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1. INTRODUCTION

We shall use the notations and terminology of (3] . A
semiband is an idempotent-generated semigroup. If n is any
non-zero cardinal number, we shall say that a semiband is
of type n if a minimal set of idempotent generators of the
semiband has cardinality n {11 .

In [ 8] Howie shows that any semigroup can be embedded
in a semiband (see also [11). We shall give a more easy
embedding theorem here. We shall also show that any semi-
group can be embedded in a simple semiband and in a bisim~
ple semiband. Furthermore, we show that any completely
semisimple semigroup can be embedded in a completely semi-
simple semiband, and that any completely regular semigroup
can be embedded in a completely regular semiband. We shall

make some remarks concerning semibands of type 3.

2. THE IDEMPOTENT-GENERATED HULL OF A SEMIGROUP

Let S be any semigroup. Let Y be a set such that YnS =0
and such that for some heY we have | S| = | Y\{hyl . Let
S - Y\iﬁs, x » % be a one-to-one mapping of S onto Y\{hy .
Let F be the semigroup which is generated by the elements
of Y, subject to the defining relations R =h, and % = %
for all x€S. Let K be the subsemigroup of F which is gene-
rated by the elements of Z = {h%h | x€S} . It must be clear

that K is a free semigroup which is freely generated by
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the elements of Z. Hence, there exists a homomorphism ¢ of
K onto S whichextends the mapping Z- S, h¥h - x. Putting
B = ¢°¢-1, we have K/ﬁES. Let 8 generate « on F. We call

=J£(S) the idempotent-generated hull of semigroup S.

-*(S) is a semiband which is generated by the elements of Y,
subject to the defining relations

= X for all x€S,
TXyh  for all x,yeS.

>4

=

~
]

LEMMA 2.1. Ke = {w€F I (v,w)€a for some veKY =
and
B = anKXK.

PROOF. Since a is the congruence on F which is generated by
8§, we have fCanNKXK. Let us suppose v€K, and (v,w)€e . Then
there exist n > 1, elements p €K, 1 = 1,...,2n, elements

1T,
u, ,vjEF », 3 = 1,...,n, such that

(p?.j—l :sz )Gﬁ 3 j = 1,-.-,11,

V.- ulplvl » W = uannVn’

WPy Yy T Wy Pyjag Vier» J = 1,000,n-
We have (pl ,pz)Gp, and P, »P, Y, p1 , = VEK, Let v = Tlil'ﬁ...
...hg h ; consequently p, = hX h Tl':'c ,q'ﬁ, 1<m<k,

O<q<k m. From this we have

u1=1or'ﬁ ifm-=1,
u, = —ﬁi'cl'ﬁ...'ﬁi' h or hx h...h% otherwise,
m=1 1 e}
and
v, =1 or h if q = k-m,
v, = h% h...hgh or X h...h% % otherwise.
megel k gyl k
Let u! = 1 if m = 1, and u/ = u h otherwise; let v = 1 if

1
q = k-m, and v/ = hv, otherwise. Since p, ,p,€K we have

hp, = p,h = hp,h = p, and Bp, = p,h = hp,h = p,, and thus
we h?ve up, v, =upyv/ and u,p,v, = u/p,v/'. Since u/,
v/€K we have u'p,v/ = u,p,v,€K; furthermore (p ,p,)€B

1mp11es (u'p, v/, u/'p,v,)€6, and thus (u p v, ,up,v )€ .

By induction we can show that WPy Vs WPy, €K, and

j
(uj Pyi-1V s WPy Y )esp for all j = 1,...,n. Consequently

weK and (v,w)€f . We conclude that Ke« = K and 8 = anKXK .
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THEOREM 2.2.Any semigroup S can be embedded in the semiband A(S)

PROOF. By the preceding lemma we know that K/ﬁas a subse-
migroup of the semiband F/a = .ﬁ(S) .

semiband of type n<3.

PROOF. Let S l:oe a semigroup generated by the two elfments
a anlcél b. Let hXh be any“elemf:nt l?f Kz ;kif x = a’kb2
...b™ in S we have hxh = (hah) ' (ABR) *... (RBR) " in
A(S). We conclude that S%K/ﬁ can be embedded in the sub-
semigroup of JL(S) which is generated by the three idempo-
tents h,3 and B. Since any countable semigroup can be
embedded in a semigroup generated by two elements (theorem
IT of [5]; see also §9.1 of [3]), it follows that any coun-

table semigroup can be embedded in a semiband of type n<3.

