , $\alpha \in Y$. We can suppose that S is a monoid with identity e; if the original completely regular semigroup has no identity element, we can always add the identity e. We shall consider a subset T of $\mathcal{F}(S)$:

 $T = \{ \widetilde{y}\widetilde{h}\widetilde{x}\widetilde{h}, \widetilde{y}\widetilde{h}\widetilde{x} \parallel x \in D_{\mu}, y \in D_{\mu}, \mu, \nu \in Y, \nu \ge \mu \}.$

T contains $(K_{\beta})\psi \cong S$ since for any $x \in S$, $h\tilde{x}h = \tilde{e}h\tilde{x}h \in T$. We now proceed to show that the product of any two elements of T must belong to T. Therefore, let $x \in D_{\mu}$, $y \in D_{\nu}$, $s \in D_{\kappa}$, $t \in D_{\lambda}$, with $\kappa, \lambda, \mu, \nu \in Y$, and $\nu \ge \mu$, $\lambda \ge \kappa$. Then the elements $\tilde{y}h\tilde{x}h$, $\tilde{y}h\tilde{x}$, $\tilde{t}h\tilde{s}h$ and $\tilde{t}h\tilde{s}$ belong to T.

 $(\tilde{y}\tilde{h}\tilde{x}\tilde{h})(\tilde{t}\tilde{h}\tilde{s}\tilde{h}) = \tilde{y}\tilde{h}\tilde{x}\tilde{t}s\tilde{h}$

and

 $(\tilde{y}\tilde{h}\tilde{x}\tilde{h})(\tilde{t}\tilde{h}\tilde{s}) = \tilde{y}\tilde{h}\tilde{x}\tilde{t}s$

both belong to T since $y \in D_{\nu}$, $xts \in D_{\gamma}$ with $\nu \ge \mu \ge \kappa \wedge \mu = \gamma$. ($\widetilde{y}\widetilde{h}\widetilde{x}$) ($\widetilde{t}\widetilde{h}\widetilde{s}\widetilde{h}$) = $\widetilde{y}\widetilde{h}\widetilde{x}\widetilde{s}\widetilde{h}$

and

 $(\widetilde{y}\widetilde{h}\widetilde{x})(\widetilde{t}\widetilde{h}\widetilde{s}) = \widetilde{y}\widetilde{h}\widetilde{x}\widetilde{s}$

both belong to T since $y \in D_{\nu}$, $xs \in D_{\gamma}$ with $\nu \ge \mu \ge \kappa \wedge \mu = \gamma$. We conclude that T is a subsemigroup of $\widetilde{\mathcal{A}}(S)$, and that $(K_{\beta}) \psi \cong S$ is subsemigroup of T.

