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Efficient Line Search Algorithm 
for Unconstrained Optimization 1 

F. A. P O T R A  2 AND Y. SHI  3 

Abstract. A new line search algorithm for smooth unconstrained opti- 
mization is presented that requires only one gradient evaluation with an 
inaccurate line search and at most two gradient evaluations with an 
accurate line search. It terminates in finitely many operations and shares 
the same theoretical properties as the standard line search rules like 
the Armijo-Goldstein-Wolfe-Powell rules. This algorithm is especially 
appropriate for the situation when gradient evaluations are very expens- 
ive relative to function evaluations. 
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1. Introduction 

A general descent method for solving the unconstrained optimization 
problem 

min f (x ) ,  x e R  n, (1) 

where f is twice continuously differentiable and bounded below, can be 
described as follows. 

Algorithm A1. 

Step 1. Choose a starting point xl eR  n. 

Step 2. For  k-- 1, 2 . . . .  , execute the computations below. 

Step 2a. I f  Vf(xg)= 0, then stop. 
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Step 2b. 

Step 2c. 

Step 2d. 

Determine a search direction & such that 

Vf(xk)tsk < O. 

Determine a steplength ak > O. 

Set Xk+ l = Xk + akSk. 

Here, as throughout this paper, v t denotes the transpose of the column 
vector v. Different ways of selecting Sk in Step 2b yield different methods as 
described, for example, in Ref. 1 or Ref. 2. 

The steplength ak in Step 2c is determined by either an exact line search 
or an inexact line search. We concentrate on the inexact line search. This 
topic has been studied and discussed by many authors such as Goldstein 
(Refs. 3-4), Armijo (Ref. 5), Wolfe (Ref. 6), Powell (Ref. 7), Dennis and 
Schnabel (Ref. 1), Luenberger (Ref. 8), Fletcher (Ref. 2), Boggs and Schna- 
bel (Ref. 9), Gill et al. (Ref. 10), and so on. In general, most line search 
procedure may generate an enclosing interval [a, b] such that an acceptable 
steplength ak lies in [a, b]. Then, by generating and testing a new trial point 
in the current enclosing interval, either an acceptable steplength is obtained 
or the current enclosing interval is shrunk. There are various rules for accept- 
ing a steplength. If we use f ( a )  to denotef(xk+ aSk), then we have 

f ' ( a )  = V f ( xk  + ask)'s~. 

One of the most popular rules for accepting a steplength ak, based on the 
work of Armijo (Ref. 5), Goldstein (Ref. 4), Wolfe (Ref. 6), and Powell 
(Ref. 7), is given by 

f ( a )  <_f(O) + ap f ' (O) ,  (2) 

f ' ( a ) > ~ r f ' ( O ) ,  (3) 

where p c (0, 1/2) and cr ~ (p, 1) are two fixed parameters. The latter inequal- 
ity is sometimes replaced (cf. Ref. 2) with the more stringent one 

[f ' (a)l  _< a[f ' (0)l ,  o-e(p, 1). (4) 

Both (2), (3) and (2), (4) have good convergence results and are widely used 
in practice. The convergence is based on the fact that the above rules ensure 
a sufficient decrease o f f  for the steplength ak in the sense that 

f~ - f k + ,  >~(-gt~sk/I ls~ll  ), Vk, 

where ~(t) is a forcing function; i.e. for any sequence {tk}c[0, m), the 
condition l i m k ~  ~(tk) = 0 implies that l i m k ~  tk = 0. The following lemmas, 
taken from Ref. 11 and Ref. 10, are used in the proofs of Theorem 1.1 as 
well as Theorem 3.4. 
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Lemma 1.1. Let o-e[O, 1), and let ak be the smallest positive number 
satisfying 

f ' (  dk) = aft(O). 

Then, there is a forcing function (I)(t) such that 

~kllskll >O(--gtkSk/ Ilskll ), Vk. 

Lemma 1.2. Let pe(0, 1/2), and let O(t) be a forcing function. If ak 

satisfies (2) and 

aklls~ II ~O(-g~(sk//Iskll ), VK, 

then f incurs a sufficient decrease for the steplength ak. 

The following theorem shows that the steplength ak satisfying either 
(2), (3) or (2), (4) yields a sufficient decrease in f. 

Theorem 1.1. Consider a general descent method given by Algorithm 
A1. For each k, assume that ak satisfies the line search rules (2), (3) or (2), 
(4). Then, f incurs a sufficient decrease for the steplength a~. 

Proof. Let ak be as defined in Lemma 1.I. Then ak, satisfying either 
(2), (3) or (2), (4), should satisfy a~ > dk. Hence, 

ak llsk II - c~k IIs~ li- 

The result is then implied by Lemma 1.1 and Lemma 1.2. [] 

One disadvantage of the two sets of rules (2), (3) and (2), (4) is that 
they require extra gradient evaluations in the line search, especially when 
the line search is relatively accurate [for example, when (a, p )=  (0.1, 0.05)]. 
In order to reduce the number of extra gradient evaluations, one has to use 
a very loose line search by taking (a, p) to be for example (0.9, 0.001), 
which according to the folklore seems to give best overall results. However, 
this may cause a significant increase in the number of iterations. In the case 
of one-dimensional minimization, Brent (Ref. 12) gave an algorithm for 
enclosing a local minimum of f i n  an interval [a, b] without evaluating deriva- 
tives. Safeguarded quadratic interpolation is used in his algorithm to gener- 
ate new trial points, and an approximation of a local minimum is accepted 
when the diameter d of the current enclosing interval satisfies 

d_< 2(elx[ + t), (5) 

where e is the square root of the relative machine precision and t is an 
user-supplied positive number. Although the idea of safeguarded quadratic 
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interpolation has been widely used for generating new trial points in the 
general line search procedure, Brent's criterion (5) is not widely used, since 
on the one hand many function evaluations may be required for (5) to be 
satisfied and on the other hand (5) does not guarantee a sufficient decrease 
of f i n  general. However, the idea of terminating the search when the enclos- 
ing interval is sufficiently small is desirable and will be employed in our main 
algorithm. 

In 1982, Gill et al. (Ref. 10) used the divided difference to approximate 
the first derivative and proved that the steplength ak yields a sufficient 
decrease i n f i f  ak satisfies (2) as well as 

f ( a k )  > f (ak)  + (ak --ak)crf'(O), (6) 

for some ak such that 0 < ak < ak. We note that only the derivative f ' ( 0 )  is 
used in the formulation of rules (2) and (6). However (2) and (6) may not 
be satisfied even if the current enclosing interval is very small. In the present 
paper, we construct a line search criterion that is satisfied whenever the 
current enclosing interval is small enough, and at the same time guarantees 
a sufficient decrease o f f  Our line search algorithm requires no extra gradient 
evaluation if cr >0.5 and at most one gradient evaluation in addition to 
gk = Vf(xk) otherwise. It produces an acceptable a~ within finitely many 
operations. The steplength ak satisfies (2) for all k, is close to satisfying (3) 
in the sense described at the end of next section, and yields a sufficient 
decrease in f .  The new algorithm preserves the good convergence results of 
(2), (3) and is practically comparable with either (2), (3) or (2), (4). By 
employing a relatively accurate line search with our new algorithm, we may 
reduce both the number of iterations as well as the number of gradient 
evaluations. 