In this paragraph from now on we shall suppose that

S is a monoid with identity e. Let X = SU(Y\{hY}), and
let us consider the following elements of the full trans-
formation semigroup fx:

h:x - X, x =X
X +»x for all x€§,
and for all s€$

~

s : XX,

-

-

)

X
X for all xeS.

The subsemigroup of ﬂ'x generated by the elements h, S
(s€8), will be denoted by A(S). This semigroup wS) has
been mentioned in [1].

LEMMA 2.4.Inthe semigroup .{(‘Sd) the following equalities
must held :

w =1,

¥ =X  for all xeS,

hxhyh = h&yh  for all x,yes.

There exists a homomorphism ¢ of A(S) onto A(S) such that
RY = § and % = X for all x€S. The restriction of ¢ to
K/s =S is an isomorphism.
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PROOF. The first part of the lemma is straightforward. Let
us suppose that for some hxh, h?hEK;ﬁ we have (hxh)v =
(hyh)d/ . Then hxh = hyh and thus x = eh%h = ehyh Y;
consequently hxh = hyh. We conclude that Lmaps K/g“‘
isomorphically onto the subsemigroup of J(S) consisting
of the elements hxh (x€8).

L v o —— e ——e

must hold :

LEMMA 2.6. In the semigroup A(S) the following equalities

he = o,
eh = h,
5t =S for all s,t€S,

hshT = h§t  for all s,t€S.

P~
The elements of £(S) are
h,s,5,hs,3h,hSh,3h%,5hTh, with s,t €S\e}.
These elements are all different except for the following

cases

ShT = ht = 3hth = hth = t = st
Sht = Vht < 3hth = Vhth = st = vt ,
with v,s,t € S\4e}.
LEMMA 2.7. (i) If L is an £-class of (K/g J¥ =8, then
N SL is the f£-class of ot(S] containing L.
(ii) If R is an ®-class of (K,'ﬁ ¥ =S5, then
RURE is the R-class of A5) containing R.
(iii) If D is a d-class of (%)dz =S, then
( U Sp) v ( Y sDe) is the &-class of &(S) containing D.

PROOF (i) Let hXh be any element of L. The £-class of
,)(:(S) containing this element will be denoted by L"xT’
We must show that me = sL‘J SL. Consider hyheL and any
s€S; then e(shyh) = ehyh = hyh, and consequently shyh
and ¥R will be £-related in Jﬁ(S), since hxXh and hyh
are £~-related in {K/ }¥, they must also be L-related in
,t(S) s and we can conclude that Shyh is £-related with
hxh in .L(S) . We have shown that sgs 3L ¢ Lv.. (observe

hxh
that €L = L, and thus L ¢ gSEL).
-
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All elements of Lgyr must be £-related with hXh in 9.
i.e. they must have the same range as h¥xh (see lemma 2.5
of [31). Therefore the elements t, E?, "EET’, with t,v€S, can-
not belong to Ly.r . Let us investigate the range of ele-

e

ments hxh, th, hth, thvh, with t,veS

X h%h = Sx,

X th = S,

X hth = St,

X thvh = Sv.

If hXh and Th are £-related in Jfé) for some t€S, then

Sx = S = Se, and in this case we will have that x and e
are £-related in S; this implies that h = heh belongs to
L, and consequently zﬁfisgs SL. If hXh and hth are £-re-
lated in #(S) for some t€S, then Sx = St, and in this
case x and t are £~-related in S; this implies that hth
belongs to L, and consequently hth € sgSEL. If hxh and
thvh are £L-related in ZIE) for some t,v€S, then Sx = Sv,
and in this case we will have that x and v are L-related
in S; this implies that hvh belongs to L, and consequent-

~re U~ . U
ly thvh € ,&gSL. Hence we can conclude that Lh?{ﬁ' sESSL'

(ii) Let hxh be any element of R. The f-class of J?('é)
containing this element will be denoted by Ryer
We must show that Rfgy = RU RE. Consider any element
h¥h €R; then (hZh)e = R%e = hzZ, and consequently hZ and
hZh will be ®-related in ﬁg); since hXh and hZh are
fi-related in (K/g Y, they~must also be ®-related in d?(é),
and we can conclude that hZ = (hZh)€ is R-related with
Wxh in &(S). We have shown that RURSG Regy .

