Semigroup Forum Vol. 14 (1977) 247-263

RESEARCH ARTICLE

EMBEDDING SEMIGROUPS IN SEMIBANDS Francis Pastijn Communicated by G. Lallement

I. INTRODUCTION

We shall use the notations and terminology of [3] . A semiband is an idempotent-generated semigroup. If n is any non-zero cardinal number, we shall say that a semiband is of type n if a minimal set of idempotent generators of the semiband has cardinality n [1].

In [8] Howie shows that any semigroup can be embedded in a semiband (see also [I]). We shall give a more easy embedding theorem here. We shall also show that any semigroup can be embedded in a simple semiband and in a bisimple semiband. Furthermore, we show that any completely semisimple semigroup can be embedded in a completely semisimple semiband, and that any completely regular semigroup can be embedded in a completely regular semiband. We shall make some remarks concerning semibands of type 3.

2. THE IDEMPOTENT-GENERATED HULL OF A SEMIGROUP

Let S be any semigroup. Let Y be a set such that $Y \cap S = \Box$ and such that for some $\overline{h} \in Y$ we have $|S| = |Y \setminus {\{\overline{h}\}}|$. Let $S \rightarrow Y\backslash \{\bar{h}\}\,$, $x \rightarrow \bar{x}$ be a one-to-one mapping of S onto $Y\backslash \{\bar{h}\}\,$. Let F be the semigroup which is generated by the elements of Y, subject to the defining relations $\bar{h}^2 = \bar{h}$, and $\bar{x}^2 = \bar{x}$ for all $x \in S$. Let K be the subsemigroup of F which is generated by the elements of $Z = \{\bar{h}\bar{x}\bar{h} \mid x \in S\}$. It must be clear that K is a free semigroup which is freely generated by

the elements of Z. Hence, there exists a homomorphism ϕ of K onto S which extends the mapping $Z \rightarrow S$, $\overline{h} \overline{x} \overline{h} \rightarrow x$. Putting $=$ $\phi \circ \phi^{-1}$, we have K $f_a \cong S$. Let β generate α on F. We call F'_{∞} = $\mathcal{K}(S)$ the idempotent-generated hull of semigroup S. $\frac{d}{dx}(S)$ is a semiband which is generated by the elements of Y, subject to the defining relations $\overline{h}^2 = \overline{h}$, \vec{x}^2 = \vec{x} for all $x \in S$, $\overrightarrow{h}\overrightarrow{x}\overrightarrow{h}\overrightarrow{v}$ for all $x,y \in S$. LEMMA 2.1. K α = \mathbf{t} w∈F II (v,w)∈ α for some v∈K $\mathbf{\hat{y}}$ = K and $= \alpha \cap K \times K$. PROOF. Since α is the congruence on F which is generated by β , we have $\beta \subseteq \alpha \cap KXK$. Let us suppose v $\in K$, and $(v,w) \in \alpha$. Then there exist $n \ge 1$, elements $p_i \in K$, i = 1, ..., 2n, elements $u_i, v_i \in F^1$, j = 1,...,n, such that $(p_{2i-1}, p_{2i}) \in \mathsf{P}$, $j = 1, \ldots, n$ $V = U_1 P_1 V_1$, $W = U_n P_{2n} V_n$, $u_i P_{2i} V_i = u_{i+1} P_{2i+1} V_{i+1}$, $j = 1, ..., n-1$. We have $(p_1, p_2) \in \beta$, and p_1 , p_2 , $u_1 p_1 v_1 = v \in K$. Let $v = \overline{h} \overline{x}_1 \overline{h} \dots$... $\overline{h} \overline{x}_{k} \overline{h}$; consequently $p_{1} = \overline{h} \overline{x}_{m} \overline{h} \dots \overline{h} \overline{x}_{m+n} \overline{h}$, $1 \leq m \leq k$, $0 \leq q \leq k-m$. From this we have $u,$ = 1 or h 1 if $m = 1$, u_i = $nx_1 n \ldots nx_{m-1} n$ or $nx_1 n \ldots nx_{m-1}$ otherwise, and v_1 = 1 or h it q = k-m, v_{2} = $\hbar\overline{X}_{max1}$, $\hbar\ldots\hbar\overline{X}_{k}$ \hbar or \overline{X}_{max1} , $\hbar\ldots\hbar\overline{X}_{k}$, \hbar otherwise. Let $u_1' = 1$ if $m = 1$, and $u_1' = u_1 \bar{h}$ otherwise; let $v_1' = 1$ if $q = k-m$, and $v_1' = \bar{h}v_1$ otherwise. Since p_1 , $p_2 \in K$ we have $\bar{h}p_1 = p_1 \bar{h} = \bar{h}p_1 \bar{h} = p_1$ and $\bar{h}p_2 = p_2 \bar{h} = \bar{h}p_2 \bar{h} = p_2$, and thus we have $u_1 p_1 v_1 = u_1' p_1 v_1'$ and $u_1 p_2 v_1 = u_1' p_2 v_1'$. Since u_1' , $v_1' \in K^1$ we have $u_1'p_2v_1' = u_2p_3v_2 \in K$; furthermore $(p_1, p_2) \in \beta$ implies $(u_1'p, v_1', u_1'p, v_2') \in \beta$, and thus $(u_1p, v_1, u_1p, v_1) \in \beta$. By induction we can show that $u_j p_{2j-1} v_j$, $u_j p_{2j} v_j \in K$, and $(u_j p_{2j-1}v_j, u_j p_{2j}v_j) \in \beta$ for all $j = 1, ..., n$. Consequently $w \in K$ and $(v, w) \in \beta$. We conclude that $K\alpha = K$ and $\beta = \alpha \cap K \times K$.

THEOREM 2.2.Any semigroup S can be embedded in the semiband $d(S)$ PROOF. By the preceding lemma we know that $K_{\ell R} \cong S$ a subsemigroup of the semiband $F_{\Lambda} = \mathbf{d}(S)$.

THEOREM 2.3. Any countable semigroup can be embedded in a semiband of type $n \leq 3$.

PROOF. Let S be a semigroup generated by the two elements a and b. Let \overline{h} \overline{x} \overline{h} be any element of $K_{\mathbb{A}}$; if $x = a^{k_1} b^{k_2} \ldots$...b " in S we have $h\bar{x}h = (h\bar{a}h)^{k}(hbh)^{2}...$ (hbh) " in \star (S). We conclude that S = K/₈ can be embedded in the subsemigroup of $\mathcal{X}(S)$ which is generated by the three idempotents \bar{h} , \bar{a} and \bar{b} . Since any countable semigroup can be embedded in a semigroup generated by two elements (theorem II of [5]; see also §9.1 of [3]), it follows that any countable semigroup can be embedded in a semiband of type $n \leq 3$.

In this paragraph from now on we shall suppose that S is a monoid with identity e. Let $X = SU(Y \setminus {\overline{\mathbf{h}}})$, and let us consider the following elements of the full transformation semigroup \mathbf{f}_x :

 \widetilde{h} : $X \rightarrow X$, $X \rightarrow X$ \rightarrow x for all x \in S,

and for all seS

 $:X \rightarrow X, \quad x \rightarrow \overline{x}\overline{s}$ \overline{x} $\rightarrow \overline{x}$ for all $x \in S$.

