
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 85, No. 3, pp. 677-704, JUNE 1995

Efficient Line Search Algorithm
for Unconstrained Optimization 1

F. A. P O T R A 2 AND Y. SHI 3

Abstract. A new line search algorithm for smooth unconstrained opti-
mization is presented that requires only one gradient evaluation with an
inaccurate line search and at most two gradient evaluations with an
accurate line search. It terminates in finitely many operations and shares
the same theoretical properties as the standard line search rules like
the Armijo-Goldstein-Wolfe-Powell rules. This algorithm is especially
appropriate for the situation when gradient evaluations are very expens-
ive relative to function evaluations.

Key Words. Unconstrained optimization, line search algorithms.

1. Introduction

A general descent method for solving the unconstrained optimization
problem

min f (x) , x e R n, (1)

where f is twice continuously differentiable and bounded below, can be
described as follows.

Algorithm A1.

Step 1. Choose a starting point xl eR n.

Step 2. For k-- 1, 2 , execute the computations below.

Step 2a. I f Vf(xg)= 0, then stop.

~The authors would like to thank Margaret Wright and Jorge Mot6 for valuable comments
on earlier versions of this paper.

2Professor, Department of Mathematics, University of Iowa, Iowa City, Iowa.
3Assistant Professor, Department of Mathematics and Computer Science, Bloomsburg Univer-
sity, Bloomsburg, Pennsylvania.

677
0022-3239/95/0600-0677507.50/0 �9 1995 Plenum Publishing Corporation

678 JOTA: VOL. 85, NO. 3, JUNE 1995

Step 2b.

Step 2c.

Step 2d.

Determine a search direction & such that

Vf(xk)tsk < O.

Determine a steplength ak > O.

Set Xk+ l = Xk + akSk.

Here, as throughout this paper, v t denotes the transpose of the column
vector v. Different ways of selecting Sk in Step 2b yield different methods as
described, for example, in Ref. 1 or Ref. 2.

The steplength ak in Step 2c is determined by either an exact line search
or an inexact line search. We concentrate on the inexact line search. This
topic has been studied and discussed by many authors such as Goldstein
(Refs. 3-4), Armijo (Ref. 5), Wolfe (Ref. 6), Powell (Ref. 7), Dennis and
Schnabel (Ref. 1), Luenberger (Ref. 8), Fletcher (Ref. 2), Boggs and Schna-
bel (Ref. 9), Gill et al. (Ref. 10), and so on. In general, most line search
procedure may generate an enclosing interval [a, b] such that an acceptable
steplength ak lies in [a, b]. Then, by generating and testing a new trial point
in the current enclosing interval, either an acceptable steplength is obtained
or the current enclosing interval is shrunk. There are various rules for accept-
ing a steplength. If we use f (a) to denotef(xk+ aSk), then we have

f ' (a) = V f (xk + ask)'s~.

One of the most popular rules for accepting a steplength ak, based on the
work of Armijo (Ref. 5), Goldstein (Ref. 4), Wolfe (Ref. 6), and Powell
(Ref. 7), is given by

f (a) <_f(O) + ap f ' (O) , (2)

f ' (a) > ~ r f ' (O) , (3)

where p c (0, 1/2) and cr ~ (p, 1) are two fixed parameters. The latter inequal-
ity is sometimes replaced (cf. Ref. 2) with the more stringent one

[f ' (a)l _< a[f ' (0)l , o-e(p, 1). (4)

Both (2), (3) and (2), (4) have good convergence results and are widely used
in practice. The convergence is based on the fact that the above rules ensure
a sufficient decrease o f f for the steplength ak in the sense that

f~ - f k + , >~(-gt~sk/I ls~ll), Vk,

where ~(t) is a forcing function; i.e. for any sequence {tk}c[0, m), the
condition l i m k ~ ~(tk) = 0 implies that l i m k ~ tk = 0. The following lemmas,
taken from Ref. 11 and Ref. 10, are used in the proofs of Theorem 1.1 as
well as Theorem 3.4.

JOTA: VOL. 85, NO. 3, JUNE 1995 679

Lemma 1.1. Let o-e[O, 1), and let ak be the smallest positive number
satisfying

f ' (dk) = aft(O).

Then, there is a forcing function (I)(t) such that

~kllskll >O(--gtkSk/ Ilskll), Vk.

Lemma 1.2. Let pe(0, 1/2), and let O(t) be a forcing function. If ak

satisfies (2) and

aklls~ II ~O(-g~(sk//Iskll), VK,

then f incurs a sufficient decrease for the steplength ak.

The following theorem shows that the steplength ak satisfying either
(2), (3) or (2), (4) yields a sufficient decrease in f.

Theorem 1.1. Consider a general descent method given by Algorithm
A1. For each k, assume that ak satisfies the line search rules (2), (3) or (2),
(4). Then, f incurs a sufficient decrease for the steplength a~.

Proof. Let ak be as defined in Lemma 1.I. Then ak, satisfying either
(2), (3) or (2), (4), should satisfy a~ > dk. Hence,

ak llsk II - c~k IIs~ li-

The result is then implied by Lemma 1.1 and Lemma 1.2. []

One disadvantage of the two sets of rules (2), (3) and (2), (4) is that
they require extra gradient evaluations in the line search, especially when
the line search is relatively accurate [for example, when (a, p)= (0.1, 0.05)].
In order to reduce the number of extra gradient evaluations, one has to use
a very loose line search by taking (a, p) to be for example (0.9, 0.001),
which according to the folklore seems to give best overall results. However,
this may cause a significant increase in the number of iterations. In the case
of one-dimensional minimization, Brent (Ref. 12) gave an algorithm for
enclosing a local minimum of f i n an interval [a, b] without evaluating deriva-
tives. Safeguarded quadratic interpolation is used in his algorithm to gener-
ate new trial points, and an approximation of a local minimum is accepted
when the diameter d of the current enclosing interval satisfies

d_< 2(elx[+ t), (5)

where e is the square root of the relative machine precision and t is an
user-supplied positive number. Although the idea of safeguarded quadratic

680 JOTA: VOL. 85, NO. 3, JUNE 1995

interpolation has been widely used for generating new trial points in the
general line search procedure, Brent's criterion (5) is not widely used, since
on the one hand many function evaluations may be required for (5) to be
satisfied and on the other hand (5) does not guarantee a sufficient decrease
of f i n general. However, the idea of terminating the search when the enclos-
ing interval is sufficiently small is desirable and will be employed in our main
algorithm.

In 1982, Gill et al. (Ref. 10) used the divided difference to approximate
the first derivative and proved that the steplength ak yields a sufficient
decrease i n f i f ak satisfies (2) as well as

f (a k) > f (ak) + (ak --ak)crf'(O), (6)

for some ak such that 0 < ak < ak. We note that only the derivative f ' (0) is
used in the formulation of rules (2) and (6). However (2) and (6) may not
be satisfied even if the current enclosing interval is very small. In the present
paper, we construct a line search criterion that is satisfied whenever the
current enclosing interval is small enough, and at the same time guarantees
a sufficient decrease o f f Our line search algorithm requires no extra gradient
evaluation if cr >0.5 and at most one gradient evaluation in addition to
gk = Vf(xk) otherwise. It produces an acceptable a~ within finitely many
operations. The steplength ak satisfies (2) for all k, is close to satisfying (3)
in the sense described at the end of next section, and yields a sufficient
decrease in f . The new algorithm preserves the good convergence results of
(2), (3) and is practically comparable with either (2), (3) or (2), (4). By
employing a relatively accurate line search with our new algorithm, we may
reduce both the number of iterations as well as the number of gradient
evaluations.

