Aequationes Mathematicae 24 (1982) 97–109 University of Waterloo

Proof of Oppenheim's area inequalities for triangles and quadrilaterals

C. E. CARROLL

Abstract. Let a_1 , b_1 , c_1 , A_1 and a_2 , b_2 , c_2 , A_2 be the sides and areas of two triangles. If $a = (a_1^p + a_2^q)^{1/p}$, $b = (b_1^p + b_2^q)^{1/p}$, $c = (c_1^p + c_2^q)^{1/p}$, and $1 \le p \le 4$, then a, b, c are the sides of a triangle and its area satisfies $A^{p/2} \ge A_1^{p/2} + A_2^{p/2}$. If obtuse triangles are excluded, p > 4 is allowed. For convex cyclic quadrilaterals, a similar inequality holds. Also, let a, b, c, A be the sides and area of an acute or right triangle. If f(x) satisfies certain conditions, f(a), f(b), f(c) are the sides of a triangle having area A_f , which satisfies $(4A_f/\sqrt{3})^{1/2} \ge f((4A/\sqrt{3})^{1/2})$.

Introduction and results

The area of a triangle is a well known function of the lengths of its sides, and this function satisfies numerous inequalities [1]. Inequalities containing this function and another function appear in three conjectures published by Oppenheim [5] and [6]. The first of these conjectures is:

THEOREM 1. If $1 \le p \le 4$ and if two triangles have sides a_1 , b_1 , c_1 and a_2 , b_2 , c_2 and areas A_1 and A_2 , then $a = (a_1^p + a_2^p)^{1/p}$, $b = (b_1^p + b_2^p)^{1/p}$, $c = (c_1^p + c_2^p)^{1/p}$ are the sides of a triangle having area A, and

$$A^{p/2} \ge A_1^{p/2} + A_2^{p/2}.$$
 (1)

Apart from trivial cases with p = 1 and $A_1 = A_2 = 0$, equality holds if and only if

$$a_1/a_2 = b_1/b_2 = c_1/c_2. \tag{2}$$

Manuscript received August 31, 1981, and in final form, June 25, 1982.

AMS (1980) subject classification: Primary 26D99, 51M25.

Oppenheim's paper [5] ends with an example using an obtuse triangle to show that $p \le 4$ is a necessary condition. Larger values of p are included in:

THEOREM 2. If $p \ge 1$, if the triangles having areas A_1 and A_2 are acute or right triangles, and if a, b, c, A are as in Theorem 1, then (1) holds, with equality iff (2) holds.

Oppenheim's later paper [6] strongly suggests that a similar inequality holds for convex plane quadrilaterals. Steiner [8] showed that, if a quadrilateral has sides of fixed length, the area is maximum when the vertices lie on a circle. See also the proof given by Pólya [7].

THEOREM 3. If $1 \le p \le 4$ and if two quadrilaterals have sides a_1 , b_1 , c_1 , d_1 and a_2 , b_2 , c_2 , d_2 , then $a = (a_1^p + a_2^p)^{1/p}$, ..., $d = (d_1^p + d_2^p)^{1/p}$ are the sides of a quadrilateral, and the maximum areas satisfy (1). Equality holds iff the sets a_1 , b_1 , c_1 , d_1 and a_2 , b_2 , c_2 , d_2 are proportional; but there are trivial exceptions with p = 1 and $A_1 = A_2 = 0$.

Oppenheim [5] and [6] showed that Theorems 1 and 3 hold when p = 1, 2, or 4. To prove Theorems 1, 2, and 3 when p > 1, we shall consider changes of $a_1, a_2, b_1, b_2, \ldots$ such that a, b, c or a, b, c, d are constant. We shall consider boundary values of $A^{p/2} - A_1^{p/2} - A_2^{p/2}$, and show that this function is stationary iff the triangles or quadrilaterals are similar.

Oppenheim's third conjecture [6] is that "if f(x) is a non-negative, nondecreasing sub-additive function on x > 0" and if

$$G(a, b, c) = \left(\frac{4A}{\sqrt{3}}\right)^{\frac{1}{2}} = \left[\frac{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}{3}\right]^{\frac{1}{4}},$$

then

$$G(f(a), f(b), f(c)) \ge f(G(a, b, c)).$$
 (3)

He showed that (3) holds if $f(x) = \sum_{n} a_n x^{p_n}$, where $a_n > 0$, $0 \le p_n \le 1$. But let a = b = 1, c = 1.9,

$$f(x) = x \qquad \text{when } x \ge 1,$$

$$f(x) = x \exp\left[-\frac{\log x}{6} \exp\left(\frac{1}{\log x}\right)\right] \qquad \text{when } 0 < x < 1.$$

Vol. 24, 1982 Proof of Oppenheim's area inequalities for triangles and quadrilaterals

Then (3) does not hold. In both the example and the counterexample, the arbitrary function satisfies

$$f(x) > 0, \qquad 0 \le x \frac{d}{dx} \log f(x) \le 1, \quad \text{and} \quad 0 \le \left(x \frac{d}{dx}\right)^2 \log f(x) \le \frac{1}{4}.$$

We are led to exclude obtuse triangles.