The subsemigroup of J_x generated by the elements \tilde{h} , \tilde{s} (seS), will be denoted by $\widetilde{\mathcal{M}}(S)$. This semigroup $\widetilde{\mathcal{M}}(S)$ has been mentioned in [1].

LEMMA 2.4. In the semigroup \sqrt{x} (S) the following equalities $\frac{\text{must}}{\widetilde{h}^2}$ = \widetilde{h} . $\widetilde{x}^2 = \widetilde{x}$ for all $x \in S$, $\widetilde{h} \widetilde{x} \widetilde{h} \widetilde{y} \widetilde{h} = \widetilde{h} \widetilde{x} \widetilde{y} \widetilde{h}$ for all $x, y \in S$.

There exists a homomorphism ψ of $\dot{\mathcal{K}}(S)$ onto $\dot{\mathcal{K}}(S)$ such that $\overline{h}\psi = \tilde{h}$ and $\overline{x}\psi = \tilde{x}$ for all $x \in S$. The restriction of ψ to $K_{\frac{1}{6}} \cong S$ is an isomorphism.

PROOF. The first part of the lemma is straightforward. Let us suppose that for some $\overline{h}\overline{x}\overline{h}$, $\overline{h}\overline{y}\overline{h} \in K_{\ell}$ we have $(\overline{h}\overline{x}\overline{h})\psi =$ $(\overline{h}\overline{y}\overline{h})\psi$. Then $\widetilde{h}\widetilde{x}\widetilde{h} = \widetilde{h}\widetilde{y}\widetilde{h}$, and thus $x = e\widetilde{h}\widetilde{x}\widetilde{h} = e\widetilde{h}\widetilde{y}\widetilde{h} = y$; consequently $\overline{h}\overline{x}\overline{h}$ = $\overline{h}\overline{y}\overline{h}$. We conclude that ψ maps $K_{\beta} \cong S$ isomorphically onto the subsemigroup of $\widehat{\mathcal{A}(S)}$ consisting of the elements $\widetilde{h}\widetilde{x}\widetilde{h}$ ($x \in S$). LEMMA 2.6. In the semigroup $\mathcal{H}(S)$ the following equalities must hold : THEOREM 2.5. Any monoid S can be embedded in the semiband $\mathcal{\widetilde{A}}(S)$, $\widetilde{he} = \widetilde{e}$, eh = h, st = $\mathsf{s}\,$ for all $\mathsf{s},\mathsf{t}\,\mathsf{\epsilon}$ $\widetilde{h}\widetilde{s}\widetilde{h}\widetilde{t}$ = $\widetilde{h}\widetilde{s}\widetilde{t}$ for all s, $t \in S$. The elements of $\widetilde{d(s)}$ are : $m,~\widetilde{\theta},~\widetilde{\theta},~\widetilde{\theta},~\widetilde{\theta}$, $\widetilde{\theta}$, $m,~\widetilde{\theta}$, $\widetilde{\theta}$, $m,~\widetilde{\theta}$, $m,~\widetilde{\theta}$, $t \in S \setminus \{e\}$. These elements are all different except for the following cases : $\widetilde{\text{sht}} = \widetilde{\text{ht}} \leftrightarrow \widetilde{\text{sht}} \widetilde{\text{ht}} = \widetilde{\text{hth}} \leftrightarrow t = st$ $\widetilde{\sin t} = \widetilde{\text{v}} \widetilde{\text{h}} \widetilde{t} \Leftrightarrow \widetilde{\sin t} \widetilde{\text{h}} = \widetilde{\text{v}} \widetilde{\text{h}} \widetilde{t} \widetilde{\text{h}} \Leftrightarrow \text{st} = \text{vt}$ with $v,s,t \in S \setminus \{e\}.$ LEMMA 2.7. (i) If L is an \mathcal{L} -class of $(K_{\mathcal{L}_\beta})\psi \cong S$, then $\mathcal{L}_\mathbf{S}$ is the ℓ -class of $\mathcal{L}(\mathbf{S})$ containing L. (ii) If R is an \mathfrak{G} -class of $(K_{\mathfrak{G}})$ $\psi \cong S$, then RURE is the R -class of $\widetilde{\mathcal{A}(S)}$ containing R. (iii) If D is a $\mathbf{2}$ -class of $(K_{\beta})\psi \cong S$, then ($\bigcup_{s \in S}$ \tilde{S} D) u ($\bigcup_{s \in S}$ \tilde{S} De) is the \tilde{v} -class of $\tilde{d(S)}$ containing D. PROOF. (i) Let $\widetilde{h}\widetilde{x}\widetilde{h}$ be any element of L. The ℓ -class of $\widetilde{\mathcal{H}}(S)$ containing this element will be denoted by $L_{\widetilde{\mathbf{T}}\widetilde{\mathbf{w}}\widetilde{\mathbf{w}}}$. We must show that $L_{\bullet} = U_s$ sL. Consider hyheL and any $s{\in}\mathsf{S};$ then $\check{\mathsf{e}}\,(\check{\mathsf{s}}\mathsf{h}{\mathsf{y}}\mathsf{h})$ = $\check{\mathsf{e}}\mathsf{h}{\mathsf{y}}\mathsf{h}$ = $\check{\mathsf{h}}\check{\mathsf{y}}\mathsf{h}$, and consequently shy h and $\widetilde{h}\widetilde{y}\widetilde{h}$ will be *L*-related in $\widetilde{\mathcal{A}(S)}$; since $\widetilde{h}\widetilde{x}\widetilde{h}$ and $\widetilde{h}\widetilde{y}\widetilde{h}$ are ℓ -related in $(K_{\ell_{\beta}})\psi$, they must also be ℓ -related in $\mathcal{X}(s)$, and we can conclude that $\mathbb{S}\widetilde{\mathbb{N}}\widetilde{\mathbb{N}}$ is $\mathcal{L}\text{-related with}$ $\widetilde{h} \widetilde{x} \widetilde{h}$ in $\widetilde{\mathcal{M}}(S)$. We have shown that $\underset{s}{\cup}$ $\widetilde{s}L \subsetneq L_{\widetilde{h} \widetilde{x} \widetilde{h}}$ (observe that $\tilde{e}L = L$, and thus $L \subset \bigcup_{\alpha \in S} SL$.