To summarize, our algorithm employs an acceptance criterion that is
similar to (2)-(3), so that all the convergence properties will be preserved,
does not require extra gradient values, induces a sufficient decrease in f , and
terminates the line search when the enclosing interval is sufficiently small.
The basic ideas can be described as follows. We note that, with the rules
(2), (3), only the values f (0) and f ' (0) are needed to reject a steplength a
if (2) is not satisfied. If (2) is satisfied, then one has to compute

f ' (a) =g(xk + ask)t Sk.

Then, a is accepted if (3) is satisfied and g(xk + ash) will be used to calculate
f ' (0) at the next step, or a is rejected if (3) is not satisfied and the value of
g(Xk + ash) is no longer of use in the algorithm. The main point of our
algorithm is making good use of all gradient and function evaluations once
they are computed. To this effect, at each step we consider a point a >0
that satisfies (2) (initially a is set to be zero), and we accept the steplength

JOTA: VOL. 85, NO. 3, JUNE 1995 681

a > a if

f (a) <_f(a) + (a -a)pf ' (O) , (7)

f (a) > f (a) + (a -a)tyf '(O). (8)

Note that, for a = 0, the above conditions reduce to the Goldstein conditions.
Also, if (7) is replaced by (2) [i.e., a = 0 in (7)], then the above conditions
reduce to the rules of Gill et al. (Ref. 10). If either (7) or (8) is not satisfied,
then we use the computed value o f f (a) to determine new values for the
point a and the steplength a. At the same time, unlike in the procedures of
Goldstein or Gill et al. we also use the currently computed value o f f (a) to
determine a new criterion for acceptability. The new criterion requires the
satisfaction of either an inequality similar to (3), but w h e r e f ' (a) is approxi-
mated by the divided difference

f [a , a] = (f (a) - f (a)) / (a - a),

or another inequality that uses an approximation of the second-order deriva-
tive to guarantee that the current enclosing interval is small enough so that
f will incur a sufficient decrease and that a is very close to satisfying (3).
While the idea of approximating the second-order derivative has been widely
used with quadratic interpolation for generating new trial points in the line
search, to our knowledge this is the first time that this approximation is used
for establishing an acceptance criterion which has all the above-mentioned
advantages. The algorithm is rather complicated to describe because it takes
into account all possible cases. However, the extra work needed for coding
it seems to pay off, because it makes use of all information available at a
given time. In the next section, after giving a complete description of the
algorithm, we will add more comments on its geometrical interpretation.

2. Algorithm and Basic Properties

Throughout this paper, we assume that f in (1) is twice continuously
differentiable and bounded below, and consider the general Algorithm A1.
Our line search algorithm includes six user-given parameters p, o-, J, r l , r2,
T3, such that

p~(0, 1/2), cry(p, 1), J~[2, 9],

0 < r l < r 2 < l / 2 , ~3>2.

Algorithm A2. Given f (0) =f(x~), and f '(O) = g~Sk < O.

Step 1. Check a = 1.

682

Step la.

Step lb.

Step lc.

Step ld.

Step 2.

Step 2a.

Step 2b.

Step 2c.

Step 3.

Step 3a.

Step 3b.

Step 3c.

Step 3d.

Step 3e.

JOTA: VOL. 85, NO. 3, JUNE 1995

I f f (l) > f (O) + p f ' (O) , then set a = 0 , b = 1, go to Step 3; else,
go to Step lb.

If or> 1/2, go to Step lc; else, go to Step ld.

I f f (1)>_f(0)+ tyf'(0), then set ak = 1, terminate; else, go to
Step 2.

Evaluate f ' (1) = g(xk + Sk)tSk. I f f ' (1) _> tYf '(0), then set ak =
1, terminate; else, go to Step 2.

At this step, note that we have f (1) < f (0) + pf'(O) and either
f (1) < f (0) + crf'(0), or f ' (a) < crf'(O). Set al = 1, bl = J ; for
n = 1, 2 , . . . , do the computations below.

I f f (bn) >f (a ,) + (bn - an)pf'(O), then set a = a , , b = b,, go to
Step 3; else, go to Step 2b.

I f f (b ,) > f (a ,) + (b , -a ,)cr f ' (O) , then set ak = b,, terminate;
else, go to Step 2c.

Set an+, =b, , bn+~ =Jbn, go to Step 2a.

At this step, note that we have an interval [a, b] with a > 0
such that f (a) < f (O) + a p f ' (O) (see Lemma 2.1) as well as
f (b) >f (a) + (b - a)pf'(O). Set a~ = a, bl = b; for n = 1, 2 , . . . ,
do the computations below.

Take c, in [an+ "Cl(b,--an), an+ ~2(bn-an)].

If

f (c,) <_f(an) + (e, - a,)pf '(O),

f(cn) > f(an) + (c,-an)crf '(O),

then set ak = c,, terminate; else, go to Step 3c.

Set

An = [f[a, , c,, b,]]

= [[(f(bn) - f (en)) / (bn - on)

- (f (cn) - f (a ,)) / (c n - an)] / (b , - a,)l.

If f(en) <_f(an) + (e , - a,)pf '(O) and if (p - o-)f'(0)_>
r3 (bn-an)An, then ak=C, and terminate; else, set an+~ =
c,, bn+~ =b , , go to Step 3a; else, go to Step 3e.

If (p - o-)f'(0) > ~'3(b, - an)An and an > 0, then set ak = an and
terminate; else, set an+~ = a , , bn+l =on, go to Step 3a.

JOTA: VOL. 85, NO. 3, JUNE 1995 683

We note that the steplength a accepted by the above algorithm must
satisfy (2). In fact, if a > 0 satisfies (2) and if a > a, then

implies

f (a) < f (a) + (a -a)pf '(O)

f (a) <_f(O) + apf'(O).

Therefore, if a >_ 0 satisfies (2), then we accept a steplength a > a provided
that (7) and (8) are satisfied. Steps lc, 2b, 3b of Algorithm A2 terminate
with this condition. In order to reduce the number of function evaluations
that are necessary for obtaining a steplength satisfying (7) and (8), we also
accept a steplength that lies together with the current steplength value in a
sufficiently small interval [a, b], as in Steps 3d and 3e. Our criterion for
sufficiently small is based on condition (3) and on approximating f " (a) / 2
by

f[a, a, b] = [(f(b) - f (a)) / (b - a) - (f (a) - f (a)) / (a - a)]/(b - a),

as described at the end of this section. In this case, if f (a) < f (a) +
(a -a)pf '(O) then we accept a as ak as in Step 3d; otherwise, we accept a as
ak as in Step 3e. Step 1 enforces that a = 1 is always tried first, and Steps lb-
1 d guarantee that a~ = 1 will be asymptotically acceptable, as stated in Lemma
2.2. Hence Step 1 of Algorithm A2 is not theoretically important and can be
modified in practice. Theorem 3.2 in the next section tells that asymptotically
our ak satisfies (3), as desired. Theorem 3.4 shows tha t fwi l l always incur a
sufficient decrease with our steplength ak.