THEOREM 4. Suppose a, b, c are the sides of an acute or right triangle, f(x) > 0, $\log f(x)$ is a convex function of $\log x$, and

$$0 < \log[f(x)/f(y)]/\log(x/y) < 1,$$
(4)

where x and y are distinct positive numbers. Then (3) holds, with equality iff a = b = c.

Proof of Theorem 1

Minkowski's inequality [4, p. 115] can be used to show that a, b, c are the sides of a triangle. If triangles of zero area are allowed, $a_1 \le b_1 + c_1$ and $a_2 \le b_2 + c_2$. Hence,

$$a \leq [(b_1+c_1)^p+(b_2+c_2)^p]^{1/p} \leq b+c.$$

If a = b + c, then $A_1 = A_2 = 0$; the converse is not true. Similarly, $b \le a + c$ and $c \le a + b$.

If p = 1, Oppenheim [5] notes that

$$2A^{1/2} = [(a+b+c)(-a+b+c)(a-b+c)(a+b-c)]^{1/4},$$

where

$$a + b + c = (a_1 + b_1 + c_1) + (a_2 + b_2 + c_2)$$

and so forth. A known inequality [4, p. 117] gives $2A^{1/2} \ge 2A_1^{1/2} + 2A_2^{1/2}$, with equality only if triangles 1 and 2 are similar or $A_1 = A_2 = 0$. Thus, we may assume p > 1. We shall minimize $A^{p/2} - A_1^{p/2} - A_2^{p/2}$. The minimum value of this function is not positive, because it vanishes when triangles 1 and 2 are similar. Suppose that a_1 is variable and $a_1^p + a_2^p$ is constant. Then the maximum and minimum values of a_1

are such that $A_1A_2 = 0$. The following lemma implies that $A^{p/2} - A_1^{p/2} - A_2^{p/2}$ is positive when a_1 is at either end of its range, except in a degenerate case.

LEMMA 1. If p > 1 and A_1 , A_2 , A are defined as in Theorem 1, then $A \ge A_1$ and $A \ge A_2$. If $A = A_1$ or $A = A_2$, then $A_1 = A_2 = 0$ and the sets a_1 , b_1 , c_1 and a_2 , b_2 , c_2 are proportional.

If $A_1A_2 = 0$, this lemma is equivalent to the theorem. If $A_1A_2 \neq 0$, we may vary a_1 and a_2 . Since $\partial a_2/\partial a_1 = -(a_1/a_2)^{p-1}$,

$$(\partial/\partial a_1)(A^{p/2} - A_1^{p/2} - A_2^{p/2}) = (pa_1^{p-1}/16)[-A_1^{(p-4)/2}a_1^{2-p}(-a_1^2 + b_1^2 + c_1^2) + A_2^{(p-4)/2}a_2^{2-p}(-a_2^2 + b_2^2 + c_2^2)].$$
(5)

This quantity vanishes at the minimum of $A^{p/2} - A_1^{p/2} - A_2^{p/2}$. Let α_1 , β_1 , γ_1 , R_1 and α_2 , β_2 , γ_2 , R_2 be the internal angles and circumradii of the first and second triangles. Then

$$-a_1^2+b_1^2+c_1^2=2b_1c_1\cos\alpha_1, \qquad a_1b_1c_1=4A_1R_1,$$

and (5) vanishes only if

$$(A_1^{1/2}/R_1)^{p-2}(\cos\alpha_1)\sin^{1-p}\alpha_1 = (A_2^{1/2}/R_2)^{p-2}(\cos\alpha_2)\sin^{1-p}\alpha_2.$$
 (6)

Variation of b_1 and c_1 gives similar relations between β_1 and β_2 and between γ_1 and γ_2 . To prove that $\alpha_1 = \alpha_2$, $\beta_1 = \beta_2$, and $\gamma_1 = \gamma_2$, it suffices to show that α , β , γ are uniquely determined by $\alpha + \beta + \gamma = \pi$ and the ratios

$$\frac{\cos\alpha \sin^{p-1}\gamma}{\cos\gamma \sin^{p-1}\alpha} = r_1, \qquad \frac{\cos\beta \sin^{p-1}\gamma}{\cos\gamma \sin^{p-1}\beta} = r_2.$$
(7)

