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Proof of Oppenheim's area inequalities 
for triangles and quadrilaterals 

C. E. CARROLL 

Abstract. Let at,  b~, cl, A;  and a2, b2, c2, A2 be the sides and areas of two triangles. If a = ( a t +  a20 '/~, 
b = (b~ + b~) '/p, c = (c, p + c~) TM, and 1 -< p -< 4, then a, b, c are the sides of a triangle and its area satisfies 
A p/2 _> A ~,2 + A 2~/L If obtuse  triangles are excluded, p > 4 is allowed. For convex cyclic quadrilaterals,  a 
similar inequality holds. Also, let a, b, c, A be the sides and area of an acute or right triangle. If f(x) 
satisfies certain conditions,  f(a), f(b), f(c) are the sides of a triangle having area At, which satisfies 
(4.4i/-X/3) 'r2 --> f((4A/V'3)"2).  

Introduction and results 

The area of a triangle is a well known function of the lengths of its sides, and this 
function satisfies numerous inequalities [1]. Inequalities containing this function 
and another function appear in three conjectures published by Oppenheim [5] and 
[6]. The first of these conjectures is: 

T H E O R E M  1. I f  1 <- p <- 4 and if two triangles have sides a~, bl, c~ and a2, b2, 
c2 and areas AI  and A2, then a = (a f  + a 9  '/~, b = (M + b~) u~, c = (cC + c 9  ~ are the 

sides of a triangle having area A ,  and 

A p/2 _> A~ "]2 + A~/2. (1) 

Apart  from trivial cases with p = 1 and A1 = A~ = 0, equality holds if and only if  

a,/a2 = bl/b2 = cdc2. (2) 
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Oppenheim's paper [5] ends with an example using an obtuse triangle to show 
that p <- 4 is a necessary condition. Larger values of p are included in: 

T H E O R E M  2. I f  p >- 1, if the triangles having areas A~ and A2 are acute or 
right triangles, and if a, b, c, A are as in Theorem 1, then (1) holds, with equality iff 
(2) holds. 

Oppenheim's later paper [6] strongly suggests that a similar inequality holds for 
convex plane quadrilaterals. Steiner [8] showed that, if a quadrilateral has sides of 
fixed length, the area is maximum when the vertices lie on a circle. See also the 
proof given by P61ya [7]. 

T H E O R E M  3. I f  1 <- p <-4 and if two quadrilaterals have sides a~, b~, c~, dr 
and az, b2, c2, d2, then a =(a~+a~)  I/p . . . .  , d = ( d ~ + d 9  ~;p are the sides of a 
quadrilateral, andthe  max imum areas satisfy (1). Equality holds iff the sets a t, bt, c~, 
dl and a2, b2, c2, d2 are proportional; but there are trivial exceptions with p = 1 and 
AI = A z = 0 .  

Oppenheim [5] and [6] showed that Theorems 1 and 3 hold when p = 1,2, or 4. 
To prove Theorems I, 2, and 3 when p > 1, we shall consider changes of a~, a2, bl, 
b2 . . . .  such that a, b, c or a, b, c, d are constant. We shall consider boundary values 
of A ~/2_ A ~/2_ A~/2, and show that this function is stationary iff the triangles or 
quadrilaterals are similar. 

Oppenheim's third conjecture [6] is that "if f ( x )  is a non-negative, non- 
decreasing sub-additive function on x > 0" and if 

/'4A~li= [(a,,+ b + c ) ( -  a + b + c)(a - b + c ) ( a  + b - c ) ]  ~" 
G ( a , b , c ) =  

iX/3/ [ 3 ] ' 

then 

G ( f ( a  ), f (b  ), f ( c  )) >- f ( G ( a ,  b, c )). (3) 

He showed that (3) holds if f ( x ) =  ~,,a~x ~., where a,  > 0, 0<- p,-< 1. But let 
a = b = l , c = l . 9 ,  

f(x) = x 

f(x)=xexp[ l°gXexp( 1 )1 - 6  

when x >- 1, 

when 0 < x  < 1. 
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Then (3) does not hold. In both the example and the counterexample,  the arbitrary 
function satisfies 

1 
/ ( x ) > 0 ,  0 -<x  l o g / ( x ) - - l ,  and 0 -  < x~--x- x l o g f ( x ) -  < . 