To summarize, our algorithm employs an acceptance criterion that is 
similar to (2)-(3), so that all the convergence properties will be preserved, 
does not require extra gradient values, induces a sufficient decrease in f ,  and 
terminates the line search when the enclosing interval is sufficiently small. 
The basic ideas can be described as follows. We note that, with the rules 
(2), (3), only the values f (0)  and f ' ( 0 )  are needed to reject a steplength a 
if (2) is not satisfied. If  (2) is satisfied, then one has to compute 

f ' ( a )  =g(xk + ask)t Sk. 

Then, a is accepted if (3) is satisfied and g(xk + ash) will be used to calculate 
f ' ( 0 )  at the next step, or a is rejected if (3) is not satisfied and the value of 
g(Xk + ash) is no longer of use in the algorithm. The main point of our 
algorithm is making good use of all gradient and function evaluations once 
they are computed. To this effect, at each step we consider a point a >0  
that satisfies (2) (initially a is set to be zero), and we accept the steplength 
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a > a  if 

f ( a )  <_f(a) + (a -a)pf ' (O) ,  (7) 

f ( a )  > f (a)  + (a -a)tyf '(O).  (8) 

Note that, for a = 0, the above conditions reduce to the Goldstein conditions. 
Also, if (7) is replaced by (2) [i.e., a = 0 in (7)], then the above conditions 
reduce to the rules of  Gill et al. (Ref. 10). If either (7) or (8) is not satisfied, 
then we use the computed value o f f ( a )  to determine new values for the 
point a and the steplength a. At the same time, unlike in the procedures of 
Goldstein or Gill et al. we also use the currently computed value o f f ( a )  to 
determine a new criterion for acceptability. The new criterion requires the 
satisfaction of  either an inequality similar to (3), but w h e r e f ' ( a )  is approxi- 
mated by the divided difference 

f [a ,  a] = ( f ( a )  - f ( a ) ) / ( a  - a), 

or another inequality that uses an approximation of  the second-order deriva- 
tive to guarantee that the current enclosing interval is small enough so that 
f will incur a sufficient decrease and that a is very close to satisfying (3). 
While the idea of  approximating the second-order derivative has been widely 
used with quadratic interpolation for generating new trial points in the line 
search, to our knowledge this is the first time that this approximation is used 
for establishing an acceptance criterion which has all the above-mentioned 
advantages. The algorithm is rather complicated to describe because it takes 
into account all possible cases. However, the extra work needed for coding 
it seems to pay off, because it makes use of  all information available at a 
given time. In the next section, after giving a complete description of  the 
algorithm, we will add more comments on its geometrical interpretation. 

2. Algorithm and Basic Properties 

Throughout this paper, we assume that f in (1) is twice continuously 
differentiable and bounded below, and consider the general Algorithm A1. 
Our line search algorithm includes six user-given parameters p, o-, J, r l ,  r2, 
T3, such that 

p~(0,  1/2), cry(p, 1), J~[2, 9], 

0 < r l < r 2 < l / 2 ,  ~3>2. 

Algorithm A2. Given f (0 )  =f(x~),  and f '(O) = g~Sk < O. 

Step 1. Check a = 1. 
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Step la. 

Step lb. 

Step lc. 

Step ld. 

Step 2. 

Step 2a. 

Step 2b. 

Step 2c. 

Step 3. 

Step 3a. 

Step 3b. 

Step 3c. 

Step 3d. 

Step 3e. 
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I f f ( l ) > f ( O ) + p f ' ( O ) ,  then set a = 0 ,  b = 1, go to Step 3; else, 
go to Step lb. 

If  or> 1/2, go to Step lc; else, go to Step ld. 

I f  f (1)>_f(0)+ tyf'(0), then set ak = 1, terminate; else, go to 
Step 2. 

Evaluate f ' (  1 ) = g(xk + Sk)tSk. I f f ' (  1 ) _> tYf '(0), then set ak = 
1, terminate; else, go to Step 2. 

At this step, note that we have f ( 1 ) < f ( 0 ) +  pf'(O) and either 
f (1)  < f ( 0 ) +  crf'(0), or f ' ( a ) <  crf'(O). Set al = 1, bl = J ;  for 
n = 1, 2 , . . . ,  do the computations below. 

I f f (bn)  >f (a , )  + (bn - an)pf'(O), then set a = a , ,  b = b,, go to 
Step 3; else, go to Step 2b. 

I f f (b , )  > f ( a , )  + (b , -a , )cr f ' (O) ,  then set ak = b,, terminate; 
else, go to Step 2c. 

Set an+, =b, ,  bn+~ =Jbn, go to Step 2a. 

At this step, note that we have an interval [a, b] with a > 0  
such that f ( a ) < f ( O ) + a p f ' ( O )  (see Lemma 2.1) as well as 
f ( b )  >f (a )  + (b - a)pf'(O). Set a~ = a, bl = b; for n = 1, 2 , . . . ,  
do the computations below. 

Take c, in [an+ "Cl(b,--an), an+ ~2(bn-an)]. 

If  

f (  c,) <_f(an) + (e, - a,)pf '(O), 

f(cn) > f(an) + (c,-an)crf '(O),  

then set ak = c,, terminate; else, go to Step 3c. 

Set 

An = [f[a, ,  c,, b,]] 

= [ [(f(bn) - f (en) ) / (bn  - on) 

- ( f (cn) - f ( a , ) ) / ( c n -  an)] / (b , -  a,)l. 

If f(en) <_f(an) + ( e , -  a,)pf '(O) and if ( p -  o-)f'(0)_> 
r3 (bn-an)An, then ak=C, and terminate; else, set an+~ = 
c,, bn+~ =b , ,  go to Step 3a; else, go to Step 3e. 

If  (p - o-)f'(0) > ~'3(b, - an)An and an > 0, then set ak = an and 
terminate; else, set an+~ = a , ,  bn+l =on, go to Step 3a. 
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We note that the steplength a accepted by the above algorithm must 
satisfy (2). In fact, if a > 0 satisfies (2) and if a > a, then 

implies 

f ( a )  < f (a)  + (a -a)pf '(O) 

f ( a )  <_f(O) + apf'(O). 

