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R E S E A R C H  A R T I C L E  

EMBEDDING SEMIGROUPS IN SEMIBANDS 

Francis Pastijn 

Communicated by G. Lallement 

I. INTRODUCTION 

We shall use the notations and terminology of [3] . A 

semiband is an idempotent-generated semigroup. If n is any 

non-zero cardinal number, we shall say that a semiband is 

of type n if a minimal set of idempotent generators of the 

semiband has cardinality n [ I ] . 

In [8] Howie shows that any semigroup can be embedded 

in a semiband (see also [I ]). We shall give a more easy 

embedding theorem here. We shall also show that any semi- 

group can be embedded in a simple semiband and in a bisim- 

ple semiband. Furthermore, we show that any completely 

semisimple semigroup can be embedded in a completely semi- 

simple semiband, and that any completely regular semigroup 

can be embedded in a completely regular semiband. We shall 

make some remarks concerning semibands of type 3. 

2. THE IDEMPOTENT-GENERATED HULL OF A SEMIGROUP 

Let S be any semigroup. Let Y be a set such that YnS =0 

and such that for some ~Y we have I SI = I Y\~h~l . Let 

S -~ Y\~h~, x -~ ~ be a one-to-one mapping of S onto Y\~ 

Let F be the semigroup which is generated by the elements 
..2 

of Y, subject to the defining relations "h 2 -- "h~ and x = 

for all x~S. Let K be the subsemigroup of F which is gene- 

rated by the elements of Z -- ~h~ U xES ~ . It must be clear 

that K is a free semigroup which is freely generated by 
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the elements of Z. Hence, there exists a homomorphism ¢ of 

K onto S whichextends the mapping Z ~ S, h~ -~ x. Putting 
-I 

= ¢o¢ , we have K/~mS. Let 3 generate ~ on F. We call 

F/~ =~(S) the idempotent-generated hull of semigroup S. 

~(S) is a semiband which is generated by the elements of Y, 

subject to the defining relations 

-fi2 = -fi, 
~2 
x = ~ for all xeS, 

[~Xhyh = ~'~'~h f o r  a l l  x ~ y e S .  

LEMMA 2 . 1 .  K~ = [weF II (v,w)e~ for s o m e  veK~ = K 
and 

= anKXK. 

PROOF. Since ~ is the congruence on F which is generated by 

, we have 3c_~nKXK. Let us suppose veK, and (v,w)e~ Then 

there exist n > I, elements piEK, i = I,...,2n, elements 

uj ,v ieF 1 , j = 1,...,n, such that 

( P 2 j - i  'P2j  )6/~ , j = 1 , . . . , n ,  

V = U l P l V j  , W = UnP2n V, 

ujP2j V j = Uj¢I p2j¢l Vj,I, j = I,...,n-I. 

We have (Pl ,P2 )ca' and Pl ,P2 ,ulPlVl=veK' Let v = h~lh... 

...~Rk~ ; consequently Pl = ~m~'''h~m*q ~' I <m<k, 

0~q<k-m. From this we have 

u I = 1 or ~ if m = I, 

u I = h~lh...~m.l ~ or ~RI~...~I~ . I otherwise, 

a n d  

v I = I o r  ~ i f  q = k - m ,  

v2 -- ~ m , q . l  ~ ' ' ' ~ k  ~ o r  ~ m ~ l ~ 1 ~ . . . ~ k ~  o t h e r w i s e .  

L e t  u I' = I i f  m = I ~ a n d  u I' -- u l h  o t h e r w i s e ;  l e t  v I' = I i f  

q -- k - m ,  a n d  v I' = h v  I o t h e r w i s e .  S i n c e  Pl 'P2  eK we h a v e  

hPl  = Pl ~ = hP l  ~ = Pl  a n d  ]~P2 -- P2 ~ = ~P2 ~ = P 2 '  a n d  t h u s  

we h a v e  U l P l V  I = u l ' P l V  I' a n d  u l P 2 V  I -- u1 'P2Vl ' .  S i n c e  ul' , 

vl'eK I we have ui'P2V I' = u2P3V2eK; furthermore (Pl 'P2 )e~ 

implies (ul'PlVl' , ul'P2V~)63 , and thus (ulPlV 1 ,ulPzV1)63 

By induction we can show that uj P2j- ;vj , uj P2] vj 6K, and 

(ujP2j.lvj, ujp2jvj)e3 for all j = 1,...,n. Consequently 

weK and (v,w)e3 . We conclude that Ka = K and ~ = a,~KXK . 
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!HEOREM 2 .2 .Any  seni~youpS can be ~ m b e d d e d i n ~ s e m i b a n d  &(S) 

PROOF. By t h e  p r e c e d i n g  lemma we know t h a t  K/~m S a s u b s e -  
mig roup  o f  t he  semiband  F~ = ~ ( S ) .  

