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Proof of Oppenheim’s area inequalities
for triangles and quadrilaterals

C. E. CARROLL

Abstract. Leta,, b, ¢,, A, and a,, b,, ¢,, A, be the sides and areas of two triangles. If a = (a?+ af)"s,
b = (bs+ b5)r, ¢ = (ct+ct)r, and 1 = p =4, then a, b, ¢ are the sides of a triangle and its area satisfies
Art= Ar”+ Ag If obtuse triangles are excluded, p > 4 is allowed. For convex cyclic quadrilaterals, a
similar inequality holds. Also, let a, b, ¢, A be the sides and area of an acute or right triangle. If f(x)
satisfies certain conditions, f(a), f(b), f(c) are the sides of a triangle having area A,, which satisfies

(@A V37 = fAA N3,

Introduction and resulits

The area of a triangle is a well known function of the lengths of its sides, and this
function satisfies numerous inequalities [1]. Inequalities containing this function
and another function appear in three conjectures published by Oppenheim [5] and
[6]. The first of these conjectures is:

THEOREM 1. If 1 =p =4 and if two triangles have sides a,, b,, ¢, and a,, b,
¢, and areas A, and A,, then a = (at+ a%)'?, b = (b5 + b%)'?, ¢ = (c§+ c5)'” are the
sides of a triangle having area A, and

AprZAglzu}_Ag{Z. (1)

Apart from trivial cases withp = 1 and A, = A, =0, equality holds if and only if
a/a;=bi/b, = c,/c.. @
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98 C. E. CARROLL AEQ. MATH.

Oppenheim’s paper [5] ends with an example using an obtuse triangle to show
that p =4 is a necessary condition. Larger values of p are included in:

THEOREM 2. If p = 1, if the triangles having areas A, and A, are acute or
right triangles, and if a, b, ¢, A are as in Theorem 1, then (1) holds, with equality iff
(2) holds.

Oppenheim’s later paper [6] strongly suggests that a similar inequality holds for
convex plane quadrilaterals. Steiner [8] showed that, if a quadrilateral has sides of
fixed length, the area is maximum when the vertices lie on a circle. See also the
proof given by Pélya [7].

THEOREM 3. If 1=p =4 and if two quadrilaterals have sides a,, b,, ¢, d,
and a,, by, ¢;, d;, then a =(at+a%)'”, ..., d =(d}+d5)'"” are the sides of a
quadrilateral, and the maximum areas satisfy (1). Equality holds iff the sets a,, b, c,,

d, and a., b,, c,, d, are proportional; but there are trivial exceptions with p =1 and
A; = Az ={.

Oppenheim [5] and [6] showed that Theorems 1 and 3 hold when p = 1,2, or 4.
To prove Theorems 1, 2, and 3 when p > 1, we shall consider changes of a,, a, b,,
b, ...suchthat a, b, ¢ or a, b, ¢, d are constant. We shall consider boundary values
of A??~ Ap?— A%” and show that this function is stationary iff the triangles or
quadrilaterals are similar.

Oppenheim’s third conjecture [6] is that “if f(x) is a non-negative, non-
decreasing sub-additive function on x >0” and if

G(a’b’c)=(_i_%)%=[(a+b+c)(—a+b+c3)(a—b+c)(a +b-c)]%’

then

G(f(a), f(b), f(c)=f(G(a, b,c)). €)

He showed that (3) holds if f(x)=Z2.a.x", where a,>0, 0=p, <1. But let
a=b=1,¢=109,

fx)=x when x =1,

f(x)=xexp [—l—q?eXp (l—o—é_;)] when 0< x < 1.
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Then (3) does not hold. In both the example and the counterexample, the arbitrary
function satisfies

]

f(x)>0, OSxf;iogf(x)SL and OS(ng—c-)zlogf(x)s

We are led to exclude obtuse triangles.

