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Sign Reversing and Matrix Classes 1 

S. M. Guu 2 

Communicated by D. G. Luenberger 

Abstract. The concept of sign reversing is a useful tool to characterize 
certain matrix classes in linear complementarity problems. In this paper, 
we characterize the sign-reversal set of an arbitrary square matrix M in 
terms of the null spaces of the matrices I - A  + AM, where A is a 
diagonal matrix such that 0 < A < L These matrices are used to charac- 
terize the membership of M in the classes P0, P, and the class of column- 
sufficient matrices. A simple proof of the Gale and Nikaido characteriza- 
tion theorem for the membership in P is presented. 

We also study the class of diagonally semistable matrices. We prove 
that this class is contained properly in the class of sufficient matrices. 
We show that to characterize the diagonally semistable property is 
equivalent to solving a concave Lagrangian dual problem. For 2 x 2 
matrices, there is no duality gap between a primal problem and its 
Lagrangian problem. Such a primal problem is motivated by the defini- 
tion of column sufficiency. 

Key Words. Linear complementarity problems, matrix classes, 
sufficient matrices, diagonally semistable matrices, Lagrangian dual 
problems. 

1. Introduction 

This paper concerns several classes of  matrices that have arisen in con- 
nection with the linear complementarity problem (Refs. 1 and 2), namely 
Po, column sufficient matrices, and P. When all the principal minors of  a 
real square matrix are nonnegative [positive], the matrix belongs to the class 
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Po [P]. A matrix M e R  "• is column sufficient (CSU) if, for all zeR", 

z~(Mz)i<O, Vi ~ z~(Mz)i=O, Vi; 

and M is said to be row sufficient (RSU) if M T is column sufficient. A matrix 
that is both row and column sufficient is simply called sufficient (SU). The 
classes P0, P and their subclasses have been studied with some intensity for 
at least thirty years, largely because of their prevalence in scientific comput- 
ing (Refs. 3 and 4), the theory of piecewise-linear electrical networks (Ref. 
5), matrix theory (Refs. 6 and 7), and the theoretical foundations of the 
linear complementarity problem (Refs. 8 and 9). 

The linear complementarity problem (LCP) is defined as follows: given 
q~R n and M~R ~• find zeR" which satisfies the conditions 

(i) z>_0, (ii) q+Mz>_O, (iii) zr(q+Mz)--0, 

or show that no such z exists. An LCP with data q and M is denoted by 
(q, M). If there exists a z satisfying (i) and (ii), then (q, M) is termed 
feasible. In general, feasibility is not enough to guarantee the existence of a 
solution of (q, M). 

The most essential role played by P in the LCP concerns the existence 
and uniqueness of a solution. To be precise, (q, M) has a unique solution 
for any given q if and only if M is a P-matrix (Refs. 10-12). Although Po 
can be thought of as a natural generalization of P, there are major differences 
in terms of LCPs. For instance, the number of solutions of (q, M) with 
M~P0 is quite different from that for the case of M~P. In fact, if M~P0, 
then (q, M) may have no solution for some q, even if it is feasible. On the 
other hand, it is easy to construct examples in which an infinite number of 
solutions exist for the LCP (q, M) with given q and M~Po. 

Interest in the classes CSU and RSU stems from the study of the linear 
complementarity problem (Ref. 13). In that paper, it was proven that the 
solution set (which may be empty) of (q, M) is convex for every q if and 
only if M~CSU. Furthermore, all minima of the quadratic program 

min zr(q+Mz), (la) 

s.t. q+Mz>O, z>_O, (lb) 

are solutions of (q, M) for every q if and only if M~RSU. These matrix 
classes have algorithmic significance for (q, M) as well. Column sufficiency 
is useful in justifying the least-index degeneracy resolution scheme in connec- 
tion with the principal pivoting method (Ref. 14). The interior-point method 
for solving LCPs is also connected with column and row sufficiency (Refs. 
15 and 16). 
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Sign reversing (defined in Section 2) is a useful tool in characterizing 
certain matrix classes in LCPs. Gale and Nikaido (Ref. 17) characterized 
the class of P-matrices in terms of the sign-reversal set. Later, Eaves (Ref. 
9) characterized the class of column adequate matrices in a similar manner. 
In Section 2, we present a characterization of the sign-reversal set of M in 
terms of the null spaces of the matrices I -  A + AM, where A is a diagonal 
matrix such that 0 < A < L In Section 3, matrices of the form I - A  + AM 
are employed to further characterize the classes P0, CSU, and P. Membership 
in Po and P is characterized by the sign of the determinants of I -  A + AM, 
while M e  CSU if and only if I -  A + AMeCSU,  VA. Based on these matrices, 
we provide a simple proof to the Gale and Nikaido characterization of 
membership in P. 