THEOREM 2.3. Any countable semigroup can be embedded in a 

semiband of t~ n~3. 

PROOF. Let S be a semigroup generated by the two elements 
k 

a and b. Let h~ be any element of K~ ; if x = a ~ b k2 ... 

• ..b km in S we have ~ = (h~h)k' Ch.b~ )k2... (~5~) km in 

~S). We conclude that SmK/~ can be embedded in the sub- 

semigroup of~(S) which is generated by the three idempo- 

tents h,~ and ~. Since any countable semigroup can be 

embedded in a semigroup generated by two elements (theorem 

II of [5]; see also §9.1 of [3]), it follows that any coun- 

table semigroup can be embedded in a semiband of type n<3. 

In this paragraph from now on we shall suppose that 

S is a monoid with identity e. Let X = Su(Y\~), and 

let us consider the following elements of the full trans- 

formation semigroup ~x : 

: X ~ X, x ~ x 

~ x 

and for all seS 

: X-~X, 

for all xeS, 

X ~ XS 

~ ~ f o r  a l l  xeS .  

The s u b s e m i g r o u p  o f ~  x g e n e r a t e d  by t h e  e l e m e n t s  ~ ,  

( s e S ) ,  w i l l  be d e n o t e d  by ~ ) .  T h i s  s e m i g r o u p  ~ ' ~ )  has  

been  m e n t i o n e d  i n  [1 l. 

LEMMA 2.4. In the semigroup ~ the following equalities 

must hold : 

~2 
x = x for all xeS, 

hxh~h = h ~ h  f o r  a l l  x,yeS. 

There exists a homomorphism ~ of ~(S) onto ~(S) such that 

~ = h and ~ = x for all xeS. The restriction of ~ to 

K/~ =-S is an isomorphism. 
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PROOF. The first part of the lemma is straightforward. Let 

us suppose that for some h~h, h~h~K]8 we have (hRh)~ = 

(h~h)$ . Then hxh = hyh, and thus x = ehxh = ehyh = y; 

consequently h~h = h~h. We conclude that ¢ maps K~mS 

isomorphically onto the subsemigroup of ~(S) consisting 

of the elements hxh (x~ S). 

LEMMA 2 . 6 .  I n  t h e  s e m ~  ~ S )  

m u s t  h o l d  : 

N 

THEOREM 2.5. Any monoid S can be embedded in the semiband J¢(S), 

the following e_e_qualities 

he = e, 

eh = h ,  

s t  = ~ f_q_or a l l  s , t c S ,  

h~h~ = h~"t for all s,t e S. 

The elements of d;(s) are : 

~,~,~,~,~,~,~,~, with s,t e s \le~. 

These elements are all different except for the following 

c a s e s  : 

~ ~ ~  ~ - - ~  
= h t  ~=~ = h t h  ~ t = s t  

= = v h t h  = v t  , 

Wit h V,S,t e S\~e~. 

LEMMA 2.7. (i) If L ~is __an Z-class of (K]~)~mS, then 

u ~L is the Z-class of ~) containing L. sE$ 
(ii) If R is an ~-class of (K]8)$ mS, then 

RuRe is the ~-class of d~) containing R. 

(iii) If D is a ~}-class of (K/~.)~ mS, the_~n 

(s ~s ~D) u (s ~s ~D~) i__ss the ~-class of ~(S) containing D. 

PROOF. (i) Let hxh be any element of L. The Z-class of 

~) containing this element will be denoted by L~h~ 

u ~L. Consider h~heL and any We must show that ~ ~s 

s~S; then ~(~hyh) = e~y~ = ~, and consequently ~h~h 

and ~ will be Z-related in ~); since hxh and hyh 

are Z-related in (%)$, they must also be Z-related in 

~), and we can conclude that g1~ is Z-related with 

hxh in ~). We have shown that s~sU ~g ~ L~g (observe 

t h a t  ~ L  = L ,  a n d  t h u s  L ~ s ~ s ~ L ) .  
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All elements of L~ must be £-related with hxh in ~'x'  

i . e .  t h e y  mus t  h a v e  t h e  same r a n g e  as h~h ( s e e  lemma 2.5  

o f  [ 3 ] ) .  Therefore the elements ~, h t ,  t h e ,  w i t h  t , v c S ,  c a n -  

n o t  b e l o n g  to  Lg~g • L e t  us i n v e s t i g a t e  t h e  r a n g e  o f  e l e -  

men t s  h ~ h ,  t h ,  h t h ,  ~ h v h ,  w i t h  t , v C S  : 

x ~ = s ~ ,  

X th  = S, 

X h t h  -- S t ,  

x i ~  -- s v .  