Here we have assumed $\cos \gamma \neq 0$, because two of $\cos \alpha_1$, $\cos \beta_1$, $\cos \gamma_1$ are positive, and $\cos \gamma_1 > 0$ implies $\cos \gamma_2 > 0$. We may assume $\cos \gamma > 0$ and $r_2 > 0$. Let g(x) be a function with range $(0, \pi/2)$, defined by

$$x = \log[\cos g(x)] - (p-1)\log[\sin g(x)].$$
(8)

If $r_1 > 0$, the angles are acute, and the solution of

$$g(x) + g(x + \log r_1) + g(x + \log r_2) = \pi$$

is unique, because $dg/dx = -(\tan g)/(p-1+\tan^2 g) < 0$; hence, $\gamma = g(x)$ is uniquely determined. If $r_1 = 0$, then $\alpha = \pi/2$ and the solution of $g(x) + g(x + \log r_2) = \pi/2$ is unique. If $r_1 < 0$, then $\alpha > \pi/2$, $\pi - \alpha = \beta + \gamma$, and

$$\frac{g(x)}{g(x+\log|r_1|)} + \frac{g(x+\log r_2)}{g(x+\log|r_1|)} = 1.$$
(9)

Since $\pi - \alpha > \gamma$, $\log |r_1| < 0$. Since $\pi - \alpha > \beta$, $\log |r_1| - \log r_2 < 0$. The following lemma implies that the solution of (9) is unique. Hence, $A^{p/2} - A_1^{p/2} - A_2^{p/2}$ is stationary only if triangles 1 and 2 are similar.

LEMMA 2. Let g(x) be defined as in (8). If $1 \le p \le 4$ and $l \le 0$, then g(x)/g(x+l) is a decreasing function of x.

Proof of lemmas. The proof of Lemma 1 is similar to that of Lemma 3, which appears below. To prove Lemma 2, we write

$$\log g(x) - \log g(x+l) = \int_{x+l}^{x} \left[\frac{d}{dt} \log g(t) \right] dt.$$

This is a decreasing function of x if

$$\frac{d^2}{dx^2}\log g(x) = \frac{-\sin g}{g\cos^3 g (p-1+\tan^2 g)^3} \left[(\tan^2 g) \left(1+\frac{\sin 2g}{2g}\right) - (p-1) \left(1-\frac{\sin 2g}{2g}\right) \right]$$

is negative. It suffices to show that the expression in square brackets is positive, or that

$$(\tan^2\theta/2)\left(1+\frac{\sin\theta}{\theta}\right)-3\left(1-\frac{\sin\theta}{\theta}\right)$$

is positive when $0 < \theta < \pi$. We shall show that

$$3\left(1-\frac{\sin\theta}{\theta}\right) < \frac{3(1+\cos\theta)(\tan^2\theta/2)}{2+\cos\theta} < (\tan^2\theta/2)\left(1+\frac{\sin\theta}{\theta}\right).$$
(10)

Since $2(\theta - \sin \theta)\sin \theta$ is positive, $h(\theta) = 2\sin \theta + \sin \theta \cos \theta - \theta - 2\theta \cos \theta$ is increasing when $0 < \dot{\theta} < \pi$. Since h(0) = 0, $(\sin \theta)(2 + \cos \theta) > \theta(1 + 2\cos \theta)$,

$$1 + \frac{\sin \theta}{\theta} > \frac{3(1 + \cos \theta)}{2 + \cos \theta}$$
, and $1 - \frac{\sin \theta}{\theta} < \frac{1 - \cos \theta}{2 + \cos \theta}$

hold when $0 < \theta < \pi$. This proves (10).

101

Vol. 24, 1982

C. E. CARROLL

Proof of Theorem 2

Since Theorem 1 has been proved, we may assume p > 2. Again, a_1 , b_1 , c_1 are varied to find the minimum of $A^{p/2} - A_2^{p/2} - A_2^{p/2}$. In this variation, a, b, c are constant and obtuse triangles are excluded. The maximum value of a_1 is such that

$$A_2(-a_1^2+b_1^2+c_1^2)(a_2^2-b_2^2+c_2^2)(a_2^2+b_2^2-c_2^2)=0.$$

If $A_2 = 0$, then $a_2 = 0$ and $b_2 = c_2$, because obtuse triangles cannot occur as a_2 decreases; hence, Lemma 1 gives $A > A_1$. If $a_1^2 = b_1^2 + c_1^2$, then (5) is positive (unless $a_2^2 = b_2^2 + c_2^2$), and the minimum of $A^{p/2} - A_1^{p/2} - A_2^{p/2}$ lies at a smaller value of a_1 . If $a_2^2 - b_2^2 + c_2^2 = 0$, a similar calculation shows that the minimum lies at a smaller value of b_2 , unless $a_1^2 - b_1^2 + c_1^2 = 0$. Similar reasoning applies to $a_2^2 + b_2^2 - c_2^2 = 0$ and to the minimum value of a_1 . Inside these boundaries, $A^{p/2} - A_1^{p/2} - A_2^{p/2}$ is stationary only for similar triangles. The proof of this is similar to the previous calculation, except that $\cos \alpha$, $\cos \beta$, $\cos \gamma$ are positive and Lemma 2 is not used. The exceptional cases involving two right triangles remain to be considered.