All elements of $L_{\tilde{K}\tilde{X}\tilde{h}}$ must be ℓ -related with $\widetilde{h}\widetilde{x}\widetilde{h}$ in $\mathfrak{A}_{\tilde{X}}$, i.e. they must have the same range as $\widetilde{h}\widetilde{x}\widetilde{h}$ (see lemma 2.5) of [3]). Therefore the elements \tilde{t} , $\tilde{h}\tilde{t}$, $\tilde{t}h\tilde{v}$, with t, v \cfs, cannot belong to Lg~g • Let us investigate the range of elements hxh, th, hth, thvh, with $t,v{\in}S$:

> $X \widetilde{h} \widetilde{X} \widetilde{h} = Sx$, $X \tilde{t} \tilde{h} = S$, $X \widetilde{h} \widetilde{t} \widetilde{h} = St,$ $x \tilde{t} \tilde{h} \tilde{v} \tilde{h} = Sv.$

If $\widetilde{h} \widetilde{x} \widetilde{h}$ and $\widetilde{t} \widetilde{h}$ are ℓ -related in $\widetilde{d(s)}$ for some tes, then $Sx = S = Se$, and in this case we will have that x and e are ℓ -related in S; this implies that \widetilde{h} = \widetilde{h} belongs to L, and consequently $\widetilde{th} \in \bigcup_{s \in S} S$ L. If $\widetilde{h}\widetilde{x}$ and $\widetilde{h}\widetilde{t}$ are ℓ -related in $\mathcal{H}(S)$ for some tes, then Sx = St, and in this case x and t are ℓ -related in S; this implies that \widetilde{hth} belongs to L, and consequently $\widetilde{h}\widetilde{th} \in \mathcal{L}_s \widetilde{sl}$. If $\widetilde{h}\widetilde{x}\widetilde{h}$ and $\widetilde{\text{thv}}$ are £-related in $\widetilde{\mathcal{A}}(S)$ for some t, $v \in S$, then Sx = Sv, and in this case we will have that x and v are £-related in S; this implies that hvn belongs to L, and consequently $\widetilde{thvh} \in \bigcup_{s \in S} SL$. Hence we can conclude that $L_{\widetilde{h}\widetilde{g}}\widetilde{h} = \bigcup_{s \in S} SL$.

(ii) Let $\widetilde{h}\widetilde{x}\widetilde{h}$ be any element of R. The κ -class of $\widetilde{\mathcal{A}(S)}$ containing this element will be denoted by $R_{\overline{n}} \times \overline{n}$. We must show that $R_{\mathbf{x}}^* \mathbf{y} = R^{\cup} R \tilde{\mathbf{e}}$. Consider any element $\widetilde{h} \widetilde{z} \widetilde{h} \in R$; then $(\widetilde{h} \widetilde{z} \widetilde{h}) \widetilde{e}$ = $\widetilde{h} \widetilde{z}$ = $\widetilde{h} \widetilde{z}$, and consequently $\widetilde{h} \widetilde{z}$ and \widetilde{h} \widetilde{z} h will be R -related in $\widetilde{A(s)}$; since \widetilde{h} \widetilde{x} h and \widetilde{h} \widetilde{z} h are R -related in $(K_A^-)\psi$, they must also be R -related in $\mathcal{H}(S)$, and we can conclude that $\widetilde{h}\widetilde{z} = (\widetilde{h}\widetilde{z}\widetilde{h})\widetilde{e}$ is $\mathcal{R}-$ related with \widetilde{h} \widetilde{x} \widetilde{h} in \widetilde{d} (S). We have shown that $R \cup R$ $\widetilde{e} \subseteq R_{\widetilde{h}}$ $\gamma_{\widetilde{h}}$.

If $\widetilde{h} \widetilde{x} \widetilde{h}$ and $\widetilde{h} \widetilde{v} \widetilde{h}$ are θ -related in $\widetilde{d}(\widetilde{S})$ for some v \in S, we must have $\widetilde{h}\widetilde{x}\widetilde{h} \in \widetilde{h}\widetilde{v}\widetilde{h}$ **d**(S). Since for all s, tes

 $X\widetilde{h}\widetilde{x}h = Sx, X(\widetilde{h}\widetilde{v}h)\widetilde{s} \subsetneq Y, X(\widetilde{h}\widetilde{v}h)\subsetneq Y, X(\widetilde{h}\widetilde{v}h)\subsetneq Y,$ h^{th} cannot be equal to (h^{th}) s or (h^{th}) (his) or (h^{th}) (sht) for some $s,t \in S$. If $\widetilde{h}x\widetilde{h} = (\widetilde{h}v\widetilde{h})(\widetilde{h}\widetilde{s}\widetilde{h})$ for some $s \in S$, then h^{h} h^{h} = h^{h} h^{h} ; if h^{h} h^{h} = (h^{h} h^{h}) (h^{h}) for some s \in S, then again $\widetilde{h}x\widetilde{h}$ = $\widetilde{h}v\widetilde{sh}$; if $\widetilde{h}x\widetilde{h}$ = $(\widetilde{h}v\widetilde{h})(\widetilde{sh}t\widetilde{h})$ for some $s,t\in S$, then $\widetilde{h} \widetilde{x} \widetilde{h}$ = $\widetilde{h} \widetilde{v} \widetilde{s} t \widetilde{h}$; in all cases we can conclude that $x \in vS$ by

lemma 2.6. Analogously we will have $v \in xS$. This implies that x and v are R -related in S, and consequently $\widetilde{h}\widetilde{v}\widetilde{h}\in R$.

If $\widetilde{h}x\widetilde{h}$ and $\widetilde{h}y$ are θ -related in $\widetilde{d}(S)$ for some $y \in S$, then $(\widetilde{h}\widetilde{v}\widetilde{h})\widetilde{e}$ = $\widetilde{h}\widetilde{v}e$ = $\widetilde{h}\widetilde{v}$ shows that $\widetilde{h}\widetilde{v}\widetilde{h}$ will be R -related with $\widetilde{h} \widetilde{x} \widetilde{h}$ in $\widetilde{d}(\widetilde{s})$. By the foregoing this implies $\widetilde{h} \widetilde{v} \widetilde{h} \in R$, and thus $\widetilde{h}\widetilde{v} \in R\widetilde{e}$.

If $\widetilde{h}\widetilde{x}h$ and \widetilde{s} are R -related in $\widetilde{d(s)}$ for some s \in S we would have \widetilde{h} = \widetilde{s} since $\widetilde{h}(\widetilde{h}\widetilde{x}\widetilde{h})$ = $\widetilde{h}\widetilde{x}\widetilde{h}$; we have $\widetilde{h}\widetilde{s}$ = \widetilde{s} if and only if \tilde{s} = \tilde{e} ; but \tilde{e} is R -related with \tilde{h} = \tilde{h} \tilde{e} \tilde{h} in $\widehat{\mathcal{K}}(S)$. In this case $\widetilde{h}\widetilde{x}\widetilde{h}$ and $\widetilde{h}\widetilde{e}\widetilde{h}$ are R -related in $\widehat{\mathcal{K}}(S)$, and by the foregoing this implies that $\tilde{h} = \tilde{h} \tilde{e} \tilde{h} \in R$, and thus $\tilde{s} = \tilde{e} \in R\tilde{e}$.

If $\widetilde{h} \widetilde{x} \widetilde{h}$ and \widetilde{sh} are R -related in $\widetilde{d}(S)$ for some seS, then $(\widetilde{\textsf{sh}})\widetilde{\textsf{e}}$ = $\widetilde{\textsf{se}}$ = $\widetilde{\textsf{s}}$ shows that $\widetilde{\textsf{s}}$ will be R -related with $\widetilde{\textsf{h}}\widetilde{\textsf{h}}$ in S. By the foregoing this implies $\widetilde{s} = \widetilde{e} \in R\widetilde{e}$, and thus $\widetilde{h} = \widetilde{s} \widetilde{h} \in R$.