I f  h~h and ~h a r e  ~ - r e l a t e d  in  ~ )  f o r  some t ~ S ,  t h e n  

Sx -- S = Se, and in  t h i s  c a s e  we w i l l  have  t h a t  x and e 

a r e  Z - r e l a t e d  i n  S; t h i s  i m p l i e s  t h a t  h = heh  b e l o n g s  t o  

L, and cons~equen t ly  ~ h E s ~  s ~L.  I f  h~h and h~h a r e  £ - r e -  

l a t e d  in  ~ ( S )  f o r  some tES ,  t h e n  Sx = S t ,  and i n  t h i s  

c a s e  x and t a r e  Z - r e l a t e d  i n  S; t h i s  i m p l i e s  t h a t  h t h  

b e l o n g s  to  L, and c o n s e q u e n t l y  h~h ~ s ~ s ~ L .  I f  h~h and 

~h~h a r e  £ - r e l a t e d  in  ~ )  f o r  some t , v E S ,  t h e n  Sx -- Sv,  

and in  t h i s  c a s e  we w i l l  h a v e  t h a t  x and v a r e  £ - r e l a t e d  

in  S; t h i s  i m p l i e s  t h a t  hvh b e l o n g s  to  L, and c o n s e q u e n t -  

l y  ~h~h ~ s~s~L Hence we can conclude that L.~,..,.' -- U ~L 
" h x h  s E S  ' 

(ii) Let h~h be any element of R. The a-class of .~) 

containing this element will be denoted by R~ 

We must show that R~ = Ru R~. Consider any element 

h~h e R; then (h~h)~ = h~e = h~, and consequently h~ and 

h~h will be a-related in ~¢.~) ; since h~h and h~h are 

a-related in (K~)~, they must also be ~-related in ~), 

and we can conclude that h~ = (h~h)~ is a-related with 

h~h in ~). We have shown that R u R~R~ 

If h~h and h~h are a-related in ~(S) for some v~S, we 

must have h~hEh~h~). Since for all s,teS 

xh~h  = Sx,  X ( h ~ h ) ~ Y ,  X (h~h) (h~)~Y,  X(h~h) ( s ~ ) c Y ,  

h~h c a n n o t  be  e q u a l  t o  (hVh)~ o r  ( h ~ h ) ( h ~ )  o r  ( h ~ h ) ( s h ~ )  

f o r  some s , t e S .  I f  h~h = ( h ~ h ) ( h ~ )  f o r  some s~S ,  t h e n  

h~h -- h ~ ;  i f  h~h = ( h ~ h ) ( ~ h )  f o r  some s~S ,  t h e n  a g a i n  

h ~  = h ~ h ;  i f  h~h = ( h ~ ) ( s h ~ h )  f o r  some s , t E S ,  t h e n  

h ~  = h ~ ; i n  a l l  c a s e s  we can  c o n c l u d e  t h a t  x ~ v S  by  
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lemma 2.6. Analogously we will have vexS. This implies 

that x and v are R-related in S, and consequently h~heR. 

If hxh and h~ are ~-related in ~S) for some v e S, then 

= hve -- hv shows that hvh will be R-related with 

h~h in dt(~). By the foregoing this implies h~he R, and 

thus hve R~. 

If h~h and ~ are R-related in~) for some seS we 

would  h a v e  h~ = ~ s i n c e  h ( h ~ h )  = h~h;  we h a v e  h~ = ~ i f  

and only if ~ = e; but e is R-related with h = heh in 

). In this case h~h and heh are R-related in ~(S), 

and by the foregoing this implies that ~ = ~eR~ and 

thus ~ = ~ e R e .  

If h~h and ~h are R-related in d;(S) for some seS, then 

(~h)~ = ~e = ~ shows that ~ will be R-related with h~h 

in S. By the foregoing this implies ~ = ~eR~ and thus 

= ~eR. 