Let us now consider any elements $\tilde{y}\tilde{h}\tilde{x}\tilde{h}$ and $\tilde{y}\tilde{h}\tilde{x}$ of T, with $x \in D_{\mu}$, $y \in D_{\nu}$, $\mu, \nu \in Y$, $\nu \ge \mu$. Then $(\tilde{y}\tilde{h}\tilde{x}\tilde{h})^2 = \tilde{y}\tilde{h}\tilde{x}\tilde{y}\tilde{x}\tilde{h}$, and $(\tilde{y}\tilde{h}\tilde{x})^2 = \tilde{y}\tilde{h}\tilde{x}\tilde{x}$. Since S is a completely regular semigroup, x, xyx and x^2 belong to a same \mathcal{K} -class of S, and consequently $\tilde{h}\tilde{x}\tilde{h}$, $\tilde{h}\tilde{x}\tilde{y}\tilde{x}\tilde{h}$ and $\tilde{h}\tilde{x}\tilde{x}\tilde{h}$ belong to a same \mathcal{K} -class of T. Let g be the identity of the maximal subgroup of S containing x, then $\tilde{y}\tilde{h}\tilde{g}$ belongs to T; \tilde{e} belongs to T; since $\tilde{e} = \tilde{eh}\tilde{e}$. We have $(\tilde{\gamma}\tilde{h}\tilde{g})(\tilde{h}\tilde{x}\tilde{h}) = \tilde{\gamma}\tilde{h}\tilde{g}\tilde{x}\tilde{h} = \tilde{\gamma}\tilde{h}\tilde{x}\tilde{h}$, and $\tilde{e}(\tilde{\gamma}\tilde{h}\tilde{x}\tilde{h}) = \tilde{e}\tilde{h}\tilde{x}\tilde{h} = \tilde{h}\tilde{x}\tilde{h}$. By Green's lemma (lemma 2.2 of [3]) $(\tilde{\gamma}\tilde{h}\tilde{g})(\tilde{h}\tilde{x}\tilde{h})=\tilde{\gamma}\tilde{h}\tilde{x}\tilde{h}$, $(\tilde{\gamma}\tilde{h}\tilde{g})(\tilde{h}\tilde{x}\tilde{y}\tilde{x}\tilde{h}) = \tilde{\gamma}\tilde{h}\tilde{x}\tilde{y}\tilde{x}\tilde{h}$ and $(\tilde{\gamma}\tilde{h}\tilde{g})(\tilde{h}\tilde{x}\tilde{x}\tilde{h}) = \tilde{\gamma}\tilde{h}\tilde{x}\tilde{x}\tilde{h}$ must belong to a same \mathcal{K} -class of T. We have $(\tilde{\gamma}\tilde{h}\tilde{x}\tilde{h})\tilde{e} = \tilde{\gamma}\tilde{h}\tilde{x}$ and $(\tilde{\gamma}\tilde{h}\tilde{x})\tilde{h} = \tilde{\gamma}\tilde{h}\tilde{x}\tilde{h}$, and so, by Green's lemma, $(\tilde{\gamma}\tilde{h}\tilde{x})\tilde{h}\tilde{e} = \tilde{\gamma}\tilde{h}\tilde{x}$ and $(\tilde{\gamma}\tilde{h}\tilde{x}\tilde{h})\tilde{e} = \tilde{\gamma}\tilde{h}\tilde{x}$ must belong to a same \mathcal{K} -class of T. We conclude that in T any element and its square belong to a same \mathcal{K} -class of T, and consequently T is a union of groups by lemma 2.16 of [3]. Since $(\tilde{\gamma}\tilde{h}\tilde{g})^2 = \tilde{\gamma}\tilde{h}\tilde{g}$, $(\tilde{x}\tilde{h}\tilde{g})^2 = \tilde{x}\tilde{h}\tilde{g}$, and $\tilde{\gamma}\tilde{h}\tilde{x} = (\tilde{\gamma}\tilde{h}\tilde{g})\tilde{h}(\tilde{x}\tilde{h}\tilde{g})$, we conclude that $\tilde{x}\tilde{h}\tilde{g}$ is the product of the three idempotents $\tilde{\gamma}\tilde{h}\tilde{g}$, \tilde{h} and $\tilde{x}\tilde{h}\tilde{g}$ of T; $\tilde{\gamma}\tilde{h}\tilde{x}\tilde{h}$ will then be the product of the idempotents $\tilde{\gamma}\tilde{h}\tilde{g}$, \tilde{h} , $\tilde{x}\tilde{h}\tilde{g}$ and \tilde{h} of T. Consequently T is a completely regular semiband which contains $(K_{/8})^{\psi} \approx S$.

<u>THEOREM</u> 3.6. Let S be any monoid. S contains a kernel V if and only if $\widehat{\mathcal{A}}(S)$ contains a kernel; if this is the case V is embeddable in the kernel of $\widehat{\mathcal{A}}(S)$. If V is regular, the kernel of $\widehat{\mathcal{A}}(S)$ is a semiband.

PROOF. By lemma 2.9 and theorem 2.10 every J-class of $\widetilde{\mathfrak{d}(S)}$ meets $(K_{/_{B}})\psi \cong S$ in exactly one \mathfrak{z} -class of $(K_{/_{B}})\psi$, and $\widehat{d}(S) = \bigcup_{h \in S} J_{h \in h}$, $J_{h \in h}$ being the **j**-class of $h \in h$ in $\widetilde{\mathfrak{X}(S)}$ for any $x \in S$. From this we have that there exists an order preserving one-to-one mapping of $\widetilde{\mathcal{A}}(S)_{1}$ onto $(K_{R}) \psi_{1}$. Hence, there exists a minimum \mathfrak{z} -class in $\mathfrak{K}(S)$ if and only if there exists a minimum \mathcal{F} -class in $(K_{\beta})\psi \cong S$. Since a minimum J-class of a semigroup clearly is the kernel of that semigroup, the first part of the theorem follows. If V is the kernel of S, $\bigcup_{x \in V} D_{\tilde{n} \tilde{x} \tilde{h}}$ will be the minimum J-class of $\widetilde{\boldsymbol{t}}(S)$; since V is isomorphic with the subsemigroup $\tilde{h}\tilde{x}\tilde{h} #x \in V$ of $(K_{\beta})\psi$, we can conclude that V is embeddable in the kernel of d(S). If V is regular, $D_{\tilde{h}\tilde{\tau}\tilde{h}}$ is a regular **2**-class of $\mathcal{L}(S)$ for all $x \in V$; by lemma 1 of [6] any regular element of a semiband is a product of idempotents of its 2-class; thus, in our case UD Dren is a regular semiband.