In Section 4, we define the notion of diagonally semistable matrices 
and establish some properties of these matrices. The diagonally semistable 
matrices are a natural generalization of diagonally stable matrices (see, for 
example, Ref. 2). We show that the class of diagonally semistable matrices 
is contained properly in the class SU. 

As in linear programming, there exists the Lagrangian dual problem, 
which is related closely to a given nonlinear programming problem (the 
primal problem). Under certain convexity assumptions and constraint quali- 
fications, the primal and dual problems have equal optimal objective values. 
Thus, it is possible for the dual problem to generate a solution to the primal 
problem. Based on the definition of column sufficiency, which is related 
closely to the concept of sign reversing, we consider a nonlinear program 
(the primal problem) whose constraints are given directly by the sign reversal 
set and the normalization condition. By the property of Lagrangian dual 
problems (see Section 6.3 in Ref. 18), we know that the dual problem is 
concave. We show that characterizing the diagonally semistable property is 
equivalent to solving such a concave dual problem. In the final section, we 
show that M e R  2• z is diagonally semistable if and only if MeSU.  Moreover, 
for 2 • 2 matrices, M e  SU \P  if and only if strong duality exists between the 
primal and dual problems. Conventional assumptions for the absence of a 
duality gap (Ref. 18) include the Slater constraint qualification and convexity 
in the objective function, constraints, and domain of the primal problem. 
Note that, for M e  SU \P, the Slater condition will never hold. Furthermore, 
the domain is not convex, and the objective function is not convex in general. 
We present examples that violate conventional assumptions, yet produce 
strong duality. 

A few words about notations are needed. M~t~ denotes the submatrix 
of M containing rows a and columns fl; the empty set is denoted by ~ ;  a 
denotes the complement of index set a ~ { 1, 2 . . . . .  n} ; I denotes the identity 
matrix; matrix inequalities of the type A < B  are componentwise. 
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2. Sign Reversing Revisited 

Definition 2.1. The matrix M e R  "• reverses the sign of the vector 
zeR" ifz~(Mz)~<O, for all i= 1, 2 . . . . .  n. 

The term "sign reversing" was coined by Gale and Nikaido (Ref. 17). 
For convenience, we write 

rev M =  {z: zi(Mz)i<O, i= 1, 2 . . . . .  n}, 

where Me R "• Notice that rev M is a cone containing ker M, the nuUspace 
of M, and hence is always nonempty. In particular, the zero vector belongs 
always to rev M. 

Sign reversing is a useful tool in characterizing certain matrix classes. 
One of such characterization pertains to the class of P-matrices as follows. 

Proposition 2.1. Let M be an n x n matrix. Then, 

MeP if and only ifrev M =  {0}. (2) 

As stated, Proposition 2.1 was proven by Gale and Nikaido (Ref. 17). 
It had earlier been established in an equivalent form by Fiedler and Ptfik 
(Ref. 19). In Section 3, we give an alternative proof of this result. 

The preceding proposition shows that rev M may be expressed in terms 
of ker M if M is in some matrix class; note that, if MeP, then ker M =  {0}. 
We now present a characterization of rev M for any matrix M in a similar 
fashion. 

Lemma 2.1. Let M e R  "• and let xeR" be nonzero. If xerev M, 
then there exists a diagonal matrix A, with 0 < A < L  such that 
x e k e r ( I -  A + AM). 3 

Proof. The problem is to define the appropriate diagonal elements A; 
of A, and can be done as follows. 

Case 1. Suppose that xi (Mx)i= 0. If both xi and (Mx)~ are zero, then 
any A~E [0, 1] will do. Otherwise, there are two possibilities. 

Case la, If x~= 0, take A~= 0. 

Case lb. If xir  0, and hence (Mx)j= 0, take A;= 1. 

3Matrices of this form appeared, for example, in Ref. 20. 



Case 2. 
and of  opposite sign. Take 

Ai = x i /[x , -  ( Mx)i] = xZi / Ix  z - xi (Mx),]. 

In each case, we have 

0 < A ~ < I  and (1-Ag)x~+Ai(Mx)~=O, 

This completes the proof. 

JOTA: VOL. 89, NO. 2, MAY 1996 377 

Suppose that x~(Mx)~<O. Then, xe and (Mx)i are nonzero 

Theorem 2.1. Let M be an n x n matrix. Then, 

r e v M =  U k e r ( I - A + A M ) .  
O_<A_<I 

for all i. 