We are led to exclude obtuse triangles. 

T H E O R E M  4. Suppose a, b, c are the sides o f  an acute or right triangle, 

[ ( x )  > 0, log [ ( x )  is a convex [unction o f  log x, and  

0 < log[f (x) / f (y) ] / log(x/y)  < 1, 

where x and  y are distinct positive numbers. Then  

a = b = c .  

(4) 

(3) holds, with equality iff 

Prom of Theorem 1 

Minkowski's inequality [4, p. 115] can be used to show that a, b, c are the sides 
of a triangle. If triangles of zero area are allowed, a l -  bl +c~ and a2 < - b2+c2. 

Hence,  

a < [(hi + c ~  + (b2 + c2)"] TM --< b + c. 

If a = b + c, then At  = A2 = 0; the converse is not true. Similarly, b -< a + c and 
c < _ a + b .  

If p = 1, Oppenheim [5] notes that 

2A 112 = [(a + b + c )(  - a + b + c ) ( a  - b + c ) (a  + b - c)] TM, 

where 

a + b + c = (al  + b~ + c~) + (a~ + b2 + c~) 

and so forth. A known inequality [4, p. 117] gives 2 A  112>- 2AI/2+2A~/2, with 
equality only if triangles 1 and 2 are similar or At  = A2 = 0. Thus, we may assume 
p > 1. We shall minimize A m _ A ~2 _ A ga. The minimum value of this function is 
not positive, because it vanishes when triangles 1 and 2 are similar. Suppose that at 
is variable and a~'+ ag is constant. Then the maximum and minimum values of at 
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are  such tha t  A1A2 = 0. T h e  fol lowing l e m m a  implies  tha t  A p /z -  A~  ; 2 -  A~/2 is 

posi t ive when  a~ is at  e i ther  end  of  its range,  except  in a d e g e n e r a t e  case.  

L E M M A  1. I f  p > 1 and A ,  A2, A are defined as in Theorem 1, then A >- A~ 
and A >- Az. I f  A = A l  or A = A2, then A~ = A2 = 0 and the sets a~, b~, c~ and a2, 
b2, c2 are proportional. 

If A~A2 = 0, this l e m m a  is equ iva len t  to the t heo rem.  If A~A2 y~ O, we m a y  vary  
a~ and  a2. Since aaJaal  = -(a~/a2) p-I, 

( O / 3 a  0 ( A  p/2 _ A ~/2 _ A ~P') 

= (pa ~- ' /16)  [ - A l~' -4)/2a 2 - p (  _ a 2 + b ~ + c 2) + A (2 p-4)~2a 2-p( _ a ~ + b 22 + c ~)]. (5) 

This  quan t i ty  vanishes  at the m i n i m u m  of A p12 _ A ~12 _ A 2 ~/z. Le t  tz~, fl~, 3'1, R~ and 
a2,/32, 3'2, R2 be the  in ternal  angles and c i rcumradi i  of the first and second triangles.  
T h e n  

- a ~ + b 2 + c ~ = 2 b ~ c ~ c o s a l ,  a~b~c~ =4A~R~, 

and (5) vanishes  only if 

(A  ~/2/Ri)P-2(cos a~)sin ~-p a~ = (A  1/2/ Rz)P-2(cos a2)sin'  -p a2. (6) 

Var ia t ion  of b~ and  c~ gives similar  re la t ions  b e t w e e n  fl~ and/32 and b e t w e e n  "y, and 

y2. T o  p rove  that  ot~ = a2,/3~ =/32, and  3,~ = 3,2, it suffices to show tha t  tz,/3, 3' are  
uniquely  d e t e r m i n e d  by a + /3  + 3 / =  7r and  the rat ios  

cos c~ sin ~-1 ~ = rl, cos fl sin p-~ y 
cos 3, sin ~-1 a cos 3' sinP-~/3 = r~. (7) 