Therefore, if a >_ 0 satisfies (2), then we accept a steplength a > a provided 
that (7) and (8) are satisfied. Steps lc, 2b, 3b of Algorithm A2 terminate 
with this condition. In order to reduce the number of function evaluations 
that are necessary for obtaining a steplength satisfying (7) and (8), we also 
accept a steplength that lies together with the current steplength value in a 
sufficiently small interval [a, b], as in Steps 3d and 3e. Our criterion for 
sufficiently small is based on condition (3) and on approximating f " ( a ) / 2  
by 

f[a,  a, b] = [(f(b) - f ( a ) ) / ( b  - a) - ( f (a )  - f ( a ) ) / ( a  - a)]/(b - a), 

as described at the end of this section. In this case, if f ( a ) < f ( a ) +  
(a -a)pf '(O) then we accept a as ak as in Step 3d; otherwise, we accept a as 
ak as in Step 3e. Step 1 enforces that a = 1 is always tried first, and Steps lb-  
1 d guarantee that a~ = 1 will be asymptotically acceptable, as stated in Lemma 
2.2. Hence Step 1 of Algorithm A2 is not theoretically important and can be 
modified in practice. Theorem 3.2 in the next section tells that asymptotically 
our ak satisfies (3), as desired. Theorem 3.4 shows tha t fwi l l  always incur a 
sufficient decrease with our steplength ak. 

The following lemmas describe some basic properties of Algorithm A2. 

Lemma 2.1. 

(i) In Steps 2-2c, an > 1 and f(an) <f(O) + a,,pf'(O). 
(ii) At Step 3, a_> 0 and f (a)  <f(O) + apf'(O). 
(iii) In Steps 3a-3e, a, > O,f(a~) <f(O) + a~pf'(O), and 

f (bn)  > f (an)  + (bn - an)pf'(O). 
(iv) The steplength ag obtained from Algorithm A2 always satisfies 

(2). 

The proof of Lemma 2.1 is straightforward and therefore is omitted. 

Lemma 2.2. Let x ,  be a local minimizer o f f  such that G, = G(x,) is 
positive definite. Assume that the search directions in Algorithm A1 are 
such that the sequence {Xk} generated by Algorithm A1 with a~ = 1 for all 
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k converges supeflinearly to x ,  provided xl is sufficiently close to x . .  Then, 
the steplength ak = 1 will become acceptable for Algorithm A2 for all k 
sufficiently large. 

The above lemma applies clearly for the cases where the search 
directions are provided by the Newton method or BFGS method. The proof 
of  Lemma 2.2 follows immediately by using Lemma 2.5.3 of Ref. 2 and 
Steps l c - l d  of Algorithm A2. This also explains why, in Algorithm A2, we 
check a = 1 in different ways with respect to different values of or. Also 
notice that, with Algorithm A2, the only case where we may have an extra 
gradient evaluation (in Step ld) is cr < 1/2 and f ' ( 1 )  < crf'(0). Practically, 
if or< 1/2, we can use Step lc when k is small, and then switch to Step ld 
when k is large enough. This gives practical advantages while the theory still 
holds. 

Lemma 2.3. Only finitely many operations will be spent in Step 2 of 
Algorithm A2. 

Proof. 
Jb,, n = 1, 2 . . . . .  and 

f ( b n  +1) • f ( b n )  --]- (bn + 1 - bn) (T f ' (O) ,  

for all n. By induction, we get 

f(b,+l)<f(O)+b,,+~pf'(O), Vn. 

This contradicts the fact that f ( x )  is bounded below. 

Otherwise, we have a sequence {bn} such that bl =Jr, bn+l = 

[] 

Lemma 2.4. At Step 3 of Algorithm A2, the interval [a, b] includes an 
a which satisfies (2)-(3). 

ProoL 
some E E (0, b - a), 

f ( a )  <f (a )  + (a -a )o f ' (O)  

<f (a )  + ( a - a)pf'(O), 

Let 

We suppose t ha t f ' ( a )  < crf'(0), since otherwise a = a. Then for 

Then, there is an de(a , /1)  such that 

f'(a) = (f(l~) - f (a)) / ( I . t  - a) > pf'(O) > crf'(O). 

/1 = min{a ~[a+  E, b] ; f ( a )  >f(a)  + (a -a)pf ' (O)} .  

Va E (a, a + e). (9) 
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From the definition of g and (9), we deduce tha t  

f(t2) <f(0)  + 6tpf'(O). 

Hence, a~(a , /~ )  c_[a, b] and (2)-(3) are satisfied for a. [] 

Lemma 2.5. Only finitely many operations will be spent in Step 3 of 
Algorithm A2. 

Proof. Otherwise, we have a sequence of intervals {Jan, b,]}~=z such 
that 

b n - a n < ( 1 - r O n - l ( b l - a l ) - ~ O ,  when n ~ ,  

f (bn) > f (an)  -4- (b n - an)pf'(O), 

O < a = a l  <" �9 "<_an<" �9 �9 < b , < "  �9 �9 <_b~=b. 

If a ,=0 ,  for all n, then b , ~ 0  and 

f ( b . )  >f(0)  + bnpf'(O). 

This implies that there is a sequence {~.} such that ~.--.0 andf'(~n) > pf '(O),  
which is a contradiction. Hence, there must be an N such that 

an>0, for a l ln>N.  

But this implies that, when n > N, 

0 < (p - o')f'(O) 

< r 3 ( b . -  an)A. 

<(1/2)r~(bn-an)O--*O,  n ~ o o ,  

where �9 =maxa_<~_<b If"(a)l ,  also a contradiction. [] 

Let us note that the condition 

(p - cr)f'(O) > r3(b n - -  a.)A. (10) 

is an approximation of (3). In fact, if ak is accepted under (10) at either 
Step 3d or 3e w i t h f ' ( a k ) <  crf'(O), then the inequality 

f ( b . )  >f(ak)  + (b. - ak)pf ' (O) 

will imply that there is a t . e (a~ ,  bn)~_[a., b.] such that 

i f ( t . )  > pf ' (O) > o-f'(0) >f ' (ak) .  

Hence, there is a v . e ( a k ,  t.)~_[a., b.] such that 

( p -  o-)f'(0) < f " ( v . ) (  t. - ak) < _ f " ( v . ) ( b . - a . ) .  (11) 
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Now if (bn-an)llskll2 is very small, which asymptotically always happens, 
then f"(v~) is very close to 2A~. Since r3 > 2, a contradiction would occur 
between (10) and (11). Therefore, if ak is accepted under (10), then it is 
very likely that ak satisfies (3). Actually in the next section, we show that 
under certain conditions the steplength ak obtained from Algorithm A2 will 
satisfy (3) asymptotically. It will also be shown in the next section that, with 
our ak, whether it satisfies (3) or not, a sufficient decrease in f is always 
produced. 

3. Convergence Theorems and Asymptotic Properties 

In this section, we prove some convergence theorems and asymptotic 
properties of Algorithm A2. Throughout this section, we are considering 
Algorithm A1 where the steplength ak in Step 2c is determined by Algorithm 
A2. Before stating our results, it is convenient to introduce some notations. 
We write g(x) for Vf(x), gk for g(xk), and G(x) for the Hessian V~f(x). We 
denote by D the level set 

D = {x; f (x)  <f(xl)},  (12) 

where x, is the starting point in Algorithm A1. Some of the results are 
proved under the assumption that g is Lipschitz continuous on D; i.e., 

Hg(x)-g(y)l12<~.llx-yl12, Vx, yeO, (13) 

for some ~. > 0. Note that, if D is bounded, then (13) is clearly satisfied with 

= max II G(x)dl2. 
x e D  

However, we do not assume the boundedness of D. Throughout this paper, 
we will consider sequences generated by the general Algorithm A1. This 
algorithm terminates if gk = 0. In our analysis, we will be interested only in 
the case gk ~ 0 for all k, and this will be implicitly assumed in what follows. 
We denote 

cos 0k = --g~kSkl(llgk}lzllSkllz). 