[] 

(3) 

Proof. By Lemma 2. I, we have immediately 

r e v M _  U k e r ( I - A + A M ) .  
0_<A_<I 

Conversely, given a diagonal matrix A such that 0<A_</ ,  consider 
x ~ k e r ( l -  A + AM).  We must show that x~rev M. For each i~ { 1, 2 . . . .  , n}, 
we have 

(1 - A,)x,+ A; (Mx)i = 0, (4) 

and consequently, 

(1 - Ai)x~ + Aix, (Mx)i = 0. (5) 

From the latter, we deduce that: 

(a) A ; = 0  =~ x,-=0 =~ xi(Mx)i=O; 
(b) A,-=I ~ x~(Mx),=O; 
(c) 0<A~< 1 =~ x~(Mx)~=-(1 -Ai)x2/A~<0.  

Hence, x~rev M. [] 

3. Characterization of  Matrices 

We have seen that the matrices I - A  + A M  play an important role in 
deriving an equivalent condition for the sign-reversal set of a given matrix 
M. In this section, we employ the matrices I - A  + A M  to characterize the 
classes of  matrices P0, CSU, and P. 
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Lemma 3.1. Let M be an n x n matrix, and let A be an n • n diagonal 
matrix. Then, M is a P0-matrix if and only if 

d e t ( I - A + A M )  >0,  V 0 < A < L  (6) 

Proof. We first observe that 

d e t ( I -  A + AM)  = ~ de t ( ( I -  A)~a) det((AM)aa) 

= ~ Hi~(1 - Ai)(H;~aA;) det(Ma~), (7) 

where a runs over the index subsets (including ~ )  of {1, 2 , . . . ,  n}. Further- 
more, since 0 < A < / ,  we have 

0_<Ai<I,  i = 1 , 2  . . . .  ,n. 

If  MEPo, then (6) follows from (7) as each summand is nonnegative. Con- 
versely, suppose that (6) holds. For  any fixed a,  choose 

A = ~ I ,  Vje~, 
[0, Vjea 

Then, by (7), 

d e t ( I -  A + AM)  = det(Maa). 

It now follows from (6) that M is a P0-matrix. [] 

We can obtain easily a similar characterization of P-matrices as 
expressed in the following theorem. 

Lemma 3.2. Let M be an n x n matrix. Then, M is a P-matrix if and 
only if 

d e t ( I -  A + A M )  >0, V 0 < A < L  (8) 

Remark 3.1. The characterizations given above can be viewed of as 
extensions of a result of Aganagi6 (Ref. 20) that M e P  if and only if 
d e t ( I -  A + AM)  ~ 0 for all diagonal matrices A with 0 <_ A < L 

Corollary 3.1. Let M be an n x n matrix. Then, 

(i) MEPo if and only i f I - A + A M e P o ,  for all 0 < A < L  
(ii) M e P  if and only if I - A + A M e P ,  for all 0<_AN/(Ref .  20). 

We are ready to give a simple proof of  Proposition 2.1. 
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Proof of Proposition 2.1. By Corollary 3.1, if MeP,  then so is 
I - A + A M  for all 0 < A < I .  Hence, the kernel of each such matrix is {0}, 
which by Theorem 2.1 implies rev M =  {0}. Conversely, if rev M =  {0}, then 

ke r ( I -  A + AM) = {0}, for all 0 < A__< I. 

By a continuity argument, the determinants of all such matrices are positive. 
By Lemma 3.2, it follows that MeP.  [] 

From Theorem 2.1, we have the following definition. 

Definition 3.1. Let M be a real square matrix, and let xerev M. If 
0<A_q<I and ( I - A + A M ) x = O ,  A annihilates x. 

Theorem 3.1. If M e R  "• then the following statements are 
equivalent: 

(a) M is column sufficient. 
(b) For each xe  rev M and its annihilator A, if 0 < A~ < 1, then x~ = 0. 

Proof. Suppose that M e C S U  and there exists an x6rev M and its 
annihilator A with 0 < A i < l  such that x~r Since (1-A,.)x2+ 
x~Ai(Mx)i = O, we have x~ (Mx)~< 0, which is impossible since M e  CSU. 

Conversely, suppose that M is not column sufficient. Then, there exists 
an xerev M and an index set a such that a r  and 

xi(Mx)i=O, iea,  

xi(Mx)i<O, iefft. 

Define A = d i a g ( A l , . . . ,  A,), where 

A.=~I,  if iea ,  
' [x~/[xZi-xi(Mx)i], i f i~a .  