If $\widetilde{h}\widetilde{x}\widetilde{h}$ and $\widetilde{\text{Sht}}$ are R-related in $\widetilde{\text{d}t}(S)$ for some s, $t \in S$, then they must also be R -related in \oint_x , i.e. ($\widetilde{h}\widetilde{x}\widetilde{h}$) o $(\widetilde{\hbox{h}}\widetilde{\hbox{h}}\widetilde{\hbox{h}})^{-1}$ = $(\widetilde{\hbox{sh}}\widetilde{\hbox{t}}) \circ (\widetilde{\hbox{sh}}\widetilde{\hbox{t}})^{-1}$ (see lemma 2.6. of [3]). Clearly $e\widetilde{h}\widetilde{x}\widetilde{h}$ = $\widetilde{e}\widetilde{h}\widetilde{x}\widetilde{h}$, and thus $\widetilde{s}t = e\widetilde{s}\widetilde{h}\widetilde{t} = \widetilde{e}\widetilde{s}\widetilde{h}\widetilde{t} = \overline{t}$; consequently st = t. and $\widetilde{\text{shf}}$ = $\widetilde{\text{h}t}$ by lemma 2.6. By the foregoing we then have $\widetilde{\text{shf}} = \widetilde{\text{h}t} \in \widetilde{\text{Re}}$.

If $\widetilde{h} \widetilde{x} \widetilde{h}$ and $\widetilde{\tilde{s}h} \widetilde{t} \widetilde{h}$ are R -related in $\widetilde{d}(S)$ for some s, $t \in S$, then $(\widetilde{\text{shth}})e = \widetilde{\text{shte}} = \widetilde{\text{sh}}$ shows that $\widetilde{\text{sh}}$ will be R -related with $\widetilde{h}\widetilde{x}\widetilde{h}$ in $\widetilde{d(S)}$. By the foregoing this implies $\widetilde{\text{sht}} = \widetilde{\text{ht}} \in \mathbb{R}$, and thus $\widetilde{\text{shth}} = \widetilde{\text{hth}} \in \mathbb{R}$.

Hence we can conclude that $R_{\tilde{h}} \notin \mathbb{R} \cup \tilde{R}$. (iii) is an immediate consequence of (i) and (ii).

REMARK 2.8. The situation described in lemma 2.7 is made clear by the following picture of the \sqrt{a} -class of an element $\widetilde{h}x\widetilde{h}$ of $\sigma(S)$; we suppose $\widetilde{h}\widetilde{y}\widetilde{h} \in L$ and $\widetilde{h}z\widetilde{h} \in R$.

Remark that, if $\tilde{x} = \tilde{e}$, we have $\tilde{h}\tilde{x}\tilde{h} = \tilde{h}$, $\tilde{h}\tilde{x} = \tilde{e}$, $\tilde{s}\tilde{h}\tilde{x} = \tilde{s}$. LEMMA 2.9. Every $\boldsymbol{\lambda}$ -class of $\boldsymbol{\widehat{\mathcal{A}}}(S)$ meets $(K_{\beta}) \psi \cong S$ in exactly one ∞ -class of $(K_{\gamma_8})\psi$, and $\mathcal{X}(S) = \bigcup_{x \in S} D_{\gamma x}$. PROOF. $\tilde{h}, \tilde{e}, \tilde{s}, \tilde{s}\tilde{h}$ all belong to the ∂ -class of $\partial(\tilde{s})$ which contains $\widetilde{h} = \widetilde{h} \widetilde{e} \widetilde{h} \in (K_{\ell_8}) \psi$ for all $s \in S \setminus \{e\}$, by lemma 2.7 and remark 2.8. $\widetilde{h\tilde{t}}$, $\widetilde{sh\tilde{t}}$, $\widetilde{sh\tilde{t}}$ all belong to the λ -class of $\mathcal{A}(S)$ which contains $\widetilde{h}\widetilde{t}\widetilde{h} \in (K_{\mathcal{A}})$ ψ for all $s, t \in S\setminus\{e\}$. We conclude that every ∂ -class of $\partial f(S)$ has a non-void intersection with (K_A) $\psi \cong S$, and consequently $\mathcal{A}(S)$ = س
s.≷s

Let $\widetilde{\text{h}}\widetilde{\text{sh}}$ and $\widetilde{\text{h}}\widetilde{\text{th}}$ be any elements of (K_{A}) ψ that are \mathfrak{D} -related in $\mathfrak{K}(S)$. Then $R_{\widetilde{N}\widetilde{N}} \cap L_{\widetilde{N}\widetilde{N}}$ is non-void, and by lemma 2.7 there exists an element $v \in S$, and an element $w \in S$ which is £-related with t in S, such that $\widetilde{v} \widetilde{h} \widetilde{w} \widetilde{h} \in$ $R_{\widetilde{h}''\widetilde{h}''} \cap L_{\widetilde{h}''\widetilde{h}''}$. Since \widetilde{h} ($\widetilde{h}(\widetilde{s}\widetilde{h}) = \widetilde{h}(\widetilde{s}\widetilde{h}''') = \widetilde{h}(\widetilde{v}\widetilde{h}\widetilde{w}\widetilde{h}) =$ $\widetilde{v}h\widetilde{w}h$. By lemma 2.6, we must have $\widetilde{v}h\widetilde{w}h = h\widetilde{w}h$, and we can conclude that $\widetilde{h}\widetilde{wh} \in R_{n}^{*}$ in L_{n}^{*} From the proof of lemma

2.7 we know that this implies that w and s are R -related in S. We conclude that s and t are $\mathbf{\Omega}$ -related in S, and consequently, $\widetilde{n} \widetilde{s} \widetilde{h}$ and $\widetilde{n} \widetilde{t} \widetilde{h}$ will be $\widehat{\Phi}$ -related in $(K_{\mathcal{A}}) \psi \cong S$.

THEOREM 2.10. Any monoid S can be embedded in the semiband $\dot{\mathcal{X}}(S)$ [resp. $\mathcal{A}(S)$] in such a way that the restrictions to S of Green's equivalence relations on $\boldsymbol{d}(S)$ [resp. $\boldsymbol{d}(S)$] are exactly the corresponding Green's equivalence relations on S.