257

<u>COROLLARY</u> 3.7. Let S be any regular simple semigroup, and let S very be a monoid with identity e. Then S can be embedded in the kernel of $\mathbf{f}(S \cup e_s)$ which is a simple regular semiband. The kernel of $\mathbf{f}(S \cup e_s)$ is completely simple if and only if S is completely simple.

<u>PROOF</u>. Since S is a regular kernel of SU(e), S can be embedded in the kernel of $\mathbf{a}(S \cup \mathbf{e})$ by theorem 3.6; this kernel of $\mathbf{a}(S \cup \mathbf{e})$ is of course a regular simple semiband. We can now use the same arguments as in the proof of 3.4 (ii) : no pair of distinct comparable idempotents are **2**-related in S if and only if no pair of distinct comparable idempotents are **3**-related in the regular simple semiband $\underset{\mathbf{x} \in S}{\cup} D_{\mathbf{h} \times \mathbf{h}}$: this implies that S is completely simple if and only if $\underset{\mathbf{x} \in S}{\cup} D_{\mathbf{h} \times \mathbf{h}}$ is completely simple.

<u>THEOREM</u> 3.8. Let S be any monoid. Then $\widehat{\mathcal{A}}(S)$ is completely simple if and only if S is a group.

<u>PROOF</u>. Let $\widehat{\mathbf{t}}(S)$ be completely simple; by theorem 3.4 S must be completely semisimple, and by lemma 2.9 S must be bisimple. Since S is a monoid, we conclude that S must be a group. Conversely, if S is a group, $\widehat{\mathbf{t}}(S)$ must be completely semisimple by theorem 3.4, and $\widehat{\mathbf{t}}(S)$ must be bisimple by lemma 2.9; hence, $\widehat{\mathbf{t}}(S)$ must be completely simple.

<u>COROLLARY</u> 3.9. <u>Any countable group can be embedded in a</u> <u>completely simple semiband generated by 5 idempotents</u>.

<u>PROOF</u>. Let S be a group generated by two elements a and b. It must be clear that $(K_{/\beta}) \psi \cong S$ will be a subgroup of the subsemigroup of $\mathbf{A}(S)$ which is generated by the idempotents \tilde{h} , \tilde{a} , \tilde{b} , \tilde{a}^{-1} , \tilde{b}^{-1} . This subsemigroup of $\mathbf{A}(S)$ has the following elements : $\tilde{h}\tilde{x}\tilde{h}$, $\tilde{h}\tilde{x}$, $\tilde{a}\tilde{h}\tilde{x}\tilde{h}$, $\tilde{a}\tilde{h}\tilde{x}$, $a^{-1}\tilde{h}\tilde{x}\tilde{h}$, $\tilde{a}^{-1}\tilde{h}\tilde{x}$, $\tilde{b}\tilde{h}\tilde{x}\tilde{h}$, $\tilde{b}\tilde{h}\tilde{x}$, $\tilde{b}^{-1}\tilde{h}\tilde{x}\tilde{h}$, $\tilde{b}^{-1}\tilde{h}\tilde{x}$, for all $x \in S$; hence this subsemigroup of $\mathbf{A}(S)$ is completely simple and is a union of 10 copies of S. By a result of [7] any countable group can be embedded in a group generated by 2 elements; the result then follows. <u>REMARK</u> 3.10. If S is any monoid, every element of $\widetilde{\boldsymbol{u}}(S)$ is a product of at most 4 idempotents. If S is completely regular, then every element of the completely regular semiband T considered in theorem 3.5 is a product of at most 4 idempotents. If S has a regular kernel, then every element of the kernel of $\widetilde{\boldsymbol{u}}(S)$ is a product of at most 4 idempotents of this kernel of $\widetilde{\boldsymbol{u}}(S)$ (by lemma 1 of [6]); hence, by corollary 7 any completely simple semigroup is embeddable in a completely simple semiband in which every element is a product of at most 4 idempotents.

4. AN EXAMPLE : $\widetilde{\mathbf{t}(\mathbf{c})}$

We shall consider the bicyclic semigroup \mathbf{C} generated by the two-element set $\{a,b\}$ subject to the defining relation ab = e, e being the identity element of \mathbf{C} . Since \mathbf{C} is bisimple but not completely simple, $\mathbf{A}(\mathbf{C})$ must be a bisimple semiband which is not completely simple, by theorem 3.8.