The following lemmas describe some basic properties of Algorithm A2.

Lemma 2.1.

(i) In Steps 2-2c, an > 1 and f(an) <f(O) + a,,pf'(O).
(ii) At Step 3, a_> 0 and f (a) <f(O) + apf'(O).
(iii) In Steps 3a-3e, a, > O,f(a~) <f(O) + a~pf'(O), and

f (bn) > f (an) + (bn - an)pf'(O).
(iv) The steplength ag obtained from Algorithm A2 always satisfies

(2).

The proof of Lemma 2.1 is straightforward and therefore is omitted.

Lemma 2.2. Let x , be a local minimizer o f f such that G, = G(x,) is
positive definite. Assume that the search directions in Algorithm A1 are
such that the sequence {Xk} generated by Algorithm A1 with a~ = 1 for all

684 JOTA: VOL. 85, NO. 3, JUNE 1995

k converges supeflinearly to x , provided xl is sufficiently close to x . . Then,
the steplength ak = 1 will become acceptable for Algorithm A2 for all k
sufficiently large.

The above lemma applies clearly for the cases where the search
directions are provided by the Newton method or BFGS method. The proof
of Lemma 2.2 follows immediately by using Lemma 2.5.3 of Ref. 2 and
Steps l c - l d of Algorithm A2. This also explains why, in Algorithm A2, we
check a = 1 in different ways with respect to different values of or. Also
notice that, with Algorithm A2, the only case where we may have an extra
gradient evaluation (in Step ld) is cr < 1/2 and f ' (1) < crf'(0). Practically,
if or< 1/2, we can use Step lc when k is small, and then switch to Step ld
when k is large enough. This gives practical advantages while the theory still
holds.

Lemma 2.3. Only finitely many operations will be spent in Step 2 of
Algorithm A2.

Proof.
Jb,, n = 1, 2 and

f (b n +1) • f (b n) --]- (bn + 1 - bn) (T f ' (O) ,

for all n. By induction, we get

f(b,+l)<f(O)+b,,+~pf'(O), Vn.

This contradicts the fact that f (x) is bounded below.

Otherwise, we have a sequence {bn} such that bl =Jr, bn+l =

[]

Lemma 2.4. At Step 3 of Algorithm A2, the interval [a, b] includes an
a which satisfies (2)-(3).

ProoL
some E E (0, b - a),

f (a) <f (a) + (a -a)o f ' (O)

<f (a) + (a - a)pf'(O),

Let

We suppose t ha t f ' (a) < crf'(0), since otherwise a = a. Then for

Then, there is an de(a , /1) such that

f'(a) = (f(l~) - f (a)) / (I . t - a) > pf'(O) > crf'(O).

/1 = min{a ~[a+ E, b] ; f (a) >f(a) + (a -a)pf ' (O)} .

Va E (a, a + e). (9)

JOTA: VOL. 85, NO. 3, JUNE 1995 685

From the definition of g and (9), we deduce tha t

f(t2) <f(0) + 6tpf'(O).

Hence, a~(a , /~) c_[a, b] and (2)-(3) are satisfied for a. []

Lemma 2.5. Only finitely many operations will be spent in Step 3 of
Algorithm A2.

Proof. Otherwise, we have a sequence of intervals {Jan, b,]}~=z such
that

b n - a n < (1 - r O n - l (b l - a l) - ~ O , when n ~ ,

f (bn) > f (an) -4- (b n - an)pf'(O),

O < a = a l <" �9 "<_an<" �9 �9 < b , < " �9 �9 <_b~=b.

If a ,=0 , for all n, then b , ~ 0 and

f (b .) >f(0) + bnpf'(O).

This implies that there is a sequence {~.} such that ~.--.0 andf'(~n) > pf '(O),
which is a contradiction. Hence, there must be an N such that

an>0, for a l ln>N.

But this implies that, when n > N,

0 < (p - o')f'(O)

< r 3 (b . - an)A.

<(1/2)r~(bn-an)O--*O, n ~ o o ,

where �9 =maxa_<~_<b If"(a)l , also a contradiction. []

Let us note that the condition

(p - cr)f'(O) > r3(b n - - a.)A. (10)

is an approximation of (3). In fact, if ak is accepted under (10) at either
Step 3d or 3e w i t h f ' (a k) < crf'(O), then the inequality

f (b .) >f(ak) + (b. - ak)pf ' (O)

will imply that there is a t . e (a~ , bn)~_[a., b.] such that

i f (t .) > pf ' (O) > o-f'(0) >f ' (ak) .

Hence, there is a v . e (a k , t.)~_[a., b.] such that

(p - o-)f'(0) < f " (v .) (t. - ak) < _ f " (v .) (b . - a .) . (11)

686 JOTA: VOL. 85, NO. 3, JUNE 1995

Now if (bn-an)llskll2 is very small, which asymptotically always happens,
then f"(v~) is very close to 2A~. Since r3 > 2, a contradiction would occur
between (10) and (11). Therefore, if ak is accepted under (10), then it is
very likely that ak satisfies (3). Actually in the next section, we show that
under certain conditions the steplength ak obtained from Algorithm A2 will
satisfy (3) asymptotically. It will also be shown in the next section that, with
our ak, whether it satisfies (3) or not, a sufficient decrease in f is always
produced.

3. Convergence Theorems and Asymptotic Properties

In this section, we prove some convergence theorems and asymptotic
properties of Algorithm A2. Throughout this section, we are considering
Algorithm A1 where the steplength ak in Step 2c is determined by Algorithm
A2. Before stating our results, it is convenient to introduce some notations.
We write g(x) for Vf(x), gk for g(xk), and G(x) for the Hessian V~f(x). We
denote by D the level set

D = {x; f (x) <f(xl)}, (12)

where x, is the starting point in Algorithm A1. Some of the results are
proved under the assumption that g is Lipschitz continuous on D; i.e.,

Hg(x)-g(y)l12<~.llx-yl12, Vx, yeO, (13)

for some ~. > 0. Note that, if D is bounded, then (13) is clearly satisfied with

= max II G(x)dl2.
x e D

However, we do not assume the boundedness of D. Throughout this paper,
we will consider sequences generated by the general Algorithm A1. This
algorithm terminates if gk = 0. In our analysis, we will be interested only in
the case gk ~ 0 for all k, and this will be implicitly assumed in what follows.
We denote

cos 0k = --g~kSkl(llgk}lzllSkllz).