PROOF. The restriction to $(K_{\mathcal{A}_{\beta}})\psi \cong S$ of the ℓ - [resp. \mathbb{R} -, \mathcal{X} , \mathcal{D} -] relation on $\mathcal{A}(S)$ is exactly the \mathcal{L} -[resp. \mathcal{R} -, \mathcal{Y} -, **0-I** relation on (K_A) $\psi \cong S$: this follows immediately from the proof of lemma 2.7 and from lemma 2.9 . Let $\widetilde{\text{h}}\widetilde{\text{sh}}$ and hth be any elements of $(K_{\mathcal{A}_{\beta}})\psi$ which are **J**-related in $\mathcal{A}(S)$. We have $\widetilde{h}~\widetilde{sh}~\in~\widetilde{d(S)}~(\widetilde{h}~\widetilde{th})~\widetilde{d(S)}$; in fact $\widetilde{h}~\widetilde{sh}~\in~(\widetilde{h}~\widetilde{d(S)}~\widetilde{h})~(\widetilde{h}~\widetilde{th})$ $(\widetilde{\text{h}}\widetilde{\text{d}(\text{S})}\widetilde{\text{h}})$. Since $\widetilde{\text{h}}\widetilde{\text{d}(\text{S})}\widetilde{\text{h}} = (K_{\ell_{\beta}})\psi$, the foregoing implies that there exist elements $\widetilde{h}v\widetilde{h}$, $\widetilde{h}v\widetilde{h} \in (K_{\ell_6})\psi$, such that $\widetilde{h}\widetilde{\sin}$ = $(\widetilde{h}\widetilde{v}\widetilde{h})$ $(\widetilde{h}\widetilde{v}\widetilde{h})$ $(\widetilde{h}\widetilde{w}\widetilde{h})$ = $\widetilde{h}\widetilde{v}\widetilde{t}\widetilde{w}\widetilde{h}$. From lemma 2.6 we conclude that $s = vtw \in StS$. Analogously we can show $t \in SSS$. We conclude that s and t are $\frac{1}{6}$ -related in S, and consequently h \widetilde{B} and \widetilde{h} \widetilde{t} will be $\frac{1}{\epsilon}$ -related in $(K_{\beta})\psi$. Thus the restriction to $(K_{\ell_0})\psi \cong S$ of the *j*-relation on $\partial\widetilde{f}(S)$ is exactly the J -relation on $(K/_{\beta})\psi$.

Since ψ is a homomorphism of $d(S)$ onto $\overline{d(S)}$, the corresponding statement for $d(S)$ will hold as well.

THEOREM 3.1. Let S be any monoid; then :

3. MAIN RESULTS

(i) S is bisimple if and only if $\sqrt{x(S)}$ is bisimple. (ii) S is simple if and only if $\mathcal{X}(S)$ is simple. PROOF : immediate from lemma 2.9 and theorem 2.10. COROLLARY 3.2. (i) Any semigroup can be embedded in a simple semiband. (ii) Anx semigroup can be embedded in a bisimple semiband. PROOF. (i) From theorem 8.3. of [2] (see also §8.5 of [3]),

254

we know that any semigroup S can be embedded in a simple monoid $\mathfrak{C}(S)$. Hence, S can be embedded in the simple semiband $\mathbf{d}(\mathbf{C}(S))$.

(ii) From a result of $[9]$ (see also $\S 8.6$ of $[3]$, we know that any semigroup S can be embedded in a bisimple monoid T. Hence, S can be embedded in the bisimple semiband $\widetilde{\mathcal{A}(T)}$.

REMARK 3.3. Corollary 3.2. (ii) contradicts a conjecture of [4].

THEOREM 3.4. Let S be any monoid; then :

(i) S is regular if and only if $\mathcal{X}(S)$ is regular.

(ii) S is completely semisimple if and only if $\overline{\mathcal{M}}(S)$ is completely semisimple.

PROOF. (i) If S is regular, then every \mathfrak{D} -class of S contains an idempotent; hence every $\mathbf{\Sigma}$ -class of $(K_{\mathcal{A}})$ $\psi \cong S$ contains an idempotent. By lemma 2.9, we can conclude that every 2 -class of $\widetilde{d(s)}$ contains an idempotent, and consequently, $\widetilde{d(s)}$ will be regular.

If $\overline{\mathcal{X}(S)}$ is regular, then $\widetilde{h}\widetilde{x}\widetilde{h} \in (\widetilde{h}\widetilde{x}\widetilde{h})\widetilde{\mathcal{X}(S)}$ ($\widetilde{h}\widetilde{x}\widetilde{h}$) for all $x \in S$. Since $(\widetilde{h} \widetilde{x} \widetilde{h}) \widetilde{dS}(\widetilde{S}) (\widetilde{h} \widetilde{x} \widetilde{h}) = (\widetilde{h} \widetilde{x} \widetilde{h}) (\widetilde{h} \widetilde{dS}(\widetilde{S}) \widetilde{h}) (\widetilde{h} \widetilde{x} \widetilde{h}) =$ $=(\widetilde{h}\widetilde{x}\widetilde{h})((K_{\mathbf{g}})\psi)(\widetilde{h}\widetilde{x}\widetilde{h})$ this shows that $\widetilde{h}\widetilde{x}\widetilde{h}$ is a regular element of $(K_{\mathcal{A}})$ ψ for all $x \in S$. We conclude that $(K_{\mathcal{A}}) \psi \approx$ \cong S is regular.

(ii) Let S be a completely semisimple monoid. Let $\widetilde{h}\widetilde{X}\widetilde{h}$ be any idempotent of $(K_{\mathcal{A}_{\beta}})$ ψ . If $D_{\mathfrak{h}} \times_{\mathfrak{h}}$, the \mathfrak{D} -class of $\widetilde{h}\widetilde{x}h$ in $\widetilde{d(s)}$, would contain a pair of distinct comparable idempotents, then $D_{\tilde{h}} \tilde{g}$ contains a bicyclic subsemigroup having $\widetilde{h}\widetilde{x}$ as identity element; this would imply that $D_{h,\tilde{X}}^*$ \cap ($\widetilde{h}\widetilde{x}\widetilde{h}$) $\widetilde{\mathcal{L}(S)}$ ($\widetilde{h}\widetilde{x}\widetilde{h}$) \subset $D_{h,\tilde{X}}^*$ \cap ($K_{\mathbf{1g}}$) ψ contains an idempotent which is different from $\widetilde{h} \widetilde{X} \widetilde{h}$; by lemma 2.9 this would mean that the $\hat{\mathbf{Q}}$ -class of $\tilde{\mathbf{h}}\tilde{\mathbf{x}}\tilde{\mathbf{h}}$ in $(K_{\ell_8})\psi \cong S$ would contain a pair of distinct comparable idempotents, and this is impossible since S is completely semisimple. We conclude that for any $x \in S$, $D_{\tilde{h}} x_{\tilde{h}}$ contains no pair of distinct comparable *idempotents.* Since then no pair of distinct comparable idempotents are **2**-related in $\widetilde{\mathcal{K}}(S)$, $\widetilde{\mathcal{K}}(S)$ must be completely semisimple by result 6 of [6].

Let $\overline{\mathcal{X}}(S)$ be completely semisimple. No pair of distinct idempotents of $\widehat{\mathcal{A}(S)}$ are 2-related in $\widehat{\mathcal{A}(S)}$, and consequently, no pair of distinct idempotents of $(K/_{\beta})\psi \cong S$ are **2**-related in $(K/_{\beta})\psi \cong S$. Again by result 6 of [6] this implies that S must be completely semisimple.

THEOREM 3.5. Any completely regular semigroup can be embedded in a completely regular semiband.

PROOF. If semigroup S is completely regular, then S is a semilattice Y of completely simple semigroups D_{α} , $\alpha \in Y$. We can suppose that S is a monoid with identity e; if the original completely regular semigroup has no identity element, we can always add the identity e. We shall consider a subset T of $\partial f(S)$:

 $T = \{\widetilde{y}\widetilde{h}\widetilde{x}\widetilde{h}$, $\widetilde{y}\widetilde{h}\widetilde{x} \parallel x \in D$, $y \in D$, $a, v \in Y$, $v \ge \mu\}$.