H e r e  we  have  a s sumed  cos 3,~ 0, because  two of cos a , ,  cos/3~, cos 3~1 are  posi t ive,  
and cos 3~ > 0 implies  cos 3'2 > 0. W e  m a y  assume  cos 3' > 0 and r: > 0. Le t  g (x)  be a 
funct ion with range  (0, ¢r/2), def ined by 

x = log[cos g (x)] - (p - 1)log[sin g (x)].  (8) 

If r~ > 0, the  angles  are  acute ,  and  the  solut ion  of 

g (x )  + g ( x  + log r~) + g (x + log r2) = ¢r 
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is unique, because dg/dx = - (tan g)/(p - 1 + tan 2 g)  < 0; hence, y = g(x) is 
uniquely determined. If r l = 0 ,  then a =zr /2  and the solution of 
g(x)+g(x +logr2) = ~'/2 is unique. If rl < 0 ,  then c~ > w/2, 1r - a  =/3 + %  and 

g(x) + g(x +logr2!~ = 1. (9) 
g(x +loglrlli g(x +loglr~l) 

Since zr - a > y, log I rt I < 0. Since 7r - a > fl, log [r~ [ - log r2 < 0. The following 
lemma implies that the solution of (9) is unique. Hence, AP/2-A~/2-A~/z is 
stationary only if triangles 1 and 2 are similar. 

L E M M A  2. Let g(x) be defined as in (8). If l < p - < 4  and l < 0 ,  then 
g(x )/g(x + l) is a decreasing function of x. 

Proof of lemmas. The proof of Lemma 1 is similar to that of Lemma 3, which 
appears below. To prove Lemma 2, we write 

logg(x)- logg(x+l)= ~-  log g( t )  dt. 
+1 

This is a decreasing function of x if 

d 2 - s i n g  +s in2g]  1 ) ( 1 _ ~ ' ~ ]  
dx21°gg(X)=gcos3g(p-l+tan2g)3[(tanZg)(l 2g / - ( P -  2g ]J 

is negative. It suffices to show that the expression in square brackets is positive, or 
that 

(tan 0, , ( +si00) 3 (1 si00 ) 

is positive when 0 < 0 < w. We shall show that 

3 ( 1 -  si0----0 ) < 3(1 +cos  0)(tan 2 0 / 2 ) <  (tan 2 0 /2 ) (1  + si0----0 ) 
2 + cos 0 

(10) 

Since 2(0 - sin 0)sin 0 is positive, h (0) = 2 sin 0 + sin O cos 0 - 0 - 20 cos 0 is in- 
creasing when 0 < 0 < w. Since h(0) = 0, (sin 0)(2 + cos 0) > 0(1 + 2cos 0), 

sin 0 3(! + cos O) 
1 + "0--- > 2 + c o s  0 

sin 0 _ 1 - c o  s 0 
, and 1 - - - - - ~ - < 2 + c o s 0  

hold when 0 < 0 < ~. This proves (10). 
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Proof of Theorem 2 

Since T h e o r e m  1 has been  proved,  we may  assume p > 2. Again ,  a~, b~, c, ar~ 

varied to find the m i n i m um  of  A ~/~- AlP/~- A~  ~2. In  this variat ion,  a, b, c are 

cons tant  and obtuse  triangles are excluded.  The  max imum value of  a ~ is such that  

A 2 ( -  a~ + b~ + c ~ ) ( a ~ -  b~ + c~)(a~ + b ~ -  c~) = O. 