Then, 

( I -  A + AM)x  = 0, 

so A annihilates x. However, 0 < A / <  1 and xir  for each ied,  a contra- 
diction. [] 

Theorem 3.2. M e C S U  if and only if I - A + A M e C S U ,  for all 
O_<A_<L 
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Proof. 
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Assume that MeCSU.  Let x~R"  be a vector such that 

Vi. x , [ ( I -  A + AM)x] i<  0, 

In other words, 

x~Z(1 - Ai) + A~x~ (Mx)~< O. 

It follows that 

�9 x~(Mx)e<__O, for all i. 

Since M is column sufficient, 

xi (Mx)i  = 0, for all i. 

This implies 

xg[(I-  A + AM)x]~=O, Vi. 

Hence, I - A  + A M  is column sufficient for any A with 0 < A < L The other 
direction is obvious. [] 

Corollary 3.2. M~SU if and only i f I - A + A M ~ S U  for all 0 < A < L  

4. Duality Problem and Diagonally Semistable Matrices 

In this section, we consider the following nonlinear programming 
problem: 

rain xrMx,  (9a) 

s.t. x~(Mx)~<O, i= 1 . . . .  , n, (9b) 

Ilxll2 = 1. (9c) 

The corresponding Lagrangian dual problem can be written as 

} max min (1 +ui)xi(Mx)e: I}xll2 = 1 , (10a) 

s.t. u>0 .  (10b) 

Note that the objective function of the dual problem can be further reduced. 
Given a nonnegative ueR"  and letting 

D =diag(1 +ul  . . . . .  1 +u,) ,  
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the dual objective function becomes 

min (1 + ui)xi(Mx)i: Ilxlh = 1 
k l  

= min{xr(DM)x: IIx f12 = 1 } 

= min{xT[(DM+ MrD)/2]x: Iix112 = 1 } 

= ;~ ( u ) / 2 ,  (11)  

where ;t(u) is the minimal eigenvalue of the matrix DM+MTD (by the 
Rayleigh principle, see Section 6.4 of Ref. 21). Thus, the dual problem 
becomes 

max{~, (u)/2: u_> 0}. 

It follows from the properties of the dual function (see chapter 6 in Ref. 
18) that ~ (u)/2 is concave; hence, a local optimum is also a global optimum. 
This makes the maximization of the dual function an attractive task. How- 
ever, in this paper, we shall study the theoretical aspects of the dual problem 
only. 

In the sequel, we shall define the notion of diagonally semistable matrix 
as an extension of positive semidefiniteness. A vector z solves (q, M)  if and 
only if E-lz solves (Dq, DME), where D and E are arbitrary diagonal 
matrices with positive diagonal elements. If the matrix DME is positive 
semidefinite, the LCP (Dq, DME) [thus (q, M)] is equivalent to a convex 
quadratic program. Such an equivalent formulation raises the question of 
whether it is possible to transform M into a positive-semidefinite matrix by 
two-sided positive rescaling. This leads to the following definition. 

Definition 4.1. The matrix M is said to be diagonally semistable if there 
exists a positive diagonal matrix D such that DM is positive semidefinite. The 
matrix M is called diagonally stable 4 if DM is positive definite. 

Note that, if M is diagonally semistable, one can choose E equal to I 
and then solve (Dq, DM) to obtain a solution for (q, M). Moreover, it is 
easy to see that M is diagonally semistable [stable] if and only if 
max{,~ (u): u>__0} _0  [>0]. 

4See, for example, Ref. 2. 
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Theorem 4.1. M is a P-matrix if and only if the primal problem is 
infeasible. 

Proof. This follows directly from Proposition 2.1. [] 

Theorem 4.2. Weak Duality Theorem. If the primal problem (9) is 
feasible, then 

max{2 (u)/2: u_>0} 

<min{xrMx: xi(Mx)i<_O, for all i and Ilxl[2 = 1}. (12) 

Proof. See Theorem 6.2.1 in Ref. 18. [] 

Remark 4.1. A duality gap exists if strict inequality holds true in (12). 

Theorem 4.3. Ifmax{~.(u): u_>0} >0, then MeP.  

Proof. Suppose that M is not a P-matrix. By Theorem 4.1, the primal 
problem is feasible. By Theorem 4.2, we have the contradiction 

max{Z (u)/2: u > 0} 

<min{xrMx: xi(Mx)i<_O, for all i and [Ix[12-- 1} <0. [] 

Theorem 4.4. The optimal value of the primal problem (9) is zero if 
and only if M~CSU\P .  

Proof. This follows from Theorem 4.1 and the definition of column 
sufficiency. [] 

Theorem 4.5. If M is diagonally semistable, then M is sufficient. 