T contains $(K_{\mathcal{A}_{\beta}})\psi \cong S$ since for any $x \in S$, $\widetilde{h}\widetilde{x}\widetilde{h} = \widetilde{e}\widetilde{h}\widetilde{x}\widetilde{h} \in T$. We now proceed to show that the product of any two elements of T must belong to T. Therefore, let $x \in D_{\mu}$, $y \in D_{\nu}$, $s \in D_{\kappa}$, $t \in D_{\lambda}$, with κ , λ , μ , $\nu \in Y$, and $\nu \ge \mu$, $\lambda \ge \kappa$. Then the elements $\widetilde{y}h\widetilde{x}h$, $\widetilde{y}h\widetilde{x}$, $\widetilde{t}h\widetilde{s}h$ and $\widetilde{t}h\widetilde{s}$ belong to T.

 $(\widetilde{y} \widetilde{h} \widetilde{x} \widetilde{h}) (\widetilde{t} \widetilde{h} \widetilde{s} \widetilde{h}) = \widetilde{y} \widetilde{h} \widetilde{x} \widetilde{t} \widetilde{s} \widetilde{h}$

and

 $(\widetilde{y} \widetilde{h} \widetilde{x} \widetilde{h}) (\widetilde{t} \widetilde{h} \widetilde{s}) = \widetilde{y} \widetilde{h} \widetilde{x} \widetilde{t} \widetilde{s}$

both belong to T since $y \in D_{\nu}$, $xts \in D_{\nu}$ with $\nu \ge \mu \ge \kappa \Lambda \mu = \gamma$. $(\widetilde{y} \widetilde{h} \widetilde{x}) (\widetilde{t} \widetilde{h} \widetilde{s} \widetilde{h}) = \widetilde{y} \widetilde{h} \widetilde{x} \widetilde{s} \widetilde{h}$

and

 $(\widetilde{\mathsf{y}}\widetilde{\mathsf{h}}\widetilde{\mathsf{x}})$ (then $\widetilde{\mathsf{h}}$) = $\widetilde{\mathsf{y}}\widetilde{\mathsf{h}}\widetilde{\mathsf{x}}\widetilde{\mathsf{s}}$

both belong to T since $y \in D_{\nu}$, $xs \in D_{\nu}$ with $\nu \ge \mu \ge \kappa \wedge \mu = \gamma$. We conclude that T is a subsemigroup of $\overline{d}(S)$, and that $(K/_{\beta})\psi \cong S$ is subsemigroup of T.

Let us now consider any elements $\widetilde{y} \widetilde{h} \widetilde{x}$ and $\widetilde{y} \widetilde{h} \widetilde{x}$ of T, with $x \in D_{u}$, $y \in D_{v}$, $\mu, \nu \in Y$, $\nu \ge \mu$. Then $(\widetilde{y} \widetilde{h} \widetilde{x} \widetilde{h})^{2} = \widetilde{y} \widetilde{h} \widetilde{x} \widetilde{y} \widetilde{x} \widetilde{h}$, and $(\widetilde{y}h\widetilde{x})^2$ = $\widetilde{y}h\widetilde{x}\widetilde{x}$. Since S is a completely regular semigroup, x, xyx and x^2 belong to a same π -class of S, and consequently $\widetilde{h}x\widetilde{h}$, $\widetilde{h}x\widetilde{y}x\widetilde{h}$ and $\widetilde{h}x\widetilde{x}h$ belong to a same \widetilde{x} -class of T. Let g be the identity of the maximal subgroup of S containing x, then $\widetilde{y} \widetilde{h} \widetilde{g}$ belongs to T ; \widetilde{e} belongs to T_j since \tilde{e} = \tilde{e} h \tilde{e} . We have $(\tilde{y}h\tilde{g}) (\tilde{h}\tilde{x}h)$ = $\tilde{y}h\tilde{g}\tilde{x}h$ = $\tilde{y}h\tilde{x}h$, and $\tilde{e}(\tilde{y}h\tilde{x}h)$ = $\widetilde{e}\widetilde{h}\widetilde{x}\widetilde{h}$ = $\widetilde{h}\widetilde{x}\widetilde{h}$. By Green's lemma (lemma 2.2 of [3]) ($\widetilde{y}\widetilde{h}\widetilde{g}$) ($\widetilde{h}\widetilde{x}\widetilde{h}$)= $\widetilde{\gamma}$ hxh, $(\widetilde{\gamma}$ h $\widetilde{g})$ (hx $\widetilde{\gamma}$ xh) = $\widetilde{\gamma}$ hx $\widetilde{\gamma}$ xh and ($\widetilde{\gamma}$ h \widetilde{g})(hx \widetilde{x} h) = $\widetilde{\gamma}$ hx \widetilde{x} h must belong to a same K -class of T. We have $(\widetilde{y} \widetilde{h} \widetilde{x} \widetilde{h}) \widetilde{e} = \widetilde{y} \widetilde{h} \widetilde{x}$ and $({\widetilde{\mathsf{y}}}\widetilde{\mathsf{h}}\widetilde{\mathsf{x}})\widetilde{\mathsf{h}} = {\widetilde{\mathsf{y}}}\widetilde{\mathsf{h}}\widetilde{\mathsf{x}}\widetilde{\mathsf{h}}$, and so, by Green's lemma, $({\widetilde{\mathsf{y}}}\widetilde{\mathsf{h}}\widetilde{\mathsf{x}}\widetilde{\mathsf{h}}) \widetilde{\mathsf{e}} = {\widetilde{\mathsf{y}}}\widetilde{\mathsf{h}}\widetilde{\mathsf{x}}$ and $(\widetilde{\mathsf{y}}\widetilde{\mathsf{h}}\widetilde{\mathsf{x}}\widetilde{\mathsf{h}})\widetilde{\mathsf{e}} = \widetilde{\mathsf{y}}\widetilde{\mathsf{h}}\widetilde{\mathsf{x}}\widetilde{\mathsf{x}}$ must belong to a same $\mathcal{K}\text{-class of }T$. We conclude that in T any element and its square belong to a same K -class of T, and consequently T is a union of groups by lemma 2.16 of [3]. Since $(\widetilde{y} \widetilde{h} \widetilde{g})^2 = \widetilde{y} \widetilde{h} \widetilde{g}$, $({\widetilde{\mathbf{x}}}\widetilde{\mathbf{h}}{\widetilde{\mathbf{g}}})^2$ = ${\widetilde{\mathbf{x}}}\widetilde{\mathbf{h}}\widetilde{\mathbf{g}},$ and ${\widetilde{\mathbf{y}}}\widetilde{\mathbf{h}}\widetilde{\mathbf{x}} = ({\widetilde{\mathbf{y}}}\widetilde{\mathbf{h}}\widetilde{\mathbf{g}})\widetilde{\mathbf{h}}({\widetilde{\mathbf{x}}}\widetilde{\mathbf{h}}\widetilde{\mathbf{g}})$, we conclude that $\widetilde{x} \widetilde{h} \widetilde{g}$ is the product of the three idempotents $\widetilde{y} \widetilde{h} \widetilde{g}$, \widetilde{h} and $\widetilde{x}h\widetilde{g}$ of T; $\widetilde{y}h\widetilde{x}h$ will then be the product of the idempotents \widetilde{f} ng, \widetilde{h} , \widetilde{x} ng and \widetilde{h} of T. Consequently T is a completely regular semiband which contains $(K_{\Lambda_\beta}) \psi \cong S$.