If hXh and RVh are ®-related in a?(’S) for some veS, we
o e PR .

must have hxh € hvh&(S). Since for all s,teS

xhxh = sx, x(Avh)sgy, x(WH) (R cy, x(hvh) Ghi)gy,
BXh cannot be equal to (A¥H)S or (A¥R) (A%) or (AVR) (GRD)
for some s,t€S8. If hXh = (hvh) (hSh) for some s€S, then
hxXh = hvER; if hXh = (h¥h) (Sh) for some s€S, then again
hxh = h¥h; if BXh = (hVh) (ShTh) for some s,t €S, then
hxh = Txmﬁ; in all cases we can conclude that xe vS by

i
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lemma 2.6. Analogously we will have v € xS. This implies
that x and v are R-related in S, and consequently hvh € R.

If hXh and hv are ®-related in u{\(’S] for some vE€S, then
(h¥h)e = hve = hv shows that h¥h will be ®-related with
hxh in civ(S). By the foregoing this implies hVh € R, and
thus hv € RS.

If h¥h and 5 are &-related in :i\(g) for some SE€S we
would have hS = S since h(hXh) = hxh; we have hS = 35 if
and only if S = §; but & is ®-related with h = heh in
)’l’.‘('S). In this case hXh and heh are R-related in J:TS) ,
and by the foregoing this implies that fi = higheR, and
thus § = € €Re.

If hXh and Sh are ®-related in J\?(/S) for some s€S, then
(5h)S = S8 = 3 shows that S will be ®-related with hXh
in S§. By the foregoing this implies § = € €R€, and thus
h = Sher.

If hXh and $ht are ®-related in 4?(./8) for some s,t€S,
then they must also be &-related in ﬁ;, i.e. (}NnNCE)o
(hxm) 7 = (3R (GRD) ™ (see lemma 2.6. of [3]). Clearly
ehxh = 8hxXh, and thus 5t = e¥hf = 8ShY = T; consequently
st = t, and ShTt = Rt by lemma 2.6. By the foregoing we

o~

then have 5ht = hf €Re.

If hXh and Shth are ®-related in JE\(,S) for some s,t€8,
then (3hth)8 = Thte = SAT shows that ShT will be R-rela-
ted with hXh in m). By the foregoing this implies
Sht = Rt € RS, and thus Shth = htheR.

Hence we can conclude that Rpgg = RURe.

{(iii) is an immediate consequence of (i) and (ii).

REMARK 2.8. The situation described in lemma 2.7 is

made clear by the following picture of the®-class of
~e £~ At g
an element hxh of &(S); we suppose hyYh €L and hzh € R.
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Drsx S
: o e o’
Shy Sh¥h
Ip¥ %D
gL
3hy zhx| | gheh ghxh
-~ : ~ LK%K
hy h¥
Dé D L
hZ R%] | %R fixh
z RE X z R hxh
RE%%

'~ o~ ™ ew

X

=
1
®
w
=
>

n
n?

Remark that, if X = e, we have hXh = h,

LEMMA 2.9. Every -class _q_f_ﬂ’é) meets (K/;; Jy=8 in
exactly one D-class of (K/ﬂ J¥, and .,ETS) = xeus D‘ﬁ’?{ff

PROOF. h,8,3,5h all belong to the d-class of oéTS) which
contains h = hehe (Kzg )¥ for all s € S\{e}, by lemma 2.7
and remark 2.8. ht, sht 3hth all belong to the®d -class
of a{?§) which contains hthe (K/ﬁ )Wﬁr all s,t € S\}e§

We conclude that every ®-class of &(S) has all_fm-void in-
tersection with (K/a J¥ =8, and consequently dt(S) =

xgs D~~

Let h3h and h¥h be any elements of (K/B)\l/ that are

D -related in o{'.(S) Then Reyy O lpey is non-void, and by
lemma 2.7 there exists an element VE€S, and an element
weS which is £-related with t in S, such that Vhiwhe
Rn"“’ N Lygeg. Since i (h$h) = hi3h, we have hi¥wh = h(¥hwh) =
vhwh. By lemma 2.6, we must have Vhwh = hwh, and we can
conclude that hwhe Rzt NIyt . From the proof of lemma
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2.7 we know that this implies that w and s are ®-related
in S. We conclude that s and t ared -related in S, and
consequently, h3h and h¥h will be P-related in (K/g Yy =S,

THEOREM 2.70.Any monoid S can be embedded in the semiband X(S)
T

[resp. A(S)] in such a way that the restrictions to S of

Green's equivalence relations on #4(S) [ resp. a‘?é)] are

exactly the corresponding Green's equivalence relations

on S.