Lemma 3.1. Let (xn} be generated by Algorithm A1 where tZk is given 
by Algorithm A2. Then for all k, there is an t~k satisfying (2), (3) and 

(14) 
O<ak<_Mak, 
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where 

M = m a x { J ,  1/rl} > 1. (15) 

Moreover, if (13) is satisfied, then 

ak >>-gtk Sk( tr - 1) / ( MAtlSkll ~). (16) 

Proof. For each k, let 

ak=min(a > 0 ; f ' ( a )  > trf '(0) }. (17) 

Due to the continuous differentiability and the boundedness assumptions 
on f, ak in (17) exists and 

f ' (ak) = trf'(0). (18) 

Furthermore, it is clear that, for any a e [0, Ok], 

f (a )  <f(O) + apf'(O), (19) 

because otherwise the mean-value theorem would imply that there is a 
number te(O, a ) _  (0, Ok) such that 

f ' ( t )  = ( f (a )  - f (O)) /a  > pf'(O) > o'f'(O), (20) 

which contradicts the definition of  t~k. We note that (18) and (19) show 
that ak satisfies (2)-(3). If (13) is satisfied, then 

0 < (tr - 1)f'(O) 

= f ' ( ak )  - f ' ( O )  

= I f ' ( a k ) - f ' ( 0 ) l  

--1 (g(xk + aks~) -gk)'s~l 

< llg(Xk+ akSk) --gkllzllskllz 

_< Zaklls~l122, 

which shows that 

ak _>_g~Sk(Cr -- 1)/(Z IIs~ II 2). (21) 

Now, we consider three possibilities: 

(i) if a~ is accepted at either Step lc or ld or 2b or 3b, then there is 
a number the(O, ak] such that f ' ( tk)  > crf'(0). Hence, 

ak>--tk>--ak, 

which implies (14); 



688 JOTA: VOL. 85, NO. 3, JUNE 1995 

(ii) if ak is accepted at Step 3d, then there is an interval [an, bn] such 
that an > O,f(b,)  > f ( a , )  + ( b , -  a,)pf'(O), and 

ak~[a,,+ r f f b . -  a.). an+ r 2 ( b . -  a.)]. 

This implies that a~ > rib..  As in (i), we see that b. > ak, and hence (14) is 
true; 

(iii) if ak is accepted at Step 3e, since a~ > 0, then ak is either equal 
to c; for some i<n,  or equal to al with al > 1. In the first case, the proof  in 
(ii) applies, while in the second case we only need to notice that ak = 
al > 1, bl =Ja~ =Jak,  and 

f ( b , )  > f ( a , )  + (b, -a , )p f ' (O) ,  

which implies that bl > ak. Therefore, (14) holds. 

Finally, if (13) is satisfied, then by combining (14) and (21), we obtain 
(16). []  

In the next theorem, we show that our line search algorithm enjoys the 
same theoretical properties as the standard line search procedures; see Ref. 
2, pp. 30-32 or Ref. 1, p. 121. 

Theorem 3.1. Consider a general descent method given by Algorithm 
A1. For each k, assume that ak is obtained from Algorithm A2. 

(i) If  g(x) is uniformly continuous on D and if cos Ok >_ e for some 
e > 0 and all k, then limk-,o~ gk = 0. 

(ii) If  (13) is satisfied, then limk_~ g'k&/11&l12 = 0. 
(iii) If  cos 0 ~ > e  for some E > 0  and all k, then l iminfk-~ 4lg~lJ2=0. 

Proof. We first note that the boundedness of  f implies that 

f ( xk )  -- f(xk+,)  --*0. 

(i) Lemma 2.1 and the assumptions in (i) imply that 

f (x~)  --f(xk+ ,) >_ peltgkllz]lXk+ , - xkll2. (22) 

Take ~k as obtained in Lemma 3.1; then, i f (Ok)>_aft(0)  implies that 

-g~ sk < [(g(xk + akSk) -- gk)' Sk]/ (1 -- a)  

< [ Ilg(xk + (tkSk) --gk 112 IlSk 112 ]/(1 -- or). (23) 
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If the conclusion is not true, then there would be an q > 0 and a subsequence 
{gk,} such that Ilgkill2-17 for all ki.  This and (22) imply that 

IlXk,§ l - xk, ll2--'O. 

Hence, 

IlXk, + ak, Ski-- Xk, ll2 = ak, ilSk, II 2 

~Mak,  llSk, ll2 

= M IlXki+ 1 - -  Xk  i H2 ~0 .  

Since both x, ,  and xk,+ (~k, Sk, are in the level set D, we have 

llg(x~, + ak, Sk,) -- gk, ll 2--*0. 

Then, (23) implies the contradictory relation 

6 ~ COS Ok~ 

< IIg(Xk,+ ak, Sk,) --gk, ll2/((1 -- a)Ilgk, II 2) 

< IIg(xk,+ ak,&,) --gk, l[2/((1 -- a ) r l ) ~ O .  

(ii) (23) and (13) imply that 

cos 0klig~ll2 < (Zaklls~ll2)/(1 - a )  

< (ZMakllSkll2)/(1 - a ) .  

This, plus Lemma 2.1, gives 

f ( x k )  - - f (Xk+ l) >_pak COS Okllgk [I21lSkl[2 

>_ [ p ( 1 -  a ) / ( ) ~ M ) ]  cos 2 0kllgkll22 

= [p(1 -- a)/()~M)]((gtkSk)/IlSkll2) 2. (24) 

Hence, the conclusion is true. 
(iii) Otherwise, for some 7/>0, Ilgk[12>r/ for all k. This and Lemma 

2.1 imply that 

f ( x k )  -- f (Xk+ I) > PeO [IXk + I -- Xk II 2, 

which furthermore implies that 

Ilxk§ x~l12 < ~o. 
k=l  
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Hence, {xk} is a Cauchy sequence in R n, and therefore xk~x ,  for some x , .  
From this, we see that there exists a neighborhood B(x,,  r) of x ,  such that 

{xk+ t(x~+l-x~); 0 <  t<M} ~ B(x , ,  r), 

for all k. Sincefis twice continuously differentiable, g is Lipschitz continuous 
on the bounded set B(x,,  r) with some Lipschitz coefficient ~ > 0. Take ~k 
as in Lemma 3.1 (21) still holds because age(0, Mak] and 

{x~ +as~ ; O<a <Mak} = {Xk + t(xk+1--Xk); O<t<M} 

~_ B(x, ,  r). (25) 

Therefore, (16) is also true for all k. Lemma 2.1 then indicates that 

f(xk) --f(xk +1) > [P(1 -- o')/(M•)] cos 2 Oh Ilgk II 

> [p(1 - cr)/(MZ)]E=llgkll~, Vk. (26) 

(26) implies that limk_oo Ilgk 112 = 0,  a contradiction. [] 

Note that point (iii) of Theorem 3.1 does not require any extra proper- 
ties of  g, while at point (i) we assume that g is uniformly continuous. In the 
hypothesis of the following theorem, we have the stronger assumption that 
G is Lipschitz continuous. 