Lemma 3.1. Let (xn} be generated by Algorithm A1 where tZk is given
by Algorithm A2. Then for all k, there is an t~k satisfying (2), (3) and

(14)
O<ak<_Mak,

JOTA: VOL. 85, NO. 3, JUNE 1995 687

where

M = m a x { J , 1/rl} > 1. (15)

Moreover, if (13) is satisfied, then

ak >>-gtk Sk(tr - 1) / (MAtlSkll ~). (16)

Proof. For each k, let

ak=min(a > 0 ; f ' (a) > trf '(0) }. (17)

Due to the continuous differentiability and the boundedness assumptions
on f, ak in (17) exists and

f ' (ak) = trf'(0). (18)

Furthermore, it is clear that, for any a e [0, Ok],

f (a) <f(O) + apf'(O), (19)

because otherwise the mean-value theorem would imply that there is a
number te(O, a) _ (0, Ok) such that

f ' (t) = (f (a) - f (O)) /a > pf'(O) > o'f'(O), (20)

which contradicts the definition of t~k. We note that (18) and (19) show
that ak satisfies (2)-(3). If (13) is satisfied, then

0 < (tr - 1)f'(O)

= f ' (ak) - f ' (O)

= I f ' (a k) - f ' (0) l

--1 (g(xk + aks~) -gk)'s~l

< llg(Xk+ akSk) --gkllzllskllz

_< Zaklls~l122,

which shows that

ak _>_g~Sk(Cr -- 1)/(Z IIs~ II 2). (21)

Now, we consider three possibilities:

(i) if a~ is accepted at either Step lc or ld or 2b or 3b, then there is
a number the(O, ak] such that f ' (tk) > crf'(0). Hence,

ak>--tk>--ak,

which implies (14);

688 JOTA: VOL. 85, NO. 3, JUNE 1995

(ii) if ak is accepted at Step 3d, then there is an interval [an, bn] such
that an > O,f(b,) > f (a ,) + (b , - a,)pf'(O), and

ak~[a,,+ r f f b . - a.). an+ r 2 (b . - a.)].

This implies that a~ > rib.. As in (i), we see that b. > ak, and hence (14) is
true;

(iii) if ak is accepted at Step 3e, since a~ > 0, then ak is either equal
to c; for some i<n, or equal to al with al > 1. In the first case, the proof in
(ii) applies, while in the second case we only need to notice that ak =
al > 1, bl =Ja~ =Jak, and

f (b ,) > f (a ,) + (b, -a ,)p f ' (O) ,

which implies that bl > ak. Therefore, (14) holds.

Finally, if (13) is satisfied, then by combining (14) and (21), we obtain
(16). []

In the next theorem, we show that our line search algorithm enjoys the
same theoretical properties as the standard line search procedures; see Ref.
2, pp. 30-32 or Ref. 1, p. 121.

Theorem 3.1. Consider a general descent method given by Algorithm
A1. For each k, assume that ak is obtained from Algorithm A2.

(i) If g(x) is uniformly continuous on D and if cos Ok >_ e for some
e > 0 and all k, then limk-,o~ gk = 0.

(ii) If (13) is satisfied, then limk_~ g'k&/11&l12 = 0.
(iii) If cos 0 ~ > e for some E > 0 and all k, then l iminfk-~ 4lg~lJ2=0.

Proof. We first note that the boundedness of f implies that

f (xk) -- f(xk+,) --*0.

(i) Lemma 2.1 and the assumptions in (i) imply that

f (x~) --f(xk+ ,) >_ peltgkllz]lXk+ , - xkll2. (22)

Take ~k as obtained in Lemma 3.1; then, i f (Ok)>_aft(0) implies that

-g~ sk < [(g(xk + akSk) -- gk)' Sk]/ (1 -- a)

< [Ilg(xk + (tkSk) --gk 112 IlSk 112]/(1 -- or). (23)

JOTA: VOL. 85, NO. 3, JUNE 1995 689

If the conclusion is not true, then there would be an q > 0 and a subsequence
{gk,} such that Ilgkill2-17 for all ki. This and (22) imply that

IlXk,§ l - xk, ll2--'O.

Hence,

IlXk, + ak, Ski-- Xk, ll2 = ak, ilSk, II 2

~Mak, llSk, ll2

= M IlXki+ 1 - - Xk i H2 ~0 .

Since both x, , and xk,+ (~k, Sk, are in the level set D, we have

llg(x~, + ak, Sk,) -- gk, ll 2--*0.

Then, (23) implies the contradictory relation

6 ~ COS Ok~

< IIg(Xk,+ ak, Sk,) --gk, ll2/((1 -- a)Ilgk, II 2)

< IIg(xk,+ ak,&,) --gk, l[2/((1 -- a) r l) ~ O .

(ii) (23) and (13) imply that

cos 0klig~ll2 < (Zaklls~ll2)/(1 - a)

< (ZMakllSkll2)/(1 - a) .

This, plus Lemma 2.1, gives

f (x k) - - f (Xk+ l) >_pak COS Okllgk [I21lSkl[2

>_ [p (1 - a) / () ~ M)] cos 2 0kllgkll22

= [p(1 -- a)/()~M)]((gtkSk)/IlSkll2) 2. (24)

Hence, the conclusion is true.
(iii) Otherwise, for some 7/>0, Ilgk[12>r/ for all k. This and Lemma

2.1 imply that

f (x k) -- f (Xk+ I) > PeO [IXk + I -- Xk II 2,

which furthermore implies that

Ilxk§ x~l12 < ~o.
k=l

690 JOTA: VOL. 85, NO. 3, JUNE 1995

Hence, {xk} is a Cauchy sequence in R n, and therefore xk~x , for some x , .
From this, we see that there exists a neighborhood B(x,, r) of x , such that

{xk+ t(x~+l-x~); 0 < t<M} ~ B(x , , r),

for all k. Sincefis twice continuously differentiable, g is Lipschitz continuous
on the bounded set B(x,, r) with some Lipschitz coefficient ~ > 0. Take ~k
as in Lemma 3.1 (21) still holds because age(0, Mak] and

{x~ +as~ ; O<a <Mak} = {Xk + t(xk+1--Xk); O<t<M}

~_ B(x, , r). (25)

Therefore, (16) is also true for all k. Lemma 2.1 then indicates that

f(xk) --f(xk +1) > [P(1 -- o')/(M•)] cos 2 Oh Ilgk II

> [p(1 - cr)/(MZ)]E=llgkll~, Vk. (26)

(26) implies that limk_oo Ilgk 112 = 0, a contradiction. []

Note that point (iii) of Theorem 3.1 does not require any extra proper-
ties of g, while at point (i) we assume that g is uniformly continuous. In the
hypothesis of the following theorem, we have the stronger assumption that
G is Lipschitz continuous.

Theorem 3.2. Suppose that {s~} determined by Algorithm A1 is such
that Xk~X,, where x , is a local minimizer o f f and Xk+l=Xk + aksk, with
a~ determined by Algorithm A2, that G, = G(x,) is positive definite, and
that there is an rl > 0 and a A > 0 such that

[[G(x)-G(y)I]2<A[Ix-yII2, Vx, y~B(x, , rl). (27)

Then, either xk = x . for some k, or there is a/Co such that ak satisfies (3) for
all k > k0.

Proof. Let us assume that xk ~ x , for all k. The assumption of the
theorem implies that there is an r2~(0, rl) such that:

(i) f is strictly convex on B(x , , r2) ;
(ii) there is an m > 0 such that

z'G(x)z>mllzll~, VxaB(x,, r2), z~R"; (28)

(iii) IIG(x)- G(y)II2 < AIIx- yII2, Vx, yEB(x,, r2).