Proof. Since M is diagonally semistable, there exist positive diagonal 
matrices D and I so that DMI is positive semidefinite, and hence column 
suttieient. Because column sufficiency is invariant under two-sided positive 
scaling (see Ref. 15), we then have 

D-~ (DMI)I= M, 

a column sufficiency. Similar arguments show that M r is column 
sufficient. [] 
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Theorem 4.6. The following statements are equivalent: 

(a) M is diagonally semistable. 
(b) There exist positive diagonal matrices S and E such that S M E  is 

positive semidefinite. 
(c) There exists a positive diagonal matrix F such that F - ~ M F  is 

positive semidefinite. 

Moreover, if M is diagonally semistable, then all the eigenvalues of M have 
nonnegative real parts. 

Proof. See Theorem 3.3.9 in Ref. 2. [] 

Example 4.1. Consider the matrix 

M =  0 - . 

- 1 

Note that M is sufficient (see Exercise 3.12.16 in Ref. 2). The eigenvalues 
of M are 0.32748 and -0.163744-2.46585i. Thus, M is not diagonally 
semistable. 

5. Matrices of Size 2 x 2 

In this section, we examine the conditions for a 2 x 2 matrix to be 
diagonally semistable. Consider a 2 • 2 matrix 

We need the following lemma. 

Lemma 5.1. See Ref. 22. The matrix M E R  2• is sufficient if and only 
if, for every principal pivotal transform ~14 of M, 

(i) rh,>0, i = l , 2 ;  
(ii) for i=  1, 2, if fits;=0, then either rh0-=thji=0 or rhurhj.;<0. 

Theorem 5.1. Let MER 2 • 2. The following statements hold: 

(a) MEP if and only if max{)` (u) : u > 0 } > 0 ;  
(b) M E S U \ P  if and only if max{), (u): u>0} =0. 
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Proof. Recall that M is diagonally semistable if and only if 

max{~. (u) : u>__0} >0.  

First, compute 

,k (u) = y  - x /y  2 + (cd2 +bdl) 2 - 4afdld2, 

where 

y = adl +fd2 and d; = 1 + ui, i = 1, 2. 

Case 1. 

Case 2. 

Case 3. 

Case 3A. 

If  af= O, then 

(u) =y  - x /y  2 + ( cd2 + bdl) 2. 

Thus, 

max{~, (u) : u > 0} = 0 

there exist dl, d2 > 0 such that cd2 + bdl = 0 and y_> 0 

either bc < 0 or b = c = 0 

<~ M s S U ;  see Lemma 5.1. 

I f  af< 0, then ~, (u) < 0 for all u_> 0. 
Moreover, 

max{;~ (u) : u_>0} <0.  

I f  af> 0, then 

max{~, (u) : u>_0} >_0 

�9 ~ (cd2 + bdl) 2 <_ 4afdld2 and y >_ 0, (13) 

for some positive dl, dE. It is easy to see that y >_ 0 can be 
replaced by a > 0 and f >  0 under the assumption of  af> O. 

If  bc > 0, then we need to have af>_ bc for (13) to hold; this 
can be seen from 

4bcdld2 <_ (cd2 + bdl) 2. 

Note that if af> bc, then 

max{A (u) : u_>0} >0,  

and M is a P-matrix. 
If  af  = bc, then 

max{~, (u): u_>0} =0.  
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Case 3B. 

Moreover, since a > 0, f >  0, and bc > 0, a principal pivotal 
transform of M looks like 

I1/a 
c/a -o /a]  ' 

and again is sufficient. 

If  be < O, then M e  P. Also, there exist positive dl and d2 such 
that cd2 + bd~ = O. This shall make 

max{~t (u): u_>O} >0.  

Case 3C. If  bc = 0, then M~P.  Without loss of generality, we assume 
b = 0. Then, 

(cd2)2 < 4afdld2, 

for some positive d~ and d2. This yields 

max{~ (u): u>0}  > 0. []  

Corollary 5.1. M e R  2• is diagonally semistable if and only if it is 
sufficient. 

It is interesting to note that the second statement of  Theorem 5.1 can 
be rephrased as: M ~ S U \ P  if and only if there is no duality gap (called 
strong duality) between the corresponding primal and dual problems. In 
general, for the absence of  a duality gap, one needs to impose certain convex- 
ity assumptions and suitable constraint qualifications on the primal problem. 
For  instance, one may impose the Slater constraint qualification and assume 
that the objective function, constraints, and domain are convex in the primal 
problem (see Ref. 18). Note  that, for M ~ S U \ P ,  the Slater condition will 
never hold. Also, the domain llxl[2 = l is not convex and the objective func- 
tion is not convex in general. We have thus presented examples that violate 
conventional assumptions, yet produce strong duality. 
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