We may assume $a_1^2 = b_1^2 + c_1^2$ and $a_2^2 = b_2^2 + c_2^2$. If $c_1/b_1 = c_2/b_2$, then $A^{p/2} - A_1^{p/2} - A_2^{p/2} = 0$. If $c_1/b_1 \neq c_2/b_2$, appropriate small changes will increase $-a_1^2 + b_1^2 + c_1^2$ and $-a_2^2 + b_2^2 + c_2^2$ and decrease $A^{p/2} - A_1^{p/2} - A_2^{p/2}$. Let a_1 and a_2 be constant. Formulae similar to (5) give

$$(\partial/\partial b_1)(A^{p/2} - A_1^{p/2} - A_2^{p/2}) = 2^{-1-p/2}pb_1^{p-1}[(c_2/b_2)^{p/2} - (c_1/b_1)^{p/2}]$$

and

$$(\partial/\partial c_1)(A^{p/2} - A_1^{p/2} - A_2^{p/2}) = 2^{-1-p/2}pc_1^{p-1}[(b_2/c_2)^{p/2} - (b_1/c_1)^{p/2}].$$

Let $dc_1/db_1 = -(b_2/c_2)(b_1c_2/b_2c_1)^{p/2}$. Then

$$(c_1/b_1)dc_1/db_1 = -(b_1c_2/b_2c_1)^{(p-2)/2}, \quad (c_2/b_2)dc_2/db_2 = -(b_2c_1/b_1c_2)^{(p-2)/2},$$

and

$$(d/db_1)(A^{p/2} - A_1^{p/2} - A_2^{p/2}) = 2^{-1-p/2}pb_1^p(b_1^{-1} + b_2/c_1c_2)[(c_2/b_2)^{p/2} - (c_1/b_1)^{p/2}].$$

If $c_1/b_1 > c_2/b_2$, then p > 2 implies

$$(c_2/b_2)dc_2/db_2 < -1 < (c_1/b_1)dc_1/db_1;$$

hence a sufficiently small increase in b_1 will increase $b_1^2 + c_1^2$ and $b_2^2 + c_2^2$ and decrease $A^{p/2} - A_1^{p/2} - A_2^{p/2}$. If $c_1/b_1 < c_2/b_2$, a small decrease in b_1 is used. Thus, $A^{p/2} - A_1^{p/2} - A_2^{p/2}$ is not minimized at this boundary point unless $c_1/b_1 = c_2/b_2$.

Proof of Theorem 3

Minkowski's inequality can be used to show that a, b, c, d are the sides of a quadrilateral. The maximum area of this quadrilateral is

$$A = \frac{1}{4}[(-a+b+c+d)(a-b+c+d)(a+b-c+d)(a+b+c-d)]^{1/2},$$

and Oppenheim's method of proof can be used when p = 1. We may assume p > 1and minimize $A^{p/2} - A_1^{p/2} - A_2^{p/2}$, using

$$2^{p}A_{1}^{p/2} = \left[-a_{1}^{4}-b_{1}^{4}-c_{1}^{4}-d_{1}^{4}+2(a_{1}^{2}b_{1}^{2}+\cdots+c_{1}^{2}d_{1}^{2})+8a_{1}b_{1}c_{1}d_{1}\right]^{p/4}$$

and a similar formula for $A_2^{p'^2}$. If $a_1 = a_2 = 0$, all three quadrilaterals degenerate to triangles, and Theorem 1 is applicable. We may assume a, b, c, d are positive. Suppose a_1 is variable and $a_1^p + a_2^p$ is constant. The maximum value of a_1 is such that $A_1A_2a_2 = 0$. If $a_2 = 0$ and $A_1A_2 \neq 0$ at this point, we may use

$$\frac{\partial}{\partial a_1} \left(A^{p/2} - A_1^{p/2} - A_2^{p/2} \right) = \frac{p b_2 c_2 d_2 A_2^{(p-4)/2}}{8} \left(\frac{a_1}{a_2} \right)^{p-1} + \cdots$$
(11)

to show that this point is not a minimum of $A^{p/2} - A_1^{p/2} - A_2^{p/2}$; the terms not shown explicitly are negligible when $a_2 \rightarrow 0^+$. If $A_1A_2 = 0$ at the maximum of a_1 , we use:

LEMMA 3. If $1 and <math>A_1$, A_2 , A are the maximum areas of the quadrilaterals in Theorem 3, then $A \ge A_1$ and $A \ge A_2$. If $A = A_1$ or $A = A_2$, then $A_1 = A_2 = 0$ and the sets a_1 , b_1 , c_1 , d_1 and a_2 , b_2 , c_2 , d_2 are proportional.