JOTA: VOL. 85, NO. 3, JUNE 1995 691

Now, take

r = rain { (1 - 2/v3)/(2AM/m), rz} > O,

where M = max {J, 1/r~}. Since Xk--'X,, there is a ko such that, for all k >_ ko,

{xk +ask; O<_a <__Mak} = {Xk+ t(Xk+ 1--Xk); O<_t <_M}

B(x , , r).

For k > ko, we consider two possibilities.

(I) If ak is accepted at either Step lc or ld or 2b or 3b, then either
f ' (a~) > r or there is an a ,e [0, a~) such that

f (ak) >_f(a.) + (ak -- a.)crf'(O). (29)

Since f (x) is strictly convex on B(x . , rE), the conclusion is true.
(II) If ak is accepted at Step 3d or 3e and i f f ' (a k) < crf'(0), then it

is easy to see that, in Step 3d or 3e, we have O<_a~<ak<bn<Mak, as well
as

f (b .) >f(a~) + (b. - ag)pf'(O). (30)

Since {xk+aSk; O<a < M a k } _ B (x , , r) and f (x) is strictly convex on
B(x , , r), we have

f ' (b .) > (f (b .) - f (ak)) / (bn - ak) > pf'(O).

Hence, there are numbers s e [a , , b .]_ [an, b.] and t e [an, b~] such that

f " (s) (bn- a~) =f ' (b .) - f ' (a~)

> (p - cr)f'(o)

>_ r3A,(b, - an)

_> v3An(b. - ak)

= (v3/2)lf"(t)l (bn - ak). (31)

Since

f " (t) = S'kG(X~ + tsk)Sk >_ m Ilsk II 2 > 0,

(31) implies that

f" (s) > (r3/2)f"(t) >0.

This furthermore implies that

1 > (r3/2)[1 - (f " (s) - f " (t)) / f " (s)] . (32)

692 JOTA: VOL. 85, NO. 3, JUNE 1995

On the other hand,

(f " (s) - f " (t)) / f"(s) < (ll a(xk + aSk)

-- a(Xk + tSk)112 II Sk II 2)/(m II sk II 22)
< (m / m) l s - tllsklh

< (m/m)(b, - a,)Ilsk Ih

< (A/m)Mak ltsk II 2

= (A / m) M Ilxk+, - x~l12

< (2A/m)Mr

< 1 - 2/r3. (33)

Combining (32) and (33), we arrive at a contradiction. []

The above theorem proves an asymptotic property of Algorithm A2.
In what follows, we show that our algorithm is globally convergent

under the same assumptions as those considered in Ref. 13.

Lemma 3.2. Assume that the level set D is convex and that f is
uniformly convex on D; i.e., there are two numbers p > v > 0, such that

vllzH~<_z'a(x)z<l~ IIzll~, Vx~D, Vz~R". (34)

Consider Algorithm A1, where ak is obtained from Algorithm A2. Then,
there is a number o1 ~(p, 1) such that f '(ak)_> 0.1f'(0) for all k.

Proof. The uniform convexity (34) implies that the Lipschitz condition
(13) is satisfied with A,=p. Then from (34) and Lemma 3.1, and by using
the fact that both xk and xk+ aksk are in the convex set D, we obtain

f ' (ak) - f ' (O) =f"(t) ak

= s~G(Xk + tsk)s~" a~

_> v [Iskll~[(0.- 1)/(Mp Ilskll~)]g'ksk

= [V(0. -- 1)/(Mp)]f '(O),

for some te(0, ak). The lemma follows by taking

0., = 1 - v(1 - 0.)/(Mp). []

Using the above result and the techniques developed in Ref. 13, we can
easily prove the following theorem.

JOTA: VOL. 85, NO. 3, JUNE 1995 693

Theorem 3.3. Assume that the level set D is convex and that f is
uniformly convex on D. Consider Algorithm A1, where we choose
sk=--B-flgk, with Bk given by a member of the restricted Broyden family
with ~b~[0, 1); (see Ref. 13), and where a~ is obtained from Algorithm A2.
Then starting with xl and any symmetric positive-definite matrix B1, we
have x ~ x . , where x. is the unique minimizer o f f

Finally, the following theorem shows that our line search algorithm
guarantees a sufficient decrease in f

Theorem 3.4. Let {Xk} be generated by Algorithm A1, where a~ is
given by Algorithm A2. Then, f incurs a sufficient decrease with the step-
length ak for all k.

Proofi From Lemma 3.1,

ak>(1/M)ak,

for all k where ~ satisfies (2)-(3) and

M=max{J , l/r1} > 1.

It is clear that, if ~(t) is a forcing function, then so is (1/M)~b(t).
Lemma 1.1, Lemma 1.2, Theorem 1.1, and Lemma 2.1 then imply our
conclusion. []

4. Preliminary Numerical Experiments

The conclusions of the previous sections show that the new line search
Algorithm A2 preserves all the convergence properties of (2), (3), yet the
computational work of extra gradient evaluations is saved. In this section,
we present some preliminary numerical experiments comparing Algorithm
A2 with Algorithm A3 [for (2), (4)] and Algorithm A4 [for (2), (3)] of
Appendix A. Algorithm A3 is the same as the one presented in Ref. 2 and
Algorithm A4 is a slight modification of A3 for the case in which we want
to use rules (2), (3). Our implementations are straightforward. All the
parameters are chosen in such a way that they would be consistent with all
three algorithms. The descent direction in Step 2b of Algorithm A1 was
computed as sk = --Hkgk, where the approximation Hk to the inverse of the
Hessian is updated by the BFGS formula as described in Ref. 2. HI is chosen
to be the identity matrix. The test problems are taken from Ref. 14 and are

694 JOTA: VOL. 85, NO. 3, JUNE 1995

Table 1. Test problems.

Problem Function name Dimension Initial point

1 Helical valley function 3 (-1, 0, 0)
2 Biggs exp6 function 6 (1, 2, 1, I, 1, 1)
3 Gaussian function 3 (0.4, 1, 0)
4 Powell badly scaled function 2 (0, 1)
5 Box 3-dimensional function 3 (0, 10, 20)
6 Variably dimensioned function n (1 - i / n , i = I n)
7 Watson function n (0 0)
8 Penalty function 1 n (1, 2 n)
9 Penalty function 2 n (0.5 0.5)

10 Brown badly scaled function 2 (1, 1)
11 Brown and Dennis function 4 (25, 5, -5 , -1)
12 Gulf research and development 3 (5, 2.5, 0.15)

function
13 Trigonometric function n (1/n, 1/n 1/n)
14 Extended Rosebrock function n (-1.2, 1 , -1.2, 1)
15 Extended Powell singular n (3, -1 , 0, 1 3, -1 , 0, 1)

function
16 Beale function 2 (1, 1)
17 Wood function 4 (-3, - 1, -3 , - 1)
18 Chebyquad function n (i/(n + 1), i= 1 , . . . , n)

Only function names are listed; for the explicit expressions of the function, see Ref. 14; n is a
user-given integer.

l i s ted in T a b l e 1. T h e m a c h i n e used w a s a n E n c o r e - M u l t i m a x wi th d o u b l e

p rec i s ion . T h e t e r m i n a t i o n c r i t e r i o n is

f (x ~) - f (x k + ,) <_ E,

w h e r e e is a g iven pos i t i ve n u m b e r (cf. Ref . 2). T h e p a r a m e t e r s in A l g o r i t h m
A 2 a re c h o s e n as

J = 2 , r , = 0 . 1 , r 2 = 0 . 5 , r3=2.5.