Theorem 3.2. Suppose that {s~} determined by Algorithm A1 is such 
that Xk~X,, where x ,  is a local minimizer o f f  and Xk+l=Xk + aksk, with 
a~ determined by Algorithm A2, that G, = G(x,) is positive definite, and 
that there is an rl > 0 and a A > 0 such that 

[[G(x)-G(y)I]2<A[Ix-yII2, Vx, y~B(x, ,  rl). (27) 

Then, either xk = x .  for some k, or there is a/Co such that ak satisfies (3) for 
all k > k0. 

Proof. Let us assume that xk ~ x ,  for all k. The assumption of the 
theorem implies that there is an r2~(0, rl) such that: 

(i) f is strictly convex on B(x , ,  r2) ; 
(ii) there is an m > 0 such that 

z'G(x)z>mllzll~, VxaB(x,,  r2), z~R"; (28) 

(iii) IIG(x)- G(y)II2 < AIIx- yII2, Vx, yEB(x,,  r2). 
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Now, take 

r = rain { (1 - 2/v3)/(2AM/m),  rz} > O, 

where M = max {J, 1/r~}. Since Xk--'X,, there is a ko such that, for all k >_ ko, 

{xk +ask; O<_a <__Mak} = {Xk+ t(Xk+ 1--Xk); O<_t <_M} 

B(x , ,  r). 

For k > ko, we consider two possibilities. 

(I) If  ak is accepted at either Step lc or ld or 2b or 3b, then either 
f ' (a~)  > r or there is an a ,e  [0, a~) such that 

f (ak)  >_f(a.) + (ak -- a.)crf'(O). (29) 

Since f ( x )  is strictly convex on B(x . ,  rE), the conclusion is true. 
(II) If  ak is accepted at Step 3d or 3e and i f f ' ( a k )  < crf'(0), then it 

is easy to see that, in Step 3d or 3e, we have O<_a~<ak<bn<Mak, as well 
as 

f (b . )  >f(a~)  + (b. - ag)pf'(O). (30) 

Since {xk+aSk; O<a < M a k } _ B ( x , ,  r) and f ( x )  is strictly convex on 
B(x , ,  r), we have 

f ' (b . )  > ( f (b . )  - f (ak) ) / (bn  - ak) > pf'(O). 

Hence, there are numbers s e [a , ,  b . ]_  [an, b.] and t e [an, b~] such that 

f " ( s ) (bn-  a~) =f ' (b . )  - f ' (a~)  

> ( p -  cr)f'(o) 

>_ r3A,(b, - an) 

_> v3An(b. - ak) 

= (v3/2)lf"(t)l (bn - ak). (31) 

Since 

f " ( t )  = S'kG(X~ + tsk)Sk >_ m Ilsk II 2 > 0, 

(31) implies that 

f" (s)  > ( r3/2)f"( t) >0. 

This furthermore implies that 

1 > (r3/2)[1 - ( f " (s )  - f " ( t ) ) / f " ( s ) ] .  (32) 
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On the other hand, 

( f " (s )  - f " ( t )  ) / f"(s)  < (ll a(xk + aSk) 

-- a(Xk + tSk)112 II Sk II 2)/(m II sk II 22) 
< ( m / m ) l s -  tllsklh 

< (m/m)(b,  - a,)Ilsk Ih 

< (A/m)Mak ltsk II 2 

= ( A / m ) M  Ilxk+, - x~l12 

< (2A/m)Mr 

< 1 - 2/r3. (33) 

Combining (32) and (33), we arrive at a contradiction. [] 

The above theorem proves an asymptotic property of Algorithm A2. 
In what follows, we show that our algorithm is globally convergent 

under the same assumptions as those considered in Ref. 13. 

Lemma 3.2. Assume that the level set D is convex and that f is 
uniformly convex on D; i.e., there are two numbers p > v > 0, such that 

vllzH~<_z'a(x)z<l~ IIzll~, Vx~D, Vz~R". (34) 

Consider Algorithm A1, where ak is obtained from Algorithm A2. Then, 
there is a number o1 ~(p, 1) such that f '(ak)_> 0.1f'(0) for all k. 

Proof. The uniform convexity (34) implies that the Lipschitz condition 
(13) is satisfied with A,=p. Then from (34) and Lemma 3.1, and by using 
the fact that both xk and xk+ aksk are in the convex set D, we obtain 

f ' (ak )  - f ' (O)  =f"( t )  ak 

= s~G(Xk + tsk)s~" a~ 

_> v [Iskll~[(0.- 1)/(Mp Ilskll~)]g'ksk 

= [V(0. -- 1)/(Mp)]f '(O), 

for some te(0, ak). The lemma follows by taking 

0., = 1 - v(1 - 0.)/(Mp). [] 

Using the above result and the techniques developed in Ref. 13, we can 
easily prove the following theorem. 
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Theorem 3.3. Assume that the level set D is convex and that f is 
uniformly convex on D. Consider Algorithm A1, where we choose 
sk=--B-flgk, with Bk given by a member of the restricted Broyden family 
with ~b~[0, 1); (see Ref. 13), and where a~ is obtained from Algorithm A2. 
Then starting with xl and any symmetric positive-definite matrix B1, we 
have x ~ x . ,  where x.  is the unique minimizer o f f  

Finally, the following theorem shows that our line search algorithm 
guarantees a sufficient decrease in f 

Theorem 3.4. Let {Xk} be generated by Algorithm A1, where a~ is 
given by Algorithm A2. Then, f incurs a sufficient decrease with the step- 
length ak for all k. 

Proofi From Lemma 3.1, 

ak>(1/M)ak, 

for all k where ~ satisfies (2)-(3) and 

M=max{J ,  l/r1} > 1. 

It is clear that, if ~(t) is a forcing function, then so is (1/M)~b(t). 
Lemma 1.1, Lemma 1.2, Theorem 1.1, and Lemma 2.1 then imply our 
conclusion. [] 

4. Preliminary Numerical Experiments 

The conclusions of the previous sections show that the new line search 
Algorithm A2 preserves all the convergence properties of (2), (3), yet the 
computational work of extra gradient evaluations is saved. In this section, 
we present some preliminary numerical experiments comparing Algorithm 
A2 with Algorithm A3 [for (2), (4)] and Algorithm A4 [for (2), (3)] of 
Appendix A. Algorithm A3 is the same as the one presented in Ref. 2 and 
Algorithm A4 is a slight modification of A3 for the case in which we want 
to use rules (2), (3). Our implementations are straightforward. All the 
parameters are chosen in such a way that they would be consistent with all 
three algorithms. The descent direction in Step 2b of Algorithm A1 was 
computed as sk = --Hkgk, where the approximation Hk to the inverse of the 
Hessian is updated by the BFGS formula as described in Ref. 2. HI is chosen 
to be the identity matrix. The test problems are taken from Ref. 14 and are 
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Table 1. Test problems. 