THEOREM 3.6. Let S be any monoid. S contains a kernel V if and only if $\overline{\mathcal{K}}(S)$ contains a kernel; if this is the case V is embeddable in the kernel of $\widetilde{d(S)}$. If V is regular, the kernel of $\widetilde{\mathcal{M}(S)}$ is a semiband.

PROOF. By lemma 2.9 and theorem 2.10 every J -class of $d(s)$ meets $(K_{\ell_8})\psi \cong S$ in exactly one *J*-class of $(K_{\ell_8})\psi$, and $\mathbf{\tilde{d}}(S) = \bigcup_{x \in S} J_{\tilde{n}x\tilde{h}}$, $J_{\tilde{n}x\tilde{h}}$ being the *j*-class of $\tilde{h}\tilde{x}\tilde{h}$ in $\overline{\mathcal{X}}(S)$ for any $x \in S$. From this we have that there exists an order preserving one-to-one mapping of $\widehat{d(s)}$ ponto $(K_A) \psi_{\widehat{A}}$. Hence, there exists a minimum \overline{J} -class in $\overline{J}(S)$ if and only if there exists a minimum J -class in $(K_{\frac{\beta}{6}})\psi \cong S$. Since a minimum J -class of a semigroup clearly is the kernel of that semigroup, the first part of the theorem follows. If V is the kernel of S, \cup_{v} D_{re}r will be the minimum χ -class of $\boldsymbol{\mathcal{X}}(S)$; since V is isomorphic with the subsemigroup $\{\tilde{n} \tilde{x} \tilde{h} \; | \; x \in V\}$ of $(K_{\ell_8})\psi$, we can conclude that V is embeddable in the kernel of $\overline{d(S)}$. If V is regular, $D_{\widetilde{h}\widetilde{\kappa}\widetilde{h}}$ is a regular ∂ -class of $\partial\widetilde{f(s)}$ for all $x \in V$; by lemma 1 of [6]any regular element of a semiband is a product of idempotents of its ∂ -class; thus, in our case $v\overline{v}$ D_{NTW} is a regular semiband.

257

COROLLARY 3.7. Let S be any regular simple semigroup, and let Sue be a monoid with identity e. Then S can be embedded in the kernel of $t(s\cup e)$ which is a simple regular semiband. The kernel of $d(s\cup e)$ is completely simple if and only if S is completely simple.

PROOF. Since S is a regular kernel of $S \cup \{e\}$, S can be embedded in the kernel of $\widetilde{d(S\cup\{e\}})$ by theorem 3.6; this kernel of $d(S\cup k)$ is of course a regular simple semiband. We can now use the same arguments as in the proof of 3.4 (ii) : no pair of distinct comparable idempotents are ω -related in S if and only if no pair of distinct comparable idempotents are $\mathbf{\lambda}$ -related in the regular simple semiband $\frac{U}{x \in S}$ D_{KXK}: this implies that S is completely simple if and only if $\frac{U}{x \epsilon s}$ D_{NXN} is completely simple.

THEOREM 3.8. Let S be any monoid. Then $\partial f(S)$ is completely simple if and only if S is a group.

PROOF. Let $\widetilde{\mathcal{H}}(S)$ be completely simple; by theorem 3.4 S must be completely semisimple, and by lemma 2.9 S must be bisimple. Since S is a monoid, we conclude that S must be a group. Conversely, if S is a group, $\mathcal{A}(S)$ must be completely semisimple by theorem 3.4, and $\mathcal{A}(S)$ must be bisimple by lemma 2.9; hence, $\mathcal{X}(S)$ must be completely simple.

COROLLARY 3.9. Any countable group can be embedded in a completely simple semiband generated by 5 idempotents.

PROOF. Let S be a group generated by two elements a and b. It must be clear that $(K/_{\beta})\psi \cong S$ will be a subgroup of the subsemigroup of $\boldsymbol{\mathit{d}}(S)$ which is generated by the idempotents h, a, b, a^{+} , b^{+} . This subsemigroup of $\boldsymbol{\mathit{J}}$ (S has the following elements : $\widetilde{h}\widetilde{x}h$, $\widetilde{h}\widetilde{x}$, $\widetilde{a}\widetilde{h}\widetilde{x}$, $\widetilde{a}^{\widetilde{h}}\widetilde{x}$, $\widetilde{a}^{\widetilde{h}}\widetilde{x}$, $\widetilde{a}^{\widetilde{h}}$ a^{-1} h \tilde{x} , \tilde{b} h \tilde{x} , \tilde{b} h \tilde{x} , \tilde{b} ¹ h \tilde{x} , \tilde{b} ¹ h \tilde{x} , for all $x \in S$; hence this subsemigroup of $\overline{\mathcal{X}}(S)$ is completely simple and is a union of 10 copies of S. By a result of [7] any countable group can be embedded in a group generated by 2 elements; the result then follows.

REMARK 3.10. If S is any monoid, every element of $\widetilde{\mathbf{d}}(\mathbf{S})$ is a product of at most 4 idempotents. If S is completely regular, then every element of the completely regular semiband T considered in theorem 3.5 is a product of at most 4 idempotents. If S has a regular kernel, then every element of the kernel of $\partial f(S)$ is a product of at most 4 idempotents of this kernel of $\mathcal{X}(S)$ (by lemma 1 of [6]); hence, by corollary 7 any completely simple semigroup is embeddable in a completely simple semiband in which every element is a product of at most 4 idempotents.

4. AN EXAMPLE : $\widetilde{\mathcal{X}}(\mathbf{t})$

We shall consider the bicyclic semigroup ζ generated by the two-element set ${a, b}$ subject to the defining relation ab = e, e being the identity element of \mathfrak{C} . Since **C** is bisimple but not completely simple, $\mathcal{X}(E)$ must be a bisimple semiband which is not completely simple, by theorem 3.8.