If h~h and ~h~ are R-related in~) for some s,tes, 

then they must also be R-related in ~x, i.e. (h~h) o 

(~)-i = (~)o(~)-I (see lemma 2.6. of [3 ]). Clearly 

ehxh -- ~hxh, and thus s-t = e~h~ = ~h~ = ~; consequently 

st = t, and ~h~ = h~ by lemma 2.6. By the foregoing we 

t h e n  h a v e  ~h~ -- h t e R e .  

I f  h~h and ~h~h a r e  R - r e l a t e d  in  d{:~S) f o r  some s , t e S ,  

t h e n  ( ~ h ~ h ) e  = ~ h ~  = ~h~ shows t h a t  ~h~ w i l l  be ~ - r e l a -  

t e d  w i t h  h~h i n  ~ ) .  By t h e  f o r e g o i n g  t h i s  i m p l i e s  

~ = h~eRe, and thus ~h~h = h~heR. 

Hence we can conclude that R~g~ = R u Re. 

(iii) is an immediate consequence of (i) and (ii). 

REMARK 2 . 8 .  The s i t u a t i o n  d e s c r i b e d  in  lemma 2 .7  i s  

made c l e a r  by t h e  f o l l o w i n g  p i c t u r e  o f  t h e ~ - c l a s s  o f  

an e l e m e n t  hxh o f  d ~ ) ;  we s u p p o s e  h~h e L and h ~ h e  R. 
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~D~ 

D~ 

Rg 

"'"" D ~  N 
h ~ h 

~D 

R 

,,,,,,,,l 

Remark t h a t ,  i f  ~ = e ,  we have  h~h = h ,  hx = ~ ,  shx = s .  

LEMMA 2.9. Every~}-cla_.ss_ o_f ~) meet__.~s (Kf~)4-~S in 

e x a c t l y  one ~ - c l a s s  o f  ( K / # ) 4 ,  and ~ S )  = x~S D~,~,~ . 

PROOF. h , e , s , ~ h  a l l  b e l o n g  t o  t h e ~ - c l a s s  o f  , ~ )  wh ich  

c o n t a i n s  h = E ~ E e  (K/#)4  f o r  a l l  s e S \ ~ e ~ ,  by lemma 2 .7  

and r em ark  2 . 8 .  h~ ,  ~h~,  gh~h a l l  b e l o n g  t o  t h e ~ ) - c l a s s  

o f  ~ )  which  c o n t a i n s  h ~ h e  ( K ~ ) ~  f o r  a l l  s , t e S \ ~ e ~  

We c o n c l u d e  t h a t  e v e r y ~ - c l a s s  o f  ~ ( S )  has  a n o n - v o i d  i n -  

t e r s e c t i o n  w i t h  ( K / # ) 4 ~ - S ,  and c o n s e q u e n t l y ~ S )  = 
u 

x .~S  

L e t  h ~  and ~ be any e l e m e n t s  o f  (K/#)~  t h a t  a r e  

- r e l a t e d  in  ~ ) .  Then R~V3~ n L~,~ i s  n o n - v o i d ,  and by 

lemma 2 .7  t h e r e  e x i s t s  an e l e m e n t  y e S ,  and an e l e m e n t  

weS which is Z-related with t in S, such that ~h~h~ 

~'r~" n L[~,~. S i n c e  ~ {h~h) = h ~ ,  we have  h~'~h = h{~hwh) = 

v-~w¢'h. By lemma 2 . 6 ,  we must  have ~h~h = h~h ,  and we can 

c o n c l u d e  t h a t  h~h e ~ n LZ~ From t h e  p r o o f  o f  lemma 
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2.7 we know that this implies that w and s are a-related 

in S. We conclude that s and t are~-related in S, and 

consequently, h~h and h~h will be ~-related in (K~)~mS. 

THEOREM 2.10.~_ymonoid S can be embedded in the semiband I(S) 

[resp. ~)] in such a wa~ that the restrictions t__o S of 

Green's equivalence relations on ~(S) [resp. ~)] are 

exactly ~the corresponding Green's e_quivalence relations 

on S. 

PROOF. The r e s t r i c t i o n  t o  ( K / ~ ) ¢ ~ S  o f  t h e  £ -  [ r e s p .  ~ - ,  

~ - , ~ - ]  r e l a t i o n  on~.(~'~) i s  e x a c t l y  t h e  £ - [ r e s p .  ~-, '~-,  
~ - I  r e l a t i o n  on ( K ~ ) ~ m S  : t h i s  f o l l o w s  i m m e d i a t e l y  f rom 

t h e  p r o o f  o f  lemma 2 .7  and f rom lemma 2 . 9 .  Le t  h~h and 

h~h be any e l e m e n t s  o f  ( K ~ ) ¢  which  a r e  I - r e l a t e d  i n  ~ ) .  