THEOREM 4. Suppose a, b, ¢ are the sides of an acute or right triangle,
f(x)>0, log f(x) is a convex function of logx, and

0 <logl[f(x)/f(y))/log(x/y) <1, @)
where x and y are distinct positive numbers. Then (3) helds, with equality iff

a=b=c

Proof of Theorem 1

Minkowski’s inequality [4, p. 115] can be used to show that a, b, ¢ are the sides
of a triangle. If triangles of zero area are allowed, a;<b,+¢, and a,<b,+c,.
Hence,

a=s[bi+c P +(b:+c)f]""=b+c.
If a =b +c¢, then A, = A, =0; the converse is not true. Similarly, b = a +¢ and
c=a+tb
If p =1, Oppenheim [5] notes that
2AV”=[(a+b+c)(—a+b+c)(a—-b+c)a+b-c)”
where
a+b+c =(a1+b1+cl)+(a2+b2+c2)
and so forth. A known inequality [4, p. 117] gives 2A>=2A1?+2A}", with
equality only if triangles 1 and 2 are similar or A, = A, = 0. Thus, we may assume
p > 1. We shall minimize A?”— A}”? -~ A%”. The minimum value of this function is

not positive, because it vanishes when triangles 1 and 2 are similar. Suppose that a;
is variable and af+ af is constant. Then the maximum and minimum values of a,
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are such that A,A,=0. The following lemma implies that A??— A{?— A%” is
positive when a, is at either end of its range, except in a degenerate case.

LEMMA 1. If p>1and A,, A,, A are defined as in Theorem 1, then A = A,
and A=A, If A=A,or A=A, then A, = A, =0 and the sets a,, b,, ¢, and a,,
b, ¢, are proportional.

If A,A, =0, this lemma is equivalent to the theorem. If A, A, # 0, we may vary
a, and a,. Since da,/da; = —(a/a.) ",

(3/da,)(AP?— At — ABP)

= (pat /16)[— AP ~2a3 (= ai+bi+c)+ AP aiP(— ai+ bi+c)]. (5)

This quantity vanishes at the minimum of A?”— A{?—~ A%7. Let ay, B4, v1, R, and
as, B2, 72, R, be the internal angles and circumradii of the first and second triangles.
Then

—a§+b%+C%=2b1C1COSQ1, axb|C1:4A1R1,
and (5) vanishes only if

(AT?/R,Y*(cos ay)sin' P oy = (A Y/ R,y *(cos a,)sin' P a,. )
Variation of b; and ¢, gives similar relations between 8, and B, and between v, and

v2. To prove that a; = a,, B = B,, and y; = v,, it suffices to show that «, 8, y are
uniquely determined by a + B8 +y = 7 and the ratios

cosasin® 'y , cosBsin® 'y , )
cosysin®a 7 cosysin’! =
Y Y

Here we have assumed cos y # 0, because two of cos a,, cos B;, ¢os 7y, are positive,
and cos y; > 0 implies cos v, > 0. We may assume cos y >0and r,>0. Let g(x)be a
function with range (0, 7/2), defined by

x = log[cos g (x)] - (p — 1)log[sin g (x)]. ®)
If r,>0, the angles are acute, and the solution of

gx)tgx+logr)+g(x+logr)==
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is unique, because dg/dx = —(tang)/(p —1+tan’g)<0; hence, y =g(x) is
uniquely determined. If r, =0, then o =#/2 and the solution of
g(x)+g(x +logr,)= /2 is unique. If r, <0, then a > /2, w —a = B +v, and

g(x) gx+logry) _
g(x +logln) g(x +logln]) " ®

Since 7 —a >4y, log|r|<0. Since m —a > B, log|r,|—logr,<0. The following
lemma implies that the solution of (9) is unique. Hence, A?”?— A{?—A%” is
stationary only if triangles 1 and 2 are similar.

LEMMA 2. Let g(x) be defined as in (8). If 1<p=4 and 1<0, then
g(x)/g(x +1) is a decreasing function of x.

Proof of lemmas. The proof of Lemma 1 is similar to that of Lemma 3, which
appears below. To prove Lemma 2, we write

logg(x)—logg(x +1)= f;l [dit log g(t)} dt.