If A2 = 0, then a2 = 0 and b2 = cz, because  obtuse  triangles cannot  occur  as a2 

decreases ;  hence,  L e m m a  1 gives A > A1. If a~ = b~ + c~, then  (5) is positive (unless 
a 2-2 _ b ~ + c ~), and the min imum of A p/2 - A p/2, - A 2P/2 lies at a smaller  value of  a, .  If 

a~ - b~ + c~ = 0, a similar calculat ion shows that  the min imum lies at a smaller  value 

of b2, unless a~ - b~+  c~ = 0. Similar reasoning  applies to  a~ + b~ - c ~ 2 -  - 0 and to the 

min imum value of  al. Inside these boundar ies ,  A p ~ 2  A f~2 _ A p/: is s ta t ionary only 

for similar triangles. T he  p roof  of this is similar to the previous  calculation, except  

that  cos or, cos/3, cos y are positive and L e m m a  2 is not  used. The  except ional  cases 

involving two right triangles remain  to be considered.  

We may  assume a ~ = b ~ + c ~  and a 2 - b ~ + c  2 2 -  2. If c l / b , = c 2 / b : ,  then 
A ' / 2 - A ~ / ~ - A ~ / 2 = O .  If  c J b l ~ c z l b z ,  appropr ia te  small changes  will increase 

- a~ + b~ + c~ and - a 2~ + b~ + c 22 and decrease  A È/s - A~/2 - A~/~. Let  a ,  and a2 be 

constant .  Fo rmulae  similar to  (5) give 

(OIOb,) ( A  p/2_ A ~/2 _ A ~/2) = 2-1-p/Zpb~;-l[(czlb2),,/2 _ (c, /bOp~] 

and 

( 0 / 0 c l )  ( A  p/2 _ A ~,2 _ A z p/2) = 2-~-~/2pc [-l[(bz/c2y'/2 - (b l / c  1)~/s]. 

Let  d c d d b ,  = - ( b J c 2 ) ( b l c d b 2 c O  p/2. T h e n  

( c ~ / b O d c d d b l  = - (b~cz/b2c~) Q'-2)/2, ( c J b 2 ) d c J d b z  = - (b2cl/b~c2) ~'-2~/2, 

and  

( d / d b l )  ( A  p/2 _ A ';/2 _ A ~/~) = 2-1-P/2pb ~(b-;1 + bz/c,c2) [(c2/b2) p/2 - (cl/b,y'/2]. 

If c l /b ,  > cz/b2, then  p > 2 implies 

( c d b 2 ) d c d d b 2  < - 1 < ( c l / b l ) d c l / d b  i; 
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hence a sufficiently small increase in b~ will increase b ~ + c  2 and b~+c~  and 
decrease A ~/2- A f / 2 -  Az ~/2. If ci/b~ < c2/b2, a small decrease in b~ is used. Thus, 
A ~'/~- A ~/2-A~/~ is not minimized at this boundary point unless Cl/b~ = cdb2. 

P r o o f  o f  T h e o r e m  3 

Minkowski's inequality can be used to show that a, b, c, d are the sides of a 
quadrilateral. The maximum area of this quadrilateral is 

A = ~ [ ( - a  + b  + c  + d ) ( a  - b  + c  + d ) ( a  + b  - c  + d ) ( a  + b  + c - d ) ]  ~/2, 

and Oppenheim's  method of proof can be used when p ---- 1. We may assume p > 1 
and minimize A p/2 _ A ~/z _ A 2 ~/~, using 

2PA ~/2 = [ _ a ~ - b ~ - c 4 -  d~ + 2(a~b 2~ + . . .  + c ~d~) + 8a,b,c~d~] p/4 

and a similar formula for A 2 p/2. If a~ = a2 = 0, all three quadrilaterals degenerate to 
triangles, and Theorem 1 is applicable. We may assume a, b, c, d are positive. 