PROOF. The restriction to (K/ﬁ)xﬁ%S of the £- | resp. &-,
%, D-1 relation on d(S) is exactly the £-[ resp. &-,%-,
D-] relation on (K/gg J¥=8S : this follows immediztily from
the proof of lemma 2.7 and from lemma 2.9. Let hSh and
hth be any elements of (K/g J¥ which are J-related in Ji{S) .
We have h3h e d(S) (hth)/&S); in fact hSh e (RAS)K) (Wih)
(E(E'S)ﬁ). Since ﬁ;:‘('S)E = (K/ﬁ)\ll, the foregoing implies
.Ehft thsrs exist elements hvh, hwh e (K/ﬁ )¥ , such that
h3h = (hvh) (hth) (Awh) = hvTwh. From lemma 2.6 we conclude
that s = vtw€ StS. Analogously we can show t € SsS. We
conclude that s and t are }-related in S, and consequent-
1y hsh and hth will be F-related in (Ig/ﬂ)w. Thlﬁ/the res-
triction to (K/ﬂ )¥ = S of the }-relation on &(S) is ex-
actly the }-relation on (K/ﬁ o —

Since ¥ is a homomorphism of 4(S) onto &(S), the cor-
responding statement for o(S) will hold as well.

3. MAIN RESULTS

THEOREM 3.1. Let S be any moncid; then :

(i) S is bisimple if and only if J(8) is bisimple.
(ii) S is simple if and only if £(S) is simple.

PROOF : immediate from lemma 2.9 and theorem 2.10.

bisimple semiband.

PROOF. (i) From theorem 8.3. of { 2] (see also §8.5 of [ 3]},
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we know that any semigroup S can be embedded in a simple

monoid €(S). Hence, S can be embedded in the simple semi-
———

band &(€(S)).

(i1) From a result of [ 9] (see also §8.6 of [3], we
know that any semigroup $ can be embedded in a bisimple
monoid T. Hence, S can be embedded in the bisimple semi-

s—
band &A(T).
REMARK 3.3. Corollary 3.2. (ii) contradicts a conjecture
of [4].

THEOREM 3.4. Let S be any monoid; then :

(i) S is regular if and only if J:(S) is regular
(ii) S is completely semisimple if and only if ot(S}

is completely semisimple.

PROOE. (i) If S is regular, then every d-class of S con-
tains an idempotent; hence every M-class of (K/B)wﬁs
contains an idempotent. By lemma 2.9, we can conclude
that every ﬁ—class of e%) contains an idempotent, and
consequently, d:(S) will be regular.

1f A(S) is regular, then hxhe(hxh)at(S) (hxh) for all
xeS. Since (hxh)dt(S) Fxm) = Bxh) REHSHT) Rxh) =
=.(B?<F)((K/B)¢) (hXh) this shows that hxh is a regular
¢lement of (Kjﬁ)a!/ for.all x€ 8. We conclude that (K/g)x,bé%

=8 is regular. s

{ii) Let S be a completely semisimple monoid. Let h¥h
be any 1dempotent of (K/ﬁ)\l’ . If Dpgy, the d-class of
TXh in d‘,(S), would contain a pair of distinct comparable
idempotents, then Dyyg contains a bicyclic subsemigroup
having hXh as identity element; this would imply that
Drey 0 (hxh)dt(S) (hXh) ¢ Dygg 0 (K/ )¢ contains an idempotent
which is different from hxh by lemma 2.9 this would
mean that the W-class of hXh in (K/ﬂ)wa S would contain
a pair of distinct comparable idempotents, and this is
impossible since S is completely semisimple. We conclude
that for any xS, Dyryy contains no pair of distinct com-
parable idempotents. Since then no pair of distinct com-
parable idempotents are D-related in ;l;(’S), d’t\('S) must be
completely semisimple by result 6 of | 6] .
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Let ‘f'.?é} be completely semisimple, No pair of distinct
idempotents of ﬁ) are d-related in ai.?g), and consequent-
ly, no pair of distinct idempotents of (K/B)\l/ S are
D-related in (K/g)¥=S. Again by result 6 of [6] this
implies that S must be completely semisimple.