This is a decreasing function of x if
2

d _ —sing 2 ( sin2g)_ _ ( _sinZg)]
dx2logg(x)—’gcossg(p—1+tan2g)3[(tan o1+ 2g ¢ -Dil 2g

is negative. It suffices to show that the expression in square brackets is positive, or
that

(tan? 6/2) (1 +%‘—‘3)—3 (1 -S‘%")

is positive when 0 < 8 < 7. We shall show that

_sin @) _ 3(1 +cos 9)(tan’ 6/2) 2 ( sin 0)

3 (1 - )< e < (tan* 0/2) (1+75°) . (10)
Since 2(6 —sin @)sin 8 is positive, h(0)=2sin@ +sindcos @ — 9 —260 cos § is in-
creasing when 0 < @ < 7. Since h(0) =0, (sin 6)(2+cos 6)> 6(1 +2cos 8),

sin@_ 3(1+cos ) and 1__sinO 1—cosé@

1+ (V] 2+cos@ ’ 6 2+cos@

hold when 0< 8 < 7. This proves (10).
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Proof of Theorem 2

Since Theorem 1 has been proved, we may assume p > 2. Again, a,, by, ¢, ar
varied to find the minimum of A”?— A%”?—~ A%” In this variation, a, b, ¢ are
constant and obtuse triangles are excluded. The maximum value of a, is such that

A—ai+bi+cH(ai—-bi+ci)(as+bi—c3)=0.

If A,=0, then a,=0 and b, = c,, because obtuse triangles cannot occur as a.
decreases; hence, Lemma 1 gives A > A, If ai = b} + ¢}, then (5) is positive (unless
a3= b3+ c3), and the minimum of A?”?— A% — A%” lies at a smaller value of a,. If
a%— b3+ ¢ =0, a similar calculation shows that the minimum lies at a smaller value
of b, unless ai— bi+ ¢} = 0. Similar reasoning applies to a}+ b3 — ¢3 =0 and to the
minimum value of a,. Inside these boundaries, A?”—~ A{”? — A%” is stationary only
for similar triangles. The proof of this is similar to the previous calculation, except
that cos a, cos B, cos y are positive and Lemma 2 is not used. The exceptional cases
involving two right triangles remain to be considered.

We may assume aj=bi+ci and aj=bi+c3. If c¢/bi=c,/b, then
AP?— AP — A2 =0. If ¢i/b,# c./b,, appropriate small changes will increase
—ai+bitciand —aj+ b3+ cland decrease A?”?—~ A%?— A%”. Let a, and a, be
constant. Formulae similar to (5) give

(810b,) (A2~ A2~ A3™) =27 pby (o bay ™ — (ci/ b1 )]
and

(8/9€,) (AP — AY? — A8P) = 27PPpeh ! [(baof e — (bu )]
Let dci/db, = — (b2/c2)(bica/bac . Then

(cy/br)dei/dby = — (bico/byc:)? ™2, (cofbr)des/db, = ~ (baci/bic)? 2,

and

(d/db)(AP" = A = A§?) =27"""pb (b1’ + bof c1c2) [(co/ b — (c/ b1y "]

If ¢i/b:> ci/b,, then p >2 implies

(co/br)der/db, < —1< (cofby)dey/db;
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hence a sufficiently small increase in b, will increase bi+c¢i and b3+ c3 and
decrease AP?— A2 — AR2 If ¢,/b, < c,/b,, a small decrease in b, is used. Thus,
AP?— AP? — A%” is not minimized at this boundary point uniess ¢i/b, = ¢,/b,.

Proof of Theorem 3

Minkowski’s inequality can be used to show that a, b, ¢, d are the sides of a
quadrilateral. The maximum area of this quadrilateral is

A={(-a+b+c+d)a~b+c+d)a+b—c+d)(a+b+c—d)"

and Oppenheim’s method of proof can be used when p == 1. We may assume p > 1
and minimize AP?~ A%”— A%”?, using

YA =[-at-bi—ci—di+2(aibi+ - +cid}) +8abicid,\ "

and a similar formula for A3”. If a, = a, = 0, all three quadrilaterals degenerate to
triangles, and Theorem 1 is applicable. We may assume a, b, ¢, d are positive.
Suppose a, is variable and a? + a$ is constant. The maximum value of a, is such that
A1Aza,=0.If a,=0 and A;A,#0 at this point, we may use