The minimum value of a_1 can be treated similarly. The minimum of $A^{p/2} - A_1^{p/2} - A_2^{p/2}$ is attained at an intermediate value of a_1 , except in degenerate cases covered by Lemma 3. The condition for $A^{p/2} - A_1^{p/2} - A_2^{p/2}$ to be stationary is

$$\frac{A_1^{(p-4)/2}(-a_1^3+a_1b_1^2+a_1c_1^2+a_1d_1^2+2b_1c_1d_1)}{a_1^{p-1}} = \frac{A_2^{(p-4)/2}(-a_2^3+a_2b_2^2+a_2c_2^2+a_2d_2^2+2b_2c_2d_2)}{a_2^{p-1}}$$

Since A_1 is the maximum area, the corresponding quadrilateral has a circumradius R_1 . At the centre of the circumcircle, the sides a_1 , b_1 , c_1 , d_1 subtend angles $2\alpha_1$, $2\beta_1$, $2\gamma_1$, $2\delta_1$. Then $a_1 = 2R_1 \sin \alpha_1, \ldots, d_1 = 2R_1 \sin \delta_1$, and $\alpha_1 + \beta_1 + \gamma_1 + \delta_1 = \pi$. Hence,

$$b_1c_1d_1 = 2R_1^3[\sin(-\beta_1 + \gamma_1 + \delta_1) + \sin(\beta_1 - \gamma_1 + \delta_1) + \sin(\beta_1 + \gamma_1 - \delta_1) - \sin(\beta_1 + \gamma_1 + \delta_1)]$$
$$= 2R_1^3(\sin\alpha_1)(\cos 2\beta_1 + \cos 2\gamma_1 + \cos 2\delta_1 - 1) + 2R_1^3(\cos\alpha_1)(\sin 2\beta_1 + \sin 2\gamma_1 + \sin 2\delta_1).$$

The condition for a minimum becomes

$$\left(\frac{A_1^{1/2}}{R_1}\right)^{p-4} \frac{(\cos \alpha_1)(\sin 2\alpha_1 + \sin 2\beta_1 + \sin 2\gamma_1 + \sin 2\delta_1)}{(\sin^{p-1}\alpha_1)} \\ = \left(\frac{A_2^{1/2}}{R_2}\right)^{p-4} \frac{(\cos \alpha_2)(\sin 2\alpha_2 + \sin 2\beta_2 + \sin 2\gamma_2 + \sin 2\delta_2)}{(\sin^{p-1}\alpha_2)}$$

Since $\sin 2\alpha_1 + \sin 2\beta_1 + \sin 2\gamma_1 + \sin 2\delta_1 = 2A_1/R_1^2$, we obtain (6). Variation of b_1 , c_1 , and d_1 gives three other equations. To prove that $\alpha_1 = \alpha_2$, $\beta_1 = \beta_2$, $\gamma_1 = \gamma_2$, and $\delta_1 = \delta_2$, it suffices to show that α , β , γ , δ are uniquely determined by $\alpha + \beta + \gamma + \delta = \pi$, the ratios (7), and $(\cos \delta \sin^{p-1} \gamma)/(\cos \gamma \sin^{p-1} \delta) = r_3$. We have assumed $\cos \gamma > 0$, as we may. The remainder of the proof is as for triangles.

Proof of Lemma 3. It suffices to prove $A \ge A_1$ and find when equality holds. Let $a = (a_1^p + \lambda a_2^p)^{1/p}, \ldots, d = (d_1^p + \lambda d_2^p)^{1/p}$, where $a_1, a_2, \ldots, d_1, d_2$ are constant and λ is variable. As the case of $a_1 = a_2 = 0$ is covered by Lemma 1, we may assume that a, b, c, d are positive when $0 < \lambda \le 1$. We shall show that the right side of

$$dA^{2}/d\lambda = (4p)^{-1}[(-a^{4} + a^{2}b^{2} + a^{2}c^{2} + a^{2}d^{2} + 2abcd)(a_{2}/a)^{p} + (-b^{4} + a^{2}b^{2} + b^{2}c^{2} + b^{2}d^{2} + 2abcd)(b_{2}/b)^{p} + \cdots]$$

is non-negative. We may treat λ , a, b, c, d as constants and a_2 , b_2 , c_2 , d_2 as variables. We may assume $a \ge b$, $a \ge c$, and $a \ge d$. Then the coefficients of $(b_2/b)^p$, $(c_2/c)^p$, and $(d_2/d)^p$ are positive. If

$$-a^{4} + a^{2}b^{2} + a^{2}c^{2} + a^{2}d^{2} + 2abcd \ge 0,$$

then $dA^2/d\lambda > 0$. Thus, we may assume

Vol. 24, 1982 Proof of Oppenheim's area inequalities for triangles and quadrilaterals 105

$$a^{4}-a^{2}b^{2}-a^{2}c^{2}-a^{2}d^{2}-2abcd>0.$$
 (12)