THEQOREM 3.5. Any completely regular semigroup can be em-
bedded in a completely regular semiband.

PROOF. If semigroup S is completely regular, then $ is a
semilattice Y of completely simple semigroups b,, e €Y.
We can suppose that S is a monoid with identity e; if the
original completely regular semigroup has no identity
element, we can always add the identity e.

We shall consider a subset T of yta(’S)

T = { yhXh, Fhx 1 X€D , YED,, ny €Y, vl

T contains (K/BNES since for any x€ S, hXh = &hXh € T.
We now proceed to show that the product of any two ele-
ments of T must belong to T. Therefore, let x€D,, y€D,,
s€D,, t€D,, with # ,A,k,» €Y, and » g, A >« . Then the
elements yhxh, YhX, Thsh and ThS belong to T.

(Fhxh) (¥hsh) = FheTsh
and

[}

(¥hxh) (Fhs) = Fh«Ts
both belong to T since y€D,, xts €D, with v 2p 2«xau = 7.

(¥h%) (Thsh) = Fhish

and

(¥h%) (ThS) = yhie
both belong to T since y€D,, xs €D with V>A>sz 7.
We conclude that T is a subsemlgroup of (t(S), and that
(K/ﬁ)ll/—s is subsemigroup of T.

Let us now consider any elements ?ﬁ"i'ﬁ and 7ﬁ'i of T,
with x€D , y€D , #,#» €Y, v >u . Then (7hxh)* = Fhixh,
and (yhx)2 yhfc" Since S is a completely regular semi-
group, X, xyx and x belong to a same H-class of S, and
consequently ﬁ?cﬁ, ﬁfﬁ(ﬁ and hf%h belong to a same H~class
of T. Let g be the identity of the maximal subgroup of S
containing x, then yhg belongs to T; & belongs to Ty since
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S = Sh&. We have (¥hg) (h¥h) = yhgkh = yh¥h, and §(Fhxh) =
ShxXh = hXh. By Green's lemma (lemma 2.2 of [31) (¥hg) (hxh)=
yhxh, (7h3) (hxyxh) = Fhiyxh and (yhg) (R&¥h) = Fh&xh must
belong to a same X-class of T. We have (¥hxh)& = FhX and
(Fh)h = ¥hxh, and so, by Green's lemma, (7hxh)8 = Fhx

~

and (yh&kh)§ = Fh&% must belong to a same ¥H-class of T.

We conclude that in T any element and its square belong

to a same ¥-class of T, and consequently T is a union of
groups by lemma 2.16 of [3]. Since (yhg)’ = yhE,

(xhg)® = %hg, and yh% = (Fhp)h(¥hE), we conclude that

iﬂE is the product of the three idempotents 7E§, h and
Xhg of T; $hXh will then be the product of the idempotents
Yhg, h, Xh§ and K of T. Consequently T is a completely
regular semiband which contains(K/ﬂ)WEfS.

THEOREM 3.6. Let S be any monoid. S contains a kernel V
if and only if &(S) contains a kernel if this is the case
V is embeddable in the kernel of A(S). If v is regular,

the kernel of ACS) is a semiband.

PROOF. By lemma 2.9 and theorem 2.10 every }*class of
dIS) meets (K/B)w S in exactly one J-class of (K/ v,

and dIS) = Y Jrgys Jpyy being the J-class of hxh in
d{S) for any x€ S. From this we have that there exists an
order preserving one-to-one mapping of iﬂ;%hpnto (K@ )%4}.
Hence, there exists a minimum J-class in K(S) if and only
if there exists a minimum F-class in (K/'ﬁ)\l*g S. Since a
minimum J-class of a semigroup clearly is the kernel of
that semigroup, the first part of the theorem follows. If
V is the kernel of §, U, De.y will be the minimum }-class
of de), since V is isomorphic with the subsemigroup

Jhxh #xe vy of (K/g)¥, we can conclude that V is
embeddable in the kernel of &(S). If V is regular,

Dg;g is a regular H-class of dE(\é) for all xeV; by lemma

1 of [ 6 ] any regular element of a semiband is a product

of idempotents of its D-class; thus, in our case xeng_-

is a regular semiband.
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COROLLARY 3.7. Let S be any regular simple semigroup, and
let SL%@& be a monoid with identity e. Then S ¢can be em-
bedded ip the kernel of #(SuUlet) which is a simple regu-
lar semiband. The kernel of ifgtﬁék) is completely simple
and only if S is completely simple.