Suppose a~ is variable and a f  + a~ is constant. The maximum value of al is such that 
A~A2a2 = 0. If a2 = 0 and A ~ A 2 ~  0 at this point, we may use 

0 (Ap/2_ A~/2_ A2P/2) = pb2c2d2AC2 p-4)/2 ( a ~ y - ' + . . .  (11) 
Oai 8 \ a2 /  

to show that this point is not a minimum of A p/2_ A f/2 _ A 2~/2; the terms not shown 
explicitly are negligible when a2--~ 0 ÷. If A ~A2 = 0 at the maximum of a~, we use: 

L E M M A  3. I[ l < p - - < 4  and  A~, A2, A are the m a x i m u m  areas o f  the 

quadrilaterals in Theorem 3, then A > A~ and  A >- A2. I r A  = A~ or A = A2, then 

A~ = A2  = 0 and  the sets a~, bt, cl, dl a n d  a2, b2, c2, d2 are proportional. 

The minimum value of a~ can be treated similarly. The minimum of A P/2- 
A~ ' /2-  A~ ~ is attained at an intermediate value of a~, except in degenerate cases 
covered by Lemma 3. The condition for A p~2- A f /2 -  A~/2 to be stationary is 

A ~P-4)/2( - a~ + a,b~ + a,c~ + a~d~ + 2b,cld~,) 
a ~, -, 

A ~-4)/2 _ a 3 = ( 2 + a2b ~ + a2c ~ + a2d~ + 2b2c2d2) 
a~ -1 
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Since A1 is the max imum area,  the cor responding  quadri la tera l  has a c i rcumradius  
Rt.  A t  the  cent re  of the circumcircle,  the sides a~, b,, c~, d~ subtend angles 2a~, 2/3~, 

2~/,, 2/5,. T h e n  a,  = 2R,  sin a~ . . . .  , d, = 2R~ sin/5~, and a~ +/3,  + 3', +/5! = or. Hence ,  

b~c~d, = 2R 3[s in( - /3 ,  + 3'~ +/51) + sin(/3, - ~/, +/5~) 

+ sin(/3, + 3", -/51) - sin(/3, + 3', +/5,)] 

= 2R ~3(sin a 0 (cos  2/3, + cos 23"1 + cos 215, - 1) 

+ 2R 3(cos a l )  (sin 2/31 + sin 23', + sin 2/51). 

The  condi t ion  for  a min imum becomes  

A ~/2~ ~-4 (cos a , )  (sin 2a l  + sin 2/3, + sin 271 + sin 2/5,) 
--RT/ (sin~-~ a ~) 

/ A  1/2\ ~-4 (cos a2)(sin 2a2 + sin 2fl2 + sin 272 + sin 2/52) 
= ~-~-2 ) (sinP-' ol2) 

Since sin 2a l  + sin 2/3, + sin 23', + sin 28, = 2 A , / R  ~, we obta in  (6). Varia t ion of b~, 
cl, and d~ gives three  o the r  equat ions.  To  prove  that  a ,  = a2,/31 =/32, y~ = y2, and 
/5~ =/52, it suffices to show that  or,/3, 3",/5 are uniquely  de t e rmined  by a +/3 + 3' + 
/5 = or, the  ratios (7), and (cos/5 sin e- '  3')/(cos 3' sin "- ' /5)  = r~. We have assumed 
cos 3' > 0, as we may.  T h e  r ema inde r  of the proof  is as for  triangles. 

Proof  o f  L e m m a  3. It suffices to prove  A >-A~ and find when  equal i ty  holds. 
Le t  a = (alP+ ;ta~) ~tÈ . . . . .  d = (d~+ Ad~) l/p, where  a~, a2 . . . . .  d~, d2 are constant  and 
A is variable.  As the case of  al = a2 = 0 is covered  by L e m m a  1, we may assume that  
a, b, c, d are positive when  0 < A -< 1. We shall show that  the right side of 

d A  2/dA = (4p ) -1 [ ( -  a 4 + a2b 2 + a2c 2 + a2d 2 + 2 a b c d ) ( a J a  ~' 

+ ( -  b" + a2b 2 + b2c 2 + b2d 2 + 2 a b c d ) ( b d b )  p 

+ . . . ]  

is non-negat ive .  We may  t rea t  A, a, b, c, d as constants  and a2, b2, c2, d2 as variables.  
We may  assume a --> b, a -> c, and a - d. T h e n  the coefficients of ( bJ by ' ,  (c2/c) ~, 

and ( d J d y "  are  positive. If 

- a 4 + a 2b 2 + a 2c 2 + a 2de + 2abcd >- O, 

then dA2 /dA  > 0. Thus,  we may  assume 
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a 4 -  a 2 b  2 - a 2 c  2 - a 2 d  2 - 2abcd > O. 