This implies a > b, a > c, a > d, and $dA^2/d\lambda \ge (4p)^{-1}F(b_2, c_2, d_2)$, where

$$F(b_2, c_2, d_2) = (-a^4 + a^2b^2 + a^2c^2 + a^2d^2 + 2abcd)[(b_2 + c_2 + d_2)/a]^p$$

+ (-b^4 + a^2b^2 + b^2c^2 + b^2d^2 + 2abcd)(b_2/b)^p
+ (-c^4 + a^2c^2 + b^2c^2 + c^2d^2 + 2abcd)(c_2/c)^p
+ (-d^4 + a^2d^2 + b^2d^2 + c^2d^2 + 2abcd)(d_2/d)^p.

We may exclude the trivial case of $b_2 = c_2 = d_2 = 0$. If $\partial F/\partial b_2 = \partial F/\partial c_2 = \partial F/\partial d_2 = 0$, then

$$(-b^{4} + a^{2}b^{2} + b^{2}c^{2} + b^{2}d^{2} + 2abcd)(b_{2}/b)^{p}$$

= $\frac{b_{2}}{b_{2} + c_{2} + d_{2}}(a^{4} - a^{2}b^{2} - a^{2}c^{2} - a^{2}d^{2} - 2abcd)\left(\frac{b_{2} + c_{2} + d_{2}}{a}\right)^{p}$

and so forth; hence $F(b_2, c_2, d_2) = 0$. To show that this is the minimum of F, we consider the boundaries, where $b_2c_2d_2 = 0$. If $b_2 = 0$ and $c_2d_2 \neq 0$, we set $\partial F/\partial c_2 = \partial F/\partial d_2 = 0$ and again obtain $F(b_2, c_2, d_2) = 0$. The cases of $c_2 = 0$, $b_2d_2 \neq 0$ and $d_2 = 0$, $b_2c_2 \neq 0$ are similar. Since $(b_2/a)^{p-1} < (b_2/b)^{p-1}$,

$$F(b_2,0,0) > (a+b)(-a+b+c+d)(a-b+c+d)(b_2/b)^{p-1}b_2 \ge 0.$$

The cases of $b_2 = c_2 = 0$ and $b_2 = d_2 = 0$ are similar. We conclude that $dA^2/d\lambda \ge 0$, with equality only if (12) holds and $a_2 = b_2 + c_2 + d_2$.

If $b_2 = 0$, $c_2d_2 \neq 0$, and $a_2 = c_2 + d_2$, then $b_1 \neq 0$, because the three-triangle case has been excluded. Let $b_2 \rightarrow 0$ and $A_2 \rightarrow 0$ while $b_1^p + b_2^p$ is constant. Since $p \leq 4$, a formula similar to (11) shows that $A > A_1$ in the limit. The cases of $c_2 = 0$, $b_2d_2 \neq 0$ and $d_2 = 0$, $b_2c_2 \neq 0$ are similar.

This work has shown that $A \ge A_1$. If equality holds, then $a_2b_2c_2d_2 \ne 0$ and $dA^2/d\lambda = 0$ for $0 < \lambda < 1$. For a fixed value of λ , we assumed $a \ge b$, $a \ge c$, $a \ge d$. This gives (12), $a_2 = b_2 + c_2 + d_2$,

$$\frac{-b^4 + a^2b^2 + b^2c^2 + b^2d^2 + 2abcd}{a^4 - a^2b^2 - a^2c^2 - a^2d^2 - 2abcd} = \left(\frac{a_2}{b_2}\right)^{p-1}\frac{b^p}{a^p},$$

$$\frac{-c^4 + a^2c^2 + b^2c^2 + c^2d^2 + 2abcd}{a^4 - a^2b^2 - a^2c^2 - a^2d^2 - 2abcd} = \left(\frac{a_2}{c_2}\right)^{p-1}\frac{c^p}{a^p},$$

and

$$\frac{-d^4 + a^2d^2 + b^2d^2 + c^2d^2 + 2abcd}{a^4 - a^2b^2 - a^2c^2 - a^2d^2 - 2abcd} = \left(\frac{a_2}{d_2}\right)^{p-1}\frac{d^p}{a^p}.$$