We have  h ~ h e  ~(-~) ( h ~ h ) ~ ) ~  in  f a c t  h~h e ( h ~ ) ~ )  (h~h) 

( h ~ S ) h ) .  S i n c e  h ~ S ) h  = ( K / ~ ) ¢ ,  t h e  f o r e g o i n g  i m p l i e s  

t h a t  t h e r e  e x i s t  e l e m e n t s  h~h,  h w h e  (K/~)~  , such  t h a t  

h~h = ( h ~ h ) ( h ~ h ) ( h ~ h )  = h v ~ h .  From lemma 2 .6  we c o n c l u d e  

t h a t  s = v t w e S t S .  A n a l o g o u s l y  we can show t e S s S .  We 

c o n c l u d e  t h a t  s and t a r e  ~ - r e l a t e d  in  S, and c o n s e q u e n t -  

l y  h~h and h~h w i l l  be ~ - r e l a t e d  in  ( % ) ¢ .  Thus t h e  r e s -  

t r i c t i o n  t o  ( K ~ ) ¢  ~ S o f  t h e  ~ - r e l a t i o n  on ~ ( S )  i s  e x -  

a c t l y  t he  ~ - r e l a t i o n  on ( K ~ ) ¢  . 

S i n c e  ¢ i s  a homomorphism o f  ~ S )  o n t o  ~ ) ,  t h e  c o r -  

r e s p o n d i n g  s t a t e m e n t  f o r  ~'(S) w i l l  h o l d  as w e l l .  

3. MAIN RESULTS 

THEOREM 3 . 1 .  L e t  S be  a~z monoid ;  t h e n  : 

(i) S is bisimple if and only if ~) is bisimple. 

(ii) S is simple if and only if ~) is simple. 

PROOF : immediate from lemma 2.9 and theorem 2.10. 

COROLLARY 3.2. (i) An Z semigroup can be embedded in a 

simple semiband. 

(ii) Anx semigroup can be embedded in a 

bisimple semiband. 

PROOF. (i) From theorem 8.3. of [ 2] (see also §8.5 of [ 3 ]), 
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we know that any semigroup S can be embedded in a simple 

monoid ~(S). Hence, S can be embedded in the simple semi- 

band ~(~(S)) . 

(ii) From a result of [ 9 ] (see also §8.6 of [ 3 ], we 

know that any semigroup S can be embedded in a bisimple 

monoid T. Hence, S can be embedded in the bisimple semi- 

band (~). 

REMARK 3.3. Corollary 3.2. (ii) contradicts a conjecture 

of [4]. 

THEOREM 3.4. Let S b__~e any monoid; then : 

(i) S is regular if and only if ~:~) is regular. 

(ii) S is completely semisimple if and only if ~) 

is completely semisimple. 

PROOF. (i) If S is regular, then every~-class of S con- 

tains an idempotent; hence every ~-class of (Kj~)#mS 

contains an idempotent. By lemma 2.9, we can conclude 

that every~-class of~:'~) contains an idempotent, and 

consequently, 4) will be regular. 

If ~'~) is regular, then h~h e (~h)~) (h~h) for all 

=(h~) ((K/B)~) (h~h) this shows that hxh is a regular 

element of {KI~)~ for_all xeS. We conclude that (K/#)~ 

S is regular. 
(ii) Let S be a completely semisimple monoid. Let ~x~ 

be any idempotent of (K/~)~ . If D~[, the~-class of 

h~ in ~), would contain a pair of distinct comparable 

idempotents, then D~[ contains a bicyclic subsemigroup 

having h~ as identity element; this would imply that 

D~ n (h~h)~)(h~h)~D~[~ (K/~)~ contains an idempotent 

which is different from hXh; by lemma 2.9 this would 

mean that the~-class of hxh in (K~)q m S would contain 

a pair of distinct comparable idempotents, and this is 

impossible since S is completely semisimple. We conclude 

that for any xeS, D~ contains no pair of distinct com- 

parable idempotents. Since then no pair of distinct com- 

parable idempotents are ~-related in ~S), ~S) must be 

completely semisimple by result 6 of [ 6] • 
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Let ~) be completely semisimple, No pair of distinct 

idempotents of~) are ~-related in ~), and consequent~ 

ly, no pair of distinct idempotents of (K~)@mS are 

~-related in (K~)@mS. Again by result 6 of [ 6 ] this 

implies that S must be completely semisimple. 