Problem Function name Dimension Initial point 

1 Helical valley function 3 (-1,  0, 0) 
2 Biggs exp6 function 6 (1, 2, 1, I, 1, 1 ) 
3 Gaussian function 3 (0.4, 1, 0) 
4 Powell badly scaled function 2 (0, 1) 
5 Box 3-dimensional function 3 (0, 10, 20) 
6 Variably dimensioned function n (1 - i / n ,  i = I . . . . .  n) 
7 Watson function n (0 . . . . .  0) 
8 Penalty function 1 n (1, 2 . . . . .  n) 
9 Penalty function 2 n (0.5 . . . . .  0.5) 

10 Brown badly scaled function 2 (1, 1) 
11 Brown and Dennis function 4 (25, 5, -5 ,  -1 )  
12 Gulf research and development 3 (5, 2.5, 0.15) 

function 
13 Trigonometric function n (1/n, 1/n . . . . .  1/n) 
14 Extended Rosebrock function n (-1.2, 1 . . . .  , -1.2, 1) 
15 Extended Powell singular n (3, -1 ,  0, 1 . . . . .  3, -1 ,  0, 1) 

function 
16 Beale function 2 (1, 1) 
17 Wood function 4 (-3,  - 1, -3 ,  - 1 ) 
18 Chebyquad function n (i/(n + 1), i= 1 , . . . ,  n) 

Only function names are listed; for the explicit expressions of the function, see Ref. 14; n is a 
user-given integer. 

l i s ted  in  T a b l e  1. T h e  m a c h i n e  used  w a s  a n  E n c o r e - M u l t i m a x  wi th  d o u b l e  

p rec i s ion .  T h e  t e r m i n a t i o n  c r i t e r i o n  is 

f ( x ~ )  - f ( x k +  ,) <_ E, 

w h e r e  e is a g iven  pos i t i ve  n u m b e r  (cf. Ref .  2). T h e  p a r a m e t e r s  in  A l g o r i t h m  
A 2  a re  c h o s e n  as  

J = 2 ,  r ,  = 0 . 1 ,  r 2 = 0 . 5 ,  r3=2.5. 

T h e  p a r a m e t e r s  in  A l g o r i t h m s  A 3  a n d  A 4  a re  c h o s e n  as  

~ = 9 ,  r l  = 0 . 1 ,  r2 = 0 . 5 .  

Th i s  c o r r e s p o n d s  to  the  va lue s  p r o p o s e d  in  Ref .  2, pp .  34-36 .  W i t h o u t  loss  
o f  gene ra l i t y ,  the  u s e r - s u p p l i e d  l o w e r  b o u n d f i s  set  as  f = - m a x r e a l ,  w h e r e  
m a x r e a l  is the  m a x i m a l  rea l  n u m b e r  r e p r e s e n t a b l e  o n  the  m a c h i n e .  In  A l g o -  
r i t h m s  A 3  a n d  A4 ,  i f  

12>2ai--Oli-1 a n d  m i n ( / ~ , e t , + Z ( a , - a , _ l ) ) = a , + Z ( a , - a , _ , ) ,  
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then 

a i .  1 ~ [ 2 a ; -  ~i_ 1, ~2,-+/~(a;- a , -  1)] 

is chosen as 

~ 2=2=2~1  - ~o=2~1,  i f i  = 1, (35a) 

~t+l = a~+ 2 ( a ; -  ai_ i) = 2ai, i f i > 2 .  (35b) 

This is consistent with J =  2 in Algorithm A2. In choosing c. at Step 3a of  
Algorithm A2, we noticed that a. is the current best estimate of ak ; hence, 
we took 

c1 = al + 0.3(bl - al);  
for n = 2 ,  3 . . . .  , if {a., b.} = {a.-1, c.-1}, then t . = b . _ , ,  else t . = a . - i .  

Let P(an, b., t.)(x) be the quadratic polynomial interpolating f ( a )  at 
a . ,  b. ,  t.. If  P(a.,  b.,  t.)(x) has a minimum x. and if 

x,,~[a,, + O.l(b,,-an), a,, +O.5(bn-a,)], 

then c, = x,  ; otherwise, 

c,,=a,+O.3(b,,-a,,). 

For Algorithms A3 and A4, we chose 

aj~[[aj + O.l ( bs-  aj), b F  O.5(bF aj )]] 

in a similar manner, using the fact that aj is the current best estimate of ak. 
As we mentioned in Section 2, when using Algorithm A2 with o-< 

1/2, we simply check Step lc when k is small, and then switch to Step ld 
when k is large enough in some sense. In our experiments, with o-= 0.1, we 
switched from Step lc to ld when 

f (xk)  - f ( x k +  1) <- 1.05e. 

With Algorithm A2, we do not guarantee that 

(gk + 1 - gk)t(Xk + 1 -- X~) > 0, Vk. (36) 

However, in the BFGS formula (Ref. 2), (36) is needed to preserve the 
positive definiteness of  the matrix Hk. Therefore in our implementation, we 
used the following modification after calling Algorithm A2: 

denote Yk = g~ + l - gk, ~ = xk + 1 - -  Xk ; 
if )'~6k > 0, no modification; 
if Y~,6k-- 0, then set $k = 6~ + Ckyk, where 

Ck = [(o'g~-gk+ i)'akl/(y~,yk) ; 

use 6k in place of  8k in updating Hk. 
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With the above modification, 

r~Sk > O, for all k. 

Hk+l (see Ref. 2) will be positive definite and H~+ l~'k = ~ .  Furthermore, 
according to Theorem 3.2, asymptotically we will have f'(al,)>trf'(O), 
which implies that 7~rk>O. Hence, the superlinear local convergence of 
BFGS will be preserved. 

We also want to mention that, although the above modification was 
implemented, in our experiments the case 7~k < 0 never actually occurred, 
supporting our arguments at the end of Section 2. 

In our experiments, we tested all problems listed in Table 1 with n = 
20, 40, e =  10 -8, 10 -12, (a, p)=(0.9,  0.001) for inaccurate line search, and 
(o-, p) = (0.1, 0.05) or relatively accurate line search. The results are listed 
in Tables 3-6 of Appendix B; they are summarized in Table 2. In Tables 
3-6, the first column indicates the number of the test problem; for example, 
6 (20) means Problem 6 with dimension n = 20. The second, third, and fourth 
columns show the number of iterations, number of function evaluations, 
and number of gradient evaluations, respectively. The abbreviations 'nit', 
'nfe', 'nge' stand for number of iterations, number of function evaluations, 
and number of gradient evaluations, respectively. We set the maximum itera- 
tions number to be 500 in our experiments, and - -  means that the problem 
is not solved within 500 iterations. For the convenience of comparison, we 
list in Table 2 the total number of iterations (NIT), total number of function 
evaluations (NFE), and total number of gradient evaluations (NGE) in 
solving all the problems. The tables show that Algorithm A2 is comparable 
with A3 and A4 in our experiments for inexact line search. 