T h e p a r a m e t e r s in A l g o r i t h m s A 3 a n d A 4 a re c h o s e n as

~ = 9 , r l = 0 . 1 , r2 = 0 . 5 .

Th i s c o r r e s p o n d s to the va lue s p r o p o s e d in Ref . 2, pp . 34-36 . W i t h o u t loss
o f gene ra l i t y , the u s e r - s u p p l i e d l o w e r b o u n d f i s set as f = - m a x r e a l , w h e r e
m a x r e a l is the m a x i m a l rea l n u m b e r r e p r e s e n t a b l e o n the m a c h i n e . In A l g o -
r i t h m s A 3 a n d A4 , i f

12>2ai--Oli-1 a n d m i n (/ ~ , e t , + Z (a , - a , _ l)) = a , + Z (a , - a , _ ,) ,

JOTA: VOL. 85, NO. 3, JUNE 1995 695

then

a i . 1 ~ [2 a ; - ~i_ 1, ~2,-+/~(a;- a , - 1)]

is chosen as

~ 2=2=2~1 - ~o=2~1, i f i = 1, (35a)

~t+l = a~+ 2 (a ; - ai_ i) = 2ai, i f i > 2 . (35b)

This is consistent with J = 2 in Algorithm A2. In choosing c. at Step 3a of
Algorithm A2, we noticed that a. is the current best estimate of ak ; hence,
we took

c1 = al + 0.3(bl - al);
for n = 2 , 3 , if {a., b.} = {a.-1, c.-1}, then t . = b . _ , , else t . = a . - i .

Let P(an, b., t.)(x) be the quadratic polynomial interpolating f (a) at
a . , b. , t.. If P(a., b., t.)(x) has a minimum x. and if

x,,~[a,, + O.l(b,,-an), a,, +O.5(bn-a,)],

then c, = x, ; otherwise,

c,,=a,+O.3(b,,-a,,).

For Algorithms A3 and A4, we chose

aj~[[aj + O.l (bs- aj), b F O.5(bF aj)]]

in a similar manner, using the fact that aj is the current best estimate of ak.
As we mentioned in Section 2, when using Algorithm A2 with o-<

1/2, we simply check Step lc when k is small, and then switch to Step ld
when k is large enough in some sense. In our experiments, with o-= 0.1, we
switched from Step lc to ld when

f (xk) - f (x k + 1) <- 1.05e.

With Algorithm A2, we do not guarantee that

(gk + 1 - gk)t(Xk + 1 -- X~) > 0, Vk. (36)

However, in the BFGS formula (Ref. 2), (36) is needed to preserve the
positive definiteness of the matrix Hk. Therefore in our implementation, we
used the following modification after calling Algorithm A2:

denote Yk = g~ + l - gk, ~ = xk + 1 - - Xk ;
if)'~6k > 0, no modification;
if Y~,6k-- 0, then set $k = 6~ + Ckyk, where

Ck = [(o'g~-gk+ i)'akl/(y~,yk) ;

use 6k in place of 8k in updating Hk.

696 JOTA: VOL. 85, NO. 3, JUNE 1995

With the above modification,

r~Sk > O, for all k.

Hk+l (see Ref. 2) will be positive definite and H~+ l~'k = ~ . Furthermore,
according to Theorem 3.2, asymptotically we will have f'(al,)>trf'(O),
which implies that 7~rk>O. Hence, the superlinear local convergence of
BFGS will be preserved.

We also want to mention that, although the above modification was
implemented, in our experiments the case 7~k < 0 never actually occurred,
supporting our arguments at the end of Section 2.

In our experiments, we tested all problems listed in Table 1 with n =
20, 40, e = 10 -8, 10 -12, (a, p)=(0.9, 0.001) for inaccurate line search, and
(o-, p) = (0.1, 0.05) or relatively accurate line search. The results are listed
in Tables 3-6 of Appendix B; they are summarized in Table 2. In Tables
3-6, the first column indicates the number of the test problem; for example,
6 (20) means Problem 6 with dimension n = 20. The second, third, and fourth
columns show the number of iterations, number of function evaluations,
and number of gradient evaluations, respectively. The abbreviations 'nit',
'nfe', 'nge' stand for number of iterations, number of function evaluations,
and number of gradient evaluations, respectively. We set the maximum itera-
tions number to be 500 in our experiments, and - - means that the problem
is not solved within 500 iterations. For the convenience of comparison, we
list in Table 2 the total number of iterations (NIT), total number of function
evaluations (NFE), and total number of gradient evaluations (NGE) in
solving all the problems. The tables show that Algorithm A2 is comparable
with A3 and A4 in our experiments for inexact line search.

When we use a line search algorithm with either rules (2), (3) or rules
(2), (4), we can reduce the number of iterations by making the line search
relatively more accurate. In fact, when (a, p)= (0.1, 0.05) nit is much less
than that for (a, p) = (0.9, 0.001). However, nfe and nge increase tremend-
ously. Since generally the function and gradient evaluations are more expen-
sive, many authors suggested that in practice accurate line searches should
be avoided. Actually, choices such as (a, p) = (0.9, 0.001) are very often
used in practice. By contrast, our experiments show that, with our line search
algorithm, a relatively more accurate line search may significantly reduce
the number of iterations as well as the number of gradient evaluations.
However, the number of function evaluations will increase. Therefore, this
algorithm is especially appropriate for the situation when gradient evalua-
tions are very expensive relative to function evaluations.

Table 2.

JOTA: VOL. 85, NO. 3, JUNE 1995 697

Total number of iterations, function evaluations, and gradient evaluations
in solving all the problems.

Algorithm A2 Algorithm A3 Algorithm A4

Cases NIT NFE NGE NIT NFE NGE NIT NFE NGE

1 1455 2928 1455 1470 2878 1560 1450 2820 1489
2 1258 8765 1270 1104 4408 2801 1326 3718 2466
3 1 problem unsolved 2 problems unsolved 2 problems unsolved
4 1 problem unsolved 1 problem unsolved 1 problem unsolved

Case l : cr=0.9, p=0.001, e=10 -8.
Case 2: cr=0.1, p=0.05, e=10 -8.
Case 3: (r=0.9, p=0.001, 6 = 10 -~2.
Case 4: (r=0.1, p=0.05, E=I0 -u.