We shall look for the idempotents of $\mathbf{\hat{t}(t)}$. $\mathbf{\tilde{h}}$ and $\mathbf{\tilde{b}^{'}a^{j}}$ (i,j non-negative integers) clearly are idempotents of $\mathbf{\hat{t}(t)}$. If for some non-negative integers i,j, $\mathbf{\tilde{h}b^{'}a^{j}}$ is an idempotent of $\mathbf{\hat{t(t)}}$, then

 $\widetilde{h}\widetilde{b^{i}a^{j}} = (\widetilde{h}\widetilde{b^{i}a^{j}})^{2} = \widetilde{h}(\widetilde{b^{i}a^{j}})^{2},$

and by lemma 2.6 this implies $b^{i} a^{j} = (b^{i} a^{j})^{2}$ in \mathfrak{e} ; hence $\widetilde{hb^{i} a^{j}}$ is an idempotent of $\mathfrak{e}(\mathfrak{e})$ if and only if i = j. Analogously, for any non-negative integers i, j, m, n, $\widetilde{hb^{i} a^{j}} \widetilde{h}$ and $\overline{b^{m} a^{n}} \widetilde{h} \overline{b^{i} a^{j}}$ will be idempotents of $\mathfrak{e}(\mathfrak{e})$ if and only if i = j. If for some non-negative integers i, j, m, n, $\overline{b^{m} a^{n}} \widetilde{h} \overline{b^{i} a^{j}} \widetilde{h}$ is an idempotent of $\mathfrak{e}(\mathfrak{e})$, then $\overline{b^{m} a^{n}} \widetilde{h} \overline{b^{i} a^{j}} \widetilde{h} = (\underline{b^{m} a^{n}} \widetilde{h} \underline{b^{i} a^{j}} \widetilde{h})^{2}$ $= \overline{b^{m} a^{n}} \widetilde{h} \overline{b^{i} a^{j}} \widetilde{h},$

and by lemma 2.6 this implies $b^{i}a^{j} = b^{i}a^{j}b^{m}a^{n}b^{i}a^{j}$ in \mathfrak{e} ; from this we have $m \leq j$ and j-m = i-n; conversely, for any non-negative integers i,j,m,n with $m \leq j$ and j-m = i-n $b^{m}a^{n}\widetilde{h}$ $b^{i}a^{j}\widetilde{h}$ must be an idempotent of $\mathfrak{A}(\mathfrak{e})$.

The idempotents of $\widetilde{\mathcal{A}(\mathcal{C})}$ have been marked in the table

on next page; in this table the rows are the \Re -classes and the columms are the \pounds -classes of $\widehat{\mathcal{A}(\mathfrak{C})}$.

 $\mathbf{t}(\mathbf{t})$ contains a copy of the spiral semigroup : $\mathbf{a}(\mathbf{t}) \cup \mathbf{e}_{\mathbf{t}}(\mathbf{t})$ is a bisimple subsemigroup of $\mathbf{t}(\mathbf{t})$ generated by the 4 idempotents \mathbf{a} , \mathbf{e} , \mathbf{h} and $\mathbf{a}\mathbf{h}\mathbf{b}\mathbf{h}$. It is easy to see that this subsemiband of $\mathbf{t}(\mathbf{t})$ is isomorphic with the semigroup generated by the elements of $\mathbf{t}e_i$, \mathbf{f}_i , \mathbf{g}_i , $\mathbf{h}_i \parallel \mathbf{i}$ non-negative integer subject to the defining relations

$$e_{i}^{2} = e_{i}, f_{i}^{2} = f_{i}, g_{i}^{2} = g_{i}, h_{i}^{2} = h_{i},$$

$$e_{i}f_{i} = e_{i}, f_{i}e_{i} = f_{i} = g_{i}f_{i}, f_{i}g_{i} = g_{i} = g_{i}h_{i},$$

$$h_{i}g_{i} = h_{i}, h_{i}e_{i+1} = e_{i+1}, e_{i+1}h_{i} = h_{i},$$

$$e_{i}e_{i+1} = e_{i+1}e_{i} = f_{i+1}f_{i} = f_{i+1}f_{i} = f_{i+1},$$

$$g_{i}g_{i+1} = g_{i+1}g_{i} = g_{i+1}, h_{i}h_{i+1} = h_{i+1}h_{i} = h_{i+1}$$

for any non-negative integer i.

THEOREM 4.1. There exists a countable infinite number of non-isomorphic bisimple semibands of type 3 which are not completely simple.