THEOREM 3.5. A_~ completely regular semigroup can be em~ 

bedded in a completely regular semiband. 

PROOF. If semigroup S is completely regular~ then S is a 

semilattice Y of completely simple semigroups De, a eY. 

We can suppose that S is a monoid with identity e; if the 

original completely regular semigroup has no identity 

element, we can always add the identity e. 

We shall consider a subset T of~) : 

T =~yhxh, yh~ I[ xeD , yeD , ~,v ~Y, ~ ~# . 

T contains (E~)¢mS since for any x~S, h~h = ~h~hET. 

We now proceed to show that the product of any two ele- 

ments of T must belong to T. Therefore~ let x~D , y~D , 

sED~, tED,, with g,~,~,~ ~Y, and v ~, ~>~ . Then the 

elements ~h, ~h~, ~h~h and ~h~ belong to r. 

and 

both belong to T since y~D~, xts~D with ~ >~>~^~ = 7. 

and 

both belong to T since y~D~, xs~D with ~ >g>~^g = v. 

We conclude that T is a subsemigroup of ~), and that 

(K/~)¢ mS is subsemigroup of T. 

Let us now consider any elements ~h~h and ~E~ of T, 

w i t h  x ~ D  , y ~ D  , # ,~  ~Y ~ >~  . Then (yEIE)  = = y h ~ x h ,  

and (~h~) ~ = ~ h ~ .  S i n c e  S i s  a c o m p l e t e l y  r e g u l a r  s e m i -  

g r o u p ,  x,  xyx and x ~ b e l o n g  to  a same ~ - c l a s s  o f  S, and 

c o n s e q u e n t l y  h~h ,  h x ~ h  and h ~ h  b e l o n g  to  a same ~ - c l a s s  

o f  T. Le t  g be the  i d e n t i t y  o f  t h e  maximal  s u b g r o u p  o f  S 

c o n t a i n i n g  x ,  t h e n  ~h~ b e l o n g s  t o  T; ~ b e l o n g s  t o  ~ / s i n c e  
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= ~h~. We have  (~h~) (h~h)  = y h ~ h  = ~h~h,  and ~(~h~h)  = 

~h~h = h~h. By Green's lemma (lemma 2.2 of [3 ]) (~)(h~h)= 

~h~h,  ( ~ h ~ ) ( h x ~ h )  = ~ h x ~ h  and ( ~ h ~ ) ( h x ~ )  = ~ h ~ h  must  

b e l o n g  t o  a same ~ - c l a s s  o f  W. We have (~h~h)~ = ~h~ and 

(~h~)h = ~h~h, and so, by Green's lemma, (~h~h)~ = ~h~ 

and (~h~h)~ = ~h~ must belong to a same ~-class of T. 

We conclude that in T any element and its square belong 

to a same ~-class of T, and consequently T is a union of 

g r o u p s  by lemma 2 .16  o f  [ 3 1 .  S i n c e  ( ~ ) 2  = y ~ ,  

(~)2 = ~, and yh~ = (~g)h(~h~), we conclude that 

~ is the product of the three idempotents ~h~ h and 

~g of T; ~h~h will then be the product of the idempotents 

~hg, h, ~h~ and h of T. Consequently T is a completely 

regular semiband which contains(K/~)$ mS. 

THEOREM 3.6. Let S be any monoid. S contains a kernel V 

if and only if~) contains a kernel; if this is the case 

V is embeddable in the kernel of ~). If V is regular, 

the kernel of ~'~) is a semiband. 

PROOF. By lemma 2.9 and theorem 2.10 every ~-class of 

dg('~) meets (K/~)$mS in exactly one ~-class of (K/~)¢, 

and ~'~) = x~s J~. J~ being the ~-class of ~" in 

~) for any xE S. From this we have that there exists an 

order preserving one-to-one mapping of  S A onto 
Hence, there exists a minimum ~-class in cYc(S) if and only 

if there exists a minimum ~-class in (K/~)$m S. Since a 

minimum ~-class of a semigroup clearly is the kernel of 

that semigroup, the first part of the theorem follows. If 

V is the kernel of S, x~V Dy~g will be the minimum ~-class 

of ~S); since V is isomorphic with the subsemigroup 

~ ~ x ~ V ~  o f  ( K / ~ ) ~ ,  we can c o n c l u d e  t h a t  V i s  

em bed dab l e  in  t he  k e r n e l  o f  ~ ' ~ ) .  I f  V i s  r e g u l a r ,  