5. Appendix A: Line Search Algorithms

In this appendix, we list two line search algorithms with rules (2), (3)
and (2), (4), respectively. Algorithm A3, using (2), (4), is the same as the
one presented in Ref. 2. We check ak = 1 first as we do in Algorithm
A2. Algorithm A4 is a modification of Algorithm A3 so that we use
(2), (3) instead of (2), (4). Algorithm A3 is associated with a subroutine
Section 1 (at, bi) and Algorithm A4 needs to use a subroutine Section 2
(ag, b~). There are six user-given parameters p, tr, ~, r l , r~ ,~ such that

pc(0, 1/2), cry(p, 1), ,~> 1,

and f is a user-supplied lower bound o f f (a) .

Algorithm A3.

Step 0.

Step 1.

Step 2.

Step 2a.

Step 2b.

Step 3.

Step 3a.

0< r l < r2_< 1/2,

Set a0 = 0, a, = 1,/1 = (f- f(O))/(pf '(O)).

For i = 1, 2 , execute the computations below.

Evaluate f (8 i).

I f f (f f i) <f , then set ak = t~, terminate.

If f(6ti)>f(O)+a~pf'(O) or f(tt~)>f(aT_l),
ai=aT_l, b~=Cti, execute subroutine Section
terminate.

Evaluate f ' (t~) .

If If'(a,')l -< - ~f'(O), then set a~ = &, terminate.

then set
1 (ai, bi),

698 JOTA: VOL. 85, NO. 3, JUNE 1995

Step 3b. If f ' (a t)>0 , then set ai=at, b~=aF-1, execute subroutine
Section 1 (ai, bt), terminate.

Step 4. If p < 2~,.- a t - 1, then take a ~ ~ = p ; else, take
a~ l e[2a,.-a/---l, min(p, a,+ z (a t - 1))1.

Subroutine Section 1 (a;, b~). Note that now it is not necessary that
at< b,.. For convenience, let us use [[a, b]] to denote an interval with end-
points a and b, and a is not necessarily less than b.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Algorithm

Step 0.

Step 1.

Step 2.

Step 2a.

Step 2b.

For j = i, i+ 1 execute the computations below.

Take

aje [[a 1 + r, (bj- aj), bj- v=(bj- aj)]].

Evaluate f (a j) .

If f(aj)>f(O)+ajpf'(O) or f (aj)>f(aj) , then set aj+~=
aj, bj+ l = t~j ; else, evaluate f ' (a J) .

If [f '(aj)l < - t r f ' (0) , then set a k = a j , terminate; else, set
aj+ l = a j .

If (bj- aj)f'(aj) > O, then bj+ ~ = aj ; else, bj+ 1 = bj.

A4.

Set a0=0 , al = 1,/.t = (f-f(O))/(pf '(O)).

For i = 1, 2 , . . . , execute the computations below.

Evaluate f (a i) .

I f f(t~i) <fi then set ak = eL-, terminate.

I f f (a e) >f(O) + a~pf'(O), then set a~= aT-l, b,.= a;, execute
subroutine Section 2 (ai, bi), terminate.

else, take

Subroutine Section 2 (ai, b~).

Step 1. For j = i, i+ 1 execute the computations below.

Step 3. Evaluate f'(~ti).

Step 3a. If f '(a,.)> crf'(0), then set ak = at, terminate.

Step 4. If p_<2&-~7,-_l, then take a ; + l = p ;
a ~ , e [2 ~ - aF- 1, min(p, ~ + A, (~ - aT- 1))].

JOTA: VOL. 85, NO. 3, JUNE 1995 699

Step 2. Take

aj~[[aj+ r l (bj - aj), b j - r2(bj- aj)]].

Step 3. Evaluatef(aj).

Step 4. If f(~tj)>f(O)+ajpf'(O), then set aj+l =aj, bj+~=aj; else,
evaluate f'(c~j).

Step 5. I f f ' (a j) >_ err'(0), then set ak = aj, terminate; else, set aj+~=
aj, b~+,=b i.

Note that in subroutine Section 2 (a,., bi), by induction it is easy to see
that bj> aj for all j = i, i+ 1 , Therefore, f ' (a j) < o'f'(0) < 0 will imply
that (bj-aj)f'(aj) <0.

6. Appendix B: Results of Numerical Experiments

This appendix presents detailed results of the numerical experiments
summarized in Table 2 of Section 4. We mention again that the first column
in the following tables (3-6) indicates the number of the test problem, where
for example 6 (20) means Problem 6 with dimension n = 20. See Table 1 of
Section 4 for the list of test problems.

700 JOTA: VOL. 85, NO. 3, JUNE 1995

Table 3. Num ber o f iterations, function evaluations, and gradient evaluations when
tr =0.9, p=0 .001 , and e = 10 -8.

Algorithm A2 Algorithm A3 Algorithm A4

Problem nit nfe nge nit nfe nge nit nfe nge

1 28 45 28 27 44 28 27 44 28
2 37 44 37 36 44 39 37 43 38
3 3 7 3 3 6 4 3 6 4
4 67 98 67 65 100 74 53 80 55
5 22 37 22 16 26 19 16 26 19
6 (20) 23 47 23 23 47 24 23 47 24
6 (40) 25 57 25 25 56 27 25 56 27
7 (20) 45 73 45 45 73 46 45 73 46
7 (40) 40 74 40 40 74 41 40 74 41
8 (20) 17 34 17 17 33 18 17 33 I8
8 (40) 25 54 25 25 54 26 25 54 26
9 (20) 81 225 81 71 207 78 80 216 83
9 (40) 263 545 263 270 509 283 286 522 290

10 10 47 10 12 49 13 12 49 13
11 22 70 22 22 70 23 22 70 23
12 30 42 30 33 45 36 33 45 36
13 (20) 39 44 39 39 44 42 39 44 42
13 (40) 35 37 35 35 38 37 35 37 36
14 (20) 140 250 140 123 241 127 124 235 125
14 (40) 193 420 193 190 421 204 199 427 200
15 (20) 60 103 60 60 102 61 60 102 61
15(40) 68 136 68 69 140 72 68 136 69
16 13 19 13 13 19 14 13 19 14
17 28 56 28 28 56 29 28 56 29
18 (20) 43 98 43 42 98 46 43 98 44
18 (40) 138 266 138 141 282 149 97 228 98

JOTA: VOL. 85, NO. 3, JUNE 1995 701

Table 4. Num ber of iterations, function evaluations, and gradient evaluations when
or=0.1, p=0 .05 , and e = 10 -8.

Algorithm A2 Algorithm A3 Algorithm A4

Problem nit nfe nge nit nfe nge nit nfe nge

1 23 151 23 19 65 43 28 62 49
2 25 170 25 25 86 69 31 78 71
3 3 24 3 3 11 9 3 10 8
4 45 306 45 36 154 106 47 120 93
5 14 100 14 13 57 42 21 55 48
6 (20) 9 80 9 7 48 25 7 46 23
6 (40) 11 100 11 9 60 30 12 62 33
7 (20) 29 211 29 30 122 84 36 103 76
7 (40) 29 203 29 29 121 79 40 110 78
8 (20) 70 497 70 73 283 214 106 237 207
8 (40) 90 613 90 8 47 29 12 51 32
9 (20) 51 436 51 38 177 91 58 ~ 5 110
9 (40) 180 1170 180 176 722 472 220 619 438

10 10 94 10 10 55 20 10 49 14
11 15 125 15 14 82 32 19 80 33
12 22 160 22 17 74 60 16 39 32
13 (20) 34 207 34 33 89 74 37 69 69
13 (40) 33 183 33 32 102 81 34 69 66
14 (20) 88 623 90 86 336 210 91 266 167
14 (40) 155 1105 155 151 613 352 165 489 285
15 (20) 49 295 52 31 124 78 40 107 68
15 (40) 62 442 62 34 138 75 75 219 147
16 11 65 11 10 35 27 13 27 22
17 24 153 24 52 192 132 30 90 60
18 (20) 42 302 42 38 150 84 41 106 55
18 (40) 144 950 151 130 465 283 134 310 182

702 JOTA: VOL. 85, NO. 3, JUNE 1995

Table 5. Num ber of iterations, function evaluations, and gradient evaluations when
or=0.9, p=0 .001 , and E= 10 -12.