(p—4)/2 -1
%(sz_A;l:/z_Agn)=2_chi42§4_{__.(ﬁl)p Foee (1)
H

a;

to show that this point is not a minimum of A??— A{”— A%”; the terms not shown
explicitly are negligible when a,—0". If A, A, = 0 at the maximum of a,, we use:

LEMMA 3. If 1<p=4 and A,, A,, A are the maximum areas of the
quadrilaterals in Theorem 3, then A=A, and A = A,. If A = A, or A = A,, then
A= A,=0 and the sets a,, b:, ¢, di and a., b,, ¢, d. are proportional.

The minimum value of a, can be treated similarly. The minimum of A*?—
A??— A%” is attained at an intermediate value of a;, except in degenerate cases
covered by Lemma 3. The condition for A?”?— A{”— A%” to be stationary is

AP (—ai+abi+aici+adi+2bicidy)
af™
_ AP~ al+arbi+ a,ci+ aydi+2bic,dy)
af™ .
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Since A, is the maximum area, the corresponding quadrilateral has a circumradius
R,. At the centre of the circumcircle, the sides a,, by, ¢,, d; subtend angles 2a,, 283,,
2v1,28,. Then a, = 2R, sinay,...,d; =2R,sin 8,, and a, + B, + v, + 6, = 7. Hence,
bicid, = 2R1[sin(— B, + y: + 8:) +sin(B; — y: + 81)
+ Sin(Bl + Y1~ 61) - Sin(B; + Y1 -+ 51)]
= 2R3(sin a;)(cos 23, + cos 2y, +c0s 28, — 1)
+2R3{cos a1)(sin 2B, + sin 2y, +sin 28,).

The condition for a minimum becomes

( A ;/2)v~4 (cos a,)(sin 2a; + sin 28, +sin 2y, +sin 28,)
R, (sin” ' a;)

_ (A 5’2)" ~* (cos a,)(sin 2a, + sin 23, + sin 2y, +sin 28,)

"\ R, (sin* ' a,) :

Since sin2a; +sin 2B, +sin2y, +5sin28, =2A,/R1, we gbtain (6). Variation of b,
¢, and d, gives three other equations. To prove that a, = a3, B, = B,, ¥ = v2, and
8, = 8,, it suffices to show that «, B, v, 8 are uniquely determinedby a + 8+ vy +
8 = m, the ratios (7), and (cos 8 sin®™" y)/(cos y sin” ™' 8) = r;. We have assumed
cos y >0, as we may. The remainder of the proof is as for triangies.

Proof of Lemma 3. It suffices to prove A = A, and find when equality holds.
Leta = (af+ a9, ..., d =(d{+ AdY)"?, where a,, a,, .. ., d,, d, are constant and
A is variable. As the case of a, = a, = 0 is covered by Lemma 1, we may assume that
a, b, ¢, d are positive when 0 <A =1. We shall show that the right side of

dA’ldA = (@p)'[(— a*+ a’b*+a’c’+ a’d’ +2abcd)(as/a ¥
+(—b*+a’b>+b’c*+b*d’+2abcd)(b,/bY
R ]

is non-negative. We may treat A, a, b, ¢, d as constants and a,, b,, ¢, d as variables.
We may assume a = b, a = ¢, and a = d. Then the coefficients of (b,/bY, (c./c),
and (d,/dY are positive. If

—a*+a*b*+a*c*+a*d*+2abcd =0,

then dA?/dA > 0. Thus, we may assume
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a*—a*bh*—a’c*—a*d*—2abcd > 0. (12)
This implies a > b, a > ¢, a >d, and dA?*/d\x = (4p)'F(b., c,, d;), where

F(bs, ¢;,dy)=(—a*+a’h*+a’c’*+a’d*+2abcd)[(b,+ c.+ dy)la}f
+(=b*+a’h?+ b’ + b*d> + 2abcd) (b,/bY
+(—c*+a’c*+b*c*+c*d*+2abed)(cofc Y
+(—d*+a*d*+ b*d*+ c*d* +2abcd)(d,/d ).