D ~  i s  a r e g u l a r ~ ) - c l a s s  o f  d ~ )  f o r  a l l  x e V ;  by lemma 

1 o f  [ 6  ] a n y  r e g u l a r  e l e m e n t  o f  a s emiband  i s  a p r o d u c t  

o f  i d e m p o t e n t s  o f  i t s ~ ) - c l a s s ;  t h u s ,  in  o u r  c a s e  x ~ v D y ~  

i s  a r e g u l a r  s e m i b a n d .  
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COROLLARY 3.7. Let S b__£e any regular simpl e s_emigroup, and 

let S u~% be a monoid with identity e. Then s can h~ e_9_m- 

bedded i/) t h9 kernel of~('~ule%) which i_~s a simple re~u- 

la__r semiband. The kernel of ~ )  i__ss completely simple 

if and only i_f S i__%s comp!etely simple. 

PROOF. Since S is a regular kernel of SUre%, S can be em- 

bedded in the kernel of ~(S~e~) by theorem 3.6; this ker- 

nel of ¢t(S~%) is of course a regular simple semiband. 

We can now use the same arguments as in the proof of 3.4 

(ii) : no pair of distinct comparable idempotents are 

~-related in S if and only if no pair of distinct compara- 

ble idempotents are ~-related in the regular simple semi- 

band x~S D~ : this implies that S is completely simple 

if and only if x~Js D[~ is completely simple. 

THEOREM 3.8. Let S b__£e any monoid. Then ~) is completely 

simple if and only if S i_&s a group. 

PROOF. Let ~) be completely simple; by theorem 3.4 

S must be completely semisimple, and by lemma 2.9 S must 

be bisimple. Since S is a monoid, we conclude that S 

must be a group. Conversely, if S is a group, o[~) must 

be completely semisimple by theorem 3.4, and ~) must 

be bisimple by lemma 2.9; hence, J&'~S) must be completely 

simple. 

COROLLARY 3.9. Any countable group can be embedded in a 

completely simple semiband generated by 5 idempotents. 

PROOF. Let S be a group generated by two elements a and 

b. It must be clear that (K/#)~mS will be a subgroup of 

the subsemigroup of ~) which is generated by the idem- 

potents h, a, b, ~ rl , b'~ . This subsemigroup of ~) 

has the following elements : h~h, h~, ~h~h, ~, ~ h~, 
-~_,~ 
a" h~, bh~, bh~, b "~ h~h, ~ h~, for all xeS; hence this 

subsemigroup of ~S) is completely simple and is a union 

of 10 copies of S. By a result of [7] any countable group 

can be embedded in a group generated by 2 elements; the 

result then follows. 
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REMARK 3.10. If S is any monoid, every element of d~(S) 

is a product of at most 4 idempotents. If S is completely 

regular, then every element of the completely regular 

semiband T considered in theorem 3.5 is a product of at 

most 4 idempotents. If S has a regular kernel, then every 

element of the kernel of d~(S) is a product of at most 4 

idempotents of this kernel of &(S) (by lemma I of [ 6] ); 

hence, by corollary 7 any completely simple semigroup is 

embeddable in a completely simple semiband in which every 

element is a product of at most 4 idempotents. 

N 

4. AN EXAMPLE : ~(~) 

We shall consider the bicyclic semigroup g generated 

by the two-element set ~a,bl subject to the defining re- 

lation ab -- e, e being the identity element of ~,. Since 

is bisimple but not completely simple, ~) must be a 

bisimple semiband which is not completely simple, by the- 

orem 3.8. 

We shall look for the idempotents of ~(~.) . h and bta j 

(i,j non-negative integers) clearly are idempotents of 

d~(~'~. If for some non-negative integers i,j, hb I a J is an 

idempotent of (~, then 

"hb i a j = (hb '  a j = ~ ( b  ~ a J ) z  

• , . i j 2 
a n d  b y  lemma 2 . 6  t h i s  i m p l i e s  b a = (b i a j ) i n  ~ ;  h e n c e  

hb a i s  an  i d e m p o t e n t  o f  d~(g) i f  a n d  o n l y  i f  i -- j .  