<u>PROOF.</u> Let $m \neq 0$ be any non-negative integer. Since $(\widetilde{ha})^m \widetilde{hb}^m = \widetilde{ha}^m \widetilde{hb}^m = \widetilde{ha}^m b^m = \widetilde{he} = \widetilde{e}$, and $(\widetilde{ha})^{m-1} \widetilde{hb}^m =$ $\widetilde{ha}^{m-1} \widetilde{hb}^m = \widetilde{ha}^{m-1} b^m = \widetilde{hb}$, the subsemiband of $\mathfrak{a}(\mathfrak{e})$ generated by the 3 idempotents \widetilde{h} , \widetilde{a} , \widetilde{b}^m is exactly the bisimple semiband $\widetilde{e}\mathfrak{a}(\mathfrak{e}) \cup \widetilde{a}\mathfrak{a}(\mathfrak{e}) \cup \widetilde{b}^m \mathfrak{c}(\mathfrak{e})$. The *L*-classes of this subsemiband $\langle \widetilde{h}, \widetilde{a}, \widetilde{b}^m \rangle$ of $\mathfrak{c}(\mathfrak{e})$ contain 2 or 3 idempotents. For any $0 \leq i < m$ the *L*-class of $\widetilde{a}\widetilde{ha}^i \widetilde{h}$ contains the two idempotents $\widetilde{hb}^i a^i \widetilde{h}$ and $\widetilde{a}\widetilde{hb}^{i+1} a^i \widetilde{h}$ (these idempotents are

different by lemma 2.6). For any non-negative integer i, with $m \le i$, the *L*-class of $\widetilde{aha}^{i} \widetilde{h}$ contains the three idempotents $\widetilde{hb}^{i} a^{i} \widetilde{h}$, $\widetilde{ahb}^{i+1} a^{i} \widetilde{h}$ and $\widetilde{b}^{m} \widetilde{hb}^{i-m} a^{i} \widetilde{h}$ (these idempotents are different by lemma 2.6). For any non-negative integer i, the *L*-class of \widetilde{ha}^{1} contains the three idempotents $\widetilde{hb}^{i} a^{i}$, $\widetilde{ahb}^{i} a^{i}$ and $\widetilde{b}^{m} \widetilde{hb}^{i} a^{i}$ (these idempotents are different by lemma 2.6). We conclude that for any non-negative integer m, $\langle \widetilde{h}, \widetilde{a}, \widetilde{b}^{m} \rangle$ is a bisimple semiband of type 3 in which exactly m *L*-classes contain only 2 idempotents; consequently, if $m_{1} \neq 0$ and $m_{2} \neq 0$ are any two different non-negative integers, $\langle \widetilde{h}, \widetilde{a}, \widetilde{b}^{m_{1}} \rangle$ and $\langle \widetilde{h}, \widetilde{a}, \widetilde{b}^{m_{2}} \rangle$ cannot be isomorphic.

AKNOWLEDGEMENTS

I am much indebted to G.J. Lallement for suggesting several improvements.

REFERENCES

- [1] Benzaken, C. et H.C. Mayr, Notion de Demi-bande : <u>Demi-bandes de type deux</u>, Semigroup Forum 10 (1975), 115-128.
- [2] Bruck, R.H., <u>A survey of binary systems</u>, Ergebnisse der Mathematik Band 20, Berlin (1971).
- [3] Clifford, A.H. and G.B. Preston, <u>The algebraic</u> theory of semigroups, Amer. Math. Soc. Vol. 1 (1961) Vol. 2 (1967), Providence, R.I.
- [4] Eberhart, C., W. Williams and L. Kinch, <u>Idempotent-generated regular semigroups</u>, J. Australian Math. Soc. 15 (1) (1973), 27-34.
- [5] Evans, T., <u>Embedding theorems for multiplicative</u> systems and projective geometries, Proc. Amer. Math. Soc. 3 (1952), 614-620.
- [6] Hall, T.E., <u>On regular semigroups</u>, Journal of Algebra 24 (1973), 1-24.
- [7] Higman, G., B.H. Neumann, H. Neumann, <u>Embedding</u> theorems for groups, J. London Math. Soc. 24 (1949) 247-254.

- [8] Howie, J.M., <u>The subsemigroup generated by the idem-potents of a full transformation semigroup</u>, J. London Math. Soc. 41 (1966), 707-716.
- [9] Preston, G.B., <u>Embedding any semigroup</u> in a 2-simple semigroup, Trans. Amer. Math. Soc. 93 (1959), 557-576

Dienst Hogere Meetkunde Rijksuniversiteit Gent Krijgslaan 271 Gebouw S9 B-9000 Gent Belgium

Received February 25, 1977 and in final form May 13, 1977.