This implies a > b, a > c, a > d, and d A 2 / d h  >- (4p)- lF(b2,  c2, d2), where  

F(b2, c2, d2) = ( - a '* + a 2b 2 + a ~c ~ + a 2d 2 + 2 a b c d )  [(b2 + c2 + d2)/a ]P 

+ ( - b 4 + a~b 2 + b2c 2 + b2d 2 + 2 a b c d ) ( b z [ b f  

+ ( -  c" + a2c 2 + b2c 2 + c2d ~ + 2 a b c d ) ( c d c y  

+ ( - d" + a2d 2 + b2d ~ + c2d 2 + 2 a b c d ) ( d d d )  ~. 
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(12) 

We may  exclude the trivial case of  b2 = c2 = d2 = 0. If  OF/Ob2 = 0F/0c2 = OF/c~dz = 

0, then  

( -  b 4 + a2b 2 + b2c 2 + b2d 2 + 2abcd)(b2/b  ) p 

b 2 + c 2 + d 2 ( a  4 . . . .  2abcd )  - 

and so for th;  hence  F(b2, c2, d 2 ) =  0. To  show that  this is the min imum of  F, we 

consider  the boundar ies ,  where  b2c2d2 = 0. If b2 = 0 and c2d2 ~ O, we set 0F/0c2 = 

OF/Od~ = 0 and again obta in  F(b: ,  c2, d 2 ) =  0. The  cases of  c2 = 0, b2d2 ~ 0 and  

d2 = O, b2c2 ~ 0 are similar. Since ( b J  a ~ -~ < ( bzl b ~ -1, 

F(b2, 0, O) > (a + b ) (  - a + b + c + d ) ( a  - b + c + d ) ( b d b f - ~ b 2  >- O. 

The cases of b2 = c2 = 0 and b2 = d2 = 0 are similar. We  conclude  that  d A  2IdA >- 0, 

with equal i ty  only  if (12) holds and  a2 = b2 + c2 + d2. 

If b2 = 0, c2d2 ~ 0, and a2 = c2 + d2, then  bl ~ 0, because  the three- t r iangle  case 

has been  excluded.  Let  b2--~ 0 and  A2--~0 while b f +  b~ is constant .  Since p -< 4, a 
formula  similar to (11) shows that  A > A1 in the limit. The  cases of  c2 = 0, b2d~ ~ 0 

and d2 = 0, b2c2 ~ 0 are similar. 
This work  has shown that  A- ->A1.  If equal i ty  holds,  then a2b2c2d2~O and 

d A  2/dA = 0 for  0 < h < 1. For  a fixed value of  A, we assumed a >- b, a -> c, a -> d. 

This gives (12), az = b2 + c2 + d2, 

- b ' + a Z b 2 + b 2 c 2 + b 2 d 2 + 2 a b c d  {a2"~t '-~ b p 
a 4 -  a2b 2 -  a2c 2 -  a2d 2 -  2abcd = \-~21 -~7 , 

- -  C 4 "~ a 2c2 Ji- b 2 c  2 + c 2 d  2 -~ 2abcd = (a...~2~ ~-~ c___~ p 

a 4 -  a2b 2 -  aZc 2 -  a2d 2 -  2abcd  \ C z l  a p ' 
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and 

- d 4 + a Z d ~ + b Z d 2 + c 2 d 2 + 2 a b c d  (a2'~ P-l d p 
a ' * -  a2b 2 - a2c ~ - aZd 2 -  2abcd = \ - ~ }  - ~  " 