A n a l o g o u s l y ,  f o r  an  z . _ ~ o n - n e g a t i v e  i n t e g e r s  i , j , m , n ,  
~ ~ bma n b i hb'a jh and h a j will be idempotents of d~(~) if and 

on~ if i = j. If for some non-negative integers i,j,m,n 

bmanh b I aJ h is an idempotent of ~), then 

bman ~ ~ , ~ . , ~ ~  ,~ . .e . ,  b I a J ~ = (bmanh b ~ a J h) 2" 

= bman h b I a J bmanb ~ a J h ,  

a n d  b y  lemma 2 . 6  t h i s  i m p l i e s  b i a  j = b i a j bmanb i a j i n  ~. ; 

f r o m  t h i s  we h a v e  m < j  a n d  j - m  = i - n ;  c o n v e r s e l y ,  f o r  a n y  

n o n _ _ n e g a t i v e  i n t e g e r s  i , j , m , n  w i t h  m < j  a n d  j - m  = i - n  

bmanh b"F~a h m u s t  be  an  i d e m p o t e n t  o f  ~ ( ' ~ ) .  

The i d e m p o t e n t s  o f  ~ ' ~ )  h a v e  b e e n  m a r k e d ~ i n  t h e  t a b l e  
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on next page; in this table the rows are the ~-classes 

and the columms are the Z-classes of ~). 

contains a copy of the spiral semigroup : 

a~) ue~:(~) is a bisimple subsemigroup of ~) generated 

by the 4 idempotents a, e, ~ and ~hbh. It is easy to s e e  

t h a t  t h i s  s u b s e m i b a n d  o f  ~ )  i s  i s o m o r p h i c  w i t h  t h e  

s e m i g r o u p  g e n e r a t e d  by  t h e  e l e m e n t s  o f  t e l  ' f i  ' g i  ' h i  11 i 

n o n - n e g a t i v e  i n t e g e r ~  s u b j e c t  t o  t h e  d e f i n i n g  r e l a t i o n s  

2 h 2 2 f 2  = f i  g i  = g i  ' = hi  e i  = e i  ~ i ~ i 

e i  f i  = e t  ' f i  e i  = f i  = g i  f i  ' f i  g i  = gi  = gi  h i  

hi gi = hi , hi ei • 1 = ei ~, 1 ~ ei 4.1 hi = hi 

e i  ei.,¢l = e i ÷ l e i  = e i ÷ l  ' f i  f i4.1 = f i , l f i  = f i~ . l  ~ 

gi gi*-I = gi~lgi = gi4-1 ' hi h i* l  = hi,el hi = hi*-i 

for any non-negative integer i. 

g3 f3 

g2 

• h2  

....... 2 

! el 
h 1 . . . . . . . .  e 2 

, H . e ,  

THEOREM 4.1. There exists a countable infinite number of 

non-isomorphic bisim Ip~ semibands off type 3 which are not 

completely simple. 

PROOF. Let m / 0 be any non-negative integer. Since 

(l~a}nh"~"'~ -- na  hD = na  D = ne = e ,  anct I na j  no = 

h a m ' l h b  m = ha  b = h b ,  t h e  s u b s e m l b a n d  o f  J~(l~) g e n e r a -  

t e d  by  t h e  3 i d e m p o t e n t s  h ,  a ,  b ~ i s  e x a c t l y  t h e  b i s i m p l e  

s e m i b a n d  e ~ ' ~  U a ~ ( ~ )  u b m ~ . ( ~ ) .  The Z - c l a s s e s  o f  t h i s  s u b -  

s e m i b a n d  ~ h , a , b  > o f ~ )  c o n t a i n  2 o r  3 i d e m p o t e n t s .  

F o r  any  O ~ i < m  t h e  Z - c l a s s  o f  ~ h a  h c o n t a i n s  t h e  two 

idempotents hb~a i h and ahb~a i h (these idempotents are 
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different by lemma 2.6). For any non-negative integer i, 

with m~i, the £-class of ah~'h contains the three idempo- 
~ ~ ~ b  i *1 a~"-~i " ~  tents hb' a lh, h and bmhb * .... a'h (these idempotents 

are different by lemma 2.6). For any non-negative integer 

i, the r-class of ~ai contains the three idempotents 

hb~ , a~b'~ and ~'hb'~ i (these idempotents are diffe- 

rent by lemma 2.6). We conclude that for any non-negative 

integer m, <h,a,b > is a bisimple semiband of type 3 in 

which exactly m £-classes contain only 2 idempotents; 

consequently, if m I ~ 0 and m~_~ 0 are any two different 
~ m 

n o n - n e g a t i v e  i n t e g e r s ,  < h , a , b  > and < ~ , ~ , ~ 2 >  c a n n o t  be 

isomorphic. 
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