These equations give

$$\frac{(a^2-b^2)(a^2+b^2-c^2-d^2)}{a^4-a^2b^2-a^2c^2-a^2d^2-2abcd} = 1 + \left(\frac{a_2}{b_2}\right)^{p-1}\frac{b^p}{a^p},$$
(13)

$$\frac{(c^2-d^2)(a^2+b^2-c^2-d^2)}{a^4-a^2b^2-a^2c^2-a^2d^2-2abcd} = \left(\frac{a_2}{c_2}\right)^{p-1}\frac{c^p}{a^p} - \left(\frac{a_2}{d_2}\right)^{p-1}\frac{d^p}{a^p},$$
(14)

and four other equations. Here, a, b, c, d are functions of λ and a_2 , b_2 , c_2 , d_2 are positive constants. Equations (13) and (14) hold when $0 < \lambda < 1$, or at least for a subinterval where a > b, a > c, a > d. These two equations can be continued analytically to complex and negative values of λ . The right sides have the form

(linear function of λ)/ $(a_1^p + \lambda a_2^p)$,

and the left sides have branch points at $\lambda = -a_1^p/a_2^p$, $-b_1^p/b_2^p$, $-c_1^p/c_2^p$, $-d_1^p/d_2^p$ unless cancellations occur.

The case of p = 2 demands separate treatment. Neither $a^2 - b^2$ nor $a^2 + b^2 - c^2 - d^2$ can vanish for all λ . The four branch points must coincide in pairs, for otherwise *abcd* and the left side of (13) would have branch points. We may assume $a_1/a_2 = b_1/b_2$ and $c_1/c_2 = d_1/d_2$. Then $(a^2 - b^2)/a^2$ and the right side of (13) are independent of λ . Hence,

$$\frac{a^2+b^2-c^2-d^2}{a^2-b^2-c^2-d^2-2bcd/a}$$

and

$$\frac{b^2 + bcd/a}{a^2 + b^2 - c^2 - d^2} = \frac{(b_2^2/a_2^2)a^2 + (b_2d_2/a_2c_2)c^2}{(1 + b_2^2/a_2^2)a^2 - (1 + d_2^2/c_2^2)c^2}$$

are independent of λ . Since a_2 , b_2 , c_2 , d_2 are positive, this is possible only if

$$a_1/a_2 = b_1/b_2 = c_1/c_2 = d_1/d_2.$$
(15)

Since $a_2 = b_2 + c_2 + d_2$, we have $A_1 = A_2 = 0$.

AEQ. MATH.

106

We may now assume $p \neq 2$. Then a^2 , b^2 , c^2 , d^2 have branch points. The ratio of (14) to (13), $(c^2 - d^2)/(a^2 - b^2)$, is a rational function of λ . Similarly, $(b^2 - d^2)/(a^2 - c^2)$ and $(b^2 - c^2)/(a^2 - d^2)$ are rational functions. If b - d and c - d vanish for all λ , (13) becomes

$$1 + \frac{b^2}{a(a-2b)} = 1 + \left(\frac{a_2}{b_2}\right)^{p-1} \frac{b^p}{a^p},$$

and the left side is rational only if (15) holds. If c - d vanishes identically and b - d does not, $(b^2 - d^2)/(a^2 - c^2)$ is rational only if $a_1/a_2 = b_1/b_2$, and (13) becomes

$$\frac{(a^2-b^2)(a^2+b^2-2c^2)}{a^2(a^2-b^2-2c^2)-2abc^2}=1+\left(\frac{a_2}{b_2}\right)^{p-1}\frac{b^p}{a^p}.$$

We also have

$$\frac{(a^2-b^2)(a^2-c^2)}{a^2(a^2-b^2-2c^2)-2abc^2}=1+\left(\frac{a_2}{c_2}\right)^{p-1}\frac{c^p}{a^p}$$

The ratio is $(a^2 + b^2 - 2c^2)/(a^2 - c^2)$, a rational function. Since neither $a^2 - b^2$ nor $a^2 + b^2 - 2c^2$ can vanish identically, this ratio is rational only if (15) holds. Similarly, (15) holds if b - d or b - c vanishes identically. We may assume that neither $b^2 - c^2$ nor $b^2 - d^2$ nor $c^2 - d^2$ vanishes identically. Since $(c^2 - d^2)/(a^2 - b^2)$ is rational, we have $a_1/a_2 = c_1/c_2$, $b_1/b_2 = d_1/d_2$ or $a_1/a_2 = d_1/d_2$, $b_1/b_2 = c_1/c_2$. In the first case, $(b^2 - d^2)/(a^2 - c^2)$ is rational only if (15) holds. In the second case, $(b^2 - c^2)/(a^2 - d^2)$ is rational only if (15) holds. Hence, (15) must hold and $A_1 = A_2 = 0$.