When we use a line search algorithm with either rules (2), (3) or rules 
(2), (4), we can reduce the number of iterations by making the line search 
relatively more accurate. In fact, when (a, p )=  (0.1, 0.05) nit is much less 
than that for (a, p) = (0.9, 0.001). However, nfe and nge increase tremend- 
ously. Since generally the function and gradient evaluations are more expen- 
sive, many authors suggested that in practice accurate line searches should 
be avoided. Actually, choices such as (a, p) = (0.9, 0.001) are very often 
used in practice. By contrast, our experiments show that, with our line search 
algorithm, a relatively more accurate line search may significantly reduce 
the number of iterations as well as the number of gradient evaluations. 
However, the number of function evaluations will increase. Therefore, this 
algorithm is especially appropriate for the situation when gradient evalua- 
tions are very expensive relative to function evaluations. 
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Total number of iterations, function evaluations, and gradient evaluations 
in solving all the problems. 

Algorithm A2 Algorithm A3 Algorithm A4 

Cases NIT NFE NGE NIT NFE NGE NIT NFE NGE 

1 1455 2928 1455 1470 2878 1560 1450 2820 1489 
2 1258 8765 1270 1104 4408 2801 1326 3718 2466 
3 1 problem unsolved 2 problems unsolved 2 problems unsolved 
4 1 problem unsolved 1 problem unsolved 1 problem unsolved 

Case l :  cr=0.9, p=0.001, e=10  -8. 
Case 2: cr=0.1, p=0.05, e=10  -8. 
Case 3: (r=0.9, p=0.001, 6 = 10 -~2. 
Case 4: (r=0.1, p=0.05, E=I0  -u.  

5. Appendix A: Line Search Algorithms 

In this appendix, we list two line search algorithms with rules (2), (3) 
and (2), (4), respectively. Algorithm A3, using (2), (4), is the same as the 
one presented in Ref. 2. We check ak = 1 first as we do in Algorithm 
A2. Algorithm A4 is a modification of Algorithm A3 so that we use 
(2), (3) instead of (2), (4). Algorithm A3 is associated with a subroutine 
Section 1 (at, bi) and Algorithm A4 needs to use a subroutine Section 2 
(ag, b~). There are six user-given parameters p, tr, ~, r l ,  r~ ,~ such that 

pc(0,  1/2), cry(p, 1), ,~> 1, 

and f is a user-supplied lower bound o f f ( a ) .  

Algorithm A3. 

Step 0. 

Step 1. 

Step 2. 

Step 2a. 

Step 2b. 

Step 3. 

Step 3a. 

0<  r l <  r2_< 1/2, 

Set a0 = 0, a, = 1,/1 = (f- f(O))/(pf '(O)).  

For i = 1, 2 . . . .  , execute the computations below. 

Evaluate f (  8 i). 

I f f ( f f i )  <f ,  then set ak = t~, terminate. 

If  f(6ti)>f(O)+a~pf'(O) or f(tt~)>f(aT_l), 
ai=aT_l, b~=Cti, execute subroutine Section 
terminate. 

Evaluate f ' ( t~ ) .  

If  If'(a,')l -< - ~f'(O), then set a~ = &, terminate. 

then set 
1 (ai, bi), 
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Step 3b. If  f ' ( a t )>0 ,  then set ai=at, b~=aF-1, execute subroutine 
Section 1 (ai, bt), terminate. 

Step 4. If  p < 2~,.- a t -  1, then take a ~  ~ = p ; else, take 
a~ l  e[2a,.-a/---l,  min(p, a,+ z (a t -  1))1. 

Subroutine Section 1 (a;, b~). Note that now it is not necessary that 
at< b,.. For convenience, let us use [[a, b]] to denote an interval with end- 
points a and b, and a is not necessarily less than b. 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

Algorithm 

Step 0. 

Step 1. 

Step 2. 

Step 2a. 

Step 2b. 

For j =  i, i+  1 . . . . .  execute the computations below. 

Take 

aje  [[a 1 + r, (bj- aj), bj-  v=(bj- aj)]]. 

Evaluate f ( a j ) .  

If f(aj)>f(O)+ajpf'(O) or f (aj )>f(aj)  , then set aj+~= 
aj, bj+ l = t~j ; else, evaluate f ' ( a J ) .  

If  [f '(aj)l  < - t r f ' ( 0 ) ,  then set a k = a j ,  terminate; else, set 
aj+ l = a j .  

If (bj- aj)f'(aj) > O, then bj+ ~ = aj ; else, bj+ 1 = bj. 

A4. 

Set a0=0 ,  al = 1,/.t = (f-f(O))/(pf '(O)).  

For i = 1, 2 , . . . ,  execute the computations below. 

Evaluate f ( a i ) .  

I f f( t~i)  <fi  then set ak = eL-, terminate. 

I f f ( a e )  >f(O) + a~pf'(O), then set a~= aT-l, b,.= a;, execute 
subroutine Section 2 (ai, bi), terminate. 

else, take 

Subroutine Section 2 (ai, b~). 

Step 1. For j =  i, i+  1 . . . . .  execute the computations below. 

Step 3. Evaluate f'(~ti). 

Step 3a. If  f '(a,.)> crf'(0), then set ak = at, terminate. 

Step 4. If  p_<2&-~7,-_l, then take a ; + l = p ;  
a ~ ,  e [ 2 ~ -  aF- 1, min(p, ~ + A, ( ~ -  aT- 1))]. 
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Step 2. Take 

aj~[[aj+ r l (bj -  aj), b j -  r2(bj- aj)]]. 

Step 3. Evaluatef(aj).  

Step 4. If f(~tj)>f(O)+ajpf'(O), then set aj+l =aj, bj+~=aj; else, 
evaluate f'(c~j). 

Step 5. I f f ' ( a j )  >_ err'(0), then set ak = aj, terminate; else, set aj+~= 
aj, b~+,=b i. 

Note that in subroutine Section 2 (a,., bi), by induction it is easy to see 
that bj> aj for all j = i, i+ 1 , . . . .  Therefore, f ' ( a j )  < o'f'(0) < 0 will imply 
that (bj-aj)f'(aj) <0. 

6. Appendix B: Results of Numerical Experiments 

This appendix presents detailed results of the numerical experiments 
summarized in Table 2 of Section 4. We mention again that the first column 
in the following tables (3-6) indicates the number of the test problem, where 
for example 6 (20) means Problem 6 with dimension n = 20. See Table 1 of 
Section 4 for the list of test problems. 
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Table 3. Num ber  o f  iterations, function evaluations, and gradient evaluations when 
tr =0.9,  p=0 .001 ,  and e =  10 -8. 