We may exclude the trivial case of b, = ¢, =d, = 0. If dF/db, = 3F|dc, = 3F|dd, =
0, then

(= b*+ ab*+ bc*+ b*d*+ 2abcd ) (b,/bY

b,

- b2+C2+d2)p
bz+€2+d2 a

(a*—a*b*—a’c’ - a2d2—2abcd)(

and so forth; hence F(b,, ¢, d;)=0. To show that this is the minimum of F, we
consider the boundaries, where b,c.d, =0. If b, =0 and c¢.d, # 0, we set dF/dc, =
dF/dd, =0 and again obtain F(b,,c,;,d,)=0. The cases of ¢,=0, b,d,#0 and
d, =0, byc, #0 are similar. Since (b/ay ' <(b./bY,

F(b,0,0)>(a +b)(—a+b+c+d)(a—b+c+d)(b/bY b, =0.

The cases of b, = ¢, =0 and b, = d, = (0 are similar. We conclude that dA*/dA =0,
with equality only if (12) holds and a.=b.+c,+ d..

If b,=0, c,d,#0, and a,= c,+ d., then b, # 0, because the three-triangle case
has been excluded. Let b,—0 and A,— 0 while b{+ b} is constant. Since p <4, a
formula similar to (11) shows that A > A, in the limit. The cases of ¢, =0, b.d, #0
and d, =0, b,c,# 0 are similar.

This work has shown that A = A,. If equality holds, then a,b,c.d, #0 and
dA?/dA =0 for 0< A < 1. For a fixed value of A, we assumed a=b,a=c, a=d.
This gives (12), a,=b,+ ¢, + d,,

—b*+a’b*+ b*c’+ b’d*+2abcd (az)””’ b*
a?’

a*—a*b*—a*c*—a*d*—2abcd b,

—c*+a’c’+b*c*+ c’d*+2abcd _ (az)”“ c?

a‘—a*h*—a’c*—a*d*—2abcd ~ \c,

a’’
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and

—d*‘+a’d’+b*d*+c’d*+2abcd _ (az)”“ dar

a*—a’b’—a’c’—a’d’-2abced \d,) a’-

These equations give

(az__bZ)(a2+b2_cz_d2) _ (‘@)p*»xﬁ
2 ab - aic—aid —2abed 1T b,) a*’ (13)
(czwdz)(az+b2_cz_d2) _ (ﬂ)p—l f.f..._ (az)"_ig_':

a*—a*h*—a*c*—a*d*-2abed  \c,) a* \d,) a*

, (14)

and four other equations. Here, a, b, ¢, d are functions of A and a,, b, ¢,, d, are
positive constants. Equations (13) and (14) hold when 0 << A <1, or at least for a
subinterval where. a > b, a > ¢, a >d. These two equations can be continued
analytically to complex and negative values of A. The right sides have the form

(linear function of A)/(af+ Aab),

and the left sides have branch points at A = —a¥/a%, —bi/bs, ~ci/cs, —di/d}
unless cancellations occur.

The case of p =2 demands separate treatment. Neither a®— b? nor a*+ b*~
¢*—d? can vanish for all A. The four branch points must coincide in pairs, for
otherwise abcd and the left side of (13) would have branch points. We may assume
a/a,= b,/b, and c¢/c,=d,/d,. Then (a’— b?)/a” and the right side of (13) are
independent of A. Hence,

a’+b*—c*—d?
a’—b*~c*—d*—2bcd/a

and

b’+bcdfa __ _(b3/ad)a’+(b.dy/asc))c?
a*+b*—c*—d* (1+b¥yada*—(1+d3chH)c?

are independent of A. Since a,, b;, ¢, d, are positive, this is possible only if
a/a,=by/b,=ci/c.=d\/d,. (15)

Since a,=b,+c,+d,, we have A, = A,=0.
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We may now assume p#2. Then a?, b? c¢? d*® have branch points. The
ratio of (14) to (13), (¢’ —~d?)/(a’—b?), is a rational function of A. Similarly,
(b*—d*/(a®— ¢?) and (b*>— ¢?)/(a’® — d?) are rational functions. If b —d and ¢ —d
vanish for all A, (13) becomes