These equations give 

, ( a 2 - b Z ) ( a 2 + b 2 - c 2 - d 2 )  (a2'~ ~'-~ b p 
a 4 a2b2 a 2 c 2 _ a 2 d 2 _ 2 a b c d  = 1 +  - - \ b 2 ]  a P ' 

(c2-d2)(a2+b2-c2-d 2) =(a2y -~ c ~' (a2"~p-, d p 
a 4 -  a 2 b  2 -  a 2 c  2 - a2d 2 -  2abcd  \ c 2 /  ~ -  \-~2] -~7,  

(13) 

(14) 

and four other  equations. Here ,  a, b, c, d are functions of A and az, b2, c2, d2 are 
positive constants. Equations (13) and (14) hold when 0 < it < 1, or at least for a 
subinterval where, a > b, a > c, a > d. These two equations can be continued 
analytically to complex and negative values of A. The right sides have the form 

(linear function of h)/(a~ + ha g), 

and the left sides have branch points at A = - a ~ / a ~ ,  - b f / b g ,  - c f f c ~ ,  - d ~ / d ~  

unless cancellations occur. 

The case of p = 2 demands  separate  t reatment .  Nei ther  a 2 -  b 2 nor a 2 +  b 2 -  

c 2 -  d 2 can vanish for all A. The four branch points must  coincide in pairs, for 
otherwise abcd and the left side of (13) would have branch points. We may assume 
a l /a2= hi/b2 and cdc2 = ddd2. Then (a 2 -  b2)/a 2 and the right side of (13) are 
independent  of it. Hence ,  

a2 + b 2 -  c 2 -  d 2 

a 2 -  b 2 -  c 2 -  d 2 -  2 b c d / a  

and 

b 2 + bcd[a  (b~Ja ~)a! + (b2dda2c2)c 2 
a 2 + b 2 - c 2 - d 2 = (1 + b~/a~)a 2 - (1 + d2"c 2"2I Oc z 

are independent  of h. Since a2, b2, c2, d2 are positive, this is possible only if 

al/a2 = bdb2 = cl/c2 = ddd2. ( 1 5 )  

Since a2 = b2 + c2 + dz, we have A1 = A2 = 0. 
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We may now assume p ~ 2 .  Then  a 2, b 2, c 2, d 2 have branch  points.  The  

ratio of  (14) to (13), ( c 2 - d Z ) / ( a 2 - b 2 ) ,  is a rational funct ion of  h. Similarly, 
(b 2 - d~)/(a 2 - c 2) and (b 2 - c2)/(a 2 - d ~) are rational functions.  If b - d and c - d 

vanish for  all A, (13) becomes  

b 2 : [ a2 ]  p-'  b p 
a ( a  - 2b ) l + \ b 2 ]  a - 7 '  

and the left side is rat ional  only if (15) holds. If c - d vanishes identically and b - d 

does not ,  (b 2 - d:) / (a  ~ - c 2) is rat ional  only if al/a2 = b,/b2, and (13) becomes  

(a2-bZ)(a2+b2-2c 2) (a2)  p-l b ~ 
a 2 ( a 2 - b 2 - 2 c 2 ) - 2 a b c  2 = 1 +  -~2 a "-d " 

We also have 

( a 2 -  b 2 ) ( a 2 -  c2) = 1 + (a2~ P-I c___~ p 
a 2 ( a 2 - b 2 - 2 c 2 ) - 2 a b c  2 \ c 2 /  a ~ " 

The ratio is (aS+ b 2 -  2c2)/(a 2 -  c2), a ra t ional  funct ion.  Since nei ther  a 2 -  b 2 nor  

a 2 + b 2 _ 2c 2 can vanish identically, this rat io is rat ional  only  if (15) holds. Similarly, 