Algorithm A2 Algorithm A3 Algorithm A4 

Problem nit nfe nge nit nfe nge nit nfe nge 

1 28 45 28 27 44 28 27 44 28 
2 37 44 37 36 44 39 37 43 38 
3 3 7 3 3 6 4 3 6 4 
4 67 98 67 65 100 74 53 80 55 
5 22 37 22 16 26 19 16 26 19 
6 (20) 23 47 23 23 47 24 23 47 24 
6 (40) 25 57 25 25 56 27 25 56 27 
7 (20) 45 73 45 45 73 46 45 73 46 
7 (40) 40 74 40 40 74 41 40 74 41 
8 (20) 17 34 17 17 33 18 17 33 I8 
8 (40) 25 54 25 25 54 26 25 54 26 
9 (20) 81 225 81 71 207 78 80 216 83 
9 (40) 263 545 263 270 509 283 286 522 290 

10 10 47 10 12 49 13 12 49 13 
11 22 70 22 22 70 23 22 70 23 
12 30 42 30 33 45 36 33 45 36 
13 (20) 39 44 39 39 44 42 39 44 42 
13 (40) 35 37 35 35 38 37 35 37 36 
14 (20) 140 250 140 123 241 127 124 235 125 
14 (40) 193 420 193 190 421 204 199 427 200 
15 (20) 60 103 60 60 102 61 60 102 61 
15(40) 68 136 68 69 140 72 68 136 69 
16 13 19 13 13 19 14 13 19 14 
17 28 56 28 28 56 29 28 56 29 
18 (20) 43 98 43 42 98 46 43 98 44 
18 (40) 138 266 138 141 282 149 97 228 98 
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Table 4. Num ber  of  iterations, function evaluations, and gradient evaluations when 
or=0.1, p=0 .05 ,  and e =  10 -8. 

Algorithm A2 Algorithm A3 Algorithm A4 

Problem nit nfe nge nit nfe nge nit nfe nge 

1 23 151 23 19 65 43 28 62 49 
2 25 170 25 25 86 69 31 78 71 
3 3 24 3 3 11 9 3 10 8 
4 45 306 45 36 154 106 47 120 93 
5 14 100 14 13 57 42 21 55 48 
6 (20) 9 80 9 7 48 25 7 46 23 
6 (40) 11 100 11 9 60 30 12 62 33 
7 (20) 29 211 29 30 122 84 36 103 76 
7 (40) 29 203 29 29 121 79 40 110 78 
8 (20) 70 497 70 73 283 214 106 237 207 
8 (40) 90 613 90 8 47 29 12 51 32 
9 (20) 51 436 51 38 177 91 58 ~ 5  110 
9 (40) 180 1170 180 176 722 472 220 619 438 

10 10 94 10 10 55 20 10 49 14 
11 15 125 15 14 82 32 19 80 33 
12 22 160 22 17 74 60 16 39 32 
13 (20) 34 207 34 33 89 74 37 69 69 
13 (40) 33 183 33 32 102 81 34 69 66 
14 (20) 88 623 90 86 336 210 91 266 167 
14 (40) 155 1105 155 151 613 352 165 489 285 
15 (20) 49 295 52 31 124 78 40 107 68 
15 (40) 62 442 62 34 138 75 75 219 147 
16 11 65 11 10 35 27 13 27 22 
17 24 153 24 52 192 132 30 90 60 
18 (20) 42 302 42 38 150 84 41 106 55 
18 (40) 144 950 151 130 465 283 134 310 182 
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Table 5. Num ber  of  iterations, function evaluations, and gradient evaluations when 
or=0.9, p=0 .001 ,  and E= 10 -12. 

Algorithm A2 Algorithm A3 Algorithm A4 

Problem nit nfe nge nit nfe nge nit nfe nge 

1 29 46 29 29 46 30 29 46 30 
2 39 46 39 38 46 41 39 45 40 
3 5 9 5 5 8 6 5 8 6 
4 152 205 152 146 211 166 153 207 155 
5 23 38 23 17 27 20 17 27 20 
6 (20) 25 49 25 25 49 26 25 49 26 
6 (40) 26 58 26 26 57 28 26 57 28 
7 (20) 60 89 60 60 88 61 60 88 61 
7 (40) 68 103 68 68 102 69 68 102 69 
8 (20) 141 209 141 130 196 147 142 200 149 
8 (40) 262 366 262 144 225 158 256 354 265 
9 (20) 437 681 437 416 666 446 - -  
9 (40) 321 603 321 331 570 344 329 565 333 

10 11 48 11 13 50 14 13 50 14 
I1 23 73 23 - -  24 79 27 
12 32 44 32 35 47 38 35 47 38 
13 (20) 45 50 45 45 50 48 45 50 48 
13 (40) 47 49 47 47 50 49 47 49 48 
14 (20) 174 284 174 146 264 150 149 260 150 
14 (40) 227 454 227 224 455 238 243 471 244 
15 (20) 111 156 111 107 150 109 114 156 115 
15 (40) 120 189 120 116 187 119 124 192 125 
16 14 20 14 14 20 15 14 20 15 
17 31 59 31 31 59 32 31 59 32 
18 (20) 54 109 54 54 110 58 54 109 55 
1 8  ( 4 0 )  - -  - -  - -  
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Table 6. Number  of  iterations, function evaluations, and gradient evaluations when 
cr=0.1,  p=0 .05 ,  and E= 10 -j2. 

Algorithm A2 Algorithm A3 Algorithm A4 

Problem nit nfe nge nit nfe nge nit nfe nge 

1 25 163 25 21 67 45 29 63 50 
2 26 176 26 27 88 71 33 80 73 
3 5 36 5 5 13 11 5 12 10 
4 107 750 107 91 356 261 120 299 247 
5 15 105 15 14 58 43 22 56 49 
6 (20) 10 86 10 8 49 26 9 48 25 
6 (40) 12 106 12 10 61 31 14 64 35 
7 (20) 34 249 34 34 142 102 45 130 103 
7 (40) 40 283 40 38 166 120 58 162 130 
8 (20) 76 530 76 77 297 227 114 250 220 
8 (40) 110 741 110 34 137 104 133 339 284 
9 (20) 244 1676 257 211 800 576 295 760 584 
9 (40) 202 1329 202 199 819 554 271 748 567 

10 10 94 10 10 55 20 10 49 14 
11 15 125 15 - -  20 130 64 
12 24 172 24 19 76 62 26 67 60 
13 (20) 40 259 40 37 104 86 40 73 73 
13 (40) 42 237 42 43 134 109 49 98 95 
14 (20) 99 707 99 98 391 258 111 320 221 
14 (40) 177 1262 177 169 696 422 190 563 359 
15 (20) 67 404 67 39 148 99 70 187 148 
15 (40) 93 653 93 55 219 139 120 325 253 
16 13 75 13 11 36 28 14 28 23 
17 25 159 25 54 194 134 32 92 62 
18 (20) 48 344 48 44 171 102 50 126 75 
18 (40) - -  362 1199 870 - -  
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