1+——-b—2v~—=1+(93)w b?
a

and the left side is rational only if (15) holds. If ¢ — d vanishes identicaily and b — d
does not, (b>—d?)/(a”— ¢?) is rational only if a,/a,= b,/b,, and (13) becomes

(a—b)(a’+b*=2¢%) _, (gg)”“y’_
a*(a*—b*—2¢%)—2abc’? b,/ a*’

We also have

@opaoe) . (4) e

a*(a’*—b*—2c*)—2abc* C a?’

The ratio is (a’+ b*>—2c?*)/(a* — ¢?), a rational function. Since neither a’~— b* nor
a’+ b*—2c¢? can vanish identically, this ratio is rational only if (15) holds. Similarly,
(15 holds if b — d or b — ¢ vanishes identically. We may assume that neither b>— ¢
nor b>— d? nor ¢*— d? vanishes identically. Since (c*>— d?)/(a*>— b?) is rational, we
have a,/a.=c¢i/c,, bi/b,=d,/d, or ai/a,=di/d,, bi/b,=c/c,. In the first
case, (b>—d?*/(a*—c?) is rational only if (15) holds. In the second case,
(b*—c?/(a®~d?) is rational only if (15) holds. Hence, (15) must hold and
A=A;=0

Proof of Theorem 4

Let A =f(a), B=f(b), and C = f(c). We may assume a = b =c. Then (4)
gives A=B=C and A/a=B/b=C/c. Since obtuse triangles are excluded,
a’=< b*+ ¢?, which gives

A= (b*+c)(Ala¥=B*+ C%.
Since equality cannot hold in both places, A> < B*+ C?. A, B, C are the sides of an

acute triangle and G(A, B, C) is an increasing function of each argument. Let us
exclude the case of a = b = ¢. Then we can show
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c < G(a,bc)<a. (16)

Since the area of an acute triangle is an increasing function of each side,
G(a,b,c)=G(b,b,c)=[(@b*>~c*)c*/3]" =c.

Equality cannot hold in both places. The arithmetic-geometric inequality gives
(—a+b+c)a—-b+c)a+b—c)<[(a+b+c)3],

which gives the second part of (16). Using (16), we may distinguish two cases.

If b = G(a,b,c)< a, Jensen’s inequality for convex functions [3] gives an upper
bound for f(G(a, b, c)), because log f(x) is a continuous convex function of log x.
We have f(G(a,b,c))<A°B'™, where a depends on a, b, c and O0<a <1. It
suffices to show that G(A,B,C)> A°B'™". Since G(A, B,C) is an increasing
function of C, we replace C by its lower bound, which is also determined by the
convexity of log f(x). These two steps amount to replacing log f(x) by a linear
function of log x. It suffices to show that

G(f(a),f(b).f(c))> f(G(a, b,c)) amn

holds when f(x) = kx®. We may set k =1, and (4) gives 0 < p < 1. This function is
treated by Oppenheim [6].

In the other case, ¢ < G(a,b,c)<b, and the convexity of logf(x) gives
f(G(a,b,c))=B?C'®, where 0< B «<1. It suffices to show that G(A,B,C)>
B*C'®. Since G(A, B, C) is an increasing function of A, we replace A by its lower
bound, which is also determined by the convexity of log f(x). Again it suffices to
show that (17) holds when f(x) = kx?, or when f(x)= x*.

Oppenheim [6] proves that, if a, b, ¢ are sides of a triangle and 0<p <1,

G(a® b? c?)=[G(a,b,c)J.
Equality holds iff a = b = c. This result can also be derived from Jensen’s inequality
[3]. Since log G(1,1,1)=0, it suffices to show that log G(a?, b? c?) is a concave
function of p, or that

(d*/dp*)og[(a® + b” + c?)(—a” + b? +cF)(a? — b® +cP)(a? +b? — )] =0,

with equality iff a = b = c. This last inequality is a modified form of lemma 2 of
Carroll, Yang and Ahn [2].
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