(15) holds if b - d o r  b - c vanishes identically. We  may  assume that  nei ther  b 2 - c 2 
nor  b 2 - d 2 nor  c 2 - d 2 vanishes identically. Since (c 2 - d2)/(a 2 -  b 2) is rat ional ,  we 

have a t / a 2 = c t / c 2 ,  b l / b 2 = d l / d 2  or  a d a 2 = d d d 2 ,  b d b 2 = c d c 2 .  In  the first 
case, ( b 2 - d 2 ) / ( a ~ - c  ~) is rat ional  only  if (15) holds. In  the second case, 
( b 2 - c 2 ) / ( a 2 - d  2) is rat ional  only  if (15) holds. Hence ,  (15) must  hold  and 

A I = A 2 = 0 .  

Proof of Theorem 4 

Let  A = f ( a ) ,  B = f ( b ) ,  and C = f ( c ) .  W e  may  assume a - - - b - - - c .  T h e n  (4) 
gives A - - B  > C and A / a  < - B / b  <-C/c .  Since obtuse  tr iangles are  excluded,  
a 2 < b 2 + c 2, which gives 

A 2<_(b2 + c2 ) (A  / a ) 2<- B :  + C 2. 

Since equal i ty  cannot  hold in bo th  places, A 2 < B 2 +  C 2. A,  B, C are the sides of  an  

acute  tr iangle and  G ( A ,  B,  C )  is an  increasing funct ion of  each a rgument .  Let  us 

exclude the case of  a = b = c. T h e n  we can  show 
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c < G(a, b, c) < a. (16) 

Since the area of an acute triangle is an increasing function of each side, 

G( a, b, c) >- G(b, b, c) = [(4b 2 - c2)c2/3] '/4 >- c. 

Equality cannot hold in both places. The arithmetic-geometric inequality gives 

( - a  + b + c ) ( a  - b  + c)(a + b - c ) < [ ( a  + b  +c)/3]  3, 

which gives the second part of (16). Using (16), we may distinguish two cases. 
If b <- G(a, b, c) < a, Jensen's inequality for convex functions [3] gives an upper 

bound for f (G(a ,  b, c)), because logf(x)  is a continuous convex function of log x. 
We have f ( G ( a , b , c ) ) < - A " B  ~-', where a depends on a, b, c and 0 - < a  < L i t  
suffices to show that G ( A , B ,  C ) >  A " B  ~-'. Since G(A,  B, C) is an increasing 
function of C, we replace C by its lower bound, which is also determined by the 
convexity of logf(x).  These two steps amount to replacing logf(x)  by a linear 
function of log x. It suffices to show that 

G ( f ( a ) , f ( b ) , f ( c ) )  > f (G(a ,  b, c)) (17) 

holds when f ( x )  = kx e. We may set k = 1, and (4) gives 0 < p < 1. This function is 
treated by Oppenheim [6]. 

In the other case, c < G ( a , b , c ) < b ,  and the convexity of logf (x)  gives 
f (G( a ,b , c ) )< - B oC 1-~, where 0 < / 3  < 1 .  It suffices to show that G ( A , B , C ) >  
B " C  ~-~. Since G(A,  B, C)  is an increasing function of A, we replace A by its lower 
bound, which is also determined by the convexity of logf(x) .  Again it suffices to 
show that (17) holds when f ( x )  = kx ~, or when f ( x )  = x ~. 

Oppenheim [6] proves that, if a, b, c are sides of a triangle and 0 < p < 1, 

G(a e, b e, ce) >- [G(a, b, c)] e. 

Equality holds iff a = b = c. This result can also be derived from Jensen's inequality 
[3]. Since log G(1, 1, 1)= 0, it suffices to show that log G(a e, b e, c e) is a concave 
function of p, or that 

(d2/dp2)log[(aP + b p + ce)(  - a p + b p + cP)(a p - b e + c~')(a e + b p - cP)] -< 0, 

with equality itt a = b = c. This last inequality is a modified form of lemma 2 of 
Carroll, Yang and Ahn  [2]. 
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