Algorithm A2 Algorithm A3 Algorithm A4

Problem nit nfe nge nit nfe nge nit nfe nge

1 29 46 29 29 46 30 29 46 30
2 39 46 39 38 46 41 39 45 40
3 5 9 5 5 8 6 5 8 6
4 152 205 152 146 211 166 153 207 155
5 23 38 23 17 27 20 17 27 20
6 (20) 25 49 25 25 49 26 25 49 26
6 (40) 26 58 26 26 57 28 26 57 28
7 (20) 60 89 60 60 88 61 60 88 61
7 (40) 68 103 68 68 102 69 68 102 69
8 (20) 141 209 141 130 196 147 142 200 149
8 (40) 262 366 262 144 225 158 256 354 265
9 (20) 437 681 437 416 666 446 - -
9 (40) 321 603 321 331 570 344 329 565 333

10 11 48 11 13 50 14 13 50 14
I1 23 73 23 - - 24 79 27
12 32 44 32 35 47 38 35 47 38
13 (20) 45 50 45 45 50 48 45 50 48
13 (40) 47 49 47 47 50 49 47 49 48
14 (20) 174 284 174 146 264 150 149 260 150
14 (40) 227 454 227 224 455 238 243 471 244
15 (20) 111 156 111 107 150 109 114 156 115
15 (40) 120 189 120 116 187 119 124 192 125
16 14 20 14 14 20 15 14 20 15
17 31 59 31 31 59 32 31 59 32
18 (20) 54 109 54 54 110 58 54 109 55
1 8 (4 0) - - - - - -

JOTA: VOL. 85, NO. 3, JUNE 1995 703

Table 6. Number of iterations, function evaluations, and gradient evaluations when
cr=0.1, p=0 .05 , and E= 10 -j2.

Algorithm A2 Algorithm A3 Algorithm A4

Problem nit nfe nge nit nfe nge nit nfe nge

1 25 163 25 21 67 45 29 63 50
2 26 176 26 27 88 71 33 80 73
3 5 36 5 5 13 11 5 12 10
4 107 750 107 91 356 261 120 299 247
5 15 105 15 14 58 43 22 56 49
6 (20) 10 86 10 8 49 26 9 48 25
6 (40) 12 106 12 10 61 31 14 64 35
7 (20) 34 249 34 34 142 102 45 130 103
7 (40) 40 283 40 38 166 120 58 162 130
8 (20) 76 530 76 77 297 227 114 250 220
8 (40) 110 741 110 34 137 104 133 339 284
9 (20) 244 1676 257 211 800 576 295 760 584
9 (40) 202 1329 202 199 819 554 271 748 567

10 10 94 10 10 55 20 10 49 14
11 15 125 15 - - 20 130 64
12 24 172 24 19 76 62 26 67 60
13 (20) 40 259 40 37 104 86 40 73 73
13 (40) 42 237 42 43 134 109 49 98 95
14 (20) 99 707 99 98 391 258 111 320 221
14 (40) 177 1262 177 169 696 422 190 563 359
15 (20) 67 404 67 39 148 99 70 187 148
15 (40) 93 653 93 55 219 139 120 325 253
16 13 75 13 11 36 28 14 28 23
17 25 159 25 54 194 134 32 92 62
18 (20) 48 344 48 44 171 102 50 126 75
18 (40) - - 362 1199 870 - -

704 JOTA: VOL. 85, NO. 3, JUNE 1995

References

1. DENNIS, J. E., and SCHNABEL, R. B., Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, New
Jersey, 1983.

2. FLETCHER, R., Practical Methods of Optimization, John Wiley and Sons, New
York, New York, 1987.

3. GOLDSTEIN, A. A., On Steepest Descent, SIAM Journal on Control, Vol. 3,
pp. 147-151, 1965.

4. GOLDSTEIN, A. A., Constructive Real Analysis, Harpers and Row, New York,
New York, 1967.

5. ARMIJO, L., Minimization of Functions Having Lipschitz Continuous First Partial
Derivatives, Pacific Journal of Mathematics, Vol. 16, pp. 1-3, 1966.

6. WOLFE, P., Convergence Conditions for Ascent Methods, SIAM Review, Vol. 1 l,
pp. 226-235, 1968.

7. POWELL, M. J. D., Some Global Convergence Properties of a Variable-Metric
Algorithm for Minimization without Exact Line Searches, SIAM-AMS Proceed-
ings, SIAM Publications, Philadelphia, Pennsylvania, Vol. 9, pp. 53-72, 1976.

8. LUENBERGER, D. G., Linear and Nonlinear Programming, Addison-Wesley
Publishing Company, Reading, Massachusetts, 1984.

9. BOGGS, P. T., and SCHNABEL~ R. B., Lecture Notes for a Short Course on
Numerical Optimization, Manuscript, Houston, Texas, 1987.

10. GILL, E. P., MURRAY, W., SAUNDERS, A. M., and WRIGHT, H. M. A Note on
a Sufficient-Decrease Criterion for a Nonderivative Steplength Procedure, Mathe-
matical Programming, Vol. 23, pp. 349 352, 1982.

11. ORTEGA, J. M., and RHEINBOLDT, W. C., Iterative Solution of Nonlinear Equa-
tions in Several Variables, Academic Press, London, England, 1970.

12. BRENT, R. P., Algorithms for Minimization without Derivatives, Prentice-Hall,
Englewood Cliffs, New Jersey, 1972.

13. BYRD, R. H., NOCEDAL, and YUAN, Y. X., Global Convergence of a Class
of Quasi-Newton Methods on Convex Problems, SIAM Journal on Numerical
Analysis, Vol. 24, pp. 1171-1190, 1987.

14. MORI~, J. J., GARBOW, B. S., and HILLSTROM, K. E., Testing Unconstrained
Optimization Software, ACM Transactions on Mathematical Software, Vol. 7,
pp. 17-41, 1981.

15. PRAPASRI, A., Application of Conjugate Directions and Quasi-Newton Methods
in Parallel Unconstrained Optimization, PhD Thesis, University of Iowa, 1989.

16. PRAPASRI, A., and POTRA, F. A., Parallel Line Search~:Algorithms for Solving
Convex Unconstrained Minimization Problems, Libertas Mathematica, Vol. 8,
pp. 31-46, 1988.