'»'1,

PROOF. Since S is a regular kernel of SUfe}, S can be enm-
bedded in the kernel of JEETH;‘) by theorem 3.6; this ker-
nel of izgtmﬂ) is of course a regular simple semiband.
We can now use the same arguments as in the proof of 3.4
{(ii) : no pair of distinct comparable idempotents are

D -related in S if and only if no pair of distinct compara-
ble idempotents are d-related in the regular simple semi-
band Yo Dyer ¢ this implies that S is completely simple

X€

if and only if Dpyy is completely simple.

U

X€ES
L d .

THEOREM 3.8. Let S be any monoid. Then &(S) is completely

simple if and only if S is a group.

PROOF. Let &zg) be completely simple; by theorem 3.4

S must be completely semisimple, and by lemma 2.9 S must
be bisimple. Since S is a monoid, we conclude that §
must be a group. Conversely, if S is a group, jzé) must
be completely semisimple by theorem 3.4, and *Ig) must
be bisimple by lemma 2.9; hence,éEfé) must be completely
simple.

COROLLARY 3.9. Any countable group can be embedded in a

completely simple semiband generated by 5 idempotents.

PROOF. Let S be a group generated by two elements a and
b. It must be clear that (K/b)w S will be a subgroup of
the subsemlgroup of A(S) which is generated by the idem-
potents h a, b, al bd . This subsemigroup of sza

has the following giements’i hxh, h%, 3hxh, Fh%, a1 ' xR,
a”'h%, bhxh, Bh%, v ixh, b~ AX, for all xeS; hence this
subsemigroup of éZé) is completely simple and is a union
of 10 copies of S. By a result of [7] any countable group
can be embedded in a group generated by 2 elements; the
result then follows.
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REMARK 3.10. 1If S is any monoid, every element of ézé)
is a product of at most 4 idempotents. If S is completely
regular, then every element of the completely regular
semiband T considered in theorem 3.5 is a product of at
most 4 idempotents. If S has a regular kernel, then every
element of the kernel of 553) is a product of at most 4
idempotents of this kernel of &Eé) (by lemma 1 of [61 );
hence, by corollary 7 any completely simple semigroup is
embeddable in a completely simple semiband in which every
element is a product of at most 4 idempotents.

P
4. AN EXAMPLE : &(#)

We shall consider the bicyclic semigroup ¥ generated
by the two-element set {a,b& subject to the defining re-
lation ab = e, e being the identity element of € . Since
€ is bisimple but not completely simple, éfé) must be a
bisimple semiband which is not completely simple, by the-
orem 3.8.

~

We shall look for the idempotents of &4(€). h and b' 2
(i,j non-negative integers) clearly are idempotents of
P . . T IR
&(T). If for some non-negative integers i,j, hb a 1is an

L e
idempotent of &(®), then

T ST 2T

hb'a = (hb a )" = h(b a )",
and by lemma 2.6 this implies b al = (bi 2 )2 in ¥; hence
Pt

~oi ] . . T . . . .

hb a° is an idempotent of &(€) if and only if i = j.
Analogously, for anx non- negative integers i,j,m,n,

hb' &' i and b 'a"h b'ad will be idempotents of &4(®) if and
only if i = j. If for some non-negative integers i,j,m,n
m ny i 37 . . [y

b'ahbahis an 1dempotent of at(t), then

D d ~
ﬂ'l n ol lTl no

hbah (bahbah)
- m nhbabm nb1 )E,

and by lemma 2.6 this implies b'a’ = b'a b™a"b'd in e ;
from this we have m<j and j-m = i-n; conversely, for any
nzn;zeg?tlze integers 1f3,m,n w1thxn€}~§nd j-m = 1-n
b'ahb J h must be an idempotent of dce) .
P——r
The idempotents of A(€) have been marked in the table

259



PASTIJN

on next page; in this table the rows are the &-classes
P
and the columms are the £-classes of &A().