Proof of Theorem 4

Let A = f(a), B = f(b), and C = f(c). We may assume $a \ge b \ge c$. Then (4) gives $A \ge B \ge C$ and $A/a \le B/b \le C/c$. Since obtuse triangles are excluded, $a^2 \le b^2 + c^2$, which gives

$$A^{2} \leq (b^{2} + c^{2})(A/a)^{2} \leq B^{2} + C^{2}$$
.

Since equality cannot hold in both places, $A^2 < B^2 + C^2$. A, B, C are the sides of an acute triangle and G(A, B, C) is an increasing function of each argument. Let us exclude the case of a = b = c. Then we can show

C. E. CARROLL

$$c < G(a, b, c) < a. \tag{16}$$

Since the area of an acute triangle is an increasing function of each side,

$$G(a, b, c) \ge G(b, b, c) = [(4b^2 - c^2)c^2/3]^{1/4} \ge c.$$

Equality cannot hold in both places. The arithmetic-geometric inequality gives

$$(-a+b+c)(a-b+c)(a+b-c) < [(a+b+c)/3]^3$$
,

which gives the second part of (16). Using (16), we may distinguish two cases.

If $b \le G(a, b, c) < a$, Jensen's inequality for convex functions [3] gives an upper bound for f(G(a, b, c)), because $\log f(x)$ is a continuous convex function of $\log x$. We have $f(G(a, b, c)) \le A^{\alpha}B^{1-\alpha}$, where α depends on a, b, c and $0 \le \alpha < 1$. It suffices to show that $G(A, B, C) > A^{\alpha}B^{1-\alpha}$. Since G(A, B, C) is an increasing function of C, we replace C by its lower bound, which is also determined by the convexity of $\log f(x)$. These two steps amount to replacing $\log f(x)$ by a linear function of $\log x$. It suffices to show that

$$G(f(a), f(b), f(c)) > f(G(a, b, c))$$
(17)

holds when $f(x) = kx^p$. We may set k = 1, and (4) gives 0 . This function is treated by Oppenheim [6].

In the other case, c < G(a, b, c) < b, and the convexity of $\log f(x)$ gives $f(G(a, b, c)) \le B^{\beta}C^{1-\beta}$, where $0 < \beta < 1$. It suffices to show that $G(A, B, C) > B^{\beta}C^{1-\beta}$. Since G(A, B, C) is an increasing function of A, we replace A by its lower bound, which is also determined by the convexity of $\log f(x)$. Again it suffices to show that (17) holds when $f(x) = kx^{\beta}$, or when $f(x) = x^{\beta}$.

Oppenheim [6] proves that, if a, b, c are sides of a triangle and 0 ,

$$G(a^{p}, b^{p}, c^{p}) \geq [G(a, b, c)]^{p}.$$

Equality holds iff a = b = c. This result can also be derived from Jensen's inequality [3]. Since $\log G(1, 1, 1) = 0$, it suffices to show that $\log G(a^{p}, b^{p}, c^{p})$ is a concave function of p, or that

$$(d^{2}/dp^{2})\log[(a^{p}+b^{p}+c^{p})(-a^{p}+b^{p}+c^{p})(a^{p}-b^{p}+c^{p})(a^{p}+b^{p}-c^{p})] \leq 0,$$

with equality iff a = b = c. This last inequality is a modified form of lemma 2 of Carroll, Yang and Ahn [2].

108

AEQ. MATH.

Acknowledgements

Oppenheim's conjectures were brought to my attention by Prof. M. S. Klamkin, and Prof. G. R. Morris supplied helpful comments on the manuscript.

REFERENCES

- [1] BOTTEMA, O., DJORDJEVIĆ, R. Ž., JANIĆ, R. R., MITRINOVIĆ, D. S. and VASIĆ, P. M., Geometric inequalities. Wolters-Noordhoff Publishing, Groningen, 1969, chapter 4.
- [2] CARROLL, C. E., YANG, C. C. and AHN, S., Some triangle inequalities and generalizations. Canad. Math. Bull. 23 (1980), 267-274.
- [3] JENSEN, J. L. W. V., Sur les fonctions convexes et les inégalitiés entre les valeurs moyennes. Acta Math. 30 (1905), 175–193.
- [4] MINKOWSKI, HERMAN, Geometrie der Zahlen. Chelsea Publishing Company, New York, 1953.
- [5] OPPENHEIM, A., Some inequalities for triangles. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Math. Fiz. 363 (1971), 21-28.
- [6] OPPENHEIM, A., Inequalities involving elements of triangles, quadrilaterals or tetrahedra. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 496 (1974), 257–263.
- [7] POLYA, G., Induction and analogy in mathematics. Princeton University Press, Princeton, 1954, pp. 176-177.
- [8] STEINER, J., Gesammelte Werke. herausgegeben von K. Weierstrass, Chelsea Publishing Company, New York, 1971, vol. 2, p. 199.

Research School of Chemistry, Australian National University, Canberra, A.C.T. 2600, Australia.