We shall look for the idempotents of $\widetilde{d(\mathbf{t})}$. \widetilde{h} and $\widetilde{b^T a^j}$ (i,j non-negative integers) clearly are idempotents of $\widetilde{\mathbf{d}}(\widetilde{\mathbf{c}})$. If for some non-negative integers i,j, $\widetilde{\mathbf{h}} \widetilde{\mathbf{b}}^T \widetilde{\mathbf{a}}^T$ is an idempotent of $\boldsymbol{\dot{\pi}}(\boldsymbol{\bar{\epsilon}})$, then

 $\widetilde{h} \widetilde{b^i a^j} = (\widetilde{h} \widetilde{b^i a^j})^2 = \widetilde{h} (\widetilde{b^i a^j})^2$.

and by lemma 2.6 this implies $b^i a^j = (b^i a^j)^2$ in \mathfrak{E} ; hence \widetilde{h} is an idempotent of $\widetilde{d(\mathfrak{C})}$ if and only if i = j. Analogously, for any non-negative integers i,j,m,n, \widetilde{h} \widetilde{b} \widetilde{a} \widetilde{b} and \widetilde{b} \widetilde{a} \widetilde{b} \widetilde{a} will be idempotents of $\widetilde{d}(\widetilde{c})$ if and only if $i = j$. If for some non-negative integers i, j, m, n $\overline{b^m a^n}$ \widetilde{b} $\overline{d^m a^n}$ \widetilde{b} \overline{d} \widetilde{b} is an idempotent of $\widetilde{d}(\widetilde{c})$, then $b^m a^n b^l b^l a^j \tilde{b} = (b^m a^n b^l a^j \tilde{b})^2$ $=$ $h^m a^n h$ $h^1 a^J h^m a^n h^1 a^J h$,

and by lemma 2.6 this implies $b^i a^j = b^i a^j b^m a^n b^i a^j$ in \mathfrak{E} ; from this we have $m \le j$ and $j-m = i-n$; conversely, for any $non-negative$ integers i,j,m,n with $m \leq j$ and $j-m = i-n$ $b^m a^n h b^i a^j h$ must be an idempotent of $\partial (c)$.

The idempotents of $\widetilde{d(\mathfrak{C})}$ have been marked in the table

on next page; in this table the rows are the R -classes and the columns are the ℓ -classes of $\widetilde{\mathcal{M}}(t)$.

 $\widetilde{\mathcal{K}}(\widetilde{\mathbf{t}})$ contains a copy of the spiral semigroup: \widetilde{a} $\widetilde{d(t)}$ $\widetilde{d(t)}$ is a bisimple subsemigroup of $\widetilde{d(t)}$ generated by the 4 idempotents \widetilde{a} , \widetilde{e} , \widetilde{h} and $\widetilde{a}h\widetilde{b}\widetilde{h}$. It is easy to see that this subsemiband of $\widetilde{\mathcal{K}}(\mathfrak{C})$ is isomorphic with the semigroup generated by the elements of ${e_i, f_i, g_i, h_i \parallel i}$ non-negative integer $\{$ subject to the defining relations

$$
e_i^2 = e_i, f_i^2 = f_i, g_i^2 = g_i, h_i^2 = h_i,
$$

\n
$$
e_i f_i = e_i, f_i e_i = f_i = g_i f_i, f_i g_i = g_i = g_i h_i,
$$

\n
$$
h_i g_i = h_i, h_i e_{i+1} = e_{i+1}, e_{i+1} h_i = h_i,
$$

\n
$$
e_i e_{i+1} = e_{i+1} e_i = e_{i+1}, f_i f_{i+1} = f_{i+1} f_i = f_{i+1},
$$

\n
$$
g_i g_{i+1} = g_{i+1} g_i = g_{i+1}, h_i h_{i+1} = h_{i+1} h_i = h_{i+1}
$$

for any non-negative integer i.

THEOREM 4.1. There exists a countable infinite number of non-isomorphic bisimple semibands of type 3 which are not completely simple.

PROOF. Let m \neq 0 be any non-negative integer. Since (ha) "hb" = ha "hb" = ha "b" = he = e, and (ha) " hh " = ha h h h = ha h h = hb, the subsemiband of $\text{d}(\text{t})$ genera ted by the 3 idempotents \widetilde{h} , \widetilde{a} , $\widetilde{b}^{\overline{m}}$ is exactly the bisimple semiband \widetilde{e} $\widetilde{d}(\widetilde{r})$ \cup \widetilde{a} $\widetilde{d}(\widetilde{r})$ \cup \widetilde{b}^m $\widetilde{f}(\widetilde{r})$. The *L*-classes of this subsemiband $\langle \tilde{h}, \tilde{a}, \tilde{b}^m \rangle$ of $\mathcal{K}(\tilde{c})$ contain 2 or 3 idempotents. For any $0 \le i \le m$ the *L*-class of $\widetilde{a} \widetilde{h} a^T \widetilde{h}$ contains the two idempotents $\widetilde{hb}^{\dagger}a^{\dagger} \widetilde{h}$ and $\widetilde{a} \widetilde{hb}^{\dagger} \widetilde{h}$ (these idempotents are

 $ASTI$

261

different by lemma 2.6). For any non-negative integer i, with $m \leq i$, the £-class of $\tilde{a}h\tilde{a}$ in contains the three idempo- $~\tau = \tilde{h} b^T a^T \tilde{h}$, $\tilde{a} \tilde{h} b^T$ ¹ \tilde{h} and $\tilde{b}^m \tilde{h} b^T$ $\tilde{h}^T a^T \tilde{h}$ (these idempotents are different by lemma 2.6). For any non-negative integer i, the t -class of \tilde{h}^2 contains the three idempotents $\widetilde{h} \widetilde{b^i}$ a¹ a¹ and $\widetilde{b^n} \widetilde{h} \widetilde{b^i}$ (these idempotents are different by lemma 2.6). We conclude that for any non-negative integer m, $\langle \tilde{h}, \tilde{a}, \tilde{b}^m \rangle$ is a bisimple semiband of type 3 in which exactly $m \ell$ -classes contain only 2 idempotents; consequently, if $m_1 \neq 0$ and $m_2 \neq 0$ are any two different non-negative integers, $\langle \hat{h}, \hat{a}, \overline{b}^m \rangle$ and $\langle \hat{h}, \hat{a}, \overline{b}^m \rangle$ cannot be isomorphic.

AKNOWLEDGEMENTS

I am much indebted to G.J. Lallement for suggesting several improvements.

REFERENCES

- [I] Benzaken, C. et H.C. Mayr, Notion de Demi-bande ; Demi-bandes de type deux, Semigroup Forum 10 (1975), 115-128.
- [2] Bruck, R.H., A survey of binary systems, Ergebnisse der Mathematik Band 20, Berlin (1971).
- [3] Clifford, A.H. and G.B. Preston, The algebraic theory of semigroups, Amer. Math. Soc. Vol. I (1961) Vol. 2 (1967), Providence, R.I.
- [4] Eberhart, C., W. Williams and L. Kinch, <u>Idempotent $_{\pi}$ </u> generated regular semigroups, J. Australian Math. ~0c. 15 (I) (1973), 27-34,
- [5] Evans, T., Embedding theorems for multiplicative systems and projective geometries, Proc. Amer. Math. $Soc. 3 (1952), 614-620.$
- [6] Hall, T.E., On regular semigroups, Journal of Algebra 24 (1973) , $1-24$.
- [7] Higman, G., B.H. Neumann, H. Neumann, Embedding theorems for groups, J. London Math. Soc. 24 (1949) $247 - 254.$

- 18] Howie, J.M., <u>The subsemigroup generated by the idem</u>potents of a full transformation semigroup, J. London Math. Soc. 41 (1966), 707-716.
- [9] Preston, $G.B.,$ Embedding any semigroup in a \mathcal{D} -simple semigroup, Trans. Amer. Math. Soc. 93 (1959), 557-576

Dienst Hogere Meetkunde Rijksuniversiteit Gent Krijgslaan 271 Gebouw \$9 B-9000 Gent Belgium

Received February 25, 1977 and in final form May 13, 1977.