£

k(%) contains a copy of the spiral semigroup :
~ G o T " P~
) uSk(L) is a bisimple subsemigroup of A(€) generated
by the 4 idempotents 3, &, K and ¥hbh. It is easy to see

N

that this subsemiband of &(€) is isomorphic with the
semigroup generated by the elements of {ei ,fi 28 by 1 i
non-negative integer} subject to the defining relations

2 2 2 -
ei—-ei,fi-fi,gi—gi,hi-h.,
eifi=ei’fiei=fi=gf » fg =g =gh
hig, =h, hie ,=e,,¢e,,0 =h

© €1 T Cet® T Car v L T fn#lfl = £,

B 81 = 88 = 8 NN =B ho= b

for any non-negative integer 1i.

g3 £,
g2..._......._.................f2
81"-—-1;1
€
h €,

THEOREM 4.1. There exists a countable infinite number of

non-isomorphic bisimple semibands of type 3 which are not

completely simple.

PROOF. Let m # 0 be any non-negative integer. Since
~~ m> ~'71'1~”?‘n . my i - T m’l"‘"l\’l_*
(ha) "hd' ha hb = ha b = he = e, and (ha) hb =
I D B T v e ; T~

ha™ " hb™ = ha™ " b" = hb, the suk_slemlband of &(e) genera-
ted by the 3 1dempotents h, a, b" is exactly the bisimple
semiband ed’(t) Uad:(t) mef.(t) The £-classes of this sub-

Vet
semiband <h a, b > of KAL) contamﬂ; or 3 idempotents.

For any 0<1<m the L~ c}ass of 3ha' h contains the two
idempotents hb a'h and 3hb' 7' R (these idempotents are
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TABLE of .Mmmu

" T — P~ ~ N ™ ~ ~

T "R fb'a"h fib’ ah o h Fir Fora

\I\}‘ ~ ~ Ens R il Pnsind ~

hba" "' i T h * Tbah Tbh hb * hba

~ T e e ~ ~ —~

ha  h ha h . hZh #* h L ha
o —~, e Y —

. @’ a™ "k ahb’ a"h o * T ahb h ped TbTa
P o~ sy P P e v~ o~
ahba™ "' h ahbah ahbah # Zhbh ahb *3hha
T, T e o * 3 e
Pt — P o P . ~ e ~ P

. b’ h b"hb’ a™h b hb” ah Nk (e b’ a
o i o Pt N I

* y™ba " h b hba h w.  b'hbah b hbh b hb *h "hba
O r— o~ 7 ~—r
b'ha""h % b'he'h . 5ER 5 * " b"ha

\,.\).\\.m..!l\\( \:’\2u f \I\)N\ =T~ \ﬁ\“\l\? \Jl\“.\\’\ o~
....ﬂ GSW; Eus »l maﬁw h b _Nn Eua * @:.m " WEmz T.U.: T b m: 3,05 1 h b ~m= 36: wl U_:Ns Eu: w1
TR AR #0 B ah FERTa  ba ho R VERe  bahha
\.l...l\.(\.l.w-l\.( \’I\.lvl\ \I.I\.“ '~ \_’\7"\',\.( \...l.\7m« \.’I\\.“.\l\
I S T At S S :&ﬂ w  Dahblah  bUahboh e b a"hb’ a
v B2 hba" " b a"hba"h w b a"hbah b a" bR b a"hb w b2 hba
b a"ha"* "a"ha

~ St P e ~
& b hath I e N * b2 b ha
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different by lemma 2.6). For any non-negative integer i,
with m<i, the £—class of Eha h contains the three idempo-
i 1 e TR e mi

tents hb a h, ahb "a' R and b"hb a 'h (these idempotents
are different by lemma 2.6). For any non-negative integer
i, the £H- class of ha contains the three idempotents
hb'a', afib'a' and b a
rent by lemma 2.6). We conclude that for any non-negative

(these idempotents are diffe-

integer m, <ﬁ,5,gﬁ> is a bisimple semiband of type 3 in
which exactly m £-classes contain only 2 idempotents,
consequently, if m, £0 and m % 0 are any two different
non-negative 1ntegers &h a,b 1> and xh a,b 2> cannot be

